summaryrefslogtreecommitdiffstats
path: root/src/base/wlc/wlcAbs.c
blob: c1bb7f94e2aeba88ed40a11ec9a8a1120c895df8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
/**CFile****************************************************************

  FileName    [wlcAbs.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Verilog parser.]

  Synopsis    [Abstraction for word-level networks.]

  Author      [Yen-Sheng Ho, Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - August 22, 2014.]

  Revision    [$Id: wlcAbs.c,v 1.00 2014/09/12 00:00:00 alanmi Exp $]

***********************************************************************/

#include "wlc.h"
#include "proof/pdr/pdr.h"
#include "proof/pdr/pdrInt.h"
#include "aig/gia/giaAig.h"
#include "sat/bmc/bmc.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

extern Vec_Vec_t *   IPdr_ManSaveClauses( Pdr_Man_t * p, int fDropLast );
extern int           IPdr_ManRestore( Pdr_Man_t * p, Vec_Vec_t * vClauses, Vec_Int_t * vMap );
extern int           IPdr_ManSolveInt( Pdr_Man_t * p, int fCheckClauses, int fPushClauses );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Mark operators that meet the abstraction criteria.]

  Description [This procedure returns the array of objects (vLeaves) that 
  should be abstracted because of their high bit-width. It uses input array (vUnmark)
  to not abstract those objects that have been refined in the previous rounds.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static Vec_Bit_t * Wlc_NtkAbsMarkOpers( Wlc_Ntk_t * p, Wlc_Par_t * pPars, Vec_Bit_t * vUnmark, int fVerbose )
{
    Vec_Bit_t * vLeaves = Vec_BitStart( Wlc_NtkObjNumMax(p) );
    Wlc_Obj_t * pObj; int i, Count[4] = {0};
    Wlc_NtkForEachObj( p, pObj, i )
    {
        if ( vUnmark && Vec_BitEntry(vUnmark, i) ) // not allow this object to be abstracted away
            continue;
        if ( pObj->Type == WLC_OBJ_ARI_ADD || pObj->Type == WLC_OBJ_ARI_SUB || pObj->Type == WLC_OBJ_ARI_MINUS )
        {
            if ( Wlc_ObjRange(pObj) >= pPars->nBitsAdd )
                Vec_BitWriteEntry( vLeaves, Wlc_ObjId(p, pObj), 1 ), Count[0]++;
            continue;
        }
        if ( pObj->Type == WLC_OBJ_ARI_MULTI || pObj->Type == WLC_OBJ_ARI_DIVIDE || pObj->Type == WLC_OBJ_ARI_REM || pObj->Type == WLC_OBJ_ARI_MODULUS )
        {
            if ( Wlc_ObjRange(pObj) >= pPars->nBitsMul )
                Vec_BitWriteEntry( vLeaves, Wlc_ObjId(p, pObj), 1 ), Count[1]++;
            continue;
        }
        if ( pObj->Type == WLC_OBJ_MUX )
        {
            if ( Wlc_ObjRange(pObj) >= pPars->nBitsMux )
                Vec_BitWriteEntry( vLeaves, Wlc_ObjId(p, pObj), 1 ), Count[2]++;
            continue;
        }
        if ( Wlc_ObjIsCi(pObj) && !Wlc_ObjIsPi(pObj) )
        {
            if ( Wlc_ObjRange(pObj) >= pPars->nBitsFlop )
                Vec_BitWriteEntry( vLeaves, Wlc_ObjId(p, pObj), 1 ), Count[3]++;
            continue;
        }
    }
    if ( fVerbose )
        printf( "Abstraction engine marked %d adds/subs, %d muls/divs, %d muxes, and %d flops to be abstracted away.\n", Count[0], Count[1], Count[2], Count[3] );
    return vLeaves;
}

/**Function*************************************************************

  Synopsis    [Marks nodes to be included in the abstracted network.]

