1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
/**CFile****************************************************************
FileName [ioWriteAiger.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Command processing package.]
Synopsis [Procedures to write binary AIGER format developed by
Armin Biere, Johannes Kepler University (http://fmv.jku.at/)]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - December 16, 2006.]
Revision [$Id: ioWriteAiger.c,v 1.00 2006/12/16 00:00:00 alanmi Exp $]
***********************************************************************/
// The code in this file is developed in collaboration with Mark Jarvin of Toronto.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "misc/bzlib/bzlib.h"
#include "misc/zlib/zlib.h"
#include "ioAbc.h"
ABC_NAMESPACE_IMPL_START
#ifdef _WIN32
#define vsnprintf _vsnprintf
#endif
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
/*
The following is taken from the AIGER format description,
which can be found at http://fmv.jku.at/aiger
*/
/*
The AIGER And-Inverter Graph (AIG) Format Version 20061129
----------------------------------------------------------
Armin Biere, Johannes Kepler University, 2006
This report describes the AIG file format as used by the AIGER library.
The purpose of this report is not only to motivate and document the
format, but also to allow independent implementations of writers and
readers by giving precise and unambiguous definitions.
...
Introduction
The name AIGER contains as one part the acronym AIG of And-Inverter
Graphs and also if pronounced in German sounds like the name of the
'Eiger', a mountain in the Swiss alps. This choice should emphasize the
origin of this format. It was first openly discussed at the Alpine
Verification Meeting 2006 in Ascona as a way to provide a simple, compact
file format for a model checking competition affiliated to CAV 2007.
...
Binary Format Definition
The binary format is semantically a subset of the ASCII format with a
slightly different syntax. The binary format may need to reencode
literals, but translating a file in binary format into ASCII format and
then back in to binary format will result in the same file.
The main differences of the binary format to the ASCII format are as
follows. After the header the list of input literals and all the
current state literals of a latch can be omitted. Furthermore the
definitions of the AND gates are binary encoded. However, the symbol
table and the comment section are as in the ASCII format.
The header of an AIGER file in binary format has 'aig' as format
identifier, but otherwise is identical to the ASCII header. The standard
file extension for the binary format is therefore '.aig'.
A header for the binary format is still in ASCII encoding:
aig M I L O A
Constants, variables and literals are handled in the same way as in the
ASCII format. The first simplifying restriction is on the variable
indices of inputs and latches. The variable indices of inputs come first,
followed by the pseudo-primary inputs of the latches and then the variable
indices of all LHS of AND gates:
input variable indices 1, 2, ... , I
latch variable indices I+1, I+2, ... , (I+L)
AND variable indices I+L+1, I+L+2, ... , (I+L+A) == M
The corresponding unsigned literals are
input literals 2, 4, ... , 2*I
latch literals 2*I+2, 2*I+4, ... , 2*(I+L)
AND literals 2*(I+L)+2, 2*(I+L)+4, ... , 2*(I+L+A) == 2*M
All literals have to be defined, and therefore 'M = I + L + A'. With this
restriction it becomes possible that the inputs and the current state
literals of the latches do not have to be listed explicitly. Therefore,
after the header only the list of 'L' next state literals follows, one per
latch on a single line, and then the 'O' outputs, again one per line.
In the binary format we assume that the AND gates are ordered and respect
the child parent relation. AND gates with smaller literals on the LHS
come first. Therefore we can assume that the literals on the right-hand
side of a definition of an AND gate are smaller than the LHS literal.
Furthermore we can sort the literals on the RHS, such that the larger
literal comes first. A definition thus consists of three literals
lhs rhs0 rhs1
with 'lhs' even and 'lhs > rhs0 >= rhs1'. Also the variable indices are
pairwise different to avoid combinational self loops. Since the LHS
indices of the definitions are all consecutive (as even integers),
the binary format does not have to keep 'lhs'. In addition, we can use
the order restriction and only write the differences 'delta0' and 'delta1'
instead of 'rhs0' and 'rhs1', with
delta0 = lhs - rhs0, delta1 = rhs0 - rhs1
The differences will all be strictly positive, and in practice often very
small. We can take advantage of this fact by the simple little-endian
encoding of unsigned integers of the next section. After the binary delta
encoding of the RHSs of all AND gates, the optional symbol table and
optional comment section start in the same format as in the ASCII case.
