1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
|
/**CFile****************************************************************
FileName [abcRec.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Record of semi-canonical AIG subgraphs.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcRec.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "abc.h"
#include "if.h"
#include "kit.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
typedef struct Abc_ManRec_t_ Abc_ManRec_t;
struct Abc_ManRec_t_
{
Abc_Ntk_t * pNtk; // the record
Vec_Ptr_t * vTtElems; // the elementary truth tables
Vec_Ptr_t * vTtNodes; // the node truth tables
Abc_Obj_t ** pBins; // hash table mapping truth tables into nodes
int nBins; // the number of allocated bins
int nVars; // the number of variables
int nVarsInit; // the number of variables requested initially
int nWords; // the number of TT words
int nCuts; // the max number of cuts to use
// temporaries
int * pBytes; // temporary storage for minterms
int * pMints; // temporary storage for minterm counters
unsigned * pTemp1; // temporary truth table
unsigned * pTemp2; // temporary truth table
Vec_Ptr_t * vNodes; // the temporary nodes
Vec_Ptr_t * vTtTemps; // the truth tables for the internal nodes of the cut
Vec_Ptr_t * vLabels; // temporary storage for AIG node labels
Vec_Str_t * vCosts; // temporary storage for costs
Vec_Int_t * vMemory; // temporary memory for truth tables
// statistics
int nTried; // the number of cuts tried
int nFilterSize; // the number of same structures
int nFilterRedund; // the number of same structures
int nFilterVolume; // the number of same structures
int nFilterTruth; // the number of same structures
int nFilterError; // the number of same structures
int nFilterSame; // the number of same structures
int nAdded; // the number of subgraphs added
int nAddedFuncs; // the number of functions added
// rewriting
int nFunsFound; // the found functions
int nFunsNotFound; // the missing functions
// runtime
int timeCollect; // the runtime to canonicize
int timeTruth; // the runtime to canonicize
int timeCanon; // the runtime to canonicize
int timeOther; // the runtime to canonicize
int timeTotal; // the runtime to canonicize
};
// the truth table is canonicized in such a way that for (00000) its value is 0
static Abc_Obj_t ** Abc_NtkRecTableLookup( Abc_ManRec_t * p, unsigned * pTruth, int nVars );
static int Abc_NtkRecComputeTruth( Abc_Obj_t * pObj, Vec_Ptr_t * vTtNodes, int nVars );
static int Abc_NtkRecAddCutCheckCycle_rec( Abc_Obj_t * pRoot, Abc_Obj_t * pObj );
static Abc_ManRec_t * s_pMan = NULL;
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Starts the record for the given network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRecIsRunning()
{
return s_pMan != NULL;
}
/**Function*************************************************************
Synopsis [Starts the record for the given network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRecVarNum()
{
return (s_pMan != NULL)? s_pMan->nVars : -1;
}
/**Function*************************************************************
Synopsis [Starts the record for the given network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Abc_NtkRecMemory()
{
return s_pMan->vMemory;
}
/**Function*************************************************************
Synopsis [Starts the record for the given network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkRecStart( Abc_Ntk_t * pNtk, int nVars, int nCuts )
{
Abc_ManRec_t * p;
Abc_Obj_t * pObj, ** ppSpot;
char Buffer[10];
unsigned * pTruth;
int i, RetValue;
int clkTotal = clock(), clk;
assert( s_pMan == NULL );
if ( pNtk == NULL )
{
assert( nVars > 2 && nVars <= 16 );
pNtk = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
pNtk->pName = Extra_UtilStrsav( "record" );
}
else
{
if ( Abc_NtkGetChoiceNum(pNtk) > 0 )
{
printf( "The starting record should be a network without choice nodes.\n" );
return;
}
if ( Abc_NtkPiNum(pNtk) > 16 )
{
printf( "The starting record should be a network with no more than %d primary inputs.\n", 16 );
return;
}
if ( Abc_NtkPiNum(pNtk) > nVars )