  Description [Marks all objects that will be included in the abstracted model.  
  Stops at the objects (vLeaves) that are abstracted away. Returns three arrays:
  a subset of original PIs (vPisOld), a subset of pseudo-PIs (vPisNew) and the
  set of flops present as flops in the abstracted network.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static void Wlc_NtkAbsMarkNodes_rec( Wlc_Ntk_t * p, Wlc_Obj_t * pObj, Vec_Bit_t * vLeaves, Vec_Int_t * vPisOld, Vec_Int_t * vPisNew, Vec_Int_t * vFlops )
{
    int i, iFanin;
    if ( pObj->Mark )
        return;
    pObj->Mark = 1;
    if ( Vec_BitEntry(vLeaves, Wlc_ObjId(p, pObj)) )
    {
        assert( !Wlc_ObjIsPi(pObj) );
        Vec_IntPush( vPisNew, Wlc_ObjId(p, pObj) );
        return;
    }
    if ( Wlc_ObjIsCi(pObj) )
    {
        if ( Wlc_ObjIsPi(pObj) )
            Vec_IntPush( vPisOld, Wlc_ObjId(p, pObj) );
        else
            Vec_IntPush( vFlops, Wlc_ObjId(p, pObj) );
        return;
    }
    Wlc_ObjForEachFanin( pObj, iFanin, i )
        Wlc_NtkAbsMarkNodes_rec( p, Wlc_NtkObj(p, iFanin), vLeaves, vPisOld, vPisNew, vFlops );
}
static void Wlc_NtkAbsMarkNodes( Wlc_Ntk_t * p, Vec_Bit_t * vLeaves, Vec_Int_t * vPisOld, Vec_Int_t * vPisNew, Vec_Int_t * vFlops )
{
    Wlc_Obj_t * pObj;
    int i, Count = 0;
    Wlc_NtkCleanMarks( p );
    Wlc_NtkForEachCo( p, pObj, i )
        Wlc_NtkAbsMarkNodes_rec( p, pObj, vLeaves, vPisOld, vPisNew, vFlops );
    
/*    
    Vec_IntClear(vFlops);
    Wlc_NtkForEachCi( p, pObj, i ) {
        if ( !Wlc_ObjIsPi(pObj) ) {
            Vec_IntPush( vFlops, Wlc_ObjId(p, pObj) );
            pObj->Mark = 1;
        }
    }
*/    

    Wlc_NtkForEachObjVec( vFlops, p, pObj, i )
        Wlc_NtkAbsMarkNodes_rec( p, Wlc_ObjFo2Fi(p, pObj), vLeaves, vPisOld, vPisNew, vFlops );
    Wlc_NtkForEachObj( p, pObj, i )
        Count += pObj->Mark;
//    printf( "Collected %d old PIs, %d new PIs, %d flops, and %d other objects.\n", 
//        Vec_IntSize(vPisOld), Vec_IntSize(vPisNew), Vec_IntSize(vFlops), 
//        Count - Vec_IntSize(vPisOld) - Vec_IntSize(vPisNew) - Vec_IntSize(vFlops) );
    Vec_IntSort( vPisOld, 0 );
    Vec_IntSort( vPisNew, 0 );
    Vec_IntSort( vFlops, 0 );
    Wlc_NtkCleanMarks( p );
}

/**Function*************************************************************

  Synopsis    [Derive word-level abstracted model based on the parameter values.]

  Description [Retuns the word-level abstracted network and the set of pseudo-PIs 
  (vPisNew), which were created during abstraction. If the abstraction is
  satisfiable, some of the pseudo-PIs will be un-abstracted. These pseudo-PIs
  and their MFFC cones will be listed in the array (vUnmark), which will
  force the abstraction to not stop at these pseudo-PIs in the future.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static Wlc_Ntk_t * Wlc_NtkAbs( Wlc_Ntk_t * p, Wlc_Par_t * pPars, Vec_Bit_t * vUnmark, Vec_Int_t ** pvPisNew, Vec_Int_t ** pvFlops, int fVerbose )
{
    Wlc_Ntk_t * pNtkNew = NULL;
    Vec_Int_t * vPisOld = Vec_IntAlloc( 100 );
    Vec_Int_t * vPisNew = Vec_IntAlloc( 100 );
    Vec_Int_t * vFlops  = Vec_IntAlloc( 100 );
    Vec_Bit_t * vLeaves = Wlc_NtkAbsMarkOpers( p, pPars, vUnmark, fVerbose );
    Wlc_NtkAbsMarkNodes( p, vLeaves, vPisOld, vPisNew, vFlops );
    Vec_BitFree( vLeaves );
    pNtkNew = Wlc_NtkDupDfsAbs( p, vPisOld, vPisNew, vFlops );
    Vec_IntFree( vPisOld );
    if ( pvFlops )
        *pvFlops = vFlops;
    else
        Vec_IntFree( vFlops );
    if ( pvPisNew )
        *pvPisNew = vPisNew;
    else
        Vec_IntFree( vPisNew );
    return pNtkNew;
}

/**Function*************************************************************

  Synopsis    [Find what objects need to be un-abstracted.]

