summaryrefslogtreecommitdiffstats
path: root/src/base/acb/acbMfs.c
blob: 7b86a6865d929e85f82d859eab9ba4c124642528 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
/**CFile****************************************************************

  FileName    [abcMfs.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Hierarchical word-level netlist.]

  Synopsis    [Optimization with don't-cares.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - July 21, 2015.]

  Revision    [$Id: abcMfs.c,v 1.00 2014/11/29 00:00:00 alanmi Exp $]

***********************************************************************/

#include "acb.h"
#include "bool/kit/kit.h"
#include "sat/bsat/satSolver.h"
#include "sat/cnf/cnf.h"
#include "misc/util/utilTruth.h"
#include "acbPar.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Derive CNF for nodes in the window.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Acb_DeriveCnfFromTruth( word Truth, int nVars, Vec_Int_t * vCover, Vec_Str_t * vCnf )
{
    Vec_StrClear( vCnf );
    if ( Truth == 0 || ~Truth == 0 )
    {
//        assert( nVars == 0 );
        Vec_StrPush( vCnf, (char)(Truth == 0) );
        Vec_StrPush( vCnf, (char)-1 );
        return 1;
    }
    else 
    {
        int i, k, c, RetValue, Literal, Cube, nCubes = 0;
        assert( nVars > 0 );
        for ( c = 0; c < 2; c ++ )
        {
            Truth = c ? ~Truth : Truth;
            RetValue = Kit_TruthIsop( (unsigned *)&Truth, nVars, vCover, 0 );
            assert( RetValue == 0 );
            nCubes += Vec_IntSize( vCover );
            Vec_IntForEachEntry( vCover, Cube, i )
            {
                for ( k = 0; k < nVars; k++ )
                {
                    Literal = 3 & (Cube >> (k << 1));
                    if ( Literal == 1 )      // '0'  -> pos lit
                        Vec_StrPush( vCnf, (char)Abc_Var2Lit(k, 0) );
                    else if ( Literal == 2 ) // '1'  -> neg lit
                        Vec_StrPush( vCnf, (char)Abc_Var2Lit(k, 1) );
                    else if ( Literal != 0 )
                        assert( 0 );
                }
                Vec_StrPush( vCnf, (char)Abc_Var2Lit(nVars, c) );
                Vec_StrPush( vCnf, (char)-1 );
            }
        }
        return nCubes;
    }
}
Vec_Wec_t * Acb_DeriveCnfForWindow( Acb_Ntk_t * p, Vec_Int_t * vWin, int PivotVar )
{
    Vec_Wec_t * vCnfs = &p->vCnfs;
    Vec_Str_t * vCnfBase, * vCnf = NULL; int i, iObj;
    assert( Vec_WecSize(vCnfs) == Acb_NtkObjNumMax(p) );
    Vec_IntForEachEntry( vWin, iObj, i )
    {
        if ( Abc_LitIsCompl(iObj) && i < PivotVar )
            continue;
        vCnfBase = (Vec_Str_t *)Vec_WecEntry( vCnfs, iObj );
        if ( Vec_StrSize(vCnfBase) > 0 )
            continue;
        if ( vCnf == NULL )
            vCnf = Vec_StrAlloc( 1000 );
        Acb_DeriveCnfFromTruth( Acb_ObjTruth(p, iObj), Acb_ObjFaninNum(p, iObj), &p->vCover, vCnf );
        Vec_StrGrow( vCnfBase, Vec_StrSize(vCnf) );
        memcpy( Vec_StrArray(vCnfBase), Vec_StrArray(vCnf), Vec_StrSize(vCnf) );
        vCnfBase->nSize = Vec_StrSize(vCnf);
    }
    Vec_StrFreeP( &vCnf );
    return vCnfs;
}

/**Function*************************************************************

  Synopsis    [Constructs CNF for the window.]

