1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
|
/*
* Revision Control Information
*
* $Source$
* $Author$
* $Revision$
* $Date$
*
*/
/*
module: expand.c
purpose: Perform the Espresso-II Expansion Step
The idea is to take each nonprime cube of the on-set and expand it
into a prime implicant such that we can cover as many other cubes
of the on-set. If no cube of the on-set can be covered, then we
expand each cube into a large prime implicant by transforming the
problem into a minimum covering problem which is solved by the
heuristics of minimum_cover.
These routines revolve around having a representation of the
OFF-set. (In contrast to the Espresso-II manuscript, we do NOT
require an "unwrapped" version of the OFF-set).
Some conventions on variable names:
SUPER_CUBE is the supercube of all cubes which can be covered
by an expansion of the cube being expanded
OVEREXPANDED_CUBE is the cube which would result from expanding
all parts which can expand individually of the cube being expanded
RAISE is the current expansion of the current cube
FREESET is the set of parts which haven't been raised or lowered yet.
INIT_LOWER is a set of parts to be removed from the free parts before
starting the expansion
*/
#include "espresso.h"
ABC_NAMESPACE_IMPL_START
/*
expand -- expand each nonprime cube of F into a prime implicant
If nonsparse is true, only the non-sparse variables will be expanded;
this is done by forcing all of the sparse variables out of the free set.
*/
pcover expand(F, R, nonsparse)
INOUT pcover F;
IN pcover R;
IN bool nonsparse; /* expand non-sparse variables only */
{
register pcube last, p;
pcube RAISE, FREESET, INIT_LOWER, SUPER_CUBE, OVEREXPANDED_CUBE;
int var, num_covered;
bool change;
/* Order the cubes according to "chewing-away from the edges" of mini */
if (use_random_order)
F = random_order(F);
else
F = mini_sort(F, ascend);
/* Allocate memory for variables needed by expand1() */
RAISE = new_cube();
FREESET = new_cube();
INIT_LOWER = new_cube();
SUPER_CUBE = new_cube();
OVEREXPANDED_CUBE = new_cube();
/* Setup the initial lowering set (differs only for nonsparse) */
if (nonsparse)
for(var = 0; var < cube.num_vars; var++)
if (cube.sparse[var])
(void) set_or(INIT_LOWER, INIT_LOWER, cube.var_mask[var]);
/* Mark all cubes as not covered, and maybe essential */
foreach_set(F, last, p) {
RESET(p, COVERED);
RESET(p, NONESSEN);
}
/* Try to expand each nonprime and noncovered cube */
foreach_set(F, last, p) {
/* do not expand if PRIME or if covered by previous expansion */
if (! TESTP(p, PRIME) && ! TESTP(p, COVERED)) {
/* expand the cube p, result is RAISE */
expand1(R, F, RAISE, FREESET, OVEREXPANDED_CUBE, SUPER_CUBE,
INIT_LOWER, &num_covered, p);
if (debug & EXPAND)
printf("EXPAND: %s (covered %d)\n", pc1(p), num_covered);
(void) set_copy(p, RAISE);
SET(p, PRIME);
RESET(p, COVERED); /* not really necessary */
/* See if we generated an inessential prime */
if (num_covered == 0 && ! setp_equal(p, OVEREXPANDED_CUBE)) {
SET(p, NONESSEN);
}
}
}
/* Delete any cubes of F which became covered during the expansion */
F->active_count = 0;
change = FALSE;
foreach_set(F, last, p) {
if (TESTP(p, COVERED)) {
RESET(p, ACTIVE);
change = TRUE;
} else {
SET(p, ACTIVE);
F->active_count++;
}
}
if (change)
F = sf_inactive(F);
free_cube(RAISE);
free_cube(FREESET);
free_cube(INIT_LOWER);
free_cube(SUPER_CUBE);
free_cube(OVEREXPANDED_CUBE);
return F;
}
/*
expand1 -- Expand a single cube against the OFF-set
*/
void expand1(BB, CC, RAISE, FREESET, OVEREXPANDED_CUBE, SUPER_CUBE,
INIT_LOWER, num_covered, c)
pcover BB; /* Blocking matrix (OFF-set) */
pcover CC; /* Covering matrix (ON-set) */
pcube RAISE; /* The current parts which have been raised */
pcube FREESET; /* The current parts which are free */
pcube OVEREXPANDED_CUBE; /* Overexpanded cube of c */
pcube SUPER_CUBE; /* Supercube of all cubes of CC we cover */
pcube INIT_LOWER; /* Parts to initially remove from FREESET */
int *num_covered; /* Number of cubes of CC which are covered */
pcube c; /* The cube to be expanded */
{
int bestindex;