  Description [Returns a subset of pseudo-PIs (vPisNew), which will be 
  prevented from being abstracted in the future rounds of abstraction.
  The AIG manager (pGia) is a bit-level view of the abstracted model.
  The counter-example (pCex) is used to find waht PPIs to refine.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static Vec_Int_t * Wlc_NtkAbsRefinement( Wlc_Ntk_t * p, Gia_Man_t * pGia, Abc_Cex_t * pCex, Vec_Int_t * vPisNew )
{
    Vec_Int_t * vRefine = Vec_IntAlloc( 100 );
    Abc_Cex_t * pCexCare;
    Wlc_Obj_t * pObj; 
    // count the number of bit-level PPIs and map them into word-level objects they were derived from
    int f, i, b, nRealPis, nPpiBits = 0;
    Vec_Int_t * vMap = Vec_IntStartFull( pCex->nPis );
    Wlc_NtkForEachObjVec( vPisNew, p, pObj, i )
        for ( b = 0; b < Wlc_ObjRange(pObj); b++ )
            Vec_IntWriteEntry( vMap, nPpiBits++, Wlc_ObjId(p, pObj) );
    // since PPIs are ordered last, the previous bits are real PIs
    nRealPis = pCex->nPis - nPpiBits;
    // find the care-set
    pCexCare = Bmc_CexCareMinimizeAig( pGia, nRealPis, pCex, 1, 0, 0 );
    assert( pCexCare->nPis == pCex->nPis );
    // detect care PPIs
    for ( f = 0; f <= pCexCare->iFrame; f++ )
        for ( i = nRealPis; i < pCexCare->nPis; i++ )
            if ( Abc_InfoHasBit(pCexCare->pData, pCexCare->nRegs + pCexCare->nPis * f + i) )
                Vec_IntPushUniqueOrder( vRefine, Vec_IntEntry(vMap, i-nRealPis) );
    Abc_CexFree( pCexCare );
    Vec_IntFree( vMap );
    if ( Vec_IntSize(vRefine) == 0 )// real CEX
        Vec_IntFreeP( &vRefine );
    return vRefine;
}

/**Function*************************************************************

  Synopsis    [Mark MFFC cones of the un-abstracted objects.]

  Description [The MFFC cones of the objects in vRefine are traversed
  and all their nodes are marked in vUnmark.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static int Wlc_NtkNodeDeref_rec( Wlc_Ntk_t * p, Wlc_Obj_t * pNode, Vec_Bit_t * vUnmark )
{
    int i, Fanin, Counter = 1;
    if ( Wlc_ObjIsCi(pNode) )
        return 0;
    Vec_BitWriteEntry( vUnmark, Wlc_ObjId(p, pNode), 1 );
    Wlc_ObjForEachFanin( pNode, Fanin, i )
    {
        Vec_IntAddToEntry( &p->vRefs, Fanin, -1 );
        if ( Vec_IntEntry(&p->vRefs, Fanin) == 0 )
            Counter += Wlc_NtkNodeDeref_rec( p, Wlc_NtkObj(p, Fanin), vUnmark );
    }
    return Counter;
}
static int Wlc_NtkNodeRef_rec( Wlc_Ntk_t * p, Wlc_Obj_t * pNode )
{
    int i, Fanin, Counter = 1;
    if ( Wlc_ObjIsCi(pNode) )
        return 0;
    Wlc_ObjForEachFanin( pNode, Fanin, i )
    {
        if ( Vec_IntEntry(&p->vRefs, Fanin) == 0 )
            Counter += Wlc_NtkNodeRef_rec( p, Wlc_NtkObj(p, Fanin) );
        Vec_IntAddToEntry( &p->vRefs, Fanin, 1 );
    }
    return Counter;
}
static int Wlc_NtkMarkMffc( Wlc_Ntk_t * p, Wlc_Obj_t * pNode, Vec_Bit_t * vUnmark )
{
    int Count1, Count2;
    // if this is a flop output, compute MFFC of the corresponding flop input
    while ( Wlc_ObjIsCi(pNode) )
    {
        Vec_BitWriteEntry( vUnmark, Wlc_ObjId(p, pNode), 1 );
        pNode = Wlc_ObjFo2Fi(p, pNode);
    }
    assert( !Wlc_ObjIsCi(pNode) );
    // dereference the node (and set the bits in vUnmark)
    Count1 = Wlc_NtkNodeDeref_rec( p, pNode, vUnmark );
    // reference it back
    Count2 = Wlc_NtkNodeRef_rec( p, pNode );
    assert( Count1 == Count2 );
    return Count1;
}
static int Wlc_NtkRemoveFromAbstraction( Wlc_Ntk_t * p, Vec_Int_t * vRefine, Vec_Bit_t * vUnmark )
{
    Wlc_Obj_t * pObj; int i, nNodes = 0;
    if ( Vec_IntSize(&p->vRefs) == 0 )
        Wlc_NtkSetRefs( p );
    Wlc_NtkForEachObjVec( vRefine, p, pObj, i )
        nNodes += Wlc_NtkMarkMffc( p, pObj, vUnmark );
    return nNodes;
}

