1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
/**CFile****************************************************************
FileName [seqInt.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Construction and manipulation of sequential AIGs.]
Synopsis [Internal declarations.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: seqInt.h,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#ifndef __SEQ_INT_H__
#define __SEQ_INT_H__
#ifdef __cplusplus
extern "C" {
#endif
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
#include "abc.h"
#include "cut.h"
#include "main.h"
#include "mio.h"
#include "mapper.h"
#include "fpga.h"
#include "seq.h"
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
#define SEQ_FULL_MASK 0xFFFFFFFF
// node status after updating its arrival time
enum { SEQ_UPDATE_FAIL, SEQ_UPDATE_NO, SEQ_UPDATE_YES };
////////////////////////////////////////////////////////////////////////
/// BASIC TYPES ///
////////////////////////////////////////////////////////////////////////
// manager of sequential AIG
struct Abc_Seq_t_
{
// sequential information
Abc_Ntk_t * pNtk; // the network
int nSize; // the number of entries in all internal arrays
Vec_Int_t * vNums; // the number of latches on each edge in the AIG
Vec_Ptr_t * vInits; // the initial states for each edge in the AIG
Extra_MmFixed_t * pMmInits; // memory manager for latch structures used to remember init states
int fVerbose; // the verbose flag
float fEpsilon; // the accuracy for delay computation
int fStandCells; // the flag denoting standard cell mapping
int nMaxIters; // the max number of iterations
int FiBestInt; // the best clock period
float FiBestFloat; // the best clock period
// K-feasible cuts
int nVarsMax; // the max cut size
Cut_Man_t * pCutMan; // cut manager
Map_SuperLib_t * pSuperLib; // the current supergate library
// sequential arrival time computation
Vec_Int_t * vAFlows; // the area flow of each cut
Vec_Int_t * vLValues; // the arrival times (L-Values of nodes)
Vec_Int_t * vLValuesN; // the arrival times (L-Values of nodes)
Vec_Str_t * vLags; // the lags of the mapped nodes
Vec_Str_t * vLagsN; // the lags of the mapped nodes
Vec_Str_t * vUses; // the phase usage
// representation of the mapping
Vec_Ptr_t * vMapAnds; // nodes visible in the mapping
Vec_Vec_t * vMapCuts; // best cuts for each node
Vec_Vec_t * vMapDelays; // the delay of each fanin
Vec_Vec_t * vMapFanins; // the delay of each fanin
// runtime stats
int timeCuts; // runtime to compute the cuts
int timeDelay; // runtime to compute the L-values
int timeRet; // runtime to retime the resulting network
int timeNtk; // runtime to create the final network
};
// data structure to store initial state
typedef struct Seq_Lat_t_ Seq_Lat_t;
struct Seq_Lat_t_
{
Seq_Lat_t * pNext; // the next Lat in the ring
Seq_Lat_t * pPrev; // the prev Lat in the ring
Abc_Obj_t * pLatch; // the real latch corresponding to Lat
};
// representation of latch on the edge
typedef struct Seq_RetEdge_t_ Seq_RetEdge_t;
struct Seq_RetEdge_t_ // 1 word
{
unsigned iNode : 24; // the ID of the node
unsigned iEdge : 1; // the edge of the node
unsigned iLatch : 7; // the latch number counting from the node
};
// representation of one retiming step
typedef struct Seq_RetStep_t_ Seq_RetStep_t;
struct Seq_RetStep_t_ // 1 word
{
unsigned iNode : 24; // the ID of the node
unsigned nLatches : 8; // the number of latches to retime
};
// representation of one mapping match
typedef struct Seq_Match_t_ Seq_Match_t;
struct Seq_Match_t_ // 3 words
{
Abc_Obj_t * pAnd; // the AND gate used in the mapping
Cut_Cut_t * pCut; // the cut used to map it