if (debug & EXPAND1)
printf("\nEXPAND1: \t%s\n", pc1(c));
/* initialize BB and CC */
SET(c, PRIME); /* don't try to cover ourself */
setup_BB_CC(BB, CC);
/* initialize count of # cubes covered, and the supercube of them */
*num_covered = 0;
(void) set_copy(SUPER_CUBE, c);
/* Initialize the lowering, raising and unassigned sets */
(void) set_copy(RAISE, c);
(void) set_diff(FREESET, cube.fullset, RAISE);
/* If some parts are forced into lowering set, remove them */
if (! setp_empty(INIT_LOWER)) {
(void) set_diff(FREESET, FREESET, INIT_LOWER);
elim_lowering(BB, CC, RAISE, FREESET);
}
/* Determine what can be raised, and return the over-expanded cube */
essen_parts(BB, CC, RAISE, FREESET);
(void) set_or(OVEREXPANDED_CUBE, RAISE, FREESET);
/* While there are still cubes which can be covered, cover them ! */
if (CC->active_count > 0) {
select_feasible(BB, CC, RAISE, FREESET, SUPER_CUBE, num_covered);
}
/* While there are still cubes covered by the overexpanded cube ... */
while (CC->active_count > 0) {
bestindex = most_frequent(CC, FREESET);
set_insert(RAISE, bestindex);
set_remove(FREESET, bestindex);
essen_parts(BB, CC, RAISE, FREESET);
}
/* Finally, when all else fails, choose the largest possible prime */
/* We will loop only if we decide unravelling OFF-set is too expensive */
while (BB->active_count > 0) {
mincov(BB, RAISE, FREESET);
}
/* Raise any remaining free coordinates */
(void) set_or(RAISE, RAISE, FREESET);
}
/*
essen_parts -- determine which parts are forced into the lowering
set to insure that the cube be orthognal to the OFF-set.
If any cube of the OFF-set is distance 1 from the raising cube,
then we must lower all parts of the conflicting variable. (If the
cube is distance 0, we detect this error here.)
If there are essentially lowered parts, we can remove from consideration
any cubes of the OFF-set which are more than distance 1 from the
overexpanded cube of RAISE.
*/
void essen_parts(BB, CC, RAISE, FREESET)
pcover BB, CC;
pcube RAISE, FREESET;
{
register pcube p, r = RAISE;
pcube lastp, xlower = cube.temp[0];
int dist;
(void) set_copy(xlower, cube.emptyset);
foreach_active_set(BB, lastp, p) {
#ifdef NO_INLINE
if ((dist = cdist01(p, r)) > 1) goto exit_if;
#else
{register int w,last;register unsigned int x;dist=0;if((last=cube.inword)!=-1)
{x=p[last]&r[last];if((x=~(x|x>>1)&cube.inmask))if((dist=count_ones(x))>1)goto
exit_if;for(w=1;w<last;w++){x=p[w]&r[w];if((x=~(x|x>>1)&DISJOINT))if(dist==1||(
dist+=count_ones(x))>1)goto exit_if;}}}{register int w,var,last;register pcube
mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.var_mask[
var];last=cube.last_word[var];for(w=cube.first_word[var];w<=last;w++)if(p[w]&r[
w]&mask[w])goto nextvar;if(++dist>1)goto exit_if;nextvar:;}}
#endif
if (dist == 0) {
fatal("ON-set and OFF-set are not orthogonal");
} else {
(void) force_lower(xlower, p, r);
BB->active_count--;
RESET(p, ACTIVE);
}
exit_if: ;
}
if (! setp_empty(xlower)) {
(void) set_diff(FREESET, FREESET, xlower);/* remove from free set */
elim_lowering(BB, CC, RAISE, FREESET);
}
if (debug & EXPAND1)
printf("ESSEN_PARTS:\tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET));
}
/*
essen_raising -- determine which parts may always be added to
the raising set without restricting further expansions
General rule: if some part is not blocked by any cube of BB, then
this part can always be raised.
*/
void essen_raising(BB, RAISE, FREESET)
register pcover BB;
pcube RAISE, FREESET;
{
register pcube last, p, xraise = cube.temp[0];
/* Form union of all cubes of BB, and then take complement wrt FREESET */
(void) set_copy(xraise, cube.emptyset);
foreach_active_set(BB, last, p)
INLINEset_or(xraise, xraise, p);
(void) set_diff(xraise, FREESET, xraise);
(void) set_or(RAISE, RAISE, xraise); /* add to raising set */
(void) set_diff(FREESET, FREESET, xraise); /* remove from free set */
if (debug & EXPAND1)
printf("ESSEN_RAISING:\tRAISE=%s FREESET=%s\n",
pc1(RAISE), pc2(FREESET));
}
/*
elim_lowering -- after removing parts from FREESET, we can reduce the
size of both BB and CC.