static int Wlc_NtkUnmarkRefinement( Wlc_Ntk_t * p, Vec_Int_t * vRefine, Vec_Bit_t * vUnmark )
{
    Wlc_Obj_t * pObj; int i, nNodes = 0;
    Wlc_NtkForEachObjVec( vRefine, p, pObj, i )
    {
        Vec_BitWriteEntry( vUnmark, Wlc_ObjId(p, pObj), 1 );
        ++nNodes;
    }
    return nNodes;
}

/**Function*************************************************************

  Synopsis    [Computes the map for remapping flop IDs used in the clauses.]

  Description [Takes the original network (Wlc_Ntk_t) and the array of word-level 
  flops used in the old abstraction (vFfOld) and those used in the new abstraction
  (vFfNew). Returns the integer map, which remaps every binary flop found
  in the old abstraction into a binary flop found in the new abstraction.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Wlc_NtkFlopsRemap( Wlc_Ntk_t * p, Vec_Int_t * vFfOld, Vec_Int_t * vFfNew )
{
    Vec_Int_t * vMap = Vec_IntAlloc( 1000 );             // the resulting map
    Vec_Int_t * vMapFfNew2Bit1 = Vec_IntAlloc( 1000 );   // first binary bit of each new word-level flop
    int i, b, iFfOld, iFfNew, iBit1New, nBits = 0;
    // map object IDs of old flops into their flop indexes
    Vec_Int_t * vMapFfObj2FfId = Vec_IntStartFull( Wlc_NtkObjNumMax(p) );
    Vec_IntForEachEntry( vFfNew, iFfNew, i )
        Vec_IntWriteEntry( vMapFfObj2FfId, iFfNew, i );
    // map each new flop index into its first bit
    Vec_IntForEachEntry( vFfNew, iFfNew, i )
    {
        Wlc_Obj_t * pObj = Wlc_NtkObj( p, iFfNew );
        int nRange = Wlc_ObjRange( pObj );
        Vec_IntPush( vMapFfNew2Bit1, nBits );
        nBits += nRange;
    }
    assert( Vec_IntSize(vMapFfNew2Bit1) == Vec_IntSize(vFfNew) );
    // remap old binary flops into new binary flops
    Vec_IntForEachEntry( vFfOld, iFfOld, i )
    {
        Wlc_Obj_t * pObj = Wlc_NtkObj( p, iFfOld );
        int nRange = Wlc_ObjRange( pObj );
        iFfNew = Vec_IntEntry( vMapFfObj2FfId, iFfOld );
        assert( iFfNew >= 0 ); // every old flop should be present in the new abstraction
        // find the first bit of this new flop
        iBit1New = Vec_IntEntry( vMapFfNew2Bit1, iFfNew );
        for ( b = 0; b < nRange; b++ )
            Vec_IntPush( vMap, iBit1New + b );
    }
    Vec_IntFree( vMapFfNew2Bit1 );
    Vec_IntFree( vMapFfObj2FfId );
    return vMap;
}