...
*/
static unsigned Io_ObjMakeLit( int Var, int fCompl ) { return (Var << 1) | fCompl; }
static unsigned Io_ObjAigerNum( Abc_Obj_t * pObj ) { return (unsigned)(ABC_PTRINT_T)pObj->pCopy; }
static void Io_ObjSetAigerNum( Abc_Obj_t * pObj, unsigned Num ) { pObj->pCopy = (Abc_Obj_t *)(ABC_PTRINT_T)Num; }
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Adds one unsigned AIG edge to the output buffer.]
Description [This procedure is a slightly modified version of Armin Biere's
procedure "void encode (FILE * file, unsigned x)" ]
SideEffects [Returns the current writing position.]
SeeAlso []
***********************************************************************/
int Io_WriteAigerEncode( unsigned char * pBuffer, int Pos, unsigned x )
{
unsigned char ch;
while (x & ~0x7f)
{
ch = (x & 0x7f) | 0x80;
// putc (ch, file);
pBuffer[Pos++] = ch;
x >>= 7;
}
ch = x;
// putc (ch, file);
pBuffer[Pos++] = ch;
return Pos;
}
/**Function*************************************************************
Synopsis [Create the array of literals to be written.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Io_WriteAigerLiterals( Abc_Ntk_t * pNtk )
{
Vec_Int_t * vLits;
Abc_Obj_t * pObj, * pDriver;
int i;
vLits = Vec_IntAlloc( Abc_NtkCoNum(pNtk) );
Abc_NtkForEachLatchInput( pNtk, pObj, i )
{
pDriver = Abc_ObjFanin0(pObj);
Vec_IntPush( vLits, Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) );
}
Abc_NtkForEachPo( pNtk, pObj, i )
{
pDriver = Abc_ObjFanin0(pObj);
Vec_IntPush( vLits, Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) );
}
return vLits;
}
/**Function*************************************************************
Synopsis [Creates the binary encoded array of literals.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Str_t * Io_WriteEncodeLiterals( Vec_Int_t * vLits )
{
Vec_Str_t * vBinary;
int Pos = 0, Lit, LitPrev, Diff, i;
vBinary = Vec_StrAlloc( 2 * Vec_IntSize(vLits) );
LitPrev = Vec_IntEntry( vLits, 0 );
Pos = Io_WriteAigerEncode( (unsigned char *)Vec_StrArray(vBinary), Pos, LitPrev );
Vec_IntForEachEntryStart( vLits, Lit, i, 1 )
{
Diff = Lit - LitPrev;
Diff = (Lit < LitPrev)? -Diff : Diff;
Diff = (Diff << 1) | (int)(Lit < LitPrev);
Pos = Io_WriteAigerEncode( (unsigned char *)Vec_StrArray(vBinary), Pos, Diff );
LitPrev = Lit;
if ( Pos + 10 > vBinary->nCap )
Vec_StrGrow( vBinary, vBinary->nCap+1 );
}
vBinary->nSize = Pos;
/*
// verify
{
extern Vec_Int_t * Io_WriteDecodeLiterals( char ** ppPos, int nEntries );
char * pPos = Vec_StrArray( vBinary );
Vec_Int_t * vTemp = Io_WriteDecodeLiterals( &pPos, Vec_IntSize(vLits) );
for ( i = 0; i < Vec_IntSize(vLits); i++ )
{
int Entry1 = Vec_IntEntry(vLits,i);
int Entry2 = Vec_IntEntry(vTemp,i);
assert( Entry1 == Entry2 );
}
}
*/
return vBinary;
}
/**Function*************************************************************
Synopsis [Writes the AIG in the binary AIGER format.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Io_WriteAiger_old( Abc_Ntk_t * pNtk, char * pFileName, int fWriteSymbols, int fCompact )
{
ProgressBar * pProgress;
FILE * pFile;
Abc_Obj_t * pObj, * pDriver, * pLatch;
int i, nNodes, nBufferSize, Pos, fExtended;
unsigned char * pBuffer;
