summaryrefslogtreecommitdiffstats
path: root/src/bdd/cudd/cuddGenetic.c
blob: 8c168440c08c7b46aa4bdc65eaf00c70245efa36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
/**CFile***********************************************************************

  FileName    [cuddGenetic.c]

  PackageName [cudd]

  Synopsis    [Genetic algorithm for variable reordering.]

  Description [Internal procedures included in this file:
                <ul>
                <li> cuddGa()
                </ul>
        Static procedures included in this module:
                <ul>
                <li> make_random()
                <li> sift_up()
                <li> build_dd()
                <li> largest()
                <li> rand_int()
                <li> array_hash()
                <li> array_compare()
                <li> find_best()
                <li> find_average_fitness()
                <li> PMX()
                <li> roulette()
                </ul>

  The genetic algorithm implemented here is as follows.  We start with
  the current DD order.  We sift this order and use this as the
  reference DD.  We only keep 1 DD around for the entire process and
  simply rearrange the order of this DD, storing the various orders
  and their corresponding DD sizes.  We generate more random orders to
  build an initial population. This initial population is 3 times the
  number of variables, with a maximum of 120. Each random order is
  built (from the reference DD) and its size stored.  Each random
  order is also sifted to keep the DD sizes fairly small.  Then a
  crossover is performed between two orders (picked randomly) and the
  two resulting DDs are built and sifted.  For each new order, if its
  size is smaller than any DD in the population, it is inserted into
  the population and the DD with the largest number of nodes is thrown
  out. The crossover process happens up to 50 times, and at this point
  the DD in the population with the smallest size is chosen as the
  result.  This DD must then be built from the reference DD.]

  SeeAlso     []

  Author      [Curt Musfeldt, Alan Shuler, Fabio Somenzi]

  Copyright   [Copyright (c) 1995-2004, Regents of the University of Colorado

  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:

  Redistributions of source code must retain the above copyright
  notice, this list of conditions and the following disclaimer.

  Redistributions in binary form must reproduce the above copyright
  notice, this list of conditions and the following disclaimer in the
  documentation and/or other materials provided with the distribution.

  Neither the name of the University of Colorado nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.]

******************************************************************************/

#include "util_hack.h"
#include "cuddInt.h"

ABC_NAMESPACE_IMPL_START



/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

#ifndef lint
static char rcsid[] DD_UNUSED = "$Id: cuddGenetic.c,v 1.28 2004/08/13 18:04:48 fabio Exp $";
#endif

static int popsize;             /* the size of the population */
static int numvars;             /* the number of input variables in the ckt. */
/* storedd stores the population orders and sizes. This table has two
** extra rows and one extras column. The two extra rows are used for the
** offspring produced by a crossover. Each row stores one order and its
** size. The order is stored by storing the indices of variables in the
** order in which they appear in the order. The table is in reality a
** one-dimensional array which is accessed via a macro to give the illusion
** it is a two-dimensional structure.
*/
static int *storedd;
static st_table *computed;      /* hash table to identify existing orders */
static int *repeat;             /* how many times an order is present */
static int large;               /* stores the index of the population with
                                ** the largest number of nodes in the DD */
static int result;
static int cross;               /* the number of crossovers to perform */

/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/

/* macro used to access the population table as if it were a
** two-dimensional structure.
*/
#define STOREDD(i,j)    storedd[(i)*(numvars+1)+(j)]

#ifdef __cplusplus
extern "C" {
#endif

/**AutomaticStart*************************************************************/

/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/

static int make_random (DdManager *table, int lower);
static int sift_up (DdManager *table, int x, int x_low);
static int build_dd (DdManager *table, int num, int lower, int upper);
static int largest (void);
static int rand_int (int a);
static int array_hash (const char *array, int modulus);
static int array_compare (const char *array1, const char *array2);
static int find_best (void);
#ifdef DD_STATS
static double find_average_fitness (void);
#endif
static int PMX (int maxvar);
static int roulette (int *p1, int *p2);

/**AutomaticEnd***************************************************************/

#ifdef __cplusplus
}
#endif

/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Genetic algorithm for DD reordering.]

