summaryrefslogtreecommitdiffstats
path: root/src/base/abcs/abcRetImpl.c
blob: 07e6d24e62adae4e36d452587b37f8593b87ea93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/**CFile****************************************************************

  FileName    [abcRetImpl.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Implementation of retiming.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: abcRetImpl.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "abcs.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

static void Abc_ObjRetimeForward( Abc_Obj_t * pObj );
static int  Abc_ObjRetimeBackward( Abc_Obj_t * pObj, Abc_Ntk_t * pNtk, stmm_table * tTable, Vec_Int_t * vValues );
static void Abc_ObjRetimeBackwardUpdateEdge( Abc_Obj_t * pObj, int Edge, stmm_table * tTable );
static void Abc_NtkRetimeSetInitialValues( Abc_Ntk_t * pNtk, stmm_table * tTable, int * pModel );
 
////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Implements the retiming on the sequential AIG.]

  Description [Split the retiming into forward and backward.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkImplementRetiming( Abc_Ntk_t * pNtk, Vec_Str_t * vLags, int fVerbose )
{
    Vec_Int_t * vSteps;
    Vec_Ptr_t * vMoves;
    int RetValue;

    // forward retiming
    vSteps = Abc_NtkUtilRetimingSplit( vLags, 1 );
    // translate each set of steps into moves
    if ( fVerbose )
    printf( "The number of forward steps  = %6d.\n", Vec_IntSize(vSteps) );
    vMoves = Abc_NtkUtilRetimingGetMoves( pNtk, vSteps, 1 );
    if ( fVerbose )
    printf( "The number of forward moves  = %6d.\n", Vec_PtrSize(vMoves) );
    // implement this retiming
    Abc_NtkImplementRetimingForward( pNtk, vMoves );
    Vec_IntFree( vSteps );
    Vec_PtrFree( vMoves );

    // backward retiming
    vSteps = Abc_NtkUtilRetimingSplit( vLags, 0 );
    // translate each set of steps into moves
    if ( fVerbose )
    printf( "The number of backward steps = %6d.\n", Vec_IntSize(vSteps) );
    vMoves = Abc_NtkUtilRetimingGetMoves( pNtk, vSteps, 0 );
    if ( fVerbose )
    printf( "The number of backward moves = %6d.\n", Vec_PtrSize(vMoves) );
    // implement this retiming
    RetValue = Abc_NtkImplementRetimingBackward( pNtk, vMoves, fVerbose );
    Vec_IntFree( vSteps );
    Vec_PtrFree( vMoves );
    return RetValue;
}

/**Function*************************************************************

  Synopsis    [Implements the given retiming on the sequential AIG.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkImplementRetimingForward( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMoves )
{
    Abc_Obj_t * pNode;
    int i;
    Vec_PtrForEachEntry( vMoves, pNode, i )
        Abc_ObjRetimeForward( pNode );
}

/**Function*************************************************************

  Synopsis    [Retimes node forward by one latch.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ObjRetimeForward( Abc_Obj_t * pObj )  
{
    Abc_Obj_t * pFanout;
    int Init0, Init1, Init, i;
    assert( Abc_ObjFaninNum(pObj) == 2 );
    assert( Abc_ObjFaninL0(pObj) >= 1 );
    assert( Abc_ObjFaninL1(pObj) >= 1 );
    // remove the init values from the fanins
    Init0 = Abc_ObjFaninLDeleteFirst( pObj, 0 );
    Init1 = Abc_ObjFaninLDeleteFirst( pObj, 1 );
    assert( Init0 != ABC_INIT_NONE );
    assert( Init1 != ABC_INIT_NONE );
    // take into account the complements in the node
    if ( Abc_ObjFaninC0(pObj) )
    {
        if ( Init0 == ABC_INIT_ZERO )
            Init0 = ABC_INIT_ONE;
        else if ( Init0 == ABC_INIT_ONE )
            Init0 = ABC_INIT_ZERO;
    }
    if ( Abc_ObjFaninC1(pObj) )
    {
        if ( Init1 == ABC_INIT_ZERO )
            Init1 = ABC_INIT_ONE;
        else if ( Init1 == ABC_INIT_ONE )
            Init1 = ABC_INIT_ZERO;
    }
    // compute the value at the output of the node
    if ( Init0 == ABC_INIT_ZERO || Init1 == ABC_INIT_ZERO )
        Init = ABC_INIT_ZERO;
    else if ( Init0 == ABC_INIT_ONE && Init1 == ABC_INIT_ONE )
        Init = ABC_INIT_ONE;
    else
        Init = ABC_INIT_DC;
    // add the init values to the fanouts
    Abc_ObjForEachFanout( pObj, pFanout, i )
        Abc_ObjFaninLInsertLast( pFanout, Abc_ObjEdgeNum(pObj, pFanout), Init );
}