unsigned uLit0, uLit1, uLit;
fExtended = Abc_NtkConstrNum(pNtk);
assert( Abc_NtkIsStrash(pNtk) );
Abc_NtkForEachLatch( pNtk, pObj, i )
if ( !Abc_LatchIsInit0(pObj) )
{
if ( !fCompact )
{
fExtended = 1;
break;
}
fprintf( stdout, "Io_WriteAiger(): Cannot write AIGER format with non-0 latch init values. Run \"zero\".\n" );
return;
}
// start the output stream
pFile = fopen( pFileName, "wb" );
if ( pFile == NULL )
{
fprintf( stdout, "Io_WriteAiger(): Cannot open the output file \"%s\".\n", pFileName );
return;
}
// set the node numbers to be used in the output file
nNodes = 0;
Io_ObjSetAigerNum( Abc_AigConst1(pNtk), nNodes++ );
Abc_NtkForEachCi( pNtk, pObj, i )
Io_ObjSetAigerNum( pObj, nNodes++ );
Abc_AigForEachAnd( pNtk, pObj, i )
Io_ObjSetAigerNum( pObj, nNodes++ );
// write the header "M I L O A" where M = I + L + A
fprintf( pFile, "aig%s %u %u %u %u %u",
fCompact? "2" : "",
Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) + Abc_NtkNodeNum(pNtk),
Abc_NtkPiNum(pNtk),
Abc_NtkLatchNum(pNtk),
fExtended ? 0 : Abc_NtkPoNum(pNtk),
Abc_NtkNodeNum(pNtk) );
// write the extended header "B C J F"
if ( fExtended )
fprintf( pFile, " %u %u", Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk), Abc_NtkConstrNum(pNtk) );
fprintf( pFile, "\n" );
// if the driver node is a constant, we need to complement the literal below
// because, in the AIGER format, literal 0/1 is represented as number 0/1
// while, in ABC, constant 1 node has number 0 and so literal 0/1 will be 1/0
Abc_NtkInvertConstraints( pNtk );
if ( !fCompact )
{
// write latch drivers
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
pObj = Abc_ObjFanin0(pLatch);
pDriver = Abc_ObjFanin0(pObj);
uLit = Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) );
if ( Abc_LatchIsInit0(pLatch) )
fprintf( pFile, "%u\n", uLit );
else if ( Abc_LatchIsInit1(pLatch) )
fprintf( pFile, "%u 1\n", uLit );
else
{
// Both None and DC are written as 'uninitialized' e.g. a free boolean value
assert( Abc_LatchIsInitNone(pLatch) || Abc_LatchIsInitDc(pLatch) );
fprintf( pFile, "%u %u\n", uLit, Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanout0(pLatch)), 0 ) );
}
}
// write PO drivers
Abc_NtkForEachPo( pNtk, pObj, i )
{
pDriver = Abc_ObjFanin0(pObj);
fprintf( pFile, "%u\n", Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) );
}
}
else
{
Vec_Int_t * vLits = Io_WriteAigerLiterals( pNtk );
Vec_Str_t * vBinary = Io_WriteEncodeLiterals( vLits );
fwrite( Vec_StrArray(vBinary), 1, Vec_StrSize(vBinary), pFile );
Vec_StrFree( vBinary );
Vec_IntFree( vLits );
}
Abc_NtkInvertConstraints( pNtk );
// write the nodes into the buffer
Pos = 0;
nBufferSize = 6 * Abc_NtkNodeNum(pNtk) + 100; // skeptically assuming 3 chars per one AIG edge
pBuffer = ABC_ALLOC( unsigned char, nBufferSize );
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) );
Abc_AigForEachAnd( pNtk, pObj, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
uLit = Io_ObjMakeLit( Io_ObjAigerNum(pObj), 0 );
uLit0 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin0(pObj)), Abc_ObjFaninC0(pObj) );
uLit1 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin1(pObj)), Abc_ObjFaninC1(pObj) );