  Description [The window for the pivot node is represented as a DFS ordered array 
  of objects (vWinObjs) whose indexes are used as SAT variable IDs (stored in p->vCopies).
  PivotVar is the index of the pivot node in array vWinObjs.
  The nodes before (after) PivotVar are TFI (TFO) nodes.
  The leaf (root) nodes are labeled with Abc_LitIsCompl().
  If fQbf is 1, returns the instance meant for QBF solving. It uses the last 
  variable (LastVar) as the placeholder for the second copy of the pivot node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Acb_TranslateCnf( Vec_Int_t * vClas, Vec_Int_t * vLits, Vec_Str_t * vCnf, Vec_Int_t * vSatVars, int iPivotVar )
{
    signed char Entry;
    int i, Lit;
    Vec_StrForEachEntry( vCnf, Entry, i )
    {
        if ( (int)Entry == -1 )
        {
            Vec_IntPush( vClas, Vec_IntSize(vLits) );
            continue;
        }
        Lit = Abc_Lit2LitV( Vec_IntArray(vSatVars), (int)Entry );
        Lit = Abc_LitNotCond( Lit, Abc_Lit2Var(Lit) == iPivotVar );
        Vec_IntPush( vLits, Lit );
    }
}
int Acb_NtkCountRoots( Vec_Int_t * vWinObjs, int PivotVar )
{
    int i, iObjLit, nRoots = 0;
    Vec_IntForEachEntryStart( vWinObjs, iObjLit, i, PivotVar + 1 )
        nRoots += Abc_LitIsCompl(iObjLit);
    return nRoots;
}
Cnf_Dat_t * Acb_NtkWindow2Cnf( Acb_Ntk_t * p, Vec_Int_t * vWinObjs, int Pivot )
{
    Cnf_Dat_t * pCnf;
    Vec_Int_t * vFaninVars = Vec_IntAlloc( 8 );
    int PivotVar = Vec_IntFind(vWinObjs, Abc_Var2Lit(Pivot, 0));
    int nRoots   = Acb_NtkCountRoots(vWinObjs, PivotVar);
    int TfoStart = PivotVar + 1;
    int nTfoSize = Vec_IntSize(vWinObjs) - TfoStart;
    int nVarsAll = Vec_IntSize(vWinObjs) + nTfoSize + nRoots;
    int i, k, iObj, iObjLit, iFanin, * pFanins, Entry;
    Vec_Wec_t * vCnfs = Acb_DeriveCnfForWindow( p, vWinObjs, PivotVar );
    Vec_Int_t * vClas = Vec_IntAlloc( 100 );
    Vec_Int_t * vLits = Vec_IntAlloc( 1000 );
    // mark new SAT variables
    Vec_IntForEachEntry( vWinObjs, iObj, i )
        Acb_ObjSetCopy( p, i, iObj );
    // add clauses for all nodes
    Vec_IntPush( vClas, Vec_IntSize(vLits) );
    Vec_IntForEachEntry( vWinObjs, iObjLit, i )
    {
        if ( Abc_LitIsCompl(iObjLit) && i < PivotVar )
            continue;
        iObj = Abc_Lit2Var(iObjLit);
        assert( !Acb_ObjIsCio(p, iObj) );
        // collect SAT variables
        Vec_IntClear( vFaninVars );
        Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k )
            Vec_IntPush( vFaninVars, Acb_ObjCopy(p, iFanin) );
        Vec_IntPush( vFaninVars, Acb_ObjCopy(p, iObj) );
        // derive CNF for the node
        Acb_TranslateCnf( vClas, vLits, (Vec_Str_t *)Vec_WecEntry(vCnfs, iObj), vFaninVars, -1 );
    }
    // add second clauses for the TFO
    Vec_IntForEachEntryStart( vWinObjs, iObjLit, i, TfoStart )
    {
        iObj = Abc_Lit2Var(iObjLit);
        assert( !Acb_ObjIsCio(p, iObj) );
        // collect SAT variables
        Vec_IntClear( vFaninVars );
        Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k )
            Vec_IntPush( vFaninVars, Acb_ObjCopy(p, iFanin) + (iFanin > PivotVar) * nTfoSize );
        Vec_IntPush( vFaninVars, Acb_ObjCopy(p, iObj) + nTfoSize );
        // derive CNF for the node
        Acb_TranslateCnf( vClas, vLits, (Vec_Str_t *)Vec_WecEntry(vCnfs, iObj), vFaninVars, PivotVar );
    }
    if ( nRoots > 0 )
    {
        // create XOR clauses for the roots
        int nVars = Vec_IntSize(vWinObjs) + nTfoSize;
        Vec_IntClear( vFaninVars );
        Vec_IntForEachEntryStart( vWinObjs, iObjLit, i, TfoStart )
        {
            if ( !Abc_LitIsCompl(iObjLit) )
                continue;
            iObj = Abc_Lit2Var(iObjLit);
            // add clauses
            Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjCopy(p, iObj), 0), Abc_Var2Lit(Acb_ObjCopy(p, iObj) + nTfoSize, 0), Abc_Var2Lit(nVars, 0) );
            Vec_IntPush( vClas, Vec_IntSize(vLits) );
            Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjCopy(p, iObj), 1), Abc_Var2Lit(Acb_ObjCopy(p, iObj) + nTfoSize, 1), Abc_Var2Lit(nVars, 0) );
            Vec_IntPush( vClas, Vec_IntSize(vLits) );
            Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjCopy(p, iObj), 0), Abc_Var2Lit(Acb_ObjCopy(p, iObj) + nTfoSize, 1), Abc_Var2Lit(nVars, 1) );
            Vec_IntPush( vClas, Vec_IntSize(vLits) );
            Vec_IntPushThree( vLits, Abc_Var2Lit(Acb_ObjCopy(p, iObj), 1), Abc_Var2Lit(Acb_ObjCopy(p, iObj) + nTfoSize, 0), Abc_Var2Lit(nVars, 1) );
            Vec_IntPush( vClas, Vec_IntSize(vLits) );
            Vec_IntPush( vFaninVars, Abc_Var2Lit(nVars++, 0) );
        }
        Vec_IntAppend( vLits, vFaninVars );
        Vec_IntPush( vClas, Vec_IntSize(vLits) );
        assert( nRoots == Vec_IntSize(vFaninVars) );
        assert( nVars == nVarsAll );
    }
    Vec_IntFree( vFaninVars );
    // undo SAT variables
    Vec_IntForEachEntry( vWinObjs, iObj, i )
        Vec_IntWriteEntry( &p->vObjCopy, iObj, -1 );
    // create CNF structure
    pCnf = ABC_CALLOC( Cnf_Dat_t, 1 );
    pCnf->nVars     = nVarsAll;
    pCnf->nClauses  = Vec_IntSize(vClas)-1;
    pCnf->nLiterals = Vec_IntSize(vLits);
    pCnf->pClauses  = ABC_ALLOC( int *, Vec_IntSize(vClas) );
    pCnf->pClauses[0] = Vec_IntReleaseArray(vLits);
    Vec_IntForEachEntry( vClas, Entry, i )
        pCnf->pClauses[i] = pCnf->pClauses[0] + Entry;
    // cleanup
    Vec_IntFree( vClas );
    Vec_IntFree( vLits );
    return pCnf;
}


