summaryrefslogtreecommitdiffstats
path: root/src/bdd/bbr/bbrImage.c
blob: 1ff3d0b6cef2f10c4975fbd32e7da1045d6abe3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
/**CFile****************************************************************

  FileName    [bbrImage.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [BDD-based reachability analysis.]

  Synopsis    [Performs image computation.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: bbrImage.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "bbr.h"
#include "bdd/mtr/mtr.h"

ABC_NAMESPACE_IMPL_START
 

/* 
    The ideas implemented in this file are inspired by the paper:
    Pankaj Chauhan, Edmund Clarke, Somesh Jha, Jim Kukula, Tom Shiple, 
    Helmut Veith, Dong Wang. Non-linear Quantification Scheduling in 
    Image Computation. ICCAD, 2001.
*/
 
/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/

typedef struct Bbr_ImageNode_t_  Bbr_ImageNode_t;
typedef struct Bbr_ImagePart_t_  Bbr_ImagePart_t;
typedef struct Bbr_ImageVar_t_   Bbr_ImageVar_t;

struct Bbr_ImageTree_t_
{
    Bbr_ImageNode_t *   pRoot;      // the root of quantification tree
    Bbr_ImageNode_t *   pCare;      // the leaf node with the care set
    DdNode *            bCareSupp;  // the cube to quantify from the care
    int                 fVerbose;   // the verbosity flag
    int                 nNodesMax;  // the max number of nodes in one iter
    int                 nNodesMaxT; // the overall max number of nodes
    int                 nIter;      // the number of iterations with this tree
    int                 nBddMax;    // the number of node to stop
};

struct Bbr_ImageNode_t_
{
    DdManager *         dd;         // the manager 
    DdNode *            bCube;      // the cube to quantify
    DdNode *            bImage;     // the partial image
    Bbr_ImageNode_t *   pNode1;     // the first branch
    Bbr_ImageNode_t *   pNode2;     // the second branch
    Bbr_ImagePart_t *   pPart;      // the partition (temporary)
};

struct Bbr_ImagePart_t_
{
    DdNode *            bFunc;      // the partition
    DdNode *            bSupp;      // the support of this partition
    int                 nNodes;     // the number of BDD nodes
    short               nSupp;      // the number of support variables
    short               iPart;      // the number of this partition
};

struct Bbr_ImageVar_t_
{
    int                 iNum;       // the BDD index of this variable
    DdNode *            bParts;     // the partition numbers
    int                 nParts;     // the number of partitions
};

/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/

#define     b0     Cudd_Not((dd)->one)
#define     b1              (dd)->one

#ifndef ABC_PRB
#define ABC_PRB(dd,f)       printf("%s = ", #f); Bbr_bddPrint(dd,f); printf("\n")
#endif

/**AutomaticStart*************************************************************/


/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/

static Bbr_ImagePart_t ** Bbr_CreateParts( DdManager * dd,
    int nParts, DdNode ** pbParts, DdNode * bCare );
static Bbr_ImageVar_t ** Bbr_CreateVars( DdManager * dd,
    int nParts, Bbr_ImagePart_t ** pParts,
    int nVars, DdNode ** pbVarsNs );
static Bbr_ImageNode_t ** Bbr_CreateNodes( DdManager * dd, 
    int nParts, Bbr_ImagePart_t ** pParts, 
    int nVars,  Bbr_ImageVar_t ** pVars );
static void Bbr_DeleteParts_rec( Bbr_ImageNode_t * pNode );
static int Bbr_BuildTreeNode( DdManager * dd, 
    int nNodes, Bbr_ImageNode_t ** pNodes, 
    int nVars,  Bbr_ImageVar_t ** pVars, int * pfStop, int nBddMax );
static Bbr_ImageNode_t * Bbr_MergeTopNodes( DdManager * dd, 
    int nNodes, Bbr_ImageNode_t ** pNodes );
static void Bbr_bddImageTreeDelete_rec( Bbr_ImageNode_t * pNode );
static int Bbr_bddImageCompute_rec( Bbr_ImageTree_t * pTree, Bbr_ImageNode_t * pNode );
static int Bbr_FindBestVariable( DdManager * dd,
    int nNodes, Bbr_ImageNode_t ** pNodes, 
    int nVars,  Bbr_ImageVar_t ** pVars );
static void Bbr_FindBestPartitions( DdManager * dd, DdNode * bParts, 
    int nNodes, Bbr_ImageNode_t ** pNodes, 
    int * piNode1, int * piNode2 );
static Bbr_ImageNode_t * Bbr_CombineTwoNodes( DdManager * dd, DdNode * bCube,
    Bbr_ImageNode_t * pNode1, Bbr_ImageNode_t * pNode2 );

static void Bbr_bddImagePrintLatchDependency( DdManager * dd, DdNode * bCare,
    int nParts, DdNode ** pbParts,
    int nVars, DdNode ** pbVars );
static void Bbr_bddImagePrintLatchDependencyOne( DdManager * dd, DdNode * bFunc, 
    DdNode * bVarsCs, DdNode * bVarsNs, int iPart );

static void Bbr_bddImagePrintTree( Bbr_ImageTree_t * pTree );
static void Bbr_bddImagePrintTree_rec( Bbr_ImageNode_t * pNode, int nOffset );

static void Bbr_bddPrint( DdManager * dd, DdNode * F );

/**AutomaticEnd***************************************************************/


/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/

/**Function*************************************************************

  Synopsis    [Starts the image computation using tree-based scheduling.]