if ( uLit0 > uLit1 )
{
unsigned Temp = uLit0;
uLit0 = uLit1;
uLit1 = Temp;
}
assert( uLit1 < uLit );
Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit - uLit1) );
Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit1 - uLit0) );
if ( Pos > nBufferSize - 10 )
{
printf( "Io_WriteAiger(): AIGER generation has failed because the allocated buffer is too small.\n" );
fclose( pFile );
return;
}
}
assert( Pos < nBufferSize );
Extra_ProgressBarStop( pProgress );
// write the buffer
fwrite( pBuffer, 1, Pos, pFile );
ABC_FREE( pBuffer );
// write the symbol table
if ( fWriteSymbols )
{
// write PIs
Abc_NtkForEachPi( pNtk, pObj, i )
fprintf( pFile, "i%d %s\n", i, Abc_ObjName(pObj) );
// write latches
Abc_NtkForEachLatch( pNtk, pObj, i )
fprintf( pFile, "l%d %s\n", i, Abc_ObjName(Abc_ObjFanout0(pObj)) );
// write POs
Abc_NtkForEachPo( pNtk, pObj, i )
if ( !fExtended )
fprintf( pFile, "o%d %s\n", i, Abc_ObjName(pObj) );
else if ( i < Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk) )
fprintf( pFile, "b%d %s\n", i, Abc_ObjName(pObj) );
else
fprintf( pFile, "c%d %s\n", i - (Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk)), Abc_ObjName(pObj) );
}
// write the comment
fprintf( pFile, "c\n" );
if ( pNtk->pName && strlen(pNtk->pName) > 0 )
fprintf( pFile, ".model %s\n", pNtk->pName );
fprintf( pFile, "This file was produced by ABC on %s\n", Extra_TimeStamp() );
fprintf( pFile, "For information about AIGER format, refer to %s\n", "http://fmv.jku.at/aiger" );
fclose( pFile );
}
/**Function*************************************************************
Synopsis [Writes the AIG in the binary AIGER format.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Io_WriteAigerGz( Abc_Ntk_t * pNtk, char * pFileName, int fWriteSymbols )
{
ProgressBar * pProgress;
gzFile pFile;
Abc_Obj_t * pObj, * pDriver, * pLatch;
int i, nNodes, Pos, nBufferSize, fExtended;
unsigned char * pBuffer;
unsigned uLit0, uLit1, uLit;
assert( Abc_NtkIsStrash(pNtk) );
// start the output stream
pFile = gzopen( pFileName, "wb" ); // if pFileName doesn't end in ".gz" then this acts as a passthrough to fopen
if ( pFile == NULL )
{
fprintf( stdout, "Io_WriteAigerGz(): Cannot open the output file \"%s\".\n", pFileName );
return;
}
fExtended = Abc_NtkConstrNum(pNtk);
// set the node numbers to be used in the output file
nNodes = 0;
Io_ObjSetAigerNum( Abc_AigConst1(pNtk), nNodes++ );
Abc_NtkForEachCi( pNtk, pObj, i )
Io_ObjSetAigerNum( pObj, nNodes++ );
Abc_AigForEachAnd( pNtk, pObj, i )
Io_ObjSetAigerNum( pObj, nNodes++ );
// write the header "M I L O A" where M = I + L + A
gzprintf( pFile, "aig %u %u %u %u %u",
Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) + Abc_NtkNodeNum(pNtk),
Abc_NtkPiNum(pNtk),
Abc_NtkLatchNum(pNtk),
fExtended ? 0 : Abc_NtkPoNum(pNtk),
Abc_NtkNodeNum(pNtk) );
// write the extended header "B C J F"
if ( fExtended )
gzprintf( pFile, " %u %u", Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk), Abc_NtkConstrNum(pNtk) );
gzprintf( pFile, "\n" );
// if the driver node is a constant, we need to complement the literal below
// because, in the AIGER format, literal 0/1 is represented as number 0/1