  Description [Genetic algorithm for DD reordering.
  The two children of a crossover will be stored in
  storedd[popsize] and storedd[popsize+1] --- the last two slots in the
  storedd array.  (This will make comparisons and replacement easy.)
  Returns 1 in case of success; 0 otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
int
cuddGa(
  DdManager * table /* manager */,
  int  lower /* lowest level to be reordered */,
  int  upper /* highest level to be reorderded */)
{
    int         i,n,m;          /* dummy/loop vars */
    int         index;
#ifdef DD_STATS
    double      average_fitness;
#endif
    int         small;          /* index of smallest DD in population */

    /* Do an initial sifting to produce at least one reasonable individual. */
    if (!cuddSifting(table,lower,upper)) return(0);

    /* Get the initial values. */
    numvars = upper - lower + 1; /* number of variables to be reordered */
    if (table->populationSize == 0) {
        popsize = 3 * numvars;  /* population size is 3 times # of vars */
        if (popsize > 120) {
            popsize = 120;      /* Maximum population size is 120 */
        }
    } else {
        popsize = table->populationSize;  /* user specified value */
    }
    if (popsize < 4) popsize = 4;       /* enforce minimum population size */

    /* Allocate population table. */
    storedd = ABC_ALLOC(int,(popsize+2)*(numvars+1));
    if (storedd == NULL) {
        table->errorCode = CUDD_MEMORY_OUT;
        return(0);
    }

    /* Initialize the computed table. This table is made up of two data
    ** structures: A hash table with the key given by the order, which says
    ** if a given order is present in the population; and the repeat
    ** vector, which says how many copies of a given order are stored in
    ** the population table. If there are multiple copies of an order, only
    ** one has a repeat count greater than 1. This copy is the one pointed
    ** by the computed table.
    */
    repeat = ABC_ALLOC(int,popsize);
    if (repeat == NULL) {
        table->errorCode = CUDD_MEMORY_OUT;
        ABC_FREE(storedd);
        return(0);
    }
    for (i = 0; i < popsize; i++) {
        repeat[i] = 0;
    }
    computed = st_init_table(array_compare,array_hash);
    if (computed == NULL) {
        table->errorCode = CUDD_MEMORY_OUT;
        ABC_FREE(storedd);
        ABC_FREE(repeat);
        return(0);
    }

    /* Copy the current DD and its size to the population table. */
    for (i = 0; i < numvars; i++) {
        STOREDD(0,i) = table->invperm[i+lower]; /* order of initial DD */
    }
    STOREDD(0,numvars) = table->keys - table->isolated; /* size of initial DD */

    /* Store the initial order in the computed table. */
    if (st_insert(computed,(char *)storedd,(char *) 0) == ST_OUT_OF_MEM) {
        ABC_FREE(storedd);
        ABC_FREE(repeat);
        st_free_table(computed);
        return(0);
    }
    repeat[0]++;

    /* Insert the reverse order as second element of the population. */
    for (i = 0; i < numvars; i++) {
        STOREDD(1,numvars-1-i) = table->invperm[i+lower]; /* reverse order */
    }

    /* Now create the random orders. make_random fills the population
    ** table with random permutations. The successive loop builds and sifts
    ** the DDs for the reverse order and each random permutation, and stores
    ** the results in the computed table.
    */
    if (!make_random(table,lower)) {
        table->errorCode = CUDD_MEMORY_OUT;
        ABC_FREE(storedd);
        ABC_FREE(repeat);
        st_free_table(computed);
        return(0);
    }
    for (i = 1; i < popsize; i++) {
        result = build_dd(table,i,lower,upper); /* build and sift order */
        if (!result) {
            ABC_FREE(storedd);
            ABC_FREE(repeat);
            st_free_table(computed);
            return(0);
        }
        if (st_lookup_int(computed,(char *)&STOREDD(i,0),&index)) {
            repeat[index]++;
        } else {
            if (st_insert(computed,(char *)&STOREDD(i,0),(char *)(long)i) ==
            ST_OUT_OF_MEM) {
                ABC_FREE(storedd);
                ABC_FREE(repeat);
                st_free_table(computed);
                return(0);
            }
            repeat[i]++;
        }
    }