  Description [This procedure starts the image computation. It uses
  the given care set to test-run the image computation and creates the 
  quantification tree by scheduling variable quantifications. The tree can 
  be used to compute images for other care sets without rescheduling.
  In this case, Bbr_bddImageCompute() should be called.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Bbr_ImageTree_t * Bbr_bddImageStart( 
    DdManager * dd, DdNode * bCare, // the care set
    int nParts, DdNode ** pbParts,  // the partitions for image computation
    int nVars, DdNode ** pbVars, int nBddMax, int fVerbose )   // the NS and parameter variables (not quantified!)
{
    Bbr_ImageTree_t * pTree;
    Bbr_ImagePart_t ** pParts;
    Bbr_ImageVar_t ** pVars;
    Bbr_ImageNode_t ** pNodes, * pCare;
    int fStop, v;

    if ( fVerbose && dd->size <= 80 )
        Bbr_bddImagePrintLatchDependency( dd, bCare, nParts, pbParts, nVars, pbVars );

    // create variables, partitions and leaf nodes
    pParts = Bbr_CreateParts( dd, nParts, pbParts, bCare );
    pVars  = Bbr_CreateVars( dd, nParts + 1, pParts, nVars, pbVars );
    pNodes = Bbr_CreateNodes( dd, nParts + 1, pParts, dd->size, pVars );
    pCare  = pNodes[nParts];

    // process the nodes
    while ( Bbr_BuildTreeNode( dd, nParts + 1, pNodes, dd->size, pVars, &fStop, nBddMax ) );

    // consider the case of BDD node blowup
    if ( fStop )
    {
        for ( v = 0; v < dd->size; v++ )
            if ( pVars[v] )
                ABC_FREE( pVars[v] );
        ABC_FREE( pVars );
        for ( v = 0; v <= nParts; v++ )
            if ( pNodes[v] )
            {
                Bbr_DeleteParts_rec( pNodes[v] );
                Bbr_bddImageTreeDelete_rec( pNodes[v] );
            }
        ABC_FREE( pNodes );
        ABC_FREE( pParts );
        return NULL;
    }

    // make sure the variables are gone
    for ( v = 0; v < dd->size; v++ )
        assert( pVars[v] == NULL );
    ABC_FREE( pVars );
    
    // create the tree
    pTree = ABC_ALLOC( Bbr_ImageTree_t, 1 );
    memset( pTree, 0, sizeof(Bbr_ImageTree_t) );
    pTree->pCare = pCare;
    pTree->nBddMax = nBddMax;
    pTree->fVerbose = fVerbose;

    // merge the topmost nodes
    while ( (pTree->pRoot = Bbr_MergeTopNodes( dd, nParts + 1, pNodes )) == NULL );

    // make sure the nodes are gone
    for ( v = 0; v < nParts + 1; v++ )
        assert( pNodes[v] == NULL );
    ABC_FREE( pNodes );

//    if ( fVerbose )
//        Bbr_bddImagePrintTree( pTree );

    // set the support of the care set
    pTree->bCareSupp = Cudd_Support( dd, bCare );  Cudd_Ref( pTree->bCareSupp );

    // clean the partitions
    Bbr_DeleteParts_rec( pTree->pRoot );
    ABC_FREE( pParts );

    return pTree;
}

/**Function*************************************************************

  Synopsis    [Compute the image.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Bbr_bddImageCompute( Bbr_ImageTree_t * pTree, DdNode * bCare )
{
    DdManager * dd = pTree->pCare->dd;
    DdNode * bSupp, * bRem;

    pTree->nIter++;

    // make sure the supports are okay
    bSupp = Cudd_Support( dd, bCare );        Cudd_Ref( bSupp );
    if ( bSupp != pTree->bCareSupp )
    {
        bRem = Cudd_bddExistAbstract( dd, bSupp, pTree->bCareSupp );  Cudd_Ref( bRem );
        if ( bRem != b1 )
        {
printf( "Original care set support: " );
ABC_PRB( dd, pTree->bCareSupp );
printf( "Current care set support: " );
ABC_PRB( dd, bSupp );
            Cudd_RecursiveDeref( dd, bSupp );
            Cudd_RecursiveDeref( dd, bRem );
            printf( "The care set depends on some vars that were not in the care set during scheduling.\n" );
            return NULL;
        }
        Cudd_RecursiveDeref( dd, bRem );
    }
    Cudd_RecursiveDeref( dd, bSupp );

    // remove the previous image
    Cudd_RecursiveDeref( dd, pTree->pCare->bImage );
    pTree->pCare->bImage = bCare;   Cudd_Ref( bCare );

    // compute the image
    pTree->nNodesMax = 0;
    if ( !Bbr_bddImageCompute_rec( pTree, pTree->pRoot ) )
        return NULL;
    if ( pTree->nNodesMaxT < pTree->nNodesMax )
        pTree->nNodesMaxT = pTree->nNodesMax;

//    if ( pTree->fVerbose )
//        printf( "Iter %2d : Max nodes = %5d.\n", pTree->nIter, pTree->nNodesMax );
    return pTree->pRoot->bImage;
}

/**Function*************************************************************

  Synopsis    [Delete the tree.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Bbr_bddImageTreeDelete( Bbr_ImageTree_t * pTree )
{
    if ( pTree->bCareSupp )
        Cudd_RecursiveDeref( pTree->pRoot->dd, pTree->bCareSupp );
    Bbr_bddImageTreeDelete_rec( pTree->pRoot );
    ABC_FREE( pTree );
}

/**Function*************************************************************

  Synopsis    [Reads the image from the tree.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Bbr_bddImageRead( Bbr_ImageTree_t * pTree )
{
    return pTree->pRoot->bImage;
}

/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/

/**Function********************************************************************

  Synopsis    [Outputs the BDD in a readable format.]