/**Function*************************************************************

  Synopsis    [Creates SAT solver containing several copies of the window.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
sat_solver * Acb_NtkWindow2Solver( Cnf_Dat_t * pCnf, int PivotVar, int nDivs, int nTimes )
{
    int n, i, RetValue, nRounds = nTimes <= 2 ? nTimes-1 : nTimes;
    Vec_Int_t * vFlips = Cnf_DataCollectFlipLits( pCnf, PivotVar );
    sat_solver * pSat = sat_solver_new(); 
    sat_solver_setnvars( pSat, nTimes * pCnf->nVars + nRounds * nDivs + 1 );
    assert( nTimes == 1 || nTimes == 2 || nTimes == 6 );
    for ( n = 0; n < nTimes; n++ )
    {
        if ( n & 1 )
            Cnf_DataLiftAndFlipLits( pCnf, -pCnf->nVars, vFlips );
        for ( i = 0; i < pCnf->nClauses; i++ )
        {
            if ( !sat_solver_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1] ) )
            {
                Vec_IntFree( vFlips );
                sat_solver_delete( pSat );
                return NULL;
            }
        }
        if ( n & 1 )
            Cnf_DataLiftAndFlipLits( pCnf, pCnf->nVars, vFlips );
        if ( n < nTimes - 1 )
            Cnf_DataLift( pCnf, pCnf->nVars );
        else if ( n ) // if ( n == nTimes - 1 )
            Cnf_DataLift( pCnf, -(nTimes - 1) * pCnf->nVars );
    }
    Vec_IntFree( vFlips );
    // add conditional buffers
    for ( n = 0; n < nRounds; n++ )
    {
        int BaseA = n * pCnf->nVars;
        int BaseB = ((n + 1) % nTimes) * pCnf->nVars;
        int BaseC = nTimes * pCnf->nVars + n * nDivs;
        for ( i = 0; i < nDivs; i++ )
            sat_solver_add_buffer_enable( pSat, BaseA + i, BaseB + i, BaseC + i, 0 );
    }
    // finalize
    RetValue = sat_solver_simplify( pSat );
    if ( RetValue == 0 )
    {
        sat_solver_delete( pSat );
        return NULL;    
    }
    return pSat;
}


/**Function*************************************************************

  Synopsis    [Marks TFO of divisors.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Acb_ObjMarkTfo_rec( Acb_Ntk_t * p, int iObj, int Pivot, int nTfoLevMax, int nFanMax )
{
    int iFanout, i;
    if ( Acb_ObjSetTravIdCur(p, iObj) )
        return;
    if ( Acb_ObjLevelD(p, iObj) > nTfoLevMax || Acb_ObjFanoutNum(p, iObj) >= nFanMax || iObj == Pivot )
        return;
    Acb_ObjForEachFanout( p, iObj, iFanout, i )
        Acb_ObjMarkTfo_rec( p, iFanout, Pivot, nTfoLevMax, nFanMax );
}
void Acb_ObjMarkTfo( Acb_Ntk_t * p, Vec_Int_t * vDivs, int Pivot, int nTfoLevMax, int nFanMax )
{
    int i, iObj;
    Acb_NtkIncTravId( p );
    Vec_IntForEachEntry( vDivs, iObj, i )
        Acb_ObjMarkTfo_rec( p, iObj, Pivot, nTfoLevMax, nFanMax );
}

/**Function*************************************************************

  Synopsis    [Labels TFO nodes with {none, root, inner} based on their type.]