#if 0
#ifdef DD_STATS
    /* Print the initial population. */
    (void) fprintf(table->out,"Initial population after sifting\n");
    for (m = 0; m < popsize; m++) {
        for (i = 0; i < numvars; i++) {
            (void) fprintf(table->out," %2d",STOREDD(m,i));
        }
        (void) fprintf(table->out," : %3d (%d)\n",
                       STOREDD(m,numvars),repeat[m]);
    }
#endif
#endif

    small = find_best();
#ifdef DD_STATS
    average_fitness = find_average_fitness();
    (void) fprintf(table->out,"\nInitial population: best fitness = %d, average fitness %8.3f",STOREDD(small,numvars),average_fitness);
#endif

    /* Decide how many crossovers should be tried. */
    if (table->numberXovers == 0) {
        cross = 3*numvars;
        if (cross > 60) {       /* do a maximum of 50 crossovers */
            cross = 60;
        }
    } else {
        cross = table->numberXovers;      /* use user specified value */
    }

    /* Perform the crossovers to get the best order. */
    for (m = 0; m < cross; m++) {
        if (!PMX(table->size)) {        /* perform one crossover */
            table->errorCode = CUDD_MEMORY_OUT;
            ABC_FREE(storedd);
            ABC_FREE(repeat);
            st_free_table(computed);
            return(0);
        }
        /* The offsprings are left in the last two entries of the
        ** population table. These are now considered in turn.
        */
        for (i = popsize; i <= popsize+1; i++) {
            result = build_dd(table,i,lower,upper); /* build and sift child */
            if (!result) {
                ABC_FREE(storedd);
                ABC_FREE(repeat);
                st_free_table(computed);
                return(0);
            }
            large = largest();  /* find the largest DD in population */

            /* If the new child is smaller than the largest DD in the current
            ** population, enter it into the population in place of the
            ** largest DD.
            */
            if (STOREDD(i,numvars) < STOREDD(large,numvars)) {
                /* Look up the largest DD in the computed table.
                ** Decrease its repetition count. If the repetition count
                ** goes to 0, remove the largest DD from the computed table.
                */
                result = st_lookup_int(computed,(char *)&STOREDD(large,0),
                                       &index);
                if (!result) {
                    ABC_FREE(storedd);
                    ABC_FREE(repeat);
                    st_free_table(computed);
                    return(0);
                }
                repeat[index]--;
                if (repeat[index] == 0) {
                    int *pointer = &STOREDD(index,0);
                    result = st_delete(computed, (const char **)&pointer, NULL);
                    if (!result) {
                        ABC_FREE(storedd);
                        ABC_FREE(repeat);
                        st_free_table(computed);
                        return(0);
                    }
                }
                /* Copy the new individual to the entry of the
                ** population table just made available and update the
                ** computed table.
                */
                for (n = 0; n <= numvars; n++) {
                    STOREDD(large,n) = STOREDD(i,n);
                }
                if (st_lookup_int(computed,(char *)&STOREDD(large,0),
                                  &index)) {
                    repeat[index]++;
                } else {
                    if (st_insert(computed,(char *)&STOREDD(large,0),
                    (char *)(long)large) == ST_OUT_OF_MEM) {
                        ABC_FREE(storedd);
                        ABC_FREE(repeat);
                        st_free_table(computed);
                        return(0);
                    }
                    repeat[large]++;
                }
            }
        }
    }

    /* Find the smallest DD in the population and build it;
    ** that will be the result.
    */
    small = find_best();

    /* Print stats on the final population. */
#ifdef DD_STATS
    average_fitness = find_average_fitness();
    (void) fprintf(table->out,"\nFinal population: best fitness = %d, average fitness %8.3f",STOREDD(small,numvars),average_fitness);
#endif

    /* Clean up, build the result DD, and return. */
    st_free_table(computed);
    computed = NULL;
    result = build_dd(table,small,lower,upper);
    ABC_FREE(storedd);
    ABC_FREE(repeat);
    return(result);

} /* end of cuddGa */


/*---------------------------------------------------------------------------*/
/* Definition of static functions                                            */
/*---------------------------------------------------------------------------*/

/**Function********************************************************************

  Synopsis    [Generates the random sequences for the initial population.]