  Description []

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
void Bbr_bddPrint( DdManager * dd, DdNode * F )
{
    DdGen * Gen;
    int * Cube;
    CUDD_VALUE_TYPE Value;
    int nVars = dd->size;
    int fFirstCube = 1;
    int i;

    if ( F == NULL )
    {
        printf("NULL");
        return;
    }
    if ( F == b0 )
    {
        printf("Constant 0");
        return;
    }
    if ( F == b1 )
    {
        printf("Constant 1");
        return;
    }

    Cudd_ForeachCube( dd, F, Gen, Cube, Value )
    {
        if ( fFirstCube )
            fFirstCube = 0;
        else
//          Output << " + ";
            printf( " + " );

        for ( i = 0; i < nVars; i++ )
            if ( Cube[i] == 0 )
                printf( "[%d]'", i );
//              printf( "%c'", (char)('a'+i) );
            else if ( Cube[i] == 1 )
                printf( "[%d]", i );
//              printf( "%c", (char)('a'+i) );
    }

//  printf("\n");
}

/*---------------------------------------------------------------------------*/
/* Definition of static Functions                                            */
/*---------------------------------------------------------------------------*/

/**Function*************************************************************

  Synopsis    [Creates partitions.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Bbr_ImagePart_t ** Bbr_CreateParts( DdManager * dd,
    int nParts, DdNode ** pbParts, DdNode * bCare )
{
    Bbr_ImagePart_t ** pParts;
    int i;

    // start the partitions
    pParts = ABC_ALLOC( Bbr_ImagePart_t *, nParts + 1 );
    // create structures for each variable
    for ( i = 0; i < nParts; i++ )
    {
        pParts[i] = ABC_ALLOC( Bbr_ImagePart_t, 1 );
        pParts[i]->bFunc  = pbParts[i];                           Cudd_Ref( pParts[i]->bFunc );
        pParts[i]->bSupp  = Cudd_Support( dd, pParts[i]->bFunc ); Cudd_Ref( pParts[i]->bSupp );
        pParts[i]->nSupp  = Cudd_SupportSize( dd, pParts[i]->bSupp );
        pParts[i]->nNodes = Cudd_DagSize( pParts[i]->bFunc );
        pParts[i]->iPart  = i;
    }
    // add the care set as the last partition
    pParts[nParts] = ABC_ALLOC( Bbr_ImagePart_t, 1 );
    pParts[nParts]->bFunc = bCare;                                     Cudd_Ref( pParts[nParts]->bFunc );
    pParts[nParts]->bSupp = Cudd_Support( dd, pParts[nParts]->bFunc ); Cudd_Ref( pParts[nParts]->bSupp );
    pParts[nParts]->nSupp = Cudd_SupportSize( dd, pParts[nParts]->bSupp );
    pParts[nParts]->nNodes = Cudd_DagSize( pParts[nParts]->bFunc );
    pParts[nParts]->iPart  = nParts;
    return pParts;
}

/**Function*************************************************************

  Synopsis    [Creates variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Bbr_ImageVar_t ** Bbr_CreateVars( DdManager * dd,
    int nParts, Bbr_ImagePart_t ** pParts,
    int nVars, DdNode ** pbVars )
{
    Bbr_ImageVar_t ** pVars;
    DdNode ** pbFuncs;
    DdNode * bCubeNs, * bSupp, * bParts, * bTemp, * bSuppTemp;
    int nVarsTotal, iVar, p, Counter;

    // put all the functions into one array
    pbFuncs = ABC_ALLOC( DdNode *, nParts );
    for ( p = 0; p < nParts; p++ )
        pbFuncs[p] = pParts[p]->bSupp;
    bSupp = Cudd_VectorSupport( dd, pbFuncs, nParts );  Cudd_Ref( bSupp );
    ABC_FREE( pbFuncs );

    // remove the NS vars
    bCubeNs = Cudd_bddComputeCube( dd, pbVars, NULL, nVars );        Cudd_Ref( bCubeNs );
    bSupp = Cudd_bddExistAbstract( dd, bTemp = bSupp, bCubeNs );     Cudd_Ref( bSupp );
    Cudd_RecursiveDeref( dd, bTemp );
    Cudd_RecursiveDeref( dd, bCubeNs );

    // get the number of I and CS variables to be quantified
    nVarsTotal = Cudd_SupportSize( dd, bSupp );