/**Function*************************************************************

  Synopsis    [Implements the given retiming on the sequential AIG.]

  Description [Returns 0 of initial state computation fails.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkImplementRetimingBackward( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMoves, int fVerbose )
{
    Abc_RetEdge_t RetEdge;
    stmm_table * tTable;
    stmm_generator * gen;
    Vec_Int_t * vValues;
    Abc_Ntk_t * pNtkProb, * pNtkMiter, * pNtkCnf;
    Abc_Obj_t * pNode, * pNodeNew;
    int * pModel, RetValue, i, clk;

    // return if the retiming is trivial
    if ( Vec_PtrSize(vMoves) == 0 )
        return 1;

    // create the network for the initial state computation
    // start the table and the array of PO values
    pNtkProb = Abc_NtkAlloc( ABC_NTK_LOGIC, ABC_FUNC_SOP );
    tTable   = stmm_init_table( stmm_numcmp, stmm_numhash );
    vValues  = Vec_IntAlloc( 100 );

    // perform the backward moves and build the network for initial state computation
    RetValue = 0;
    Vec_PtrForEachEntry( vMoves, pNode, i )
        RetValue |= Abc_ObjRetimeBackward( pNode, pNtkProb, tTable, vValues );

    // add the PIs corresponding to the white spots
    stmm_foreach_item( tTable, gen, (char **)&RetEdge, (char **)&pNodeNew )
        Abc_ObjAddFanin( pNodeNew, Abc_NtkCreatePi(pNtkProb) );

    // add the PI/PO names
    Abc_NtkAddDummyPiNames( pNtkProb );
    Abc_NtkAddDummyPoNames( pNtkProb );

    // make sure everything is okay with the network structure
    if ( !Abc_NtkDoCheck( pNtkProb ) )
    {
        printf( "Abc_NtkImplementRetimingBackward: The internal network check has failed.\n" );
        Abc_NtkRetimeSetInitialValues( pNtk, tTable, NULL );
        Abc_NtkDelete( pNtkProb );
        stmm_free_table( tTable );
        Vec_IntFree( vValues );
        return 0;
    }

    // check if conflict is found
    if ( RetValue )
    {
        printf( "Abc_NtkImplementRetimingBackward: A top level conflict is detected. DC latch values are used.\n" );
        Abc_NtkRetimeSetInitialValues( pNtk, tTable, NULL );
        Abc_NtkDelete( pNtkProb );
        stmm_free_table( tTable );
        Vec_IntFree( vValues );
        return 0;
    }

    // get the miter cone
    pNtkMiter = Abc_NtkCreateCone( pNtkProb, pNtkProb->vCos, vValues );
    Abc_NtkDelete( pNtkProb );
    Vec_IntFree( vValues );

    if ( fVerbose )
    printf( "The number of ANDs in the AIG = %5d.\n", Abc_NtkNodeNum(pNtkMiter) );

    // transform the miter into a logic network for efficient CNF construction
    pNtkCnf = Abc_NtkRenode( pNtkMiter, 0, 100, 1, 0, 0 );
    Abc_NtkDelete( pNtkMiter );

    // solve the miter
clk = clock();
    RetValue = Abc_NtkMiterSat( pNtkCnf, 30, 0 );
if ( fVerbose )
if ( clock() - clk > 500 )
{
PRT( "SAT solving time", clock() - clk );
}
    pModel = pNtkCnf->pModel;  pNtkCnf->pModel = NULL;
    Abc_NtkDelete( pNtkCnf );