  Description [Assuming TFO of TFI is marked with the current trav ID.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Acb_ObjLabelTfo_rec( Acb_Ntk_t * p, int iObj, int nTfoLevMax, int nFanMax )
{
    int iFanout, i, Diff, fHasNone = 0;
    if ( (Diff = Acb_ObjTravIdDiff(p, iObj)) <= 2 )
        return Diff;
    Acb_ObjSetTravIdDiff( p, iObj, 2 );
    if ( Acb_ObjIsCo(p, iObj) || Acb_ObjLevelD(p, iObj) > nTfoLevMax )
        return 2;
    if ( Acb_ObjLevelD(p, iObj) == nTfoLevMax || Acb_ObjFanoutNum(p, iObj) >= nFanMax )
    {
        if ( Diff == 3 )  
            Acb_ObjSetTravIdDiff( p, iObj, 1 ); // mark root
        return Acb_ObjTravIdDiff(p, iObj);
    }
    Acb_ObjForEachFanout( p, iObj, iFanout, i )
        fHasNone |= 2 == Acb_ObjLabelTfo_rec( p, iFanout, nTfoLevMax, nFanMax );
    if ( fHasNone && Diff == 3 )
        Acb_ObjSetTravIdDiff( p, iObj, 1 ); // root
    else
        Acb_ObjSetTravIdDiff( p, iObj, 0 ); // inner
    return Acb_ObjTravIdDiff(p, iObj);
}
int Acb_ObjLabelTfo( Acb_Ntk_t * p, int Root, int nTfoLevMax, int nFanMax )
{
    Acb_NtkIncTravId( p ); // none  (2)    marked (3)  unmarked (4)
    Acb_NtkIncTravId( p ); // root  (1)
    Acb_NtkIncTravId( p ); // inner (0)
    assert( Acb_ObjTravIdDiff(p, Root) < 3 );
    return Acb_ObjLabelTfo_rec( p, Root, nTfoLevMax, nFanMax );
}

/**Function*************************************************************

  Synopsis    [Collects labeled TFO.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Acb_ObjDeriveTfo_rec( Acb_Ntk_t * p, int iObj, Vec_Int_t * vTfo, Vec_Int_t * vRoots )
{
    int iFanout, i, Diff = Acb_ObjTravIdDiff(p, iObj);
    if ( Acb_ObjSetTravIdCur(p, iObj) )
        return;
    if ( Diff == 2 ) // root
    {
        Vec_IntPush( vRoots, Diff );
        return;
    }
    assert( Diff == 1 );
    Acb_ObjForEachFanout( p, iObj, iFanout, i )
        Acb_ObjDeriveTfo_rec( p, iFanout, vTfo, vRoots );
    Vec_IntPush( vTfo, Diff );
}
void Acb_ObjDeriveTfo( Acb_Ntk_t * p, int Pivot, int nTfoLevMax, int nFanMax, Vec_Int_t ** pvTfo, Vec_Int_t ** pvRoots )
{
    int Res = Acb_ObjLabelTfo( p, Pivot, nTfoLevMax, nFanMax );
    Vec_Int_t * vTfo   = *pvTfo   = Vec_IntAlloc( 100 );
    Vec_Int_t * vRoots = *pvRoots = Vec_IntAlloc( 100 );
    if ( Res ) // none or root
        return;
    Acb_NtkIncTravId( p ); // root (2)   inner (1)  visited (0)
    Acb_ObjDeriveTfo_rec( p, Pivot, vTfo, vRoots );
    assert( Vec_IntEntryLast(vTfo) == Pivot );
    Vec_IntPop( vTfo );
    assert( Vec_IntEntryLast(vRoots) != Pivot );
    Vec_IntReverseOrder( vTfo );
    Vec_IntReverseOrder( vRoots );
}


/**Function*************************************************************

  Synopsis    [Collect side-inputs of the TFO, except the node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Acb_NtkCollectTfoSideInputs( Acb_Ntk_t * p, int Pivot, Vec_Int_t * vTfo )
{
    Vec_Int_t * vSide  = Vec_IntAlloc( 100 );
    int i, k, Node, iFanin, * pFanins;
    Acb_NtkIncTravId( p );
    Vec_IntPush( vTfo, Pivot );
    Vec_IntForEachEntry( vTfo, Node, i )
        Acb_ObjSetTravIdCur( p, Node );
    Vec_IntForEachEntry( vTfo, Node, i )
        Acb_ObjForEachFaninFast( p, Node, pFanins, iFanin, k )
            if ( !Acb_ObjSetTravIdCur(p, iFanin) && iFanin != Pivot )
                Vec_IntPush( vSide, iFanin );
    Vec_IntPop( vTfo );
    return vSide;
}