    // start the variables
    pVars = ABC_ALLOC( Bbr_ImageVar_t *, dd->size );
    memset( pVars, 0, sizeof(Bbr_ImageVar_t *) * dd->size );
    // create structures for each variable
    for ( bSuppTemp = bSupp; bSuppTemp != b1; bSuppTemp = cuddT(bSuppTemp) )
    {
        iVar = bSuppTemp->index;
        pVars[iVar] = ABC_ALLOC( Bbr_ImageVar_t, 1 );
        pVars[iVar]->iNum = iVar;
        // collect all the parts this var belongs to
        Counter = 0;
        bParts = b1; Cudd_Ref( bParts );
        for ( p = 0; p < nParts; p++ )
            if ( Cudd_bddLeq( dd, pParts[p]->bSupp, dd->vars[bSuppTemp->index] ) )
            {
                bParts = Cudd_bddAnd( dd, bTemp = bParts, dd->vars[p] );  Cudd_Ref( bParts );
                Cudd_RecursiveDeref( dd, bTemp );
                Counter++;
            }
        pVars[iVar]->bParts = bParts; // takes ref
        pVars[iVar]->nParts = Counter;
    }
    Cudd_RecursiveDeref( dd, bSupp );
    return pVars;
}

/**Function*************************************************************

  Synopsis    [Creates variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Bbr_ImageNode_t ** Bbr_CreateNodes( DdManager * dd, 
    int nParts, Bbr_ImagePart_t ** pParts, 
    int nVars,  Bbr_ImageVar_t ** pVars )
{
    Bbr_ImageNode_t ** pNodes;
    Bbr_ImageNode_t * pNode;
    DdNode * bTemp;
    int i, v, iPart;
/*
    DdManager *         dd;       // the manager 
    DdNode *            bCube;    // the cube to quantify
    DdNode *            bImage;   // the partial image
    Bbr_ImageNode_t * pNode1;   // the first branch
    Bbr_ImageNode_t * pNode2;   // the second branch
    Bbr_ImagePart_t * pPart;    // the partition (temporary)
*/
    // start the partitions
    pNodes = ABC_ALLOC( Bbr_ImageNode_t *, nParts );
    // create structures for each leaf nodes
    for ( i = 0; i < nParts; i++ )
    {
        pNodes[i] = ABC_ALLOC( Bbr_ImageNode_t, 1 );
        memset( pNodes[i], 0, sizeof(Bbr_ImageNode_t) );
        pNodes[i]->dd    = dd;
        pNodes[i]->pPart = pParts[i];
    }
    // find the quantification cubes for each leaf node
    for ( v = 0; v < nVars; v++ )
    {
        if ( pVars[v] == NULL )
            continue;
        assert( pVars[v]->nParts > 0 );
        if ( pVars[v]->nParts > 1 )
            continue;
        iPart = pVars[v]->bParts->index;
        if ( pNodes[iPart]->bCube == NULL )
        {
            pNodes[iPart]->bCube = dd->vars[v];   
            Cudd_Ref( dd->vars[v] );
        }
        else
        {
            pNodes[iPart]->bCube = Cudd_bddAnd( dd, bTemp = pNodes[iPart]->bCube, dd->vars[v] );  
            Cudd_Ref( pNodes[iPart]->bCube );
            Cudd_RecursiveDeref( dd, bTemp );
        }
        // remove these  variables
        Cudd_RecursiveDeref( dd, pVars[v]->bParts );
        ABC_FREE( pVars[v] );
    }

    // assign the leaf node images
    for ( i = 0; i < nParts; i++ )
    {
        pNode = pNodes[i];
        if ( pNode->bCube )
        {
            // update the partition
            pParts[i]->bFunc = Cudd_bddExistAbstract( dd, bTemp = pParts[i]->bFunc, pNode->bCube );
            Cudd_Ref( pParts[i]->bFunc );
            Cudd_RecursiveDeref( dd, bTemp );
            // update the support the partition
            pParts[i]->bSupp = Cudd_bddExistAbstract( dd, bTemp = pParts[i]->bSupp, pNode->bCube ); 
            Cudd_Ref( pParts[i]->bSupp );
            Cudd_RecursiveDeref( dd, bTemp );
            // update the numbers
            pParts[i]->nSupp  = Cudd_SupportSize( dd, pParts[i]->bSupp );
            pParts[i]->nNodes = Cudd_DagSize( pParts[i]->bFunc );
            // get rid of the cube
            // save the last (care set) quantification cube
            if ( i < nParts - 1 )
            {
                Cudd_RecursiveDeref( dd, pNode->bCube );
                pNode->bCube = NULL;
            }
        }
        // copy the function
        pNode->bImage = pParts[i]->bFunc;   Cudd_Ref( pNode->bImage );
    }
/*
    for ( i = 0; i < nParts; i++ )
    {
        pNode = pNodes[i];
ABC_PRB( dd, pNode->bCube );
ABC_PRB( dd, pNode->pPart->bFunc );
ABC_PRB( dd, pNode->pPart->bSupp );
printf( "\n" );
    }
*/
    return pNodes;
}


/**Function*************************************************************

  Synopsis    [Delete the partitions from the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Bbr_DeleteParts_rec( Bbr_ImageNode_t * pNode )
{
    Bbr_ImagePart_t * pPart;
    if ( pNode->pNode1 )
        Bbr_DeleteParts_rec( pNode->pNode1 );
    if ( pNode->pNode2 )
        Bbr_DeleteParts_rec( pNode->pNode2 );
    pPart = pNode->pPart;
    Cudd_RecursiveDeref( pNode->dd, pPart->bFunc );
    Cudd_RecursiveDeref( pNode->dd, pPart->bSupp );
    ABC_FREE( pNode->pPart );
}