Map_Super_t * pSuper; // the supergate used to implement the cut
unsigned fCompl : 1; // the polarity of the AND gate
unsigned fCutInv : 1; // the polarity of the cut
unsigned PolUse : 2; // the polarity use of this node
unsigned uPhase : 14; // the phase assignment at the boundary
unsigned uPhaseR : 14; // the real phase assignment at the boundary
};
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
// transforming retedges into ints and back
static inline int Seq_RetEdge2Int( Seq_RetEdge_t Val ) { return *((int *)&Val); }
static inline Seq_RetEdge_t Seq_Int2RetEdge( int Num ) { return *((Seq_RetEdge_t *)&Num); }
// transforming retsteps into ints and back
static inline int Seq_RetStep2Int( Seq_RetStep_t Val ) { return *((int *)&Val); }
static inline Seq_RetStep_t Seq_Int2RetStep( int Num ) { return *((Seq_RetStep_t *)&Num); }
// manipulating the number of latches on each edge
static inline Vec_Int_t * Seq_ObjLNums( Abc_Obj_t * pObj ) { return ((Abc_Seq_t*)pObj->pNtk->pManFunc)->vNums; }
static inline int Seq_ObjFaninL( Abc_Obj_t * pObj, int i ) { return Vec_IntEntry(Seq_ObjLNums(pObj), 2*pObj->Id + i); }
static inline int Seq_ObjFaninL0( Abc_Obj_t * pObj ) { return Vec_IntEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 0); }
static inline int Seq_ObjFaninL1( Abc_Obj_t * pObj ) { return Vec_IntEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 1); }
static inline void Seq_ObjSetFaninL( Abc_Obj_t * pObj, int i, int nLats ) { Vec_IntWriteEntry(Seq_ObjLNums(pObj), 2*pObj->Id + i, nLats); }
static inline void Seq_ObjSetFaninL0( Abc_Obj_t * pObj, int nLats ) { Vec_IntWriteEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 0, nLats); }
static inline void Seq_ObjSetFaninL1( Abc_Obj_t * pObj, int nLats ) { Vec_IntWriteEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 1, nLats); }
static inline void Seq_ObjAddFaninL( Abc_Obj_t * pObj, int i, int nLats ) { Vec_IntAddToEntry(Seq_ObjLNums(pObj), 2*pObj->Id + i, nLats); }
static inline void Seq_ObjAddFaninL0( Abc_Obj_t * pObj, int nLats ) { Vec_IntAddToEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 0, nLats); }
static inline void Seq_ObjAddFaninL1( Abc_Obj_t * pObj, int nLats ) { Vec_IntAddToEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 1, nLats); }
static inline int Seq_ObjFanoutL( Abc_Obj_t * pObj, Abc_Obj_t * pFanout ) { return Seq_ObjFaninL( pFanout, Abc_ObjFanoutEdgeNum(pObj,pFanout) ); }
static inline void Seq_ObjSetFanoutL( Abc_Obj_t * pObj, Abc_Obj_t * pFanout, int nLats ) { Seq_ObjSetFaninL( pFanout, Abc_ObjFanoutEdgeNum(pObj,pFanout), nLats ); }
static inline void Seq_ObjAddFanoutL( Abc_Obj_t * pObj, Abc_Obj_t * pFanout, int nLats ) { Seq_ObjAddFaninL( pFanout, Abc_ObjFanoutEdgeNum(pObj,pFanout), nLats ); }
static inline int Seq_ObjFaninLMin( Abc_Obj_t * pObj ) { assert( Abc_ObjIsNode(pObj) ); return ABC_MIN( Seq_ObjFaninL0(pObj), Seq_ObjFaninL1(pObj) ); }
static inline int Seq_ObjFaninLMax( Abc_Obj_t * pObj ) { assert( Abc_ObjIsNode(pObj) ); return ABC_MAX( Seq_ObjFaninL0(pObj), Seq_ObjFaninL1(pObj) ); }
// reading l-values and lags
static inline Vec_Int_t * Seq_NodeLValues( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vLValues; }
static inline Vec_Int_t * Seq_NodeLValuesN( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vLValuesN; }
static inline int Seq_NodeGetLValue( Abc_Obj_t * pNode ) { return Vec_IntEntry( Seq_NodeLValues(pNode), (pNode)->Id ); }
static inline void Seq_NodeSetLValue( Abc_Obj_t * pNode, int Value ) { Vec_IntWriteEntry( Seq_NodeLValues(pNode), (pNode)->Id, Value ); }
static inline float Seq_NodeGetLValueP( Abc_Obj_t * pNode ) { return Abc_Int2Float( Vec_IntEntry( Seq_NodeLValues(pNode), (pNode)->Id ) ); }