/**Function*************************************************************

  Synopsis    [From side inputs, collect marked nodes and their unmarked fanins.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Acb_NtkCollectNewTfi1_rec( Acb_Ntk_t * p, int iObj, Vec_Int_t * vTfiNew )
{
    int i, iFanin, * pFanins;
    if ( !Acb_ObjIsTravIdPrev(p, iObj) )
        return;
    if ( Acb_ObjSetTravIdCur(p, iObj) )
        return;
    Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, i )
        Acb_NtkCollectNewTfi1_rec( p, iFanin, vTfiNew );
    Vec_IntPush( vTfiNew, iObj );
}
void Acb_NtkCollectNewTfi2_rec( Acb_Ntk_t * p, int iObj, Vec_Int_t * vTfiNew )
{
    int i, iFanin, * pFanins;
    int fTravIdPrev = Acb_ObjIsTravIdPrev(p, iObj);
    if ( Acb_ObjSetTravIdCur(p, iObj) )
        return;
    if ( fTravIdPrev && !Acb_ObjIsCi(p, iObj) )
        Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, i )
            Acb_NtkCollectNewTfi2_rec( p, iFanin, vTfiNew );
    Vec_IntPush( vTfiNew, iObj );
}
Vec_Int_t * Acb_NtkCollectNewTfi( Acb_Ntk_t * p, int Pivot, Vec_Int_t * vDivs, Vec_Int_t * vSide )
{
    Vec_Int_t * vTfiNew  = Vec_IntAlloc( 100 );
    int i, Node;
    Acb_NtkIncTravId( p );
    Vec_IntForEachEntry( vDivs, Node, i )
        Acb_NtkCollectNewTfi1_rec( p, Node, vTfiNew );
    assert( Vec_IntSize(vTfiNew) == Vec_IntSize(vDivs) );
    Acb_NtkCollectNewTfi1_rec( p, Pivot, vTfiNew );
    assert( Vec_IntEntryLast(vTfiNew) == Pivot );
    Vec_IntPop( vTfiNew );
    Vec_IntForEachEntry( vSide, Node, i )
        Acb_NtkCollectNewTfi2_rec( p, Node, vTfiNew );
    Vec_IntPush( vTfiNew, Pivot );
    return vTfiNew;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Acb_NtkCollectWindow( Acb_Ntk_t * p, int Pivot, Vec_Int_t * vTfi, Vec_Int_t * vTfo, Vec_Int_t * vRoots )
{
    Vec_Int_t * vWin = Vec_IntAlloc( 100 );
    int i, k, iObj, iFanin, * pFanins;
    assert( Vec_IntEntryLast(vTfi) == Pivot );
    // mark leaves
    Acb_NtkIncTravId( p );
    Vec_IntForEachEntry( vTfi, iObj, i )
        Acb_ObjSetTravIdCur(p, iObj);
    Acb_NtkIncTravId( p );
    Vec_IntForEachEntry( vTfi, iObj, i )
        if ( !Acb_ObjIsCi(p, iObj) )
            Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k )
                if ( !Acb_ObjIsTravIdCur(p, iFanin) )
                    Acb_ObjSetTravIdCur(p, iObj);
    // add TFI
    Vec_IntForEachEntry( vTfi, iObj, i )
        Vec_IntPush( vWin, Abc_Var2Lit( iObj, Acb_ObjIsTravIdCur(p, iObj)) );
    // mark roots
    Vec_IntForEachEntry( vRoots, iObj, i )
        Acb_ObjSetTravIdCur(p, iObj);
    // add TFO
    Vec_IntForEachEntry( vTfo, iObj, i )
        Vec_IntPush( vWin, Abc_Var2Lit( iObj, Acb_ObjIsTravIdCur(p, iObj)) );
    return vWin;
}