  Description [Generates the random sequences for the initial population.
  The sequences are permutations of the indices between lower and
  upper in the current order.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
make_random(
  DdManager * table,
  int  lower)
{
    int i,j;            /* loop variables */
    int *used;          /* is a number already in a permutation */
    int next;           /* next random number without repetitions */

    used = ABC_ALLOC(int,numvars);
    if (used == NULL) {
        table->errorCode = CUDD_MEMORY_OUT;
        return(0);
    }
#if 0
#ifdef DD_STATS
    (void) fprintf(table->out,"Initial population before sifting\n");
    for (i = 0; i < 2; i++) {
        for (j = 0; j < numvars; j++) {
            (void) fprintf(table->out," %2d",STOREDD(i,j));
        }
        (void) fprintf(table->out,"\n");
    }
#endif
#endif
    for (i = 2; i < popsize; i++) {
        for (j = 0; j < numvars; j++) {
            used[j] = 0;
        }
        /* Generate a permutation of {0...numvars-1} and use it to
        ** permute the variables in the layesr from lower to upper.
        */
        for (j = 0; j < numvars; j++) {
            do {
                next = rand_int(numvars-1);
            } while (used[next] != 0);
            used[next] = 1;
            STOREDD(i,j) = table->invperm[next+lower];
        }
#if 0
#ifdef DD_STATS
        /* Print the order just generated. */
        for (j = 0; j < numvars; j++) {
            (void) fprintf(table->out," %2d",STOREDD(i,j));
        }
        (void) fprintf(table->out,"\n");
#endif
#endif
    }
    ABC_FREE(used);
    return(1);

} /* end of make_random */


/**Function********************************************************************

  Synopsis    [Moves one variable up.]

  Description [Takes a variable from position x and sifts it up to
  position x_low;  x_low should be less than x. Returns 1 if successful;
  0 otherwise]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
sift_up(
  DdManager * table,
  int  x,
  int  x_low)
{
    int        y;
    int        size;

    y = cuddNextLow(table,x);
    while (y >= x_low) {
        size = cuddSwapInPlace(table,y,x);
        if (size == 0) {
            return(0);
        }
        x = y;
        y = cuddNextLow(table,x);
    }
    return(1);

} /* end of sift_up */


/**Function********************************************************************

  Synopsis [Builds a DD from a given order.]

  Description [Builds a DD from a given order.  This procedure also
  sifts the final order and inserts into the array the size in nodes
  of the result. Returns 1 if successful; 0 otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
build_dd(
  DdManager * table,
  int  num /* the index of the individual to be built */,
  int  lower,
  int  upper)
{
    int         i,j;            /* loop vars */
    int         position;
    int         index;
    int         limit;          /* how large the DD for this order can grow */
    int         size;

    /* Check the computed table. If the order already exists, it
    ** suffices to copy the size from the existing entry.
    */
    if (computed && st_lookup_int(computed,(char *)&STOREDD(num,0),&index)) {
        STOREDD(num,numvars) = STOREDD(index,numvars);
#ifdef DD_STATS
        (void) fprintf(table->out,"\nCache hit for index %d", index);
#endif
        return(1);
    }

    /* Stop if the DD grows 20 times larges than the reference size. */
    limit = 20 * STOREDD(0,numvars);

    /* Sift up the variables so as to build the desired permutation.
    ** First the variable that has to be on top is sifted to the top.
    ** Then the variable that has to occupy the secon position is sifted
    ** up to the second position, and so on.
    */
    for (j = 0; j < numvars; j++) {
        i = STOREDD(num,j);
        position = table->perm[i];
        result = sift_up(table,position,j+lower);
        if (!result) return(0);
        size = table->keys - table->isolated;
        if (size > limit) break;
    }

    /* Sift the DD just built. */
#ifdef DD_STATS
    (void) fprintf(table->out,"\n");
#endif
    result = cuddSifting(table,lower,upper);
    if (!result) return(0);

    /* Copy order and size to table. */
    for (j = 0; j < numvars; j++) {
        STOREDD(num,j) = table->invperm[lower+j];
    }
    STOREDD(num,numvars) = table->keys - table->isolated; /* size of new DD */
    return(1);

} /* end of build_dd */


/**Function********************************************************************

  Synopsis    [Finds the largest DD in the population.]