printf( "The starting record has %d inputs (warning only).\n", Abc_NtkPiNum(pNtk) );
pNtk = Abc_NtkDup( pNtk );
}
// create the primary inputs
for ( i = Abc_NtkPiNum(pNtk); i < nVars; i++ )
{
pObj = Abc_NtkCreatePi( pNtk );
Buffer[0] = 'a' + i;
Buffer[1] = 0;
Abc_ObjAssignName( pObj, Buffer, NULL );
}
Abc_NtkCleanCopy( pNtk );
Abc_NtkCleanEquiv( pNtk );
// start the manager
p = ABC_ALLOC( Abc_ManRec_t, 1 );
memset( p, 0, sizeof(Abc_ManRec_t) );
p->pNtk = pNtk;
p->nVars = Abc_NtkPiNum(pNtk);
p->nWords = Kit_TruthWordNum( p->nVars );
p->nCuts = nCuts;
p->nVarsInit = nVars;
// create elementary truth tables
p->vTtElems = Vec_PtrAlloc( 0 ); assert( p->vTtElems->pArray == NULL );
p->vTtElems->nSize = p->nVars;
p->vTtElems->nCap = p->nVars;
p->vTtElems->pArray = (void *)Extra_TruthElementary( p->nVars );
// allocate room for node truth tables
if ( Abc_NtkObjNum(pNtk) > (1<<14) )
p->vTtNodes = Vec_PtrAllocSimInfo( 2 * Abc_NtkObjNum(pNtk), p->nWords );
else
p->vTtNodes = Vec_PtrAllocSimInfo( 1<<14, p->nWords );
// create hash table
p->nBins = 50011;
p->pBins = ABC_ALLOC( Abc_Obj_t *, p->nBins );
memset( p->pBins, 0, sizeof(Abc_Obj_t *) * p->nBins );
// set elementary tables
Kit_TruthFill( Vec_PtrEntry(p->vTtNodes, 0), p->nVars );
Abc_NtkForEachPi( pNtk, pObj, i )
Kit_TruthCopy( Vec_PtrEntry(p->vTtNodes, pObj->Id), Vec_PtrEntry(p->vTtElems, i), p->nVars );
// compute the tables
clk = clock();
Abc_AigForEachAnd( pNtk, pObj, i )
{
RetValue = Abc_NtkRecComputeTruth( pObj, p->vTtNodes, p->nVars );
assert( RetValue );
}
p->timeTruth += clock() - clk;
// insert the PO nodes into the table
Abc_NtkForEachPo( pNtk, pObj, i )
{
p->nTried++;
p->nAdded++;
pObj = Abc_ObjFanin0(pObj);
pTruth = Vec_PtrEntry( p->vTtNodes, pObj->Id );
// add the resulting truth table to the hash table
ppSpot = Abc_NtkRecTableLookup( p, pTruth, p->nVars );
assert( pObj->pEquiv == NULL );
assert( pObj->pCopy == NULL );
if ( *ppSpot == NULL )
{
p->nAddedFuncs++;
*ppSpot = pObj;
}
else
{
pObj->pEquiv = (*ppSpot)->pEquiv;
(*ppSpot)->pEquiv = (Hop_Obj_t *)pObj;
if ( !Abc_NtkRecAddCutCheckCycle_rec(*ppSpot, pObj) )
printf( "Loop!\n" );
}
}
// temporaries
p->pBytes = ABC_ALLOC( int, 4*p->nWords );
p->pMints = ABC_ALLOC( int, 2*p->nVars );
p->pTemp1 = ABC_ALLOC( unsigned, p->nWords );
p->pTemp2 = ABC_ALLOC( unsigned, p->nWords );
p->vNodes = Vec_PtrAlloc( 100 );
p->vTtTemps = Vec_PtrAllocSimInfo( 64, p->nWords );
p->vMemory = Vec_IntAlloc( Abc_TruthWordNum(p->nVars) * 1000 );
// set the manager
s_pMan = p;
p->timeTotal += clock() - clkTotal;
}
/**Function*************************************************************
Synopsis [Returns the given record.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkRecStop()
{
assert( s_pMan != NULL );
if ( s_pMan->pNtk )
Abc_NtkDelete( s_pMan->pNtk );
Vec_PtrFree( s_pMan->vTtNodes );
Vec_PtrFree( s_pMan->vTtElems );
ABC_FREE( s_pMan->pBins );
// temporaries
ABC_FREE( s_pMan->pBytes );
ABC_FREE( s_pMan->pMints );
ABC_FREE( s_pMan->pTemp1 );
ABC_FREE( s_pMan->pTemp2 );
Vec_PtrFree( s_pMan->vNodes );
Vec_PtrFree( s_pMan->vTtTemps );
if ( s_pMan->vLabels )
Vec_PtrFree( s_pMan->vLabels );
if ( s_pMan->vCosts )
Vec_StrFree( s_pMan->vCosts );
Vec_IntFree( s_pMan->vMemory );
ABC_FREE( s_pMan );
s_pMan = NULL;
}
/**Function*************************************************************
Synopsis [Returns the given record.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkRecUse()
{
Abc_ManRec_t * p = s_pMan;
Abc_Ntk_t * pNtk = p->pNtk;
assert( p != NULL );
Abc_NtkRecPs();
p->pNtk = NULL;
Abc_NtkRecStop();
return pNtk;
}
static inline void Abc_ObjSetMax( Abc_Obj_t * pObj, int Value ) { assert( pObj->Level < 0xff ); pObj->Level = (Value << 8) | (pObj->Level & 0xff); }
static inline void Abc_ObjClearMax( Abc_Obj_t * pObj ) { pObj->Level = (pObj->Level & 0xff); }
static inline int Abc_ObjGetMax( Abc_Obj_t * pObj ) { return (pObj->Level >> 8) & 0xff; }
/**Function*************************************************************
Synopsis [Print statistics about the current record.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkRecPs()
{
int Counter, Counters[17] = {0};
int CounterS, CountersS[17] = {0};