/**Function*************************************************************

  Synopsis    [Collects divisors in a non-topo order.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Acb_NtkDivisors( Acb_Ntk_t * p, int Pivot, int * pTaboo, int nTaboo, int nDivsMax )
{
    Vec_Int_t * vDivs = Vec_IntAlloc( 100 );
    Vec_Int_t * vFront = Vec_IntAlloc( 100 );
    int i, k, iFanin, * pFanins;
    // mark taboo nodes
    Acb_NtkIncTravId( p );
    assert( !Acb_ObjIsCio(p, Pivot) );
    Acb_ObjSetTravIdCur( p, Pivot );
    for ( i = 0; i < nTaboo; i++ )
    {
        assert( !Acb_ObjIsCio(p, pTaboo[i]) );
        if ( Acb_ObjSetTravIdCur( p, pTaboo[i] ) )
            assert( 0 );
    }
    // collect non-taboo fanins of pivot but do not use them as frontier
    Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
        if ( !Acb_ObjSetTravIdCur( p, iFanin ) )
            Vec_IntPush( vDivs, iFanin );
    // collect non-tabook fanins of taboo nodes and use them as frontier
    for ( i = 0; i < nTaboo; i++ )
        Acb_ObjForEachFaninFast( p, pTaboo[i], pFanins, iFanin, k )
            if ( !Acb_ObjSetTravIdCur( p, iFanin ) )
            {
                Vec_IntPush( vDivs, iFanin );
                if ( !Acb_ObjIsCio(p, iFanin) )
                    Vec_IntPush( vFront, iFanin );
            }
    // select divisors incrementally
    while ( Vec_IntSize(vFront) > 0 && Vec_IntSize(vDivs) < nDivsMax )
    {
        // select the topmost
        int iObj, iObjMax = -1, LevelMax = -1;
        Vec_IntForEachEntry( vFront, iObj, k )
            if ( LevelMax < Acb_ObjLevelD(p, iObj) )
                LevelMax = Acb_ObjLevelD(p, (iObjMax = iObj));
        assert( iObjMax > 0 );
        Vec_IntRemove( vFront, iObjMax );
        // expand the topmost
        Acb_ObjForEachFaninFast( p, iObjMax, pFanins, iFanin, k )
            if ( !Acb_ObjSetTravIdCur( p, iFanin ) )
            {
                Vec_IntPush( vDivs, iFanin );
                if ( !Acb_ObjIsCio(p, iFanin) )
                    Vec_IntPush( vFront, iFanin );
            }
    }
    Vec_IntFree( vFront );
    // sort them by level
    Vec_IntSelectSortCost( Vec_IntArray(vDivs), Vec_IntSize(vDivs), &p->vLevelD );
    return vDivs;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Acb_NtkWindow( Acb_Ntk_t * p, int Pivot, int * pTaboo, int nTaboo, int nDivsMax, int nTfoLevs, int nFanMax, int * pnDivs )
{
    int nTfoLevMax = Acb_ObjLevelD(p, Pivot) + nTfoLevs;
    Vec_Int_t * vWin, * vDivs, * vTfo, * vRoots, * vSide, * vTfi;
    // collect divisors by traversing limited TFI
    vDivs = Acb_NtkDivisors( p, Pivot, pTaboo, nTaboo, nDivsMax );
    // mark limited TFO of the divisors
    Acb_ObjMarkTfo( p, vDivs, Pivot, nTfoLevMax, nFanMax );
    // collect TFO and roots
    Acb_ObjDeriveTfo( p, Pivot, nTfoLevMax, nFanMax, &vTfo, &vRoots );
    // collect side inputs of the TFO
    vSide = Acb_NtkCollectTfoSideInputs( p, Pivot, vTfo );
    // mark limited TFO of the divisors
    Acb_ObjMarkTfo( p, vDivs, Pivot, nTfoLevMax, nFanMax );
    // collect new TFI
    vTfi = Acb_NtkCollectNewTfi( p, Pivot, vDivs, vSide );
    Vec_IntFree( vSide );
    Vec_IntFree( vDivs );
    // collect all nodes
    vWin = Acb_NtkCollectWindow( p, Pivot, vTfi, vTfo, vRoots );
    // cleanup
    Vec_IntFree( vTfi );
    Vec_IntFree( vTfo );
    Vec_IntFree( vRoots );
    return vWin;
}



/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Acb_NtkFindSupp( sat_solver * pSat, Acb_Ntk_t * p, Vec_Int_t * vWin, Vec_Int_t * vDivs, int nBTLimit )
{
    int i, iObj, nDivsNew;
    // reload divisors in terms of SAT variables
    Vec_IntForEachEntry( vDivs, iObj, i )
        Vec_IntWriteEntry( vDivs, i, Acb_ObjCopy(p, iObj) );
    // try solving 
    nDivsNew = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vDivs), Vec_IntSize(vDivs), nBTLimit );
    Vec_IntShrink( vDivs, nDivsNew );
    // reload divisors in terms of network variables
    Vec_IntForEachEntry( vDivs, iObj, i )
        Vec_IntWriteEntry( vDivs, i, Vec_IntEntry(vWin, iObj) );
    return Vec_IntSize(vDivs);
}