// while, in ABC, constant 1 node has number 0 and so literal 0/1 will be 1/0
// write latch drivers
Abc_NtkInvertConstraints( pNtk );
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
pObj = Abc_ObjFanin0(pLatch);
pDriver = Abc_ObjFanin0(pObj);
uLit = Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) );
if ( Abc_LatchIsInit0(pLatch) )
gzprintf( pFile, "%u\n", uLit );
else if ( Abc_LatchIsInit1(pLatch) )
gzprintf( pFile, "%u 1\n", uLit );
else
{
// Both None and DC are written as 'uninitialized' e.g. a free boolean value
assert( Abc_LatchIsInitNone(pLatch) || Abc_LatchIsInitDc(pLatch) );
gzprintf( pFile, "%u %u\n", uLit, Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanout0(pLatch)), 0 ) );
}
}
// write PO drivers
Abc_NtkForEachPo( pNtk, pObj, i )
{
pDriver = Abc_ObjFanin0(pObj);
gzprintf( pFile, "%u\n", Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) );
}
Abc_NtkInvertConstraints( pNtk );
// write the nodes into the buffer
Pos = 0;
nBufferSize = 6 * Abc_NtkNodeNum(pNtk) + 100; // skeptically assuming 3 chars per one AIG edge
pBuffer = ABC_ALLOC( unsigned char, nBufferSize );
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) );
Abc_AigForEachAnd( pNtk, pObj, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
uLit = Io_ObjMakeLit( Io_ObjAigerNum(pObj), 0 );
uLit0 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin0(pObj)), Abc_ObjFaninC0(pObj) );
uLit1 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin1(pObj)), Abc_ObjFaninC1(pObj) );
if ( uLit0 > uLit1 )
{
unsigned Temp = uLit0;
uLit0 = uLit1;
uLit1 = Temp;
}
assert( uLit1 < uLit );
Pos = Io_WriteAigerEncode( pBuffer, Pos, uLit - uLit1 );
Pos = Io_WriteAigerEncode( pBuffer, Pos, uLit1 - uLit0 );
if ( Pos > nBufferSize - 10 )
{
printf( "Io_WriteAiger(): AIGER generation has failed because the allocated buffer is too small.\n" );
gzclose( pFile );
return;
}
}
assert( Pos < nBufferSize );
Extra_ProgressBarStop( pProgress );
// write the buffer
gzwrite(pFile, pBuffer, Pos);
ABC_FREE( pBuffer );
// write the symbol table
if ( fWriteSymbols )
{
// write PIs
Abc_NtkForEachPi( pNtk, pObj, i )
gzprintf( pFile, "i%d %s\n", i, Abc_ObjName(pObj) );
// write latches
Abc_NtkForEachLatch( pNtk, pObj, i )
gzprintf( pFile, "l%d %s\n", i, Abc_ObjName(Abc_ObjFanout0(pObj)) );
// write POs
Abc_NtkForEachPo( pNtk, pObj, i )
if ( !fExtended )
gzprintf( pFile, "o%d %s\n", i, Abc_ObjName(pObj) );
else if ( i < Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk) )
gzprintf( pFile, "b%d %s\n", i, Abc_ObjName(pObj) );
else
gzprintf( pFile, "c%d %s\n", i - (Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk)), Abc_ObjName(pObj) );
}
// write the comment
gzprintf( pFile, "c\n" );
if ( pNtk->pName && strlen(pNtk->pName) > 0 )
gzprintf( pFile, ".model %s\n", pNtk->pName );
gzprintf( pFile, "This file was produced by ABC on %s\n", Extra_TimeStamp() );
gzprintf( pFile, "For information about AIGER format, refer to %s\n", "http://fmv.jku.at/aiger" );
gzclose( pFile );
}
/**Function*************************************************************
Synopsis [Procedure to write data into BZ2 file.]
Description [Based on the vsnprintf() man page.]
