1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
/**CFile****************************************************************
FileName [ioWriteBaf.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Command processing package.]
Synopsis [Procedures to write AIG in the binary format.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: ioWriteBaf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "ioAbc.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
/*
Binary Aig Format
The motivation for this format is to have
- compact binary representation of large AIGs (~10x more compact than BLIF)
- consequently, fast reading/writing of large AIGs (~10x faster than BLIF)
- representation for all tech-ind info related to an AIG
- human-readable file header
The header:
(1) May contain several lines of human-readable comments.
Each comment line begins with symbol '#' and ends with symbol '\n'.
(2) Always contains the following data.
- benchmark name
- number of primary inputs
- number of primary outputs
- number of latches
- number of AIG nodes (excluding the constant 1 node)
Each entry is followed by 0-byte (character '\0'):
(3) Next follow the names of the PIs, POs, and latches in this order.
Each name is followed by 0-byte (character '\0').
Inside each set of names (PIs, POs, latches) there should be no
identical names but the PO names may coincide with PI/latch names.
The body:
(1) First part of the body contains binary information about the internal AIG nodes.
Each internal AIG node is represented using two edges (each edge is a 4-byte integer).
Each integer is the fanin ID followed by 1-bit representation of the complemented attribute.
(For example, complemented edge to node 10 will be represented as 2*10 + 1 = 21.)
The IDs of the nodes are created as follows: Constant 1 node has ID=0.
CIs (PIs and latch outputs) have 1-based IDs assigned in that order.
Each node in the array of the internal AIG nodes has the ID assigned in that order.
The constant 1 node is not written into the file.
(2) Second part of the body contains binary information about the edges connecting
the COs (POs and latch inputs) to the internal AIG nodes.
Each edge is a 4-byte integer the same way as a node fanin.
The latch initial value (2 bits) is stored in this integer.
*/
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Writes the AIG in the binary format.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Io_WriteBaf( Abc_Ntk_t * pNtk, char * pFileName )
{
ProgressBar * pProgress;
FILE * pFile;
Abc_Obj_t * pObj;
int i, nNodes, nAnds, nBufferSize;
unsigned * pBufferNode;
assert( Abc_NtkIsStrash(pNtk) );
// start the output stream
pFile = fopen( pFileName, "wb" );
if ( pFile == NULL )
{
fprintf( stdout, "Io_WriteBaf(): Cannot open the output file \"%s\".\n", pFileName );
return;
}
// write the comment
fprintf( pFile, "# BAF (Binary Aig Format) for \"%s\" written by ABC on %s\n", pNtk->pName, Extra_TimeStamp() );
// write the network name
fprintf( pFile, "%s%c", pNtk->pName, 0 );
// write the number of PIs
fprintf( pFile, "%d%c", Abc_NtkPiNum(pNtk), 0 );
// write the number of POs
fprintf( pFile, "%d%c", Abc_NtkPoNum(pNtk), 0 );
// write the number of latches
fprintf( pFile, "%d%c", Abc_NtkLatchNum(pNtk), 0 );
// write the number of internal nodes
fprintf( pFile, "%d%c", Abc_NtkNodeNum(pNtk), 0 );
// write PIs
Abc_NtkForEachPi( pNtk, pObj, i )
fprintf( pFile, "%s%c", Abc_ObjName(pObj), 0 );
// write POs
Abc_NtkForEachPo( pNtk, pObj, i )
fprintf( pFile, "%s%c", Abc_ObjName(pObj), 0 );
// write latches
Abc_NtkForEachLatch( pNtk, pObj, i )
{
fprintf( pFile, "%s%c", Abc_ObjName(pObj), 0 );
fprintf( pFile, "%s%c", Abc_ObjName(Abc_ObjFanin0(pObj)), 0 );
fprintf( pFile, "%s%c", Abc_ObjName(Abc_ObjFanout0(pObj)), 0 );
}
// set the node numbers to be used in the output file
Abc_NtkCleanCopy( pNtk );
nNodes = 1;
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->pCopy = (Abc_Obj_t *)(ABC_PTRINT_T)nNodes++;
Abc_AigForEachAnd( pNtk, pObj, i )
pObj->pCopy = (Abc_Obj_t *)(ABC_PTRINT_T)nNodes++;
// write the nodes into the buffer
nAnds = 0;
nBufferSize = Abc_NtkNodeNum(pNtk) * 2 + Abc_NtkCoNum(pNtk);
pBufferNode = ABC_ALLOC( unsigned, nBufferSize );
pProgress = Extra_ProgressBarStart( stdout, nBufferSize );
Abc_AigForEachAnd( pNtk, pObj, i )
{
Extra_ProgressBarUpdate( pProgress, nAnds, NULL );
pBufferNode[nAnds++] = (((int)(ABC_PTRINT_T)Abc_ObjFanin0(pObj)->pCopy) << 1) | (int)Abc_ObjFaninC0(pObj);
pBufferNode[nAnds++] = (((int)(ABC_PTRINT_T)Abc_ObjFanin1(pObj)->pCopy) << 1) | (int)Abc_ObjFaninC1(pObj);
}
// write the COs into the buffer
Abc_NtkForEachCo( pNtk, pObj, i )
{
Extra_ProgressBarUpdate( pProgress, nAnds, NULL );
pBufferNode[nAnds] = (((int)(ABC_PTRINT_T)Abc_ObjFanin0(pObj)->pCopy) << 1) | (int)Abc_ObjFaninC0(pObj);
if ( Abc_ObjFanoutNum(pObj) > 0 && Abc_ObjIsLatch(Abc_ObjFanout0(pObj)) )
pBufferNode[nAnds] = (pBufferNode[nAnds] << 2) | ((int)(ABC_PTRINT_T)Abc_ObjData(Abc_ObjFanout0(pObj)) & 3);
nAnds++;
}
Extra_ProgressBarStop( pProgress );
assert( nBufferSize == nAnds );
// write the buffer
fwrite( pBufferNode, 1, sizeof(int) * nBufferSize, pFile );
fclose( pFile );
ABC_FREE( pBufferNode );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|