  Description [Finds the largest DD in the population. If an order is
  repeated, it avoids choosing the copy that is in the computed table
  (it has repeat[i] > 1).]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
largest(void)
{
    int i;      /* loop var */
    int big;    /* temporary holder to return result */

    big = 0;
    while (repeat[big] > 1) big++;
    for (i = big + 1; i < popsize; i++) {
        if (STOREDD(i,numvars) >= STOREDD(big,numvars) && repeat[i] <= 1) {
            big = i;
        }
    }
    return(big);

} /* end of largest */


/**Function********************************************************************

  Synopsis    [Generates a random number between 0 and the integer a.]

  Description []

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
rand_int(
  int  a)
{
    return(Cudd_Random() % (a+1));

} /* end of rand_int */


/**Function********************************************************************

  Synopsis    [Hash function for the computed table.]

  Description [Hash function for the computed table. Returns the bucket
  number.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
array_hash(
  const char * array,
  int  modulus)
{
    int val = 0;
    int i;
    int *intarray;

    intarray = (int *) array;

    for (i = 0; i < numvars; i++) {
        val = val * 997 + intarray[i];
    }

    return ((val < 0) ? -val : val) % modulus;

} /* end of array_hash */


/**Function********************************************************************

  Synopsis    [Comparison function for the computed table.]

  Description [Comparison function for the computed table. Returns 0 if
  the two arrays are equal; 1 otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
array_compare(
  const char * array1,
  const char * array2)
{
    int i;
    int *intarray1, *intarray2;

    intarray1 = (int *) array1;
    intarray2 = (int *) array2;

    for (i = 0; i < numvars; i++) {
        if (intarray1[i] != intarray2[i]) return(1);
    }
    return(0);

} /* end of array_compare */


/**Function********************************************************************

  Synopsis    [Returns the index of the fittest individual.]

  Description []

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
find_best(void)
{
    int i,small;

    small = 0;
    for (i = 1; i < popsize; i++) {
        if (STOREDD(i,numvars) < STOREDD(small,numvars)) {
            small = i;
        }
    }
    return(small);

} /* end of find_best */


/**Function********************************************************************

  Synopsis    [Returns the average fitness of the population.]

  Description []

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
#ifdef DD_STATS
static double
find_average_fitness(void)
{
    int i;
    int total_fitness = 0;
    double average_fitness;

    for (i = 0; i < popsize; i++) {
        total_fitness += STOREDD(i,numvars);
    }
    average_fitness = (double) total_fitness / (double) popsize;
    return(average_fitness);

} /* end of find_average_fitness */
#endif


/**Function********************************************************************

  Synopsis [Performs the crossover between two parents.]

  Description [Performs the crossover between two randomly chosen
  parents, and creates two children, x1 and x2. Uses the Partially
  Matched Crossover operator.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static int
PMX(
  int  maxvar)
{
    int         cut1,cut2;      /* the two cut positions (random) */
    int         mom,dad;        /* the two randomly chosen parents */
    int         *inv1;          /* inverse permutations for repair algo */
    int         *inv2;
    int         i;              /* loop vars */
    int         u,v;            /* aux vars */

    inv1 = ABC_ALLOC(int,maxvar);
    if (inv1 == NULL) {
        return(0);
    }
    inv2 = ABC_ALLOC(int,maxvar);
    if (inv2 == NULL) {
        ABC_FREE(inv1);
        return(0);
    }

    /* Choose two orders from the population using roulette wheel. */
    if (!roulette(&mom,&dad)) {
        ABC_FREE(inv1);
        ABC_FREE(inv2);
        return(0);
    }

    /* Choose two random cut positions. A cut in position i means that
    ** the cut immediately precedes position i.  If cut1 < cut2, we
    ** exchange the middle of the two orderings; otherwise, we
    ** exchange the beginnings and the ends.
    */
    cut1 = rand_int(numvars-1);
    do {
        cut2 = rand_int(numvars-1);
    } while (cut1 == cut2);