Abc_ManRec_t * p = s_pMan;
Abc_Ntk_t * pNtk = p->pNtk;
Abc_Obj_t * pObj, * pEntry, * pTemp;
int i;
// set the max PI number
Abc_NtkForEachPi( pNtk, pObj, i )
Abc_ObjSetMax( pObj, i+1 );
Abc_AigForEachAnd( pNtk, pObj, i )
Abc_ObjSetMax( pObj, ABC_MAX( Abc_ObjGetMax(Abc_ObjFanin0(pObj)), Abc_ObjGetMax(Abc_ObjFanin1(pObj)) ) );
// go through the table
Counter = CounterS = 0;
for ( i = 0; i < p->nBins; i++ )
for ( pEntry = p->pBins[i]; pEntry; pEntry = pEntry->pCopy )
{
Counters[ Abc_ObjGetMax(pEntry) ]++;
Counter++;
for ( pTemp = pEntry; pTemp; pTemp = (Abc_Obj_t *)pTemp->pEquiv )
{
assert( Abc_ObjGetMax(pTemp) == Abc_ObjGetMax(pEntry) );
CountersS[ Abc_ObjGetMax(pTemp) ]++;
CounterS++;
}
}
// printf( "Functions = %d. Expected = %d.\n", Counter, p->nAddedFuncs );
// printf( "Subgraphs = %d. Expected = %d.\n", CounterS, p->nAdded );
assert( Counter == p->nAddedFuncs );
assert( CounterS == p->nAdded );
// clean
Abc_NtkForEachObj( pNtk, pObj, i )
{
Abc_ObjClearMax( pObj );
}
printf( "The record with %d AND nodes in %d subgraphs for %d functions with %d inputs:\n",
Abc_NtkNodeNum(pNtk), Abc_NtkPoNum(pNtk), p->nAddedFuncs, Abc_NtkPiNum(pNtk) );
for ( i = 0; i <= 16; i++ )
{
if ( Counters[i] )
printf( "Inputs = %2d. Funcs = %8d. Subgrs = %8d. Ratio = %6.2f.\n", i, Counters[i], CountersS[i], 1.0*CountersS[i]/Counters[i] );
}
printf( "Subgraphs tried = %8d. (%6.2f %%)\n", p->nTried, !p->nTried? 0 : 100.0*p->nTried/p->nTried );
printf( "Subgraphs filtered by support size = %8d. (%6.2f %%)\n", p->nFilterSize, !p->nTried? 0 : 100.0*p->nFilterSize/p->nTried );
printf( "Subgraphs filtered by structural redundancy = %8d. (%6.2f %%)\n", p->nFilterRedund, !p->nTried? 0 : 100.0*p->nFilterRedund/p->nTried );
printf( "Subgraphs filtered by volume = %8d. (%6.2f %%)\n", p->nFilterVolume, !p->nTried? 0 : 100.0*p->nFilterVolume/p->nTried );
printf( "Subgraphs filtered by TT redundancy = %8d. (%6.2f %%)\n", p->nFilterTruth, !p->nTried? 0 : 100.0*p->nFilterTruth/p->nTried );
printf( "Subgraphs filtered by error = %8d. (%6.2f %%)\n", p->nFilterError, !p->nTried? 0 : 100.0*p->nFilterError/p->nTried );
printf( "Subgraphs filtered by isomorphism = %8d. (%6.2f %%)\n", p->nFilterSame, !p->nTried? 0 : 100.0*p->nFilterSame/p->nTried );
printf( "Subgraphs added = %8d. (%6.2f %%)\n", p->nAdded, !p->nTried? 0 : 100.0*p->nAdded/p->nTried );
printf( "Functions added = %8d. (%6.2f %%)\n", p->nAddedFuncs, !p->nTried? 0 : 100.0*p->nAddedFuncs/p->nTried );
p->timeOther = p->timeTotal - p->timeCollect - p->timeTruth - p->timeCanon;
ABC_PRTP( "Collecting nodes ", p->timeCollect, p->timeTotal );
ABC_PRTP( "Computing truth ", p->timeTruth, p->timeTotal );
ABC_PRTP( "Canonicizing ", p->timeCanon, p->timeTotal );
ABC_PRTP( "Other ", p->timeOther, p->timeTotal );
ABC_PRTP( "TOTAL ", p->timeTotal, p->timeTotal );
if ( p->nFunsFound )
printf( "During rewriting found = %d and not found = %d functions.\n", p->nFunsFound, p->nFunsNotFound );
}
/**Function*************************************************************
Synopsis [Filters the current record.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkRecFilter( int iVar, int iPlus )
{
}
/**Function*************************************************************
Synopsis [Returns the hash key.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline unsigned Abc_NtkRecTableHash( unsigned * pTruth, int nVars, int nBins, int * pPrimes )
{
int i, nWords = Kit_TruthWordNum( nVars );
unsigned uHash = 0;
for ( i = 0; i < nWords; i++ )
uHash ^= pTruth[i] * pPrimes[i & 0x7];
return uHash % nBins;
}
/**Function*************************************************************
Synopsis [Returns the given record.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t ** Abc_NtkRecTableLookup( Abc_ManRec_t * p, unsigned * pTruth, int nVars )
{
static int s_Primes[10] = { 1291, 1699, 2357, 4177, 5147, 5647, 6343, 7103, 7873, 8147 };
Abc_Obj_t ** ppSpot, * pEntry;
ppSpot = p->pBins + Abc_NtkRecTableHash( pTruth, nVars, p->nBins, s_Primes );
for ( pEntry = *ppSpot; pEntry; ppSpot = &pEntry->pCopy, pEntry = pEntry->pCopy )
if ( Kit_TruthIsEqualWithPhase(Vec_PtrEntry(p->vTtNodes, pEntry->Id), pTruth, nVars) )