SideEffects []
SeeAlso []
***********************************************************************/
typedef struct bz2file {
FILE * f;
BZFILE * b;
char * buf;
int nBytes;
int nBytesMax;
} bz2file;
int fprintfBz2Aig( bz2file * b, char * fmt, ... ) {
if (b->b) {
char * newBuf;
int bzError;
va_list ap;
while (1) {
va_start(ap,fmt);
b->nBytes = vsnprintf(b->buf,b->nBytesMax,fmt,ap);
va_end(ap);
if (b->nBytes > -1 && b->nBytes < b->nBytesMax)
break;
if (b->nBytes > -1)
b->nBytesMax = b->nBytes + 1;
else
b->nBytesMax *= 2;
if ((newBuf = ABC_REALLOC( char,b->buf,b->nBytesMax )) == NULL)
return -1;
else
b->buf = newBuf;
}
BZ2_bzWrite( &bzError, b->b, b->buf, b->nBytes );
if (bzError == BZ_IO_ERROR) {
fprintf( stdout, "Ioa_WriteBlif(): I/O error writing to compressed stream.\n" );
return -1;
}
return b->nBytes;
} else {
int n;
va_list ap;
va_start(ap,fmt);
n = vfprintf( b->f, fmt, ap);
va_end(ap);
return n;
}
}
/**Function*************************************************************
Synopsis [Writes the AIG in the binary AIGER format.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Io_WriteAiger( Abc_Ntk_t * pNtk, char * pFileName, int fWriteSymbols, int fCompact, int fUnique )
{
ProgressBar * pProgress;
// FILE * pFile;
Abc_Obj_t * pObj, * pDriver, * pLatch;
int i, nNodes, nBufferSize, bzError, Pos, fExtended;
unsigned char * pBuffer;
unsigned uLit0, uLit1, uLit;
bz2file b;
// define unique writing
if ( fUnique )
{
fWriteSymbols = 0;
fCompact = 0;
}
fExtended = Abc_NtkConstrNum(pNtk);
// check that the network is valid
assert( Abc_NtkIsStrash(pNtk) );
Abc_NtkForEachLatch( pNtk, pObj, i )
if ( !Abc_LatchIsInit0(pObj) )
{
if ( !fCompact )
{
fExtended = 1;
break;
}
fprintf( stdout, "Io_WriteAiger(): Cannot write AIGER format with non-0 latch init values. Run \"zero\".\n" );
return;
}
// write the GZ file
if (!strncmp(pFileName+strlen(pFileName)-3,".gz",3))
{
Io_WriteAigerGz( pNtk, pFileName, fWriteSymbols );
return;
}
memset(&b,0,sizeof(b));
b.nBytesMax = (1<<12);
b.buf = ABC_ALLOC( char,b.nBytesMax );
// start the output stream
b.f = fopen( pFileName, "wb" );
if ( b.f == NULL )
{
fprintf( stdout, "Ioa_WriteBlif(): Cannot open the output file \"%s\".\n", pFileName );
ABC_FREE(b.buf);
return;
}
if (!strncmp(pFileName+strlen(pFileName)-4,".bz2",4)) {
b.b = BZ2_bzWriteOpen( &bzError, b.f, 9, 0, 0 );
if ( bzError != BZ_OK ) {
BZ2_bzWriteClose( &bzError, b.b, 0, NULL, NULL );
fprintf( stdout, "Ioa_WriteBlif(): Cannot start compressed stream.\n" );
fclose( b.f );
ABC_FREE(b.buf);
return;
}
}
// set the node numbers to be used in the output file
nNodes = 0;
Io_ObjSetAigerNum( Abc_AigConst1(pNtk), nNodes++ );
Abc_NtkForEachCi( pNtk, pObj, i )
Io_ObjSetAigerNum( pObj, nNodes++ );
Abc_AigForEachAnd( pNtk, pObj, i )
Io_ObjSetAigerNum( pObj, nNodes++ );
// write the header "M I L O A" where M = I + L + A
fprintfBz2Aig( &b, "aig%s %u %u %u %u %u",
fCompact? "2" : "",
Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) + Abc_NtkNodeNum(pNtk),
Abc_NtkPiNum(pNtk),
Abc_NtkLatchNum(pNtk),
fExtended ? 0 : Abc_NtkPoNum(pNtk),
Abc_NtkNodeNum(pNtk) );
// write the extended header "B C J F"
if ( fExtended )
fprintfBz2Aig( &b, " %u %u", Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk), Abc_NtkConstrNum(pNtk) );