#if 0
    /* Print out the parents. */
    (void) fprintf(table->out,
                   "Crossover of %d (mom) and %d (dad) between %d and %d\n",
                   mom,dad,cut1,cut2);
    for (i = 0; i < numvars; i++) {
        if (i == cut1 || i == cut2) (void) fprintf(table->out,"|");
        (void) fprintf(table->out,"%2d ",STOREDD(mom,i));
    }
    (void) fprintf(table->out,"\n");
    for (i = 0; i < numvars; i++) {
        if (i == cut1 || i == cut2) (void) fprintf(table->out,"|");
        (void) fprintf(table->out,"%2d ",STOREDD(dad,i));
    }
    (void) fprintf(table->out,"\n");
#endif

    /* Initialize the inverse permutations: -1 means yet undetermined. */
    for (i = 0; i < maxvar; i++) {
        inv1[i] = -1;
        inv2[i] = -1;
    }

    /* Copy the portions whithin the cuts. */
    for (i = cut1; i != cut2; i = (i == numvars-1) ? 0 : i+1) {
        STOREDD(popsize,i) = STOREDD(dad,i);
        inv1[STOREDD(popsize,i)] = i;
        STOREDD(popsize+1,i) = STOREDD(mom,i);
        inv2[STOREDD(popsize+1,i)] = i;
    }

    /* Now apply the repair algorithm outside the cuts. */
    for (i = cut2; i != cut1; i = (i == numvars-1 ) ? 0 : i+1) {
        v = i;
        do {
            u = STOREDD(mom,v);
            v = inv1[u];
        } while (v != -1);
        STOREDD(popsize,i) = u;
        inv1[u] = i;
        v = i;
        do {
            u = STOREDD(dad,v);
            v = inv2[u];
        } while (v != -1);
        STOREDD(popsize+1,i) = u;
        inv2[u] = i;
    }

#if 0
    /* Print the results of crossover. */
    for (i = 0; i < numvars; i++) {
        if (i == cut1 || i == cut2) (void) fprintf(table->out,"|");
        (void) fprintf(table->out,"%2d ",STOREDD(popsize,i));
    }
    (void) fprintf(table->out,"\n");
    for (i = 0; i < numvars; i++) {
        if (i == cut1 || i == cut2) (void) fprintf(table->out,"|");
        (void) fprintf(table->out,"%2d ",STOREDD(popsize+1,i));
    }
    (void) fprintf(table->out,"\n");
#endif

    ABC_FREE(inv1);
    ABC_FREE(inv2);
    return(1);

} /* end of PMX */


/**Function********************************************************************

  Synopsis    [Selects two parents with the roulette wheel method.]

  Description [Selects two distinct parents with the roulette wheel method.]

  SideEffects [The indices of the selected parents are returned as side
  effects.]

  SeeAlso     []

******************************************************************************/
static int
roulette(
  int * p1,
  int * p2)
{
    double *wheel;
    double spin;
    int i;

    wheel = ABC_ALLOC(double,popsize);
    if (wheel == NULL) {
        return(0);
    }

    /* The fitness of an individual is the reciprocal of its size. */
    wheel[0] = 1.0 / (double) STOREDD(0,numvars);

    for (i = 1; i < popsize; i++) {
        wheel[i] = wheel[i-1] + 1.0 / (double) STOREDD(i,numvars);
    }

    /* Get a random number between 0 and wheel[popsize-1] (that is,
    ** the sum of all fitness values. 2147483561 is the largest number
    ** returned by Cudd_Random.
    */
    spin = wheel[numvars-1] * (double) Cudd_Random() / 2147483561.0;

    /* Find the lucky element by scanning the wheel. */
    for (i = 0; i < popsize; i++) {
        if (spin <= wheel[i]) break;
    }
    *p1 = i;

    /* Repeat the process for the second parent, making sure it is
    ** distinct from the first.
    */
    do {
        spin = wheel[popsize-1] * (double) Cudd_Random() / 2147483561.0;
        for (i = 0; i < popsize; i++) {
            if (spin <= wheel[i]) break;
        }
    } while (i == *p1);
    *p2 = i;

    ABC_FREE(wheel);
    return(1);

} /* end of roulette */


ABC_NAMESPACE_IMPL_END