return ppSpot;
return ppSpot;
}
/**Function*************************************************************
Synopsis [Computes the truth table of the node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRecComputeTruth( Abc_Obj_t * pObj, Vec_Ptr_t * vTtNodes, int nVars )
{
unsigned * pTruth, * pTruth0, * pTruth1;
int RetValue;
assert( Abc_ObjIsNode(pObj) );
pTruth = Vec_PtrEntry( vTtNodes, pObj->Id );
pTruth0 = Vec_PtrEntry( vTtNodes, Abc_ObjFaninId0(pObj) );
pTruth1 = Vec_PtrEntry( vTtNodes, Abc_ObjFaninId1(pObj) );
Kit_TruthAndPhase( pTruth, pTruth0, pTruth1, nVars, Abc_ObjFaninC0(pObj), Abc_ObjFaninC1(pObj) );
assert( (pTruth[0] & 1) == pObj->fPhase );
RetValue = ((pTruth[0] & 1) == pObj->fPhase);
return RetValue;
}
/**Function*************************************************************
Synopsis [Performs renoding as technology mapping.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkRecAdd( Abc_Ntk_t * pNtk )
{
extern Abc_Ntk_t * Abc_NtkIf( Abc_Ntk_t * pNtk, If_Par_t * pPars );
extern int Abc_NtkRecAddCut( If_Man_t * pIfMan, If_Obj_t * pRoot, If_Cut_t * pCut );
If_Par_t Pars, * pPars = &Pars;
Abc_Ntk_t * pNtkNew;
int clk = clock();
if ( Abc_NtkGetChoiceNum( pNtk ) )
printf( "Performing renoding with choices.\n" );
// set defaults
memset( pPars, 0, sizeof(If_Par_t) );
// user-controlable paramters
pPars->nLutSize = s_pMan->nVarsInit;
pPars->nCutsMax = s_pMan->nCuts;
pPars->nFlowIters = 0;
pPars->nAreaIters = 0;
pPars->DelayTarget = -1;
pPars->Epsilon = (float)0.005;
pPars->fPreprocess = 0;
pPars->fArea = 1;
pPars->fFancy = 0;
pPars->fExpRed = 0;
pPars->fLatchPaths = 0;
pPars->fSeqMap = 0;
pPars->fVerbose = 0;
// internal parameters
pPars->fTruth = 0;
pPars->fUsePerm = 0;
pPars->nLatches = 0;
pPars->pLutLib = NULL; // Abc_FrameReadLibLut();
pPars->pTimesArr = NULL;
pPars->pTimesArr = NULL;
pPars->fUseBdds = 0;
pPars->fUseSops = 0;
pPars->fUseCnfs = 0;
pPars->fUseMv = 0;
pPars->pFuncCost = NULL;
pPars->pFuncUser = Abc_NtkRecAddCut;
// perform recording
pNtkNew = Abc_NtkIf( pNtk, pPars );
Abc_NtkDelete( pNtkNew );
s_pMan->timeTotal += clock() - clk;
// if ( !Abc_NtkCheck( s_pMan->pNtk ) )
// printf( "Abc_NtkRecAdd: The network check has failed.\n" );
}
/**Function*************************************************************
Synopsis [Adds the cut function to the internal storage.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkRecCollectNodes_rec( If_Obj_t * pNode, Vec_Ptr_t * vNodes )
{
if ( pNode->fMark )
return;
pNode->fMark = 1;
assert( If_ObjIsAnd(pNode) );
Abc_NtkRecCollectNodes_rec( If_ObjFanin0(pNode), vNodes );
Abc_NtkRecCollectNodes_rec( If_ObjFanin1(pNode), vNodes );
Vec_PtrPush( vNodes, pNode );
}
/**Function*************************************************************
Synopsis [Adds the cut function to the internal storage.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRecCollectNodes( If_Man_t * pIfMan, If_Obj_t * pRoot, If_Cut_t * pCut, Vec_Ptr_t * vNodes )
{
If_Obj_t * pLeaf;
int i, RetValue = 1;
// collect the internal nodes of the cut
Vec_PtrClear( vNodes );
If_CutForEachLeaf( pIfMan, pCut, pLeaf, i )
{
Vec_PtrPush( vNodes, pLeaf );
assert( pLeaf->fMark == 0 );
pLeaf->fMark = 1;
}
// collect other nodes
Abc_NtkRecCollectNodes_rec( pRoot, vNodes );
// check if there are leaves, such that both of their fanins are marked
// this indicates a redundant cut
If_CutForEachLeaf( pIfMan, pCut, pLeaf, i )
{
if ( !If_ObjIsAnd(pLeaf) )
continue;
if ( If_ObjFanin0(pLeaf)->fMark && If_ObjFanin1(pLeaf)->fMark )
{
RetValue = 0;
break;
}
}
// clean the mark
Vec_PtrForEachEntry( If_Obj_t *, vNodes, pLeaf, i )
pLeaf->fMark = 0;
/*
if ( pRoot->Id == 2639 )
{
// print the cut
Vec_PtrForEachEntry( If_Obj_t *, vNodes, pLeaf, i )
{
if ( If_ObjIsAnd(pLeaf) )
printf( "%4d = %c%4d & %c%4d\n", pLeaf->Id,
(If_ObjFaninC0(pLeaf)? '-':'+'), If_ObjFanin0(pLeaf)->Id,
(If_ObjFaninC1(pLeaf)? '-':'+'), If_ObjFanin1(pLeaf)->Id );
else
printf( "%4d = pi\n", pLeaf->Id );
}
printf( "\n" );
}
*/
return RetValue;
}
/**Function*************************************************************
Synopsis [Computes truth tables of nodes in the cut.]