/**Function*************************************************************

  Synopsis    [Delete the partitions from the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Bbr_bddImageTreeDelete_rec( Bbr_ImageNode_t * pNode )
{
    if ( pNode->pNode1 )
        Bbr_bddImageTreeDelete_rec( pNode->pNode1 );
    if ( pNode->pNode2 )
        Bbr_bddImageTreeDelete_rec( pNode->pNode2 );
    if ( pNode->bCube )
        Cudd_RecursiveDeref( pNode->dd, pNode->bCube );
    if ( pNode->bImage )
        Cudd_RecursiveDeref( pNode->dd, pNode->bImage );
    assert( pNode->pPart == NULL );
    ABC_FREE( pNode );
}

/**Function*************************************************************

  Synopsis    [Recompute the image.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Bbr_bddImageCompute_rec( Bbr_ImageTree_t * pTree, Bbr_ImageNode_t * pNode )
{
    DdManager * dd = pNode->dd;
    DdNode * bTemp;
    int nNodes;

    // trivial case
    if ( pNode->pNode1 == NULL )
    {
        if ( pNode->bCube )
        {
            pNode->bImage = Cudd_bddExistAbstract( dd, bTemp = pNode->bImage, pNode->bCube ); 
            Cudd_Ref( pNode->bImage );
            Cudd_RecursiveDeref( dd, bTemp );
        }
        return 1;
    }

    // compute the children
    if ( pNode->pNode1 )
        if ( !Bbr_bddImageCompute_rec( pTree, pNode->pNode1 ) )
            return 0;
    if ( pNode->pNode2 )
        if ( !Bbr_bddImageCompute_rec( pTree, pNode->pNode2 ) )
            return 0;

    // clean the old image
    if ( pNode->bImage )
        Cudd_RecursiveDeref( dd, pNode->bImage );
    pNode->bImage = NULL;

    // compute the new image
    if ( pNode->bCube )
        pNode->bImage = Cudd_bddAndAbstract( dd, 
            pNode->pNode1->bImage, pNode->pNode2->bImage, pNode->bCube );
    else
        pNode->bImage = Cudd_bddAnd( dd, pNode->pNode1->bImage, pNode->pNode2->bImage );
    Cudd_Ref( pNode->bImage );

    if ( pTree->fVerbose )
    {
        nNodes = Cudd_DagSize( pNode->bImage );
        if ( pTree->nNodesMax < nNodes )
            pTree->nNodesMax = nNodes;
    }
    if ( dd->keys-dd->dead > (unsigned)pTree->nBddMax )
        return 0;
    return 1;
}

/**Function*************************************************************

  Synopsis    [Builds the tree.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Bbr_BuildTreeNode( DdManager * dd, 
    int nNodes, Bbr_ImageNode_t ** pNodes, 
    int nVars,  Bbr_ImageVar_t ** pVars, int * pfStop, int nBddMax )
{
    Bbr_ImageNode_t * pNode1, * pNode2;
    Bbr_ImageVar_t * pVar;
    Bbr_ImageNode_t * pNode;
    DdNode * bCube, * bTemp, * bSuppTemp;//, * bParts;
    int iNode1, iNode2;
    int iVarBest, nSupp, v;

    // find the best variable
    iVarBest = Bbr_FindBestVariable( dd, nNodes, pNodes, nVars, pVars );
    if ( iVarBest == -1 )
        return 0;
/*
for ( v = 0; v < nVars; v++ )
{
    DdNode * bSupp;
    if ( pVars[v] == NULL )
        continue;
    printf( "%3d :", v );
    printf( "%3d ", pVars[v]->nParts );
    bSupp = Cudd_Support( dd, pVars[v]->bParts );  Cudd_Ref( bSupp );
    Bbr_bddPrint( dd, bSupp ); printf( "\n" );
    Cudd_RecursiveDeref( dd, bSupp );
}
*/
    pVar = pVars[iVarBest];

    // this var cannot appear in one partition only
    nSupp = Cudd_SupportSize( dd, pVar->bParts );
    assert( nSupp == pVar->nParts );
    assert( nSupp != 1 );
//printf( "var = %d  supp = %d\n\n", iVarBest, nSupp );

    // if it appears in only two partitions, quantify it
    if ( pVar->nParts == 2 )
    {
        // get the nodes
        iNode1 = pVar->bParts->index;
        iNode2 = cuddT(pVar->bParts)->index;
        pNode1 = pNodes[iNode1];
        pNode2 = pNodes[iNode2];

        // get the quantification cube
        bCube = dd->vars[pVar->iNum];    Cudd_Ref( bCube );
        // add the variables that appear only in these partitions
        for ( v = 0; v < nVars; v++ )
            if ( pVars[v] && v != iVarBest && pVars[v]->bParts == pVars[iVarBest]->bParts )
            {
                // add this var
                bCube = Cudd_bddAnd( dd, bTemp = bCube, dd->vars[pVars[v]->iNum] );   Cudd_Ref( bCube );
                Cudd_RecursiveDeref( dd, bTemp );
                // clean this var
                Cudd_RecursiveDeref( dd, pVars[v]->bParts );
                ABC_FREE( pVars[v] );
            }
        // clean the best var
        Cudd_RecursiveDeref( dd, pVars[iVarBest]->bParts );
        ABC_FREE( pVars[iVarBest] );