/**Function*************************************************************

  Synopsis    [Performs PDR with word-level abstraction.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Wlc_NtkPdrAbs( Wlc_Ntk_t * p, Wlc_Par_t * pPars )
{
    abctime clk = Abc_Clock();
    abctime pdrClk;
    Pdr_Man_t * pPdr;
    Vec_Vec_t * vClauses = NULL;
    Vec_Int_t * vFfOld = NULL, * vFfNew = NULL, * vMap = NULL;
    int nIters, nNodes, nDcFlops, RetValue = -1, nGiaFfNumOld = -1;
    // start the bitmap to mark objects that cannot be abstracted because of refinement
    // currently, this bitmap is empty because abstraction begins without refinement
    Vec_Bit_t * vUnmark = Vec_BitStart( Wlc_NtkObjNumMax(p) );
    // set up parameters to run PDR
    Pdr_Par_t PdrPars, * pPdrPars = &PdrPars;
    Pdr_ManSetDefaultParams( pPdrPars );
    pPdrPars->fVerbose   = pPars->fPdrVerbose;
    pPdrPars->fVeryVerbose = 0;
    
    if ( pPars->fPdra )
    {
        pPdrPars->fUseAbs    = 1;   // use 'pdr -t'  (on-the-fly abstraction)
        pPdrPars->fCtgs      = 1;   // use 'pdr -nc' (improved generalization)
        pPdrPars->fSkipDown  = 0;   // use 'pdr -nc' (improved generalization)
        pPdrPars->nRestLimit = 500; // reset queue or proof-obligations when it gets larger than this
    } 

    // perform refinement iterations
    for ( nIters = 1; nIters < pPars->nIterMax; nIters++ )
    {
        Aig_Man_t * pAig;
        Abc_Cex_t * pCex;
        Vec_Int_t * vPisNew, * vRefine;  
        Gia_Man_t * pGia, * pTemp;
        Wlc_Ntk_t * pAbs;

        if ( pPars->fVerbose )
            printf( "\nIteration %d:\n", nIters );

        // get abstracted GIA and the set of pseudo-PIs (vPisNew)
        pAbs = Wlc_NtkAbs( p, pPars, vUnmark, &vPisNew, &vFfNew, pPars->fVerbose );
        pGia = Wlc_NtkBitBlast( pAbs, NULL, -1, 0, 0, 0, 0 );

        // map old flops into new flops
        if ( vFfOld )
        {
            assert( nGiaFfNumOld >= 0 );
            vMap = Wlc_NtkFlopsRemap( p, vFfOld, vFfNew );
            //Vec_IntPrint( vMap );
            // if reset flop was added in the previous iteration, it will be added again in this iteration
            // remap the last flop (reset flop) into the last flop (reset flop) of the current AIG
            if ( Vec_IntSize(vMap) + 1 == nGiaFfNumOld )
                Vec_IntPush( vMap, Gia_ManRegNum(pGia)-1 );
            assert( Vec_IntSize(vMap) == nGiaFfNumOld );
            Vec_IntFreeP( &vFfOld );
        }
        ABC_SWAP( Vec_Int_t *, vFfOld, vFfNew );
        nGiaFfNumOld = Gia_ManRegNum(pGia);

        // if the abstraction has flops with DC-init state,
        // new PIs were introduced by bit-blasting at the end of the PI list
        // here we move these variables to be *before* PPIs, because
        // PPIs are supposed to be at the end of the PI list for refinement
        nDcFlops = Wlc_NtkDcFlopNum(pAbs);
        if ( nDcFlops > 0 ) // DC-init flops are present
        {
            pGia = Gia_ManPermuteInputs( pTemp = pGia, Wlc_NtkCountObjBits(p, vPisNew), nDcFlops );
            Gia_ManStop( pTemp );
        }
        // if the word-level outputs have to be XORs, this is a place to do it
        if ( pPars->fXorOutput )
        {
            pGia = Gia_ManTransformMiter2( pTemp = pGia );
            Gia_ManStop( pTemp );
        }
        if ( pPars->fVerbose )
        {
            printf( "Derived abstraction with %d objects and %d PPIs. Bit-blasted AIG stats are:\n", Wlc_NtkObjNum(pAbs), Vec_IntSize(vPisNew) ); 
            Gia_ManPrintStats( pGia, NULL );
        }
        Wlc_NtkFree( pAbs );