Description [Returns 0 if the TT does not depend on some cut variables.
Or if the TT can be expressed simpler using other nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRecCutTruth( Vec_Ptr_t * vNodes, int nLeaves, Vec_Ptr_t * vTtTemps, Vec_Ptr_t * vTtElems )
{
unsigned * pSims, * pSims0, * pSims1;
unsigned * pTemp = s_pMan->pTemp2;
unsigned uWord;
If_Obj_t * pObj, * pObj2, * pRoot;
int i, k, nLimit, nInputs = s_pMan->nVars;
assert( Vec_PtrSize(vNodes) > nLeaves );
// set the elementary truth tables and compute the truth tables of the nodes
Vec_PtrForEachEntry( If_Obj_t *, vNodes, pObj, i )
{
pObj->pCopy = Vec_PtrEntry(vTtTemps, i);
pSims = (unsigned *)pObj->pCopy;
if ( i < nLeaves )
{
Kit_TruthCopy( pSims, Vec_PtrEntry(vTtElems, i), nInputs );
continue;
}
assert( If_ObjIsAnd(pObj) );
// get hold of the simulation information
pSims0 = (unsigned *)If_ObjFanin0(pObj)->pCopy;
pSims1 = (unsigned *)If_ObjFanin1(pObj)->pCopy;
// simulate the node
Kit_TruthAndPhase( pSims, pSims0, pSims1, nInputs, If_ObjFaninC0(pObj), If_ObjFaninC1(pObj) );
}
// check the support size
pRoot = Vec_PtrEntryLast( vNodes );
pSims = (unsigned *)pRoot->pCopy;
if ( Kit_TruthSupport(pSims, nInputs) != Kit_BitMask(nLeaves) )
return 0;
// make sure none of the nodes has the same simulation info as the output
// check pairwise comparisons
nLimit = Vec_PtrSize(vNodes) - 1;
Vec_PtrForEachEntryStop( If_Obj_t *, vNodes, pObj, i, nLimit )
{
pSims0 = (unsigned *)pObj->pCopy;
if ( Kit_TruthIsEqualWithPhase(pSims, pSims0, nInputs) )
return 0;
Vec_PtrForEachEntryStop( If_Obj_t *, vNodes, pObj2, k, i )
{
if ( (If_ObjFanin0(pRoot) == pObj && If_ObjFanin1(pRoot) == pObj2) ||
(If_ObjFanin1(pRoot) == pObj && If_ObjFanin0(pRoot) == pObj2) )
continue;
pSims1 = (unsigned *)pObj2->pCopy;
uWord = pSims0[0] & pSims1[0];
if ( pSims[0] == uWord || pSims[0] == ~uWord )
{
Kit_TruthAndPhase( pTemp, pSims0, pSims1, nInputs, 0, 0 );
if ( Kit_TruthIsEqualWithPhase(pSims, pTemp, nInputs) )
return 0;
}
uWord = pSims0[0] & ~pSims1[0];
if ( pSims[0] == uWord || pSims[0] == ~uWord )
{
Kit_TruthAndPhase( pTemp, pSims0, pSims1, nInputs, 0, 1 );
if ( Kit_TruthIsEqualWithPhase(pSims, pTemp, nInputs) )
return 0;
}
uWord = ~pSims0[0] & pSims1[0];
if ( pSims[0] == uWord || pSims[0] == ~uWord )
{
Kit_TruthAndPhase( pTemp, pSims0, pSims1, nInputs, 1, 0 );
if ( Kit_TruthIsEqualWithPhase(pSims, pTemp, nInputs) )
return 0;
}
uWord = ~pSims0[0] & ~pSims1[0];
if ( pSims[0] == uWord || pSims[0] == ~uWord )
{
Kit_TruthAndPhase( pTemp, pSims0, pSims1, nInputs, 1, 1 );
if ( Kit_TruthIsEqualWithPhase(pSims, pTemp, nInputs) )
return 0;
}
}
}
return 1;
}
/**Function*************************************************************
Synopsis [Adds the cut function to the internal storage.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRecAddCutCheckCycle_rec( Abc_Obj_t * pRoot, Abc_Obj_t * pObj )
{
assert( pRoot->Level > 0 );
if ( pObj->Level < pRoot->Level )
return 1;
if ( pObj == pRoot )
return 0;
if ( !Abc_NtkRecAddCutCheckCycle_rec(pRoot, Abc_ObjFanin0(pObj)) )
return 0;
if ( !Abc_NtkRecAddCutCheckCycle_rec(pRoot, Abc_ObjFanin1(pObj)) )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis [Adds the cut function to the internal storage.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRecAddCut( If_Man_t * pIfMan, If_Obj_t * pRoot, If_Cut_t * pCut )
{
static int s_MaxSize[16] = { 0 };
char Buffer[40], Name[20], Truth[20];