fprintfBz2Aig( &b, "\n" );
// if the driver node is a constant, we need to complement the literal below
// because, in the AIGER format, literal 0/1 is represented as number 0/1
// while, in ABC, constant 1 node has number 0 and so literal 0/1 will be 1/0
Abc_NtkInvertConstraints( pNtk );
if ( !fCompact )
{
// write latch drivers
Abc_NtkForEachLatch( pNtk, pLatch, i )
{
pObj = Abc_ObjFanin0(pLatch);
pDriver = Abc_ObjFanin0(pObj);
uLit = Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) );
if ( Abc_LatchIsInit0(pLatch) )
fprintfBz2Aig( &b, "%u\n", uLit );
else if ( Abc_LatchIsInit1(pLatch) )
fprintfBz2Aig( &b, "%u 1\n", uLit );
else
{
// Both None and DC are written as 'uninitialized' e.g. a free boolean value
assert( Abc_LatchIsInitNone(pLatch) || Abc_LatchIsInitDc(pLatch) );
fprintfBz2Aig( &b, "%u %u\n", uLit, Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanout0(pLatch)), 0 ) );
}
}
// write PO drivers
Abc_NtkForEachPo( pNtk, pObj, i )
{
pDriver = Abc_ObjFanin0(pObj);
fprintfBz2Aig( &b, "%u\n", Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) );
}
}
else
{
Vec_Int_t * vLits = Io_WriteAigerLiterals( pNtk );
Vec_Str_t * vBinary = Io_WriteEncodeLiterals( vLits );
if ( !b.b )
fwrite( Vec_StrArray(vBinary), 1, Vec_StrSize(vBinary), b.f );
else
{
BZ2_bzWrite( &bzError, b.b, Vec_StrArray(vBinary), Vec_StrSize(vBinary) );
if (bzError == BZ_IO_ERROR) {
fprintf( stdout, "Io_WriteAiger(): I/O error writing to compressed stream.\n" );
fclose( b.f );
ABC_FREE(b.buf);
Vec_StrFree( vBinary );
return;
}
}
Vec_StrFree( vBinary );
Vec_IntFree( vLits );
}
Abc_NtkInvertConstraints( pNtk );
// write the nodes into the buffer
Pos = 0;
nBufferSize = 6 * Abc_NtkNodeNum(pNtk) + 100; // skeptically assuming 3 chars per one AIG edge
pBuffer = ABC_ALLOC( unsigned char, nBufferSize );
pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) );
Abc_AigForEachAnd( pNtk, pObj, i )
{
Extra_ProgressBarUpdate( pProgress, i, NULL );
uLit = Io_ObjMakeLit( Io_ObjAigerNum(pObj), 0 );
uLit0 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin0(pObj)), Abc_ObjFaninC0(pObj) );
uLit1 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin1(pObj)), Abc_ObjFaninC1(pObj) );
if ( uLit0 > uLit1 )
{
unsigned Temp = uLit0;
uLit0 = uLit1;
uLit1 = Temp;
}
assert( uLit1 < uLit );
Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit - uLit1) );
Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit1 - uLit0) );
if ( Pos > nBufferSize - 10 )
{
printf( "Io_WriteAiger(): AIGER generation has failed because the allocated buffer is too small.\n" );
fclose( b.f );
ABC_FREE(b.buf);
Extra_ProgressBarStop( pProgress );
return;
}
}
assert( Pos < nBufferSize );
Extra_ProgressBarStop( pProgress );
// write the buffer
if ( !b.b )
fwrite( pBuffer, 1, Pos, b.f );
else
{
BZ2_bzWrite( &bzError, b.b, pBuffer, Pos );
if (bzError == BZ_IO_ERROR) {
fprintf( stdout, "Io_WriteAiger(): I/O error writing to compressed stream.\n" );
fclose( b.f );
ABC_FREE(b.buf);
return;
}
}
ABC_FREE( pBuffer );
// write the symbol table
if ( fWriteSymbols )
{
// write PIs
Abc_NtkForEachPi( pNtk, pObj, i )
fprintfBz2Aig( &b, "i%d %s\n", i, Abc_ObjName(pObj) );
// write latches
Abc_NtkForEachLatch( pNtk, pObj, i )