    // analyze the result
    if ( RetValue == -1 || RetValue == 1 )
    {
        Abc_NtkRetimeSetInitialValues( pNtk, tTable, NULL );
        if ( RetValue == 1 )
            printf( "Abc_NtkImplementRetimingBackward: The problem is unsatisfiable. DC latch values are used.\n" );
        else
            printf( "Abc_NtkImplementRetimingBackward: The SAT problem timed out. DC latch values are used.\n" );
        stmm_free_table( tTable );
        return 0;
    }

    // set the values of the latches
    Abc_NtkRetimeSetInitialValues( pNtk, tTable, pModel );
    stmm_free_table( tTable );
    free( pModel );
    return 1;
}

/**Function*************************************************************

  Synopsis    [Retimes node backward by one latch.]

  Description [Constructs the problem for initial state computation.
  Returns 1 if the conflict is found.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_ObjRetimeBackward( Abc_Obj_t * pObj, Abc_Ntk_t * pNtkNew, stmm_table * tTable, Vec_Int_t * vValues )  
{
    Abc_Obj_t * pFanout;
    Abc_InitType_t Init, Value;
    Abc_RetEdge_t RetEdge;
    Abc_Obj_t * pNodeNew, * pFanoutNew, * pBuffer;
    int i, Edge, fMet0, fMet1, fMetN;

    // make sure the node can be retimed
    assert( Abc_ObjFanoutLMin(pObj) > 0 );
    // get the fanout values
    fMet0 = fMet1 = fMetN = 0;
    Abc_ObjForEachFanout( pObj, pFanout, i )
    {
        Init = Abc_ObjFaninLGetInitLast( pFanout, Abc_ObjEdgeNum(pObj, pFanout) );
        if ( Init == ABC_INIT_ZERO )
            fMet0 = 1;
        else if ( Init == ABC_INIT_ONE )
            fMet1 = 1;
        else if ( Init == ABC_INIT_NONE )
            fMetN = 1;
    }

    // consider the case when all fanout latchs have don't-care values
    // the new values on the fanin edges will be don't-cares
    if ( !fMet0 && !fMet1 && !fMetN )
    {
        // update the fanout edges
        Abc_ObjForEachFanout( pObj, pFanout, i )
            Abc_ObjFaninLDeleteLast( pFanout, Abc_ObjEdgeNum(pObj, pFanout) );
        // update the fanin edges
        Abc_ObjRetimeBackwardUpdateEdge( pObj, 0, tTable );
        Abc_ObjRetimeBackwardUpdateEdge( pObj, 1, tTable );
        Abc_ObjFaninLInsertFirst( pObj, 0, ABC_INIT_DC );
        Abc_ObjFaninLInsertFirst( pObj, 1, ABC_INIT_DC );
        return 0;
    }
    // the initial values on the fanout edges contain 0, 1, or unknown
    // the new values on the fanin edges will be unknown

    // add new AND-gate to the network
    pNodeNew = Abc_NtkCreateNode( pNtkNew );
    pNodeNew->pData = Abc_SopCreateAnd2( pNtkNew->pManFunc, Abc_ObjFaninC0(pObj), Abc_ObjFaninC1(pObj) );

    // add PO fanouts if any
    if ( fMet0 )
    {
        Abc_ObjAddFanin( Abc_NtkCreatePo(pNtkNew), pNodeNew );
        Vec_IntPush( vValues, 0 );
    }
    if ( fMet1 )
    {
        Abc_ObjAddFanin( Abc_NtkCreatePo(pNtkNew), pNodeNew );
        Vec_IntPush( vValues, 1 );
    }

    // perform the changes
    Abc_ObjForEachFanout( pObj, pFanout, i )
    {
        Edge = Abc_ObjEdgeNum( pObj, pFanout );
        Value = Abc_ObjFaninLDeleteLast( pFanout, Edge );
        if ( Value != ABC_INIT_NONE )
            continue;
        // value is unknown, remove it from the table
        RetEdge.iNode  = pFanout->Id;
        RetEdge.iEdge  = Edge;
        RetEdge.iLatch = Abc_ObjFaninL( pFanout, Edge ); // after edge is removed
        if ( !stmm_delete( tTable, (char **)&RetEdge, (char **)&pFanoutNew ) )
            assert( 0 );
        // create the fanout of the AND gate
        Abc_ObjAddFanin( pFanoutNew, pNodeNew );
    }