        // try to prove abstracted GIA by converting it to AIG and calling PDR
        pAig = Gia_ManToAigSimple( pGia );

        pPdr = Pdr_ManStart( pAig, pPdrPars, NULL );
        pdrClk = Abc_Clock();

        if ( vClauses ) {
            assert( Vec_VecSize( vClauses) >= 2 ); 
            IPdr_ManRestore( pPdr, vClauses, vMap );
        }
        Vec_IntFreeP( &vMap );

        RetValue = IPdr_ManSolveInt( pPdr, pPars->fCheckClauses, pPars->fPushClauses );
        pPdr->tTotal += Abc_Clock() - pdrClk;

        pCex = pAig->pSeqModel; pAig->pSeqModel = NULL;

        // consider outcomes
        if ( pCex == NULL ) 
        {
            assert( RetValue ); // proved or undecided
            Gia_ManStop( pGia );
            Vec_IntFree( vPisNew );
            Pdr_ManStop( pPdr );
            Aig_ManStop( pAig );
            break;
        }

        // perform refinement
        vRefine = Wlc_NtkAbsRefinement( p, pGia, pCex, vPisNew );
        Gia_ManStop( pGia );
        Vec_IntFree( vPisNew );
        if ( vRefine == NULL ) // real CEX
        {
            Abc_CexFree( pCex ); // return CEX in the future
            Pdr_ManStop( pPdr );
            Aig_ManStop( pAig );
            break;
        }

        // spurious CEX, continue solving
        vClauses = IPdr_ManSaveClauses( pPdr, 0 );

        Pdr_ManStop( pPdr );

        // update the set of objects to be un-abstracted
        if ( pPars->fMFFC )
        {
            nNodes = Wlc_NtkRemoveFromAbstraction( p, vRefine, vUnmark );
            if ( pPars->fVerbose )
                printf( "Refinement of CEX in frame %d came up with %d un-abstacted PPIs, whose MFFCs include %d objects.\n", pCex->iFrame, Vec_IntSize(vRefine), nNodes );
        }
        else
        {
            nNodes = Wlc_NtkUnmarkRefinement( p, vRefine, vUnmark );
            if ( pPars->fVerbose )
                printf( "Refinement of CEX in frame %d came up with %d un-abstacted PPIs.\n", pCex->iFrame, Vec_IntSize(vRefine) );

        }
        Vec_IntFree( vRefine );
        Abc_CexFree( pCex );
        Aig_ManStop( pAig );
    }

    Vec_IntFreeP( &vFfOld );
    Vec_BitFree( vUnmark );
    // report the result
    if ( pPars->fVerbose )
        printf( "\n" );
    printf( "Abstraction " );
    if ( RetValue == 0 )
        printf( "resulted in a real CEX" );
    else if ( RetValue == 1 )
        printf( "is successfully proved" );
    else 
        printf( "timed out" );
    printf( " after %d iterations. ", nIters );
    Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    return RetValue;
}

/**Function*************************************************************

  Synopsis    [Performs abstraction.]