/**Function*************************************************************

  Synopsis    [Computes function of the node]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
word Acb_ComputeFunction( sat_solver * pSat, int PivotVar, int FreeVar, Vec_Int_t * vDivVars )
{
    int fExpand = 1;
    word uCube, uTruth = 0;
    Vec_Int_t * vTempLits = Vec_IntAlloc( 100 );
    int status, i, iVar, iLit, nFinal, * pFinal, pLits[2];
    assert( FreeVar < sat_solver_nvars(pSat) );
    pLits[0] = Abc_Var2Lit( PivotVar, 0 ); // F = 1
    pLits[1] = Abc_Var2Lit( FreeVar, 0 );  // iNewLit
    while ( 1 ) 
    {
        // find onset minterm
        status = sat_solver_solve( pSat, pLits, pLits + 2, 0, 0, 0, 0 );
        if ( status == l_False )
        {
            Vec_IntFree( vTempLits );
            return uTruth;
        }
        assert( status == l_True );
        if ( fExpand )
        {
            // collect divisor literals
            Vec_IntFill( vTempLits, 1, Abc_LitNot(pLits[0]) ); // F = 0
            Vec_IntForEachEntry( vDivVars, iVar, i )
                Vec_IntPush( vTempLits, sat_solver_var_literal(pSat, iVar) );
            // check against offset
            status = sat_solver_solve( pSat, Vec_IntArray(vTempLits), Vec_IntLimit(vTempLits), 0, 0, 0, 0 );
            assert( status == l_False );
            // compute cube and add clause
            nFinal = sat_solver_final( pSat, &pFinal );
            Vec_IntFill( vTempLits, 1, Abc_LitNot(pLits[1]) ); // NOT(iNewLit)
            uCube = ~(word)0;
            for ( i = 0; i < nFinal; i++ )
                if ( pFinal[i] != pLits[0] )
                    Vec_IntPush( vTempLits, pFinal[i] );
        }
        else
        {
            // collect divisor literals
            Vec_IntFill( vTempLits, 1, Abc_LitNot(pLits[1]) );// NOT(iNewLit)
            Vec_IntForEachEntry( vDivVars, iVar, i )
                Vec_IntPush( vTempLits, Abc_LitNot(sat_solver_var_literal(pSat, iVar)) );
        }
        Vec_IntForEachEntry( vTempLits, iLit, i )
        {
            iVar = Vec_IntFind( vDivVars, Abc_Lit2Var(iLit) );   assert( iVar >= 0 );
            uCube &= Abc_LitIsCompl(iLit) ? s_Truths6[iVar] : ~s_Truths6[iVar];
        }
        uTruth |= uCube;
        status = sat_solver_addclause( pSat, Vec_IntArray(vTempLits), Vec_IntLimit(vTempLits) );
        if ( status == 0 )
        {
            Vec_IntFree( vTempLits );
            return uTruth;
        }
    }
    assert( 0 ); 
    return ~(word)0;
}


/**Function*************************************************************

  Synopsis    [Collects the taboo nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Acb_ObjIsCritFanin( Acb_Ntk_t * p, int i, int f )  { return Acb_ObjLevelR(p, i) + Acb_ObjLevelD(p, f) == p->LevelMax; }

static inline void Acb_ObjUpdateFanoutCount( Acb_Ntk_t * p, int iObj, int AddOn )
{
    int k, iFanin, * pFanins;
    Acb_ObjForEachFaninFast( p, iObj, pFanins, iFanin, k )
        Acb_ObjFanoutVec(p, iFanin)->nSize += AddOn;
}

int Acb_NtkCollectTaboo( Acb_Ntk_t * p, int Pivot, int nTabooMax, int * pTaboo )
{
    int i, k, iFanin, * pFanins, nTaboo = 0;
    if ( nTabooMax == 0 ) // delay optimization
    {
        // collect delay critical fanins of the pivot node
        Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
            if ( !Acb_ObjIsCi(p, iFanin) && Acb_ObjIsCritFanin( p, Pivot, iFanin ) )
                pTaboo[ nTaboo++ ] = iFanin;
    }
    else // area optimization
    {
        // check if the node has any area critical fanins
        Acb_ObjForEachFaninFast( p, Pivot, pFanins, iFanin, k )
            if ( !Acb_ObjIsCi(p, iFanin) && Acb_ObjFanoutNum(p, iFanin) == 1 )
                break;
        if ( k < Acb_ObjFaninNum(p, Pivot) ) // there is fanin
        {
            // mark pivot
            Acb_NtkIncTravId( p );
            Acb_ObjSetTravIdCur( p, Pivot );
            Acb_ObjUpdateFanoutCount( p, Pivot, -1 );
            // add the first taboo node
            assert( Acb_ObjFanoutNum(p, iFanin) == 0 );
            pTaboo[ nTaboo++ ] = iFanin;
            Acb_ObjSetTravIdCur( p, iFanin );
            Acb_ObjUpdateFanoutCount( p, iFanin, -1 );
            while ( nTaboo < nTabooMax )
            {
                // select the first unrefed fanin
                for ( i = 0; i < nTaboo; i++ )
                {
                    Acb_ObjForEachFaninFast( p, pTaboo[i], pFanins, iFanin, k )
                        if ( !Acb_ObjIsCi(p, iFanin) && !Acb_ObjIsTravIdCur(p, iFanin) && Acb_ObjFanoutNum(p, iFanin) == 0 )
                        {
                            pTaboo[ nTaboo++ ] = iFanin;
                            Acb_ObjSetTravIdCur( p, iFanin );
                            Acb_ObjUpdateFanoutCount( p, iFanin, -1 );
                            break;
                        }
                    if ( k < Acb_ObjFaninNum(p, pTaboo[i]) )
                        break;
                }
                if ( i == nTaboo ) // no change
                    break;
            }
            // reference nodes back
            Acb_ObjUpdateFanoutCount( p, Pivot, 1 );
            for ( i = 0; i < nTaboo; i++ )
                Acb_ObjUpdateFanoutCount( p, pTaboo[i], 1 );
        }
    }
    return nTaboo;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Vec_IntVars2Lits( Vec_Int_t * p, int Shift, int fCompl )
{
    int i;
    for ( i = 0; i < p->nSize; i++ )
        p->pArray[i] = Abc_Var2Lit( p->pArray[i] + Shift, fCompl );
}
static inline void Vec_IntLits2Vars( Vec_Int_t * p, int Shift )
{
    int i;
    for ( i = 0; i < p->nSize; i++ )
        p->pArray[i] = Abc_Lit2Var( p->pArray[i] ) - Shift;
}
static inline void Vec_IntRemap( Vec_Int_t * p, Vec_Int_t * vMap )
{
    int i;
    for ( i = 0; i < p->nSize; i++ )
        p->pArray[i] = Vec_IntEntry(vMap, p->pArray[i]);
}