static inline float Seq_NodeGetLValueN( Abc_Obj_t * pNode ) { return Abc_Int2Float( Vec_IntEntry( Seq_NodeLValuesN(pNode), (pNode)->Id ) ); }
static inline void Seq_NodeSetLValueP( Abc_Obj_t * pNode, float Value ) { Vec_IntWriteEntry( Seq_NodeLValues(pNode), (pNode)->Id, Abc_Float2Int(Value) ); }
static inline void Seq_NodeSetLValueN( Abc_Obj_t * pNode, float Value ) { Vec_IntWriteEntry( Seq_NodeLValuesN(pNode), (pNode)->Id, Abc_Float2Int(Value) ); }
// reading area flows
static inline Vec_Int_t * Seq_NodeFlow( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vAFlows; }
static inline float Seq_NodeGetFlow( Abc_Obj_t * pNode ) { return Abc_Int2Float( Vec_IntEntry( Seq_NodeFlow(pNode), (pNode)->Id ) ); }
static inline void Seq_NodeSetFlow( Abc_Obj_t * pNode, float Value ) { Vec_IntWriteEntry( Seq_NodeFlow(pNode), (pNode)->Id, Abc_Float2Int(Value) ); }
// reading the contents of the lat
static inline Abc_InitType_t Seq_LatInit( Seq_Lat_t * pLat ) { return ((unsigned)pLat->pPrev) & 3; }
static inline Seq_Lat_t * Seq_LatNext( Seq_Lat_t * pLat ) { return pLat->pNext; }
static inline Seq_Lat_t * Seq_LatPrev( Seq_Lat_t * pLat ) { return (void *)(((unsigned)pLat->pPrev) & (SEQ_FULL_MASK << 2)); }
// setting the contents of the lat
static inline void Seq_LatSetInit( Seq_Lat_t * pLat, Abc_InitType_t Init ) { pLat->pPrev = (void *)( (3 & Init) | (((unsigned)pLat->pPrev) & (SEQ_FULL_MASK << 2)) ); }
static inline void Seq_LatSetNext( Seq_Lat_t * pLat, Seq_Lat_t * pNext ) { pLat->pNext = pNext; }
static inline void Seq_LatSetPrev( Seq_Lat_t * pLat, Seq_Lat_t * pPrev ) { Abc_InitType_t Init = Seq_LatInit(pLat); pLat->pPrev = pPrev; Seq_LatSetInit(pLat, Init); }
// accessing retiming lags
static inline Cut_Man_t * Seq_NodeCutMan( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->pCutMan; }
static inline Vec_Str_t * Seq_NodeLags( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vLags; }
static inline Vec_Str_t * Seq_NodeLagsN( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vLagsN; }
static inline char Seq_NodeGetLag( Abc_Obj_t * pNode ) { return Vec_StrEntry( Seq_NodeLags(pNode), (pNode)->Id ); }
static inline char Seq_NodeGetLagN( Abc_Obj_t * pNode ) { return Vec_StrEntry( Seq_NodeLagsN(pNode), (pNode)->Id ); }
static inline void Seq_NodeSetLag( Abc_Obj_t * pNode, char Value ) { Vec_StrWriteEntry( Seq_NodeLags(pNode), (pNode)->Id, (Value) ); }
static inline void Seq_NodeSetLagN( Abc_Obj_t * pNode, char Value ) { Vec_StrWriteEntry( Seq_NodeLagsN(pNode), (pNode)->Id, (Value) ); }
static inline int Seq_NodeComputeLag( int LValue, int Fi ) { return (LValue + 1024*Fi)/Fi - 1024 - (int)(LValue % Fi == 0); }
static inline int Seq_NodeComputeLagFloat( float LValue, float Fi ) { return ((int)ceil(LValue/Fi)) - 1; }
// phase usage
static inline Vec_Str_t * Seq_NodeUses( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vUses; }
static inline char Seq_NodeGetUses( Abc_Obj_t * pNode ) { return Vec_StrEntry( Seq_NodeUses(pNode), (pNode)->Id ); }
static inline void Seq_NodeSetUses( Abc_Obj_t * pNode, char Value ) { Vec_StrWriteEntry( Seq_NodeUses(pNode), (pNode)->Id, (Value) ); }
// accessing initial states
static inline Vec_Ptr_t * Seq_NodeLats( Abc_Obj_t * pObj ) { return ((Abc_Seq_t*)pObj->pNtk->pManFunc)->vInits; }
static inline Seq_Lat_t * Seq_NodeGetRing( Abc_Obj_t * pObj, int Edge ) { return Vec_PtrEntry( Seq_NodeLats(pObj), (pObj->Id<<1)+Edge ); }
static inline void Seq_NodeSetRing( Abc_Obj_t * pObj, int Edge, Seq_Lat_t * pLat ) { Vec_PtrWriteEntry( Seq_NodeLats(pObj), (pObj->Id<<1)+Edge, pLat ); }