char pCanonPerm[16];
Abc_Obj_t * pObj = NULL, * pFanin0, * pFanin1, ** ppSpot, * pObjPo;
Abc_Ntk_t * pAig = s_pMan->pNtk;
If_Obj_t * pIfObj;
Vec_Ptr_t * vNodes = s_pMan->vNodes;
unsigned * pInOut = s_pMan->pTemp1;
unsigned * pTemp = s_pMan->pTemp2;
unsigned * pTruth;
int i, RetValue, nNodes, nNodesBeg, nInputs = s_pMan->nVars, nLeaves = If_CutLeaveNum(pCut);
unsigned uCanonPhase;
int clk;
assert( nInputs <= 16 );
assert( nInputs == (int)pCut->nLimit );
s_pMan->nTried++;
// skip small cuts
if ( nLeaves < 3 )
{
s_pMan->nFilterSize++;
return 1;
}
// collect internal nodes and skip redundant cuts
clk = clock();
RetValue = Abc_NtkRecCollectNodes( pIfMan, pRoot, pCut, vNodes );
s_pMan->timeCollect += clock() - clk;
if ( !RetValue )
{
s_pMan->nFilterRedund++;
return 1;
}
// skip cuts with very large volume
if ( Vec_PtrSize(vNodes) > nLeaves + 3*(nLeaves-1) + s_MaxSize[nLeaves] )
{
s_pMan->nFilterVolume++;
return 1;
}
// compute truth table and skip the redundant structures
clk = clock();
RetValue = Abc_NtkRecCutTruth( vNodes, nLeaves, s_pMan->vTtTemps, s_pMan->vTtElems );
s_pMan->timeTruth += clock() - clk;
if ( !RetValue )
{
s_pMan->nFilterTruth++;
return 1;
}
// copy the truth table
Kit_TruthCopy( pInOut, (unsigned *)pRoot->pCopy, nInputs );
// set permutation
for ( i = 0; i < nInputs; i++ )
pCanonPerm[i] = i;
// semi-canonicize the truth table
clk = clock();
uCanonPhase = Kit_TruthSemiCanonicize( pInOut, pTemp, nInputs, pCanonPerm, (short *)s_pMan->pMints );
s_pMan->timeCanon += clock() - clk;
// pCanonPerm and uCanonPhase show what was the variable corresponding to each var in the current truth
// go through the variables in the new truth table
for ( i = 0; i < nLeaves; i++ )
{
// get hold of the corresponding leaf
pIfObj = If_ManObj( pIfMan, pCut->pLeaves[(int)pCanonPerm[i]] );
// get hold of the corresponding new node
pObj = Abc_NtkPi( pAig, i );
pObj = Abc_ObjNotCond( pObj, (uCanonPhase & (1 << i)) );
// map them
pIfObj->pCopy = pObj;
/*
if ( pRoot->Id == 2639 )
{
unsigned uSupp;
printf( "Node %6d : ", pIfObj->Id );
printf( "Support " );
uSupp = Kit_TruthSupport(Vec_PtrEntry( s_pMan->vTtNodes, Abc_ObjRegular(pObj)->Id ), nInputs);
Extra_PrintBinary( stdout, &uSupp, nInputs );
printf( " " );
Extra_PrintBinary( stdout, Vec_PtrEntry( s_pMan->vTtNodes, Abc_ObjRegular(pObj)->Id ), 1<<6 );
printf( "\n" );
}
*/
}
// build the node and compute its truth table
nNodesBeg = Abc_NtkObjNumMax( pAig );
Vec_PtrForEachEntryStart( If_Obj_t *, vNodes, pIfObj, i, nLeaves )
{
pFanin0 = Abc_ObjNotCond( If_ObjFanin0(pIfObj)->pCopy, If_ObjFaninC0(pIfObj) );
pFanin1 = Abc_ObjNotCond( If_ObjFanin1(pIfObj)->pCopy, If_ObjFaninC1(pIfObj) );
nNodes = Abc_NtkObjNumMax( pAig );
pObj = Abc_AigAnd( pAig->pManFunc, pFanin0, pFanin1 );
assert( !Abc_ObjIsComplement(pObj) );
pIfObj->pCopy = pObj;
if ( pObj->Id == nNodes )
{
// increase storage for truth tables
if ( Vec_PtrSize(s_pMan->vTtNodes) <= pObj->Id )
Vec_PtrDoubleSimInfo(s_pMan->vTtNodes);
// compute the truth table
RetValue = Abc_NtkRecComputeTruth( pObj, s_pMan->vTtNodes, nInputs );
if ( RetValue == 0 )
{
s_pMan->nFilterError++;
printf( "T" );
return 1;
}
}
}
assert(pObj);
pTruth = Vec_PtrEntry( s_pMan->vTtNodes, pObj->Id );
if ( Kit_TruthSupport(pTruth, nInputs) != Kit_BitMask(nLeaves) )
{
s_pMan->nFilterError++;
printf( "S" );
return 1;
}
// compare the truth tables