  Description [Derives initial abstraction based on user-specified
  parameter values, which tell what is the smallest bit-width of a
  primitive that is being abstracted away.  Currently only add/sub,
  mul/div, mux, and flop are supported with individual parameters.
  The second step is to refine the initial abstraction until the
  point when the property is proved.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Wlc_NtkAbsCore( Wlc_Ntk_t * p, Wlc_Par_t * pPars )
{
    abctime clk = Abc_Clock();
    int nIters, nNodes, nDcFlops, RetValue = -1;
    // start the bitmap to mark objects that cannot be abstracted because of refinement
    // currently, this bitmap is empty because abstraction begins without refinement
    Vec_Bit_t * vUnmark = Vec_BitStart( Wlc_NtkObjNumMax(p) );
    // set up parameters to run PDR
    Pdr_Par_t PdrPars, * pPdrPars = &PdrPars;
    Pdr_ManSetDefaultParams( pPdrPars );
    //pPdrPars->fUseAbs    = 1;   // use 'pdr -t'  (on-the-fly abstraction)
    //pPdrPars->fCtgs      = 1;   // use 'pdr -nc' (improved generalization)
    //pPdrPars->fSkipDown  = 0;   // use 'pdr -nc' (improved generalization)
    //pPdrPars->nRestLimit = 500; // reset queue or proof-obligations when it gets larger than this
    pPdrPars->fVerbose   = pPars->fPdrVerbose;
    pPdrPars->fVeryVerbose = 0;
    // perform refinement iterations
    for ( nIters = 1; nIters < pPars->nIterMax; nIters++ )
    {
        Aig_Man_t * pAig;
        Abc_Cex_t * pCex;
        Vec_Int_t * vPisNew, * vRefine;  
        Gia_Man_t * pGia, * pTemp;
        Wlc_Ntk_t * pAbs;

        if ( pPars->fVerbose )
            printf( "\nIteration %d:\n", nIters );

        // get abstracted GIA and the set of pseudo-PIs (vPisNew)
        pAbs = Wlc_NtkAbs( p, pPars, vUnmark, &vPisNew, NULL, pPars->fVerbose );
        pGia = Wlc_NtkBitBlast( pAbs, NULL, -1, 0, 0, 0, 0 );

        // if the abstraction has flops with DC-init state,
        // new PIs were introduced by bit-blasting at the end of the PI list
        // here we move these variables to be *before* PPIs, because
        // PPIs are supposed to be at the end of the PI list for refinement
        nDcFlops = Wlc_NtkDcFlopNum(pAbs);
        if ( nDcFlops > 0 ) // DC-init flops are present
        {
            pGia = Gia_ManPermuteInputs( pTemp = pGia, Wlc_NtkCountObjBits(p, vPisNew), nDcFlops );
            Gia_ManStop( pTemp );
        }
        // if the word-level outputs have to be XORs, this is a place to do it
        if ( pPars->fXorOutput )
        {
            pGia = Gia_ManTransformMiter2( pTemp = pGia );
            Gia_ManStop( pTemp );
        }
        if ( pPars->fVerbose )
        {
            printf( "Derived abstraction with %d objects and %d PPIs. Bit-blasted AIG stats are:\n", Wlc_NtkObjNum(pAbs), Vec_IntSize(vPisNew) ); 
            Gia_ManPrintStats( pGia, NULL );
        }
        Wlc_NtkFree( pAbs );

        // try to prove abstracted GIA by converting it to AIG and calling PDR
        pAig = Gia_ManToAigSimple( pGia );
        RetValue = Pdr_ManSolve( pAig, pPdrPars );
        pCex = pAig->pSeqModel; pAig->pSeqModel = NULL;
        Aig_ManStop( pAig );

        // consider outcomes
        if ( pCex == NULL ) 
        {
            assert( RetValue ); // proved or undecided
            Gia_ManStop( pGia );
            Vec_IntFree( vPisNew );
            break;
        }

        // perform refinement
        vRefine = Wlc_NtkAbsRefinement( p, pGia, pCex, vPisNew );
        Gia_ManStop( pGia );
        Vec_IntFree( vPisNew );
        if ( vRefine == NULL ) // real CEX
        {
            Abc_CexFree( pCex ); // return CEX in the future
            break;
        }

        // update the set of objects to be un-abstracted
        nNodes = Wlc_NtkRemoveFromAbstraction( p, vRefine, vUnmark );
        if ( pPars->fVerbose )
            printf( "Refinement of CEX in frame %d came up with %d un-abstacted PPIs, whose MFFCs include %d objects.\n", pCex->iFrame, Vec_IntSize(vRefine), nNodes );
        Vec_IntFree( vRefine );
        Abc_CexFree( pCex );
    }
    Vec_BitFree( vUnmark );
    // report the result
    if ( pPars->fVerbose )
        printf( "\n" );
    printf( "Abstraction " );
    if ( RetValue == 0 )
        printf( "resulted in a real CEX" );
    else if ( RetValue == 1 )
        printf( "is successfully proved" );
    else 
        printf( "timed out" );
    printf( " after %d iterations. ", nIters );
    Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
    return RetValue;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END