We mark as inactive any cube of BB which does not intersect the
overexpanded cube (i.e., RAISE + FREESET). Likewise, we remove
from CC any cube which is not covered by the overexpanded cube.
*/
void elim_lowering(BB, CC, RAISE, FREESET)
pcover BB, CC;
pcube RAISE, FREESET;
{
register pcube p, r = set_or(cube.temp[0], RAISE, FREESET);
pcube last;
/*
* Remove sets of BB which are orthogonal to future expansions
*/
foreach_active_set(BB, last, p) {
#ifdef NO_INLINE
if (! cdist0(p, r))
#else
{register int w,lastw;register unsigned int x;if((lastw=cube.inword)!=-1){x=p[
lastw]&r[lastw];if(~(x|x>>1)&cube.inmask)goto false;for(w=1;w<lastw;w++){x=p[w]
&r[w];if(~(x|x>>1)&DISJOINT)goto false;}}}{register int w,var,lastw;register
pcube mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.
var_mask[var];lastw=cube.last_word[var];for(w=cube.first_word[var];w<=lastw;w++)
if(p[w]&r[w]&mask[w])goto nextvar;goto false;nextvar:;}}continue;false:
#endif
BB->active_count--, RESET(p, ACTIVE);
}
/*
* Remove sets of CC which cannot be covered by future expansions
*/
if (CC != (pcover) NULL) {
foreach_active_set(CC, last, p) {
#ifdef NO_INLINE
if (! setp_implies(p, r))
#else
INLINEsetp_implies(p, r, /* when false => */ goto false1);
/* when true => go to end of loop */ continue;
false1:
#endif
CC->active_count--, RESET(p, ACTIVE);
}
}
}
/*
most_frequent -- When all else fails, select a reasonable part to raise
The active cubes of CC are the cubes which are covered by the
overexpanded cube of the original cube (however, we know that none
of them can actually be covered by a feasible expansion of the
original cube). We resort to the MINI strategy of selecting to
raise the part which will cover the same part in the most cubes of CC.
*/
int most_frequent(CC, FREESET)
pcover CC;
pcube FREESET;
{
register int i, best_part, best_count, *count;
register pset p, last;
/* Count occurences of each variable */
count = ALLOC(int, cube.size);
for(i = 0; i < cube.size; i++)
count[i] = 0;
if (CC != (pcover) NULL)
foreach_active_set(CC, last, p)
set_adjcnt(p, count, 1);
/* Now find which free part occurs most often */
best_count = best_part = -1;
for(i = 0; i < cube.size; i++)
if (is_in_set(FREESET,i) && count[i] > best_count) {
best_part = i;
best_count = count[i];
}
FREE(count);
if (debug & EXPAND1)
printf("MOST_FREQUENT:\tbest=%d FREESET=%s\n", best_part, pc2(FREESET));
return best_part;
}
/*
setup_BB_CC -- set up the blocking and covering set families;
Note that the blocking family is merely the set of cubes of R, and
that CC is the set of cubes of F which might possibly be covered
(i.e., nonprime cubes, and cubes not already covered)
*/
void setup_BB_CC(BB, CC)
register pcover BB, CC;
{
register pcube p, last;
/* Create the block and cover set families */
BB->active_count = BB->count;
foreach_set(BB, last, p)
SET(p, ACTIVE);
if (CC != (pcover) NULL) {
CC->active_count = CC->count;
foreach_set(CC, last, p)
if (TESTP(p, COVERED) || TESTP(p, PRIME))
CC->active_count--, RESET(p, ACTIVE);
else
SET(p, ACTIVE);
}
}
/*
select_feasible -- Determine if there are cubes which can be covered,
and if so, raise those parts necessary to cover as many as possible.
We really don't check to maximize the number that can be covered;
instead, we check, for each fcc, how many other fcc remain fcc
after expanding to cover the fcc. (Essentially one-level lookahead).