if ( !Kit_TruthIsEqualWithPhase( pTruth, pInOut, nInputs ) )
{
s_pMan->nFilterError++;
printf( "F" );
return 1;
}
// Extra_PrintBinary( stdout, pInOut, 8 ); printf( "\n" );
// if not new nodes were added and the node has a CO fanout
if ( nNodesBeg == Abc_NtkObjNumMax(pAig) && Abc_NodeFindCoFanout(pObj) != NULL )
{
s_pMan->nFilterSame++;
return 1;
}
s_pMan->nAdded++;
// create PO for this node
pObjPo = Abc_NtkCreatePo(pAig);
Abc_ObjAddFanin( pObjPo, pObj );
// assign the name to this PO
sprintf( Name, "%d_%06d", nLeaves, Abc_NtkPoNum(pAig) );
if ( (nInputs <= 6) && 0 )
{
Extra_PrintHexadecimalString( Truth, pInOut, nInputs );
sprintf( Buffer, "%s_%s", Name, Truth );
}
else
{
sprintf( Buffer, "%s", Name );
}
Abc_ObjAssignName( pObjPo, Buffer, NULL );
// add the resulting truth table to the hash table
ppSpot = Abc_NtkRecTableLookup( s_pMan, pTruth, nInputs );
assert( pObj->pEquiv == NULL );
assert( pObj->pCopy == NULL );
if ( *ppSpot == NULL )
{
s_pMan->nAddedFuncs++;
*ppSpot = pObj;
}
else
{
pObj->pEquiv = (*ppSpot)->pEquiv;
(*ppSpot)->pEquiv = (Hop_Obj_t *)pObj;
if ( !Abc_NtkRecAddCutCheckCycle_rec(*ppSpot, pObj) )
printf( "Loop!\n" );
}
return 1;
}
/**Function*************************************************************
Synopsis [Labels the record AIG with the corresponding new AIG nodes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkRecStrashNodeLabel_rec( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pObj, int fBuild, Vec_Ptr_t * vLabels )
{
Abc_Obj_t * pFanin0New, * pFanin1New, * pLabel;
assert( !Abc_ObjIsComplement(pObj) );
// if this node is already visited, skip
if ( Abc_NodeIsTravIdCurrent( pObj ) )
return Vec_PtrEntry( vLabels, pObj->Id );
assert( Abc_ObjIsNode(pObj) );
// mark the node as visited
Abc_NodeSetTravIdCurrent( pObj );
// label the fanins
pFanin0New = Abc_NtkRecStrashNodeLabel_rec( pNtkNew, Abc_ObjFanin0(pObj), fBuild, vLabels );
pFanin1New = Abc_NtkRecStrashNodeLabel_rec( pNtkNew, Abc_ObjFanin1(pObj), fBuild, vLabels );
// label the node if possible
pLabel = NULL;
if ( pFanin0New && pFanin1New )
{
pFanin0New = Abc_ObjNotCond( pFanin0New, Abc_ObjFaninC0(pObj) );
pFanin1New = Abc_ObjNotCond( pFanin1New, Abc_ObjFaninC1(pObj) );
if ( fBuild )
pLabel = Abc_AigAnd( pNtkNew->pManFunc, pFanin0New, pFanin1New );
else
pLabel = Abc_AigAndLookup( pNtkNew->pManFunc, pFanin0New, pFanin1New );
}
Vec_PtrWriteEntry( vLabels, pObj->Id, pLabel );
return pLabel;
}
/**Function*************************************************************
Synopsis [Counts the area of the given node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRecStrashNodeCount_rec( Abc_Obj_t * pObj, Vec_Str_t * vCosts, Vec_Ptr_t * vLabels )
{
int Cost0, Cost1;
if ( Vec_PtrEntry( vLabels, pObj->Id ) )
return 0;
assert( Abc_ObjIsNode(pObj) );
// if this node is already visited, skip
if ( Abc_NodeIsTravIdCurrent( pObj ) )
return Vec_StrEntry( vCosts, pObj->Id );
// mark the node as visited
Abc_NodeSetTravIdCurrent( pObj );
// count for the fanins
Cost0 = Abc_NtkRecStrashNodeCount_rec( Abc_ObjFanin0(pObj), vCosts, vLabels );
Cost1 = Abc_NtkRecStrashNodeCount_rec( Abc_ObjFanin1(pObj), vCosts, vLabels );
Vec_StrWriteEntry( vCosts, pObj->Id, (char)(Cost0 + Cost1 + 1) );
return Cost0 + Cost1 + 1;
}
/**Function*************************************************************
Synopsis [Strashes the given node using its local function.]
Description [Assumes that the fanins are already strashed.