    // update the fanin edges
    Abc_ObjRetimeBackwardUpdateEdge( pObj, 0, tTable );
    Abc_ObjRetimeBackwardUpdateEdge( pObj, 1, tTable );
    Abc_ObjFaninLInsertFirst( pObj, 0, ABC_INIT_NONE );
    Abc_ObjFaninLInsertFirst( pObj, 1, ABC_INIT_NONE );

    // add the buffer
    pBuffer = Abc_NtkCreateNode( pNtkNew );
    pBuffer->pData = Abc_SopCreateBuf( pNtkNew->pManFunc );
    Abc_ObjAddFanin( pNodeNew, pBuffer );
    // point to it from the table
    RetEdge.iNode  = pObj->Id;
    RetEdge.iEdge  = 0;
    RetEdge.iLatch = 0;
    if ( stmm_insert( tTable, (char *)Abc_RetEdge2Int(RetEdge), (char *)pBuffer ) )
        assert( 0 );

    // add the buffer
    pBuffer = Abc_NtkCreateNode( pNtkNew );
    pBuffer->pData = Abc_SopCreateBuf( pNtkNew->pManFunc );
    Abc_ObjAddFanin( pNodeNew, pBuffer );
    // point to it from the table
    RetEdge.iNode  = pObj->Id;
    RetEdge.iEdge  = 1;
    RetEdge.iLatch = 0;
    if ( stmm_insert( tTable, (char *)Abc_RetEdge2Int(RetEdge), (char *)pBuffer ) )
        assert( 0 );

    // report conflict is found
    return fMet0 && fMet1;
}

/**Function*************************************************************

  Synopsis    [Generates the printable edge label with the initial state.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ObjRetimeBackwardUpdateEdge( Abc_Obj_t * pObj, int Edge, stmm_table * tTable )
{
    Abc_Obj_t * pFanoutNew;
    Abc_RetEdge_t RetEdge;
    Abc_InitType_t Init;
    int nLatches, i;

    // get the number of latches on the edge
    nLatches = Abc_ObjFaninL( pObj, Edge );
    assert( nLatches <= ABC_MAX_EDGE_LATCH );
    for ( i = nLatches - 1; i >= 0; i-- )
    {
        // get the value of this latch
        Init = Abc_ObjFaninLGetInitOne( pObj, Edge, i );
        if ( Init != ABC_INIT_NONE )
            continue;
        // get the retiming edge
        RetEdge.iNode  = pObj->Id;
        RetEdge.iEdge  = Edge;
        RetEdge.iLatch = i;
        // remove entry from table and add it with a different key
        if ( !stmm_delete( tTable, (char **)&RetEdge, (char **)&pFanoutNew ) )
            assert( 0 );
        RetEdge.iLatch++;
        if ( stmm_insert( tTable, (char *)Abc_RetEdge2Int(RetEdge), (char *)pFanoutNew ) )
            assert( 0 );
    }
}

/**Function*************************************************************

  Synopsis    [Sets the initial values.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkRetimeSetInitialValues( Abc_Ntk_t * pNtk, stmm_table * tTable, int * pModel )
{
    Abc_Obj_t * pNode;
    stmm_generator * gen;
    Abc_RetEdge_t RetEdge;
    Abc_InitType_t Init;
    int i;

    i = 0;
    stmm_foreach_item( tTable, gen, (char **)&RetEdge, NULL )
    {
        pNode = Abc_NtkObj( pNtk, RetEdge.iNode );
        Init = pModel? (pModel[i]? ABC_INIT_ONE : ABC_INIT_ZERO) : ABC_INIT_DC;
        Abc_ObjFaninLSetInitOne( pNode, RetEdge.iEdge, RetEdge.iLatch, Init );
        i++;
    }
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////