*/
void select_feasible(BB, CC, RAISE, FREESET, SUPER_CUBE, num_covered)
pcover BB, CC;
pcube RAISE, FREESET, SUPER_CUBE;
int *num_covered;
{
register pcube p, last;
register pcube bestfeas = NULL; // Suppress "might be used uninitialized"
register pcube *feas;
register int i, j;
pcube *feas_new_lower;
int bestcount, bestsize, count, size, numfeas, lastfeas;
pcover new_lower;
/* Start out with all cubes covered by the over-expanded cube as
* the "possibly" feasibly-covered cubes (pfcc)
*/
feas = ALLOC(pcube, CC->active_count);
numfeas = 0;
foreach_active_set(CC, last, p)
feas[numfeas++] = p;
/* Setup extra cubes to record parts forced low after a covering */
feas_new_lower = ALLOC(pcube, CC->active_count);
new_lower = new_cover(numfeas);
for(i = 0; i < numfeas; i++)
feas_new_lower[i] = GETSET(new_lower, i);
loop:
/* Find the essentially raised parts -- this might cover some cubes
for us, without having to find out if they are fcc or not
*/
essen_raising(BB, RAISE, FREESET);
/* Now check all "possibly" feasibly covered cubes to check feasibility */
lastfeas = numfeas;
numfeas = 0;
for(i = 0; i < lastfeas; i++) {
p = feas[i];
/* Check active because essen_parts might have removed it */
if (TESTP(p, ACTIVE)) {
/* See if the cube is already covered by RAISE --
* this can happen because of essen_raising() or because of
* the previous "loop"
*/
if (setp_implies(p, RAISE)) {
(*num_covered) += 1;
(void) set_or(SUPER_CUBE, SUPER_CUBE, p);
CC->active_count--;
RESET(p, ACTIVE);
SET(p, COVERED);
/* otherwise, test if it is feasibly covered */
} else if (feasibly_covered(BB,p,RAISE,feas_new_lower[numfeas])) {
feas[numfeas] = p; /* save the fcc */
numfeas++;
}
}
}
if (debug & EXPAND1)
printf("SELECT_FEASIBLE: started with %d pfcc, ended with %d fcc\n",
lastfeas, numfeas);
/* Exit here if there are no feasibly covered cubes */
if (numfeas == 0) {
FREE(feas);
FREE(feas_new_lower);
free_cover(new_lower);
return;
}
/* Now find which is the best feasibly covered cube */
bestcount = 0;
bestsize = 9999;
for(i = 0; i < numfeas; i++) {
size = set_dist(feas[i], FREESET); /* # of newly raised parts */
count = 0; /* # of other cubes which remain fcc after raising */
#define NEW
#ifdef NEW
for(j = 0; j < numfeas; j++)
if (setp_disjoint(feas_new_lower[i], feas[j]))
count++;
#else
for(j = 0; j < numfeas; j++)
if (setp_implies(feas[j], feas[i]))
count++;
#endif
if (count > bestcount) {
bestcount = count;
bestfeas = feas[i];
bestsize = size;
} else if (count == bestcount && size < bestsize) {
bestfeas = feas[i];
bestsize = size;
}
}
/* Add the necessary parts to the raising set */
(void) set_or(RAISE, RAISE, bestfeas);
(void) set_diff(FREESET, FREESET, RAISE);
if (debug & EXPAND1)
printf("FEASIBLE: \tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET));
essen_parts(BB, CC, RAISE, FREESET);
goto loop;
/* NOTREACHED */
}
/*
feasibly_covered -- determine if the cube c is feasibly covered
(i.e., if it is possible to raise all of the necessary variables
while still insuring orthogonality with R). Also, if c is feasibly
covered, then compute the new set of parts which are forced into
the lowering set.
*/
bool feasibly_covered(BB, c, RAISE, new_lower)
pcover BB;
pcube c, RAISE, new_lower;
{
register pcube p, r = set_or(cube.temp[0], RAISE, c);
int dist;
pcube lastp;
set_copy(new_lower, cube.emptyset);
foreach_active_set(BB, lastp, p) {
#ifdef NO_INLINE
if ((dist = cdist01(p, r)) > 1) goto exit_if;
#else
{register int w,last;register unsigned int x;dist=0;if((last=cube.inword)!=-1)
{x=p[last]&r[last];if((x=~(x|x>>1)&cube.inmask))if((dist=count_ones(x))>1)goto
exit_if;for(w=1;w<last;w++){x=p[w]&r[w];if((x=~(x|x>>1)&DISJOINT))if(dist==1||(
dist+=count_ones(x))>1)goto exit_if;}}}{register int w,var,last;register pcube
mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.var_mask[
var];last=cube.last_word[var];for(w=cube.first_word[var];w<=last;w++)if(p[w]&r[
w]&mask[w])goto nextvar;if(++dist>1)goto exit_if;nextvar:;}}
#endif
if (dist == 0)
return FALSE;
else
(void) force_lower(new_lower, p, r);
exit_if: ;
}
return TRUE;
}
/*
mincov -- transform the problem of expanding a cube to a maximally-
large prime implicant into the problem of selecting a minimum
cardinality cover over a family of sets.