        // combines two nodes
        pNode = Bbr_CombineTwoNodes( dd, bCube, pNode1, pNode2 );
        Cudd_RecursiveDeref( dd, bCube );
    }
    else // if ( pVar->nParts > 2 )
    {
        // find two smallest BDDs that have this var
        Bbr_FindBestPartitions( dd, pVar->bParts, nNodes, pNodes, &iNode1, &iNode2 );
        pNode1 = pNodes[iNode1];
        pNode2 = pNodes[iNode2];
//printf( "smallest bdds with this var: %d %d\n", iNode1, iNode2 );
/*
        // it is not possible that a var appears only in these two
        // otherwise, it would have a different cost
        bParts = Cudd_bddAnd( dd, dd->vars[iNode1], dd->vars[iNode2] ); Cudd_Ref( bParts );
        for ( v = 0; v < nVars; v++ )
            if ( pVars[v] && pVars[v]->bParts == bParts )
                assert( 0 );
        Cudd_RecursiveDeref( dd, bParts );
*/
        // combines two nodes
        pNode = Bbr_CombineTwoNodes( dd, b1, pNode1, pNode2 );
    }

    // clean the old nodes
    pNodes[iNode1] = pNode;
    pNodes[iNode2] = NULL;
//printf( "Removing node %d (leaving node %d)\n", iNode2, iNode1 );
    
    // update the variables that appear in pNode[iNode2]
    for ( bSuppTemp = pNode2->pPart->bSupp; bSuppTemp != b1; bSuppTemp = cuddT(bSuppTemp) )
    {
        pVar = pVars[bSuppTemp->index];
        if ( pVar == NULL ) // this variable is not be quantified
            continue;
        // quantify this var
        assert( Cudd_bddLeq( dd, pVar->bParts, dd->vars[iNode2] ) );
        pVar->bParts = Cudd_bddExistAbstract( dd, bTemp = pVar->bParts, dd->vars[iNode2] ); Cudd_Ref( pVar->bParts );
        Cudd_RecursiveDeref( dd, bTemp );
        // add the new var
        pVar->bParts = Cudd_bddAnd( dd, bTemp = pVar->bParts, dd->vars[iNode1] ); Cudd_Ref( pVar->bParts );
        Cudd_RecursiveDeref( dd, bTemp );
        // update the score
        pVar->nParts = Cudd_SupportSize( dd, pVar->bParts );
    }

    *pfStop = 0;
    if ( dd->keys-dd->dead > (unsigned)nBddMax )
    {
        *pfStop = 1;
        return 0;
    }
    return 1;
}


/**Function*************************************************************

  Synopsis    [Merges the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Bbr_ImageNode_t * Bbr_MergeTopNodes(
    DdManager * dd, int nNodes, Bbr_ImageNode_t ** pNodes )
{
    Bbr_ImageNode_t * pNode;
    int n1 = -1, n2 = -1, n;

    // find the first and the second non-empty spots
    for ( n = 0; n < nNodes; n++ )
        if ( pNodes[n] )
        {
            if ( n1 == -1 )
                n1 = n;
            else if ( n2 == -1 )
            {
                n2 = n;
                break;
            }
        }
    assert( n1 != -1 );
    // check the situation when only one such node is detected
    if ( n2 == -1 )
    {
        // save the node
        pNode = pNodes[n1];
        // clean the node
        pNodes[n1] = NULL;
        return pNode;
    }
  
    // combines two nodes
    pNode = Bbr_CombineTwoNodes( dd, b1, pNodes[n1], pNodes[n2] );

    // clean the old nodes
    pNodes[n1] = pNode;
    pNodes[n2] = NULL;
    return NULL;
}

/**Function*************************************************************

  Synopsis    [Merges two nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Bbr_ImageNode_t * Bbr_CombineTwoNodes( DdManager * dd, DdNode * bCube,
    Bbr_ImageNode_t * pNode1, Bbr_ImageNode_t * pNode2 )
{
    Bbr_ImageNode_t * pNode;
    Bbr_ImagePart_t * pPart;

    // create a new partition
    pPart = ABC_ALLOC( Bbr_ImagePart_t, 1 );
    memset( pPart, 0, sizeof(Bbr_ImagePart_t) );
    // create the function
    pPart->bFunc = Cudd_bddAndAbstract( dd, pNode1->pPart->bFunc, pNode2->pPart->bFunc, bCube );
    Cudd_Ref( pPart->bFunc );
    // update the support the partition
    pPart->bSupp = Cudd_bddAndAbstract( dd, pNode1->pPart->bSupp, pNode2->pPart->bSupp, bCube );
    Cudd_Ref( pPart->bSupp );
    // update the numbers
    pPart->nSupp  = Cudd_SupportSize( dd, pPart->bSupp );
    pPart->nNodes = Cudd_DagSize( pPart->bFunc );
    pPart->iPart = -1;
/*
ABC_PRB( dd, pNode1->pPart->bSupp );
ABC_PRB( dd, pNode2->pPart->bSupp );
ABC_PRB( dd, pPart->bSupp );
*/
    // create a new node
    pNode = ABC_ALLOC( Bbr_ImageNode_t, 1 );
    memset( pNode, 0, sizeof(Bbr_ImageNode_t) );
    pNode->dd     = dd;
    pNode->pPart  = pPart;
    pNode->pNode1 = pNode1;
    pNode->pNode2 = pNode2;
    // compute the image
    pNode->bImage = Cudd_bddAndAbstract( dd, pNode1->bImage, pNode2->bImage, bCube ); 
    Cudd_Ref( pNode->bImage );
    // save the cube
    if ( bCube != b1 )
    {
        pNode->bCube = bCube;   Cudd_Ref( bCube );
    }
    return pNode;
}

/**Function*************************************************************

  Synopsis    [Computes the best variable.]