static inline Seq_Lat_t * Seq_NodeCreateLat( Abc_Obj_t * pObj ) { Seq_Lat_t * p = (Seq_Lat_t *)Extra_MmFixedEntryFetch( ((Abc_Seq_t*)pObj->pNtk->pManFunc)->pMmInits ); p->pNext = p->pPrev = NULL; p->pLatch = NULL; return p; }
static inline void Seq_NodeRecycleLat( Abc_Obj_t * pObj, Seq_Lat_t * pLat ) { Extra_MmFixedEntryRecycle( ((Abc_Seq_t*)pObj->pNtk->pManFunc)->pMmInits, (char *)pLat ); }
// getting hold of the structure storing initial states of the latches
static inline Seq_Lat_t * Seq_NodeGetLatFirst( Abc_Obj_t * pObj, int Edge ) { return Seq_NodeGetRing(pObj, Edge); }
static inline Seq_Lat_t * Seq_NodeGetLatLast( Abc_Obj_t * pObj, int Edge ) { return Seq_LatPrev( Seq_NodeGetRing(pObj, Edge) ); }
static inline Seq_Lat_t * Seq_NodeGetLat( Abc_Obj_t * pObj, int Edge, int iLat ) { int c; Seq_Lat_t * pLat = Seq_NodeGetRing(pObj, Edge); for ( c = 0; c != iLat; c++ ) pLat = pLat->pNext; return pLat; }
static inline int Seq_NodeCountLats( Abc_Obj_t * pObj, int Edge ) { int c; Seq_Lat_t * pLat, * pRing = Seq_NodeGetRing(pObj, Edge); if ( pRing == NULL ) return 0; for ( c = 0, pLat = pRing; !c || pLat != pRing; c++ ) pLat = pLat->pNext; return c; }
static inline void Seq_NodeCleanLats( Abc_Obj_t * pObj, int Edge ) { int c; Seq_Lat_t * pLat, * pRing = Seq_NodeGetRing(pObj, Edge); if ( pRing == NULL ) return ; for ( c = 0, pLat = pRing; !c || pLat != pRing; c++ ) pLat->pLatch = NULL, pLat = pLat->pNext; return; }
// getting/setting initial states of the latches
static inline Abc_InitType_t Seq_NodeGetInitOne( Abc_Obj_t * pObj, int Edge, int iLat ) { return Seq_LatInit( Seq_NodeGetLat(pObj, Edge, iLat) ); }
static inline Abc_InitType_t Seq_NodeGetInitFirst( Abc_Obj_t * pObj, int Edge ) { return Seq_LatInit( Seq_NodeGetLatFirst(pObj, Edge) ); }
static inline Abc_InitType_t Seq_NodeGetInitLast( Abc_Obj_t * pObj, int Edge ) { return Seq_LatInit( Seq_NodeGetLatLast(pObj, Edge) ); }
static inline void Seq_NodeSetInitOne( Abc_Obj_t * pObj, int Edge, int iLat, Abc_InitType_t Init ) { Seq_LatSetInit( Seq_NodeGetLat(pObj, Edge, iLat), Init ); }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
/*=== seqAigIter.c =============================================================*/
extern int Seq_AigRetimeDelayLags( Abc_Ntk_t * pNtk, int fVerbose );
extern int Seq_NtkImplementRetiming( Abc_Ntk_t * pNtk, Vec_Str_t * vLags, int fVerbose );
/*=== seqFpgaIter.c ============================================================*/
extern int Seq_FpgaMappingDelays( Abc_Ntk_t * pNtk, int fVerbose );
extern int Seq_FpgaNodeUpdateLValue( Abc_Obj_t * pObj, int Fi );
/*=== seqMapIter.c ============================================================*/
extern int Seq_MapRetimeDelayLags( Abc_Ntk_t * pNtk, int fVerbose );
/*=== seqRetIter.c =============================================================*/
extern int Seq_NtkRetimeDelayLags( Abc_Ntk_t * pNtkOld, Abc_Ntk_t * pNtk, int fVerbose );
/*=== seqLatch.c ===============================================================*/
extern void Seq_NodeInsertFirst( Abc_Obj_t * pObj, int Edge, Abc_InitType_t Init );
extern void Seq_NodeInsertLast( Abc_Obj_t * pObj, int Edge, Abc_InitType_t Init );
extern Abc_InitType_t Seq_NodeDeleteFirst( Abc_Obj_t * pObj, int Edge );
extern Abc_InitType_t Seq_NodeDeleteLast( Abc_Obj_t * pObj, int Edge );
/*=== seqUtil.c ================================================================*/
extern int Seq_NtkLevelMax( Abc_Ntk_t * pNtk );
extern int Seq_ObjFanoutLMax( Abc_Obj_t * pObj );
extern int Seq_ObjFanoutLMin( Abc_Obj_t * pObj );
extern int Seq_ObjFanoutLSum( Abc_Obj_t * pObj );
extern int Seq_ObjFaninLSum( Abc_Obj_t * pObj );
#ifdef __cplusplus
}
#endif
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|