When we get to this point, we must unravel the remaining off-set.
This may be painful.
*/
void mincov(BB, RAISE, FREESET)
pcover BB;
pcube RAISE, FREESET;
{
int expansion, nset, var, dist;
pset_family B;
register pcube xraise=cube.temp[0], xlower, p, last, plower;
#ifdef RANDOM_MINCOV
#if defined(_POSIX_SOURCE) || defined(__SVR4)
dist = rand() % set_ord(FREESET);
#else
dist = random() % set_ord(FREESET);
#endif
for(var = 0; var < cube.size && dist >= 0; var++) {
if (is_in_set(FREESET, var)) {
dist--;
}
}
set_insert(RAISE, var);
set_remove(FREESET, var);
(void) essen_parts(BB, /*CC*/ (pcover) NULL, RAISE, FREESET);
#else
/* Create B which are those cubes which we must avoid intersecting */
B = new_cover(BB->active_count);
foreach_active_set(BB, last, p) {
plower = set_copy(GETSET(B, B->count++), cube.emptyset);
(void) force_lower(plower, p, RAISE);
}
/* Determine how many sets it will blow up into after the unravel */
nset = 0;
foreach_set(B, last, p) {
expansion = 1;
for(var = cube.num_binary_vars; var < cube.num_vars; var++) {
if ((dist=set_dist(p, cube.var_mask[var])) > 1) {
expansion *= dist;
if (expansion > 500) goto heuristic_mincov;
}
}
nset += expansion;
if (nset > 500) goto heuristic_mincov;
}
B = unravel(B, cube.num_binary_vars);
xlower = do_sm_minimum_cover(B);
/* Add any remaining free parts to the raising set */
(void) set_or(RAISE, RAISE, set_diff(xraise, FREESET, xlower));
(void) set_copy(FREESET, cube.emptyset); /* free set is empty */
BB->active_count = 0; /* BB satisfied */
if (debug & EXPAND1) {
printf("MINCOV: \tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET));
}
sf_free(B);
set_free(xlower);
return;
heuristic_mincov:
sf_free(B);
/* most_frequent will pick first free part */
set_insert(RAISE, most_frequent(/*CC*/ (pcover) NULL, FREESET));
(void) set_diff(FREESET, FREESET, RAISE);
essen_parts(BB, /*CC*/ (pcover) NULL, RAISE, FREESET);
return;
#endif
}
/*
find_all_primes -- find all of the primes which cover the
currently reduced BB
*/
pcover find_all_primes(BB, RAISE, FREESET)
pcover BB;
register pcube RAISE, FREESET;
{
register pset last, p, plower;
pset_family B, B1;
if (BB->active_count == 0) {
B1 = new_cover(1);
p = GETSET(B1, B1->count++);
(void) set_copy(p, RAISE);
SET(p, PRIME);
} else {
B = new_cover(BB->active_count);
foreach_active_set(BB, last, p) {
plower = set_copy(GETSET(B, B->count++), cube.emptyset);
(void) force_lower(plower, p, RAISE);
}
B = sf_rev_contain(unravel(B, cube.num_binary_vars));
B1 = exact_minimum_cover(B);
foreach_set(B1, last, p) {
INLINEset_diff(p, FREESET, p);
INLINEset_or(p, p, RAISE);
SET(p, PRIME);
}
free_cover(B);
}
return B1;
}
/*
all_primes -- foreach cube in F, generate all of the primes
which cover the cube.
*/
pcover all_primes(F, R)
pcover F, R;
{
register pcube last, p, RAISE, FREESET;
pcover Fall_primes, B1;
FREESET = new_cube();
RAISE = new_cube();
Fall_primes = new_cover(F->count);
foreach_set(F, last, p) {
if (TESTP(p, PRIME)) {
Fall_primes = sf_addset(Fall_primes, p);
} else {
/* Setup for call to essential parts */
(void) set_copy(RAISE, p);
(void) set_diff(FREESET, cube.fullset, RAISE);
setup_BB_CC(R, /* CC */ (pcover) NULL);
essen_parts(R, /* CC */ (pcover) NULL, RAISE, FREESET);
/* Find all of the primes, and add them to the prime set */
B1 = find_all_primes(R, RAISE, FREESET);
Fall_primes = sf_append(Fall_primes, B1);
}
}
set_free(RAISE);
set_free(FREESET);
return Fall_primes;
}
ABC_NAMESPACE_IMPL_END
|