  Description [The variables is the best if the sum of squares of the
  BDD sizes of the partitions, in which it participates, is the minimum.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Bbr_FindBestVariable( DdManager * dd,
    int nNodes, Bbr_ImageNode_t ** pNodes, 
    int nVars,  Bbr_ImageVar_t ** pVars )
{
    DdNode * bTemp;
    int iVarBest, v;
    double CostBest, CostCur;

    CostBest = 100000000000000.0;
    iVarBest = -1;

    // check if there are two-variable partitions
    for ( v = 0; v < nVars; v++ )
        if ( pVars[v] && pVars[v]->nParts == 2 )
        {
            CostCur = 0;
            for ( bTemp = pVars[v]->bParts; bTemp != b1; bTemp = cuddT(bTemp) )
                CostCur += pNodes[bTemp->index]->pPart->nNodes * 
                           pNodes[bTemp->index]->pPart->nNodes;
            if ( CostBest > CostCur )
            {
                CostBest = CostCur;
                iVarBest = v;
            }
        }
    if ( iVarBest >= 0 )
        return iVarBest;

    // find other partition
    for ( v = 0; v < nVars; v++ )
        if ( pVars[v] )
        {
            assert( pVars[v]->nParts > 1 );
            CostCur = 0;
            for ( bTemp = pVars[v]->bParts; bTemp != b1; bTemp = cuddT(bTemp) )
                CostCur += pNodes[bTemp->index]->pPart->nNodes * 
                           pNodes[bTemp->index]->pPart->nNodes;
            if ( CostBest > CostCur )
            {
                CostBest = CostCur;
                iVarBest = v;
            }
        }
    return iVarBest;
}

/**Function*************************************************************

  Synopsis    [Computes two smallest partions that have this var.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Bbr_FindBestPartitions( DdManager * dd, DdNode * bParts, 
    int nNodes, Bbr_ImageNode_t ** pNodes, 
    int * piNode1, int * piNode2 )
{
    DdNode * bTemp;
    int iPart1, iPart2;
    int CostMin1, CostMin2, Cost;

    // go through the partitions
    iPart1 = iPart2 = -1;
    CostMin1 = CostMin2 = 1000000;
    for ( bTemp = bParts; bTemp != b1; bTemp = cuddT(bTemp) )
    {
        Cost = pNodes[bTemp->index]->pPart->nNodes;
        if ( CostMin1 > Cost )
        {
            CostMin2 = CostMin1;    iPart2 = iPart1;
            CostMin1 = Cost;        iPart1 = bTemp->index;
        }
        else if ( CostMin2 > Cost )
        {
            CostMin2 = Cost;        iPart2 = bTemp->index;
        }
    }

    *piNode1 = iPart1;
    *piNode2 = iPart2;
}

/**Function*************************************************************

  Synopsis    [Prints the latch dependency matrix.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Bbr_bddImagePrintLatchDependency( 
    DdManager * dd, DdNode * bCare, // the care set
    int nParts, DdNode ** pbParts,  // the partitions for image computation
    int nVars, DdNode ** pbVars )   // the NS and parameter variables (not quantified!)
{
    int i;
    DdNode * bVarsCs, * bVarsNs;

    bVarsCs = Cudd_Support( dd, bCare );                       Cudd_Ref( bVarsCs );
    bVarsNs = Cudd_bddComputeCube( dd, pbVars, NULL, nVars );  Cudd_Ref( bVarsNs );

    printf( "The latch dependency matrix:\n" );
    printf( "Partitions = %d   Variables: total = %d  non-quantifiable = %d\n",
        nParts, dd->size, nVars );
    printf( "     : " );
    for ( i = 0; i < dd->size; i++ )
        printf( "%d", i % 10 );
    printf( "\n" );

    for ( i = 0; i < nParts; i++ )
        Bbr_bddImagePrintLatchDependencyOne( dd, pbParts[i], bVarsCs, bVarsNs, i );
    Bbr_bddImagePrintLatchDependencyOne( dd, bCare, bVarsCs, bVarsNs, nParts );

    Cudd_RecursiveDeref( dd, bVarsCs );
    Cudd_RecursiveDeref( dd, bVarsNs );
}

/**Function*************************************************************

  Synopsis    [Prints one row of the latch dependency matrix.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Bbr_bddImagePrintLatchDependencyOne(
    DdManager * dd, DdNode * bFunc,      // the function
    DdNode * bVarsCs, DdNode * bVarsNs,  // the current/next state vars
    int iPart )
{
    DdNode * bSupport;
    int v;
    bSupport = Cudd_Support( dd, bFunc );  Cudd_Ref( bSupport );
    printf( " %3d : ", iPart );
    for ( v = 0; v < dd->size; v++ )
    {
        if ( Cudd_bddLeq( dd, bSupport, dd->vars[v] ) )
        {
            if ( Cudd_bddLeq( dd, bVarsCs, dd->vars[v] ) )
                printf( "c" );
            else if ( Cudd_bddLeq( dd, bVarsNs, dd->vars[v] ) ) 
                printf( "n" );
            else
                printf( "i" );
        }
        else
            printf( "." );
    }
    printf( "\n" );
    Cudd_RecursiveDeref( dd, bSupport );
}