fprintfBz2Aig( &b, "l%d %s\n", i, Abc_ObjName(Abc_ObjFanout0(pObj)) );
// write POs
Abc_NtkForEachPo( pNtk, pObj, i )
if ( !fExtended )
fprintfBz2Aig( &b, "o%d %s\n", i, Abc_ObjName(pObj) );
else if ( i < Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk) )
fprintfBz2Aig( &b, "b%d %s\n", i, Abc_ObjName(pObj) );
else
fprintfBz2Aig( &b, "c%d %s\n", i - (Abc_NtkPoNum(pNtk) - Abc_NtkConstrNum(pNtk)), Abc_ObjName(pObj) );
}
// write the comment
fprintfBz2Aig( &b, "c" );
if ( !fUnique )
{
if ( pNtk->pName && strlen(pNtk->pName) > 0 )
fprintfBz2Aig( &b, "\n%s%c", pNtk->pName, '\0' );
fprintfBz2Aig( &b, "\nThis file was written by ABC on %s\n", Extra_TimeStamp() );
fprintfBz2Aig( &b, "For information about AIGER format, refer to %s\n", "http://fmv.jku.at/aiger" );
}
// close the file
if (b.b) {
BZ2_bzWriteClose( &bzError, b.b, 0, NULL, NULL );
if (bzError == BZ_IO_ERROR) {
fprintf( stdout, "Io_WriteAiger(): I/O error closing compressed stream.\n" );
fclose( b.f );
ABC_FREE(b.buf);
return;
}
}
fclose( b.f );
ABC_FREE(b.buf);
}
ABC_NAMESPACE_IMPL_END
#include "aig/gia/giaAig.h"
#include "aig/saig/saig.h"
ABC_NAMESPACE_IMPL_START
/**Function*************************************************************
Synopsis [Writes the AIG in the binary AIGER format.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Io_WriteAigerCex( Abc_Cex_t * pCex, Abc_Ntk_t * pNtk, void * pG, char * pFileName )
{
extern Aig_Man_t * Abc_NtkToDar( Abc_Ntk_t * pNtk, int fExors, int fRegisters );
FILE * pFile;
Aig_Man_t * pAig;
Aig_Obj_t * pObj, * pObj2;
Gia_Man_t * pGia = (Gia_Man_t *)pG;
int k, f, b;
assert( pCex != NULL );
// derive AIG
if ( pNtk != NULL &&
Abc_NtkPiNum(pNtk) == pCex->nPis &&
Abc_NtkLatchNum(pNtk) == pCex->nRegs )
{
pAig = Abc_NtkToDar( pNtk, 0, 1 );
}
else if ( pGia != NULL &&
Gia_ManPiNum(pGia) == pCex->nPis &&
Gia_ManRegNum(pGia) == pCex->nRegs )
{
pAig = Gia_ManToAigSimple( pGia );
}
else
{
printf( "AIG parameters do not match those of the CEX.\n" );
return;
}
// create output file
pFile = fopen( pFileName, "wb" );
fprintf( pFile, "1\n" );
b = pCex->nRegs;
for ( k = 0; k < pCex->nRegs; k++ )
fprintf( pFile, "0" );
fprintf( pFile, " " );
Aig_ManCleanMarkA( pAig );
for ( f = 0; f <= pCex->iFrame; f++ )
{
for ( k = 0; k < pCex->nPis; k++ )
{
fprintf( pFile, "%d", Abc_InfoHasBit(pCex->pData, b) );
Aig_ManCi( pAig, k )->fMarkA = Abc_InfoHasBit(pCex->pData, b++);
}
fprintf( pFile, " " );
Aig_ManForEachNode( pAig, pObj, k )
pObj->fMarkA = (Aig_ObjFanin0(pObj)->fMarkA ^ Aig_ObjFaninC0(pObj)) &
(Aig_ObjFanin1(pObj)->fMarkA ^ Aig_ObjFaninC1(pObj));
Aig_ManForEachCo( pAig, pObj, k )
pObj->fMarkA = (Aig_ObjFanin0(pObj)->fMarkA ^ Aig_ObjFaninC0(pObj));
Saig_ManForEachPo( pAig, pObj, k )
fprintf( pFile, "%d", pObj->fMarkA );
fprintf( pFile, " " );
Saig_ManForEachLi( pAig, pObj, k )
fprintf( pFile, "%d", pObj->fMarkA );
fprintf( pFile, "\n" );
if ( f == pCex->iFrame )
break;
Saig_ManForEachLi( pAig, pObj, k )
fprintf( pFile, "%d", pObj->fMarkA );
fprintf( pFile, " " );
Saig_ManForEachLiLo( pAig, pObj, pObj2, k )
pObj2->fMarkA = pObj->fMarkA;
}
assert( b == pCex->nBits );
fclose( pFile );
Aig_ManCleanMarkA( pAig );
Aig_ManStop( pAig );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|