void Acb_NtkOptNode( Acb_Ntk_t * p, int Pivot, int nTabooMax, int nDivMax, int nTfoLevs, int nFanMax, int nLutSize )
{
    Cnf_Dat_t * pCnf;
    Vec_Int_t * vWin, * vSupp = NULL;
    sat_solver * pSat1 = NULL, * pSat2 = NULL, * pSat3 = NULL;
    int c, nSuppNew, PivotVar, nDivs = 0;
    int pTaboo[16], nTaboo = Acb_NtkCollectTaboo( p, Pivot, nTabooMax, pTaboo );
    if ( nTaboo == 0 )
        return;
    assert( nTabooMax == 0 || nTaboo <= nTabooMax );
    assert( nTaboo <= 16 );

    // compute divisor and window for these nodes
    vWin = Acb_NtkWindow( p, Pivot, pTaboo, nTaboo, nDivMax, nTfoLevs, nFanMax, &nDivs );
    PivotVar = Vec_IntFind(vWin, Abc_Var2Lit(Pivot, 0));

    // derive CNF and SAT solvers
    pCnf  = Acb_NtkWindow2Cnf( p, vWin, Pivot );
    pSat1 = Acb_NtkWindow2Solver( pCnf, PivotVar, nDivs, 1 );
    // check constants
    for ( c = 0; c < 2; c++ )
    {
        int Lit = Abc_Var2Lit( PivotVar, c );
        int status = sat_solver_solve( pSat1, &Lit, &Lit + 1, 0, 0, 0, 0 );
        if ( status == l_False )
        {
            Acb_NtkUpdateNode( p, Pivot, c ? ~(word)0 : 0, NULL );
            goto cleanup;
        }
        assert( status == l_True );
    }

    pSat2 = Acb_NtkWindow2Solver( pCnf, PivotVar, nDivs, 2 );
    //pSat6 = Acb_NtkWindow2Solver( pCnf, PivotVar, nDivs, 6 );

    // try solving the original support
    vSupp = Vec_IntStartNatural( nDivs );
    Vec_IntVars2Lits( vSupp, 2*pCnf->nVars, 0 );
    nSuppNew = sat_solver_minimize_assumptions( pSat2, Vec_IntArray(vSupp), Vec_IntSize(vSupp), 0 );
    Vec_IntShrink( vSupp, nSuppNew );
    Vec_IntLits2Vars( vSupp, -2*pCnf->nVars );

    if ( nSuppNew <= nLutSize )
    {
        int FreeVar  = sat_solver_nvars( pSat1 ) - 1;
        word uTruth;

        Vec_IntVars2Lits( vSupp, pCnf->nVars, 0 );
        uTruth = Acb_ComputeFunction( pSat1, PivotVar, FreeVar, vSupp );
        Vec_IntLits2Vars( vSupp, -pCnf->nVars );
        // create support in terms of nodes
        Vec_IntRemap( vSupp, vWin );
        Vec_IntLits2Vars( vSupp, 0 );

        Acb_NtkUpdateNode( p, Pivot, uTruth, vSupp );

        goto cleanup;
    }

    // cleanup
cleanup:
    if ( pSat1 ) sat_solver_delete( pSat1 );
    if ( pSat2 ) sat_solver_delete( pSat2 );
    if ( pSat3 ) sat_solver_delete( pSat3 );
    Cnf_DataFree( pCnf );
    Vec_IntFree( vWin );
    Vec_IntFree( vSupp );
}



void Acb_NtkOpt( Acb_Ntk_t * p, Acb_Par_t * pPars )
{
    int iObj;
    if ( pPars->fArea )
    {
        Acb_NtkForEachNode( p, iObj )
            Acb_NtkOptNode( p, iObj, pPars->nTabooMax, pPars->nDivMax, pPars->nTfoLevMax, pPars->nFanoutMax, pPars->nLutSize );
    }
    else
    {
        Acb_NtkUpdateTiming( p, -1 );
        while ( 1 )
        {
            int iObj = 0;
            Acb_NtkOptNode( p, iObj, 0, pPars->nDivMax, pPars->nTfoLevMax, pPars->nFanoutMax, pPars->nLutSize ); 
        }
    }
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END