/**Function*************************************************************

  Synopsis    [Prints the tree for quenstification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Bbr_bddImagePrintTree( Bbr_ImageTree_t * pTree )
{
    printf( "The quantification scheduling tree:\n" );
    Bbr_bddImagePrintTree_rec( pTree->pRoot, 1 );
}

/**Function*************************************************************

  Synopsis    [Prints the tree for quenstification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Bbr_bddImagePrintTree_rec( Bbr_ImageNode_t * pNode, int Offset )
{
    DdNode * Cube;
    int i;

    Cube = pNode->bCube;

    if ( pNode->pNode1 == NULL )
    {
        printf( "<%d> ", pNode->pPart->iPart );
        if ( Cube != NULL )
        {
            ABC_PRB( pNode->dd, Cube );
        }
        else
            printf( "\n" );
        return;
    }

    printf( "<*> " );
    if ( Cube != NULL )
    {
        ABC_PRB( pNode->dd, Cube );
    }
    else
        printf( "\n" );

    for ( i = 0; i < Offset; i++ )
        printf( "    " );
    Bbr_bddImagePrintTree_rec( pNode->pNode1, Offset + 1 );

    for ( i = 0; i < Offset; i++ )
        printf( "    " );
    Bbr_bddImagePrintTree_rec( pNode->pNode2, Offset + 1 );
}

/**Function********************************************************************

  Synopsis    [Computes the positive polarty cube composed of the first vars in the array.]

  Description []

  SideEffects []

  SeeAlso     []

******************************************************************************/
DdNode * Bbr_bddComputeCube( DdManager * dd, DdNode ** bXVars, int nVars )
{
    DdNode * bRes;
    DdNode * bTemp;
    int i;

    bRes = b1; Cudd_Ref( bRes );
    for ( i = 0; i < nVars; i++ )
    {
        bRes = Cudd_bddAnd( dd, bTemp = bRes, bXVars[i] );  Cudd_Ref( bRes );
        Cudd_RecursiveDeref( dd, bTemp );
    }

    Cudd_Deref( bRes );
    return bRes;
}





struct Bbr_ImageTree2_t_
{
    DdManager * dd;
    DdNode *    bRel;
    DdNode *    bCube;
    DdNode *    bImage;
};

/**Function*************************************************************

  Synopsis    [Starts the monolithic image computation.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Bbr_ImageTree2_t * Bbr_bddImageStart2( 
    DdManager * dd, DdNode * bCare,
    int nParts, DdNode ** pbParts,
    int nVars, DdNode ** pbVars, int fVerbose )
{
    Bbr_ImageTree2_t * pTree;
    DdNode * bCubeAll, * bCubeNot, * bTemp;
    int i;

    pTree = ABC_ALLOC( Bbr_ImageTree2_t, 1 );
    pTree->dd = dd;
    pTree->bImage = NULL;

    bCubeAll = Bbr_bddComputeCube( dd, dd->vars, dd->size );      Cudd_Ref( bCubeAll );
    bCubeNot = Bbr_bddComputeCube( dd, pbVars,   nVars );         Cudd_Ref( bCubeNot );
    pTree->bCube = Cudd_bddExistAbstract( dd, bCubeAll, bCubeNot ); Cudd_Ref( pTree->bCube );
    Cudd_RecursiveDeref( dd, bCubeAll );
    Cudd_RecursiveDeref( dd, bCubeNot );

    // derive the monolithic relation
    pTree->bRel = b1;   Cudd_Ref( pTree->bRel );
    for ( i = 0; i < nParts; i++ )
    {
        pTree->bRel = Cudd_bddAnd( dd, bTemp = pTree->bRel, pbParts[i] ); Cudd_Ref( pTree->bRel );
        Cudd_RecursiveDeref( dd, bTemp );
    }
    Bbr_bddImageCompute2( pTree, bCare );
    return pTree;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Bbr_bddImageCompute2( Bbr_ImageTree2_t * pTree, DdNode * bCare )
{
    if ( pTree->bImage )
        Cudd_RecursiveDeref( pTree->dd, pTree->bImage );
    pTree->bImage = Cudd_bddAndAbstract( pTree->dd, pTree->bRel, bCare, pTree->bCube ); 
    Cudd_Ref( pTree->bImage );
    return pTree->bImage;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Bbr_bddImageTreeDelete2( Bbr_ImageTree2_t * pTree )
{
    if ( pTree->bRel )
        Cudd_RecursiveDeref( pTree->dd, pTree->bRel );
    if ( pTree->bCube )
        Cudd_RecursiveDeref( pTree->dd, pTree->bCube );
    if ( pTree->bImage )
        Cudd_RecursiveDeref( pTree->dd, pTree->bImage );
    ABC_FREE( pTree );
}

/**Function*************************************************************

  Synopsis    [Returns the previously computed image.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Bbr_bddImageRead2( Bbr_ImageTree2_t * pTree )
{
    return pTree->bImage;
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END