Returns 0 if the function is not found in the table.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkRecStrashNode( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pObj, unsigned * pTruth, int nVars )
{
char pCanonPerm[16];
Abc_Ntk_t * pAig = s_pMan->pNtk;
unsigned * pInOut = s_pMan->pTemp1;
unsigned * pTemp = s_pMan->pTemp2;
unsigned * pTruthRec;
Abc_Obj_t * pCand, * pCandMin, * pLeaf, * pFanin, ** ppSpot;
unsigned uCanonPhase;
int i, nLeaves, CostMin, Cost, nOnes, fCompl;
// check if the record works
nLeaves = Abc_ObjFaninNum(pObj);
assert( nLeaves >= 3 && nLeaves <= s_pMan->nVars );
pFanin = Abc_ObjFanin0(pObj);
assert( Abc_ObjRegular(pFanin->pCopy)->pNtk == pNtkNew );
assert( s_pMan != NULL );
assert( nVars == s_pMan->nVars );
// copy the truth table
Kit_TruthCopy( pInOut, pTruth, nVars );
// set permutation
for ( i = 0; i < nVars; i++ )
pCanonPerm[i] = i;
// canonicize the truth table
uCanonPhase = Kit_TruthSemiCanonicize( pInOut, pTemp, nVars, pCanonPerm, (short *)s_pMan->pMints );
// get hold of the curresponding class
ppSpot = Abc_NtkRecTableLookup( s_pMan, pInOut, nVars );
if ( *ppSpot == NULL )
{
s_pMan->nFunsNotFound++;
// printf( "The class of a function with %d inputs is not found.\n", nLeaves );
return 0;
}
s_pMan->nFunsFound++;
// make sure the truth table is the same
pTruthRec = Vec_PtrEntry( s_pMan->vTtNodes, (*ppSpot)->Id );
if ( !Kit_TruthIsEqualWithPhase( pTruthRec, pInOut, nVars ) )
{
assert( 0 );
return 0;
}
// allocate storage for costs
if ( s_pMan->vLabels && Vec_PtrSize(s_pMan->vLabels) < Abc_NtkObjNumMax(pAig) )
{
Vec_PtrFree( s_pMan->vLabels );
s_pMan->vLabels = NULL;
}
if ( s_pMan->vLabels == NULL )
s_pMan->vLabels = Vec_PtrStart( Abc_NtkObjNumMax(pAig) );
// go through the variables in the new truth table
Abc_NtkIncrementTravId( pAig );
for ( i = 0; i < nLeaves; i++ )
{
// get hold of the corresponding fanin
pFanin = Abc_ObjFanin( pObj, pCanonPerm[i] )->pCopy;
pFanin = Abc_ObjNotCond( pFanin, (uCanonPhase & (1 << i)) );
// label the PI of the AIG subgraphs with this fanin
pLeaf = Abc_NtkPi( pAig, i );
Vec_PtrWriteEntry( s_pMan->vLabels, pLeaf->Id, pFanin );
Abc_NodeSetTravIdCurrent( pLeaf );
}
// go through the candidates - and recursively label them
for ( pCand = *ppSpot; pCand; pCand = (Abc_Obj_t *)pCand->pEquiv )
Abc_NtkRecStrashNodeLabel_rec( pNtkNew, pCand, 0, s_pMan->vLabels );
// allocate storage for costs
if ( s_pMan->vCosts && Vec_StrSize(s_pMan->vCosts) < Abc_NtkObjNumMax(pAig) )
{
Vec_StrFree( s_pMan->vCosts );
s_pMan->vCosts = NULL;
}
if ( s_pMan->vCosts == NULL )
s_pMan->vCosts = Vec_StrStart( Abc_NtkObjNumMax(pAig) );
// find the best subgraph
CostMin = ABC_INFINITY;
pCandMin = NULL;
for ( pCand = *ppSpot; pCand; pCand = (Abc_Obj_t *)pCand->pEquiv )
{
// label the leaves
Abc_NtkIncrementTravId( pAig );
// count the number of non-labeled nodes
Cost = Abc_NtkRecStrashNodeCount_rec( pCand, s_pMan->vCosts, s_pMan->vLabels );
if ( CostMin > Cost )
{
// printf( "%d ", Cost );
CostMin = Cost;
pCandMin = pCand;
}
}
// printf( "\n" );
assert( pCandMin != NULL );
if ( pCandMin == NULL )
return 0;
// label the leaves
Abc_NtkIncrementTravId( pAig );
for ( i = 0; i < nLeaves; i++ )
Abc_NodeSetTravIdCurrent( Abc_NtkPi(pAig, i) );
// implement the subgraph
pObj->pCopy = Abc_NtkRecStrashNodeLabel_rec( pNtkNew, pCandMin, 1, s_pMan->vLabels );
assert( Abc_ObjRegular(pObj->pCopy)->pNtk == pNtkNew );
// determine phase difference
nOnes = Kit_TruthCountOnes(pTruth, nVars);
fCompl = (nOnes > (1<< nVars)/2);
// assert( fCompl == ((uCanonPhase & (1 << nVars)) > 0) );
nOnes = Kit_TruthCountOnes(pTruthRec, nVars);
fCompl ^= (nOnes > (1<< nVars)/2);
// complement
pObj->pCopy = Abc_ObjNotCond( pObj->pCopy, fCompl );
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|