1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
/**CFile****************************************************************
FileName [abcLutmin.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Minimization of the number of LUTs.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcLutmin.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#ifdef ABC_USE_CUDD
#include "bdd/extrab/extraBdd.h"
#endif
ABC_NAMESPACE_IMPL_START
/*
Implememented here is the algorithm for minimal-LUT decomposition
described in the paper: T. Sasao et al. "On the number of LUTs
to implement logic functions", To appear in Proc. IWLS'09.
*/
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
#ifdef ABC_USE_CUDD
/**Function*************************************************************
Synopsis [Check if a LUT can absort a fanin.]
Description [The fanins are (c, d0, d1).]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_ObjCheckAbsorb( Abc_Obj_t * pObj, Abc_Obj_t * pPivot, int nLutSize, Vec_Ptr_t * vFanins )
{
Abc_Obj_t * pFanin;
int i;
assert( Abc_ObjIsNode(pObj) && Abc_ObjIsNode(pPivot) );
// add fanins of the node
Vec_PtrClear( vFanins );
Abc_ObjForEachFanin( pObj, pFanin, i )
if ( pFanin != pPivot )
Vec_PtrPush( vFanins, pFanin );
// add fanins of the fanin
Abc_ObjForEachFanin( pPivot, pFanin, i )
{
Vec_PtrPushUnique( vFanins, pFanin );
if ( Vec_PtrSize(vFanins) > nLutSize )
return 0;
}
return 1;
}
/**Function*************************************************************
Synopsis [Check how many times a LUT can absorb a fanin.]
Description [The fanins are (c, d0, d1).]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkCheckAbsorb( Abc_Ntk_t * pNtk, int nLutSize )
{
Vec_Int_t * vCounts;
Vec_Ptr_t * vFanins;
Abc_Obj_t * pObj, * pFanin;
int i, k, Counter = 0, Counter2 = 0;
abctime clk = Abc_Clock();
vCounts = Vec_IntStart( Abc_NtkObjNumMax(pNtk) );
vFanins = Vec_PtrAlloc( 100 );
Abc_NtkForEachNode( pNtk, pObj, i )
Abc_ObjForEachFanin( pObj, pFanin, k )
if ( Abc_ObjIsNode(pFanin) && Abc_ObjCheckAbsorb( pObj, pFanin, nLutSize, vFanins ) )
{
Vec_IntAddToEntry( vCounts, Abc_ObjId(pFanin), 1 );
Counter++;
}
Vec_PtrFree( vFanins );
Abc_NtkForEachNode( pNtk, pObj, i )
if ( Vec_IntEntry(vCounts, Abc_ObjId(pObj)) == Abc_ObjFanoutNum(pObj) )
{
// printf( "%d ", Abc_ObjId(pObj) );
Counter2++;
}
printf( "Absorted = %6d. (%6.2f %%) Fully = %6d. (%6.2f %%) ",
Counter, 100.0 * Counter / Abc_NtkNodeNum(pNtk),
Counter2, 100.0 * Counter2 / Abc_NtkNodeNum(pNtk) );
Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
/**Function*************************************************************
Synopsis [Implements 2:1 MUX using one 3-LUT.]
Description [The fanins are (c, d0, d1).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddMux21( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] )
{
DdManager * dd = (DdManager *)pNtkNew->pManFunc;
Abc_Obj_t * pNode;
DdNode * bSpin, * bCof0, * bCof1;
pNode = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNode, pFanins[0] );
Abc_ObjAddFanin( pNode, pFanins[1] );
Abc_ObjAddFanin( pNode, pFanins[2] );
bSpin = Cudd_bddIthVar(dd, 0);
bCof0 = Cudd_bddIthVar(dd, 1);
bCof1 = Cudd_bddIthVar(dd, 2);
pNode->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNode->pData );
return pNode;
}
/**Function*************************************************************
Synopsis [Implements 4:1 MUX using one 6-LUT.]
Description [The fanins are (c0, c1, d00, d01, d10, d11).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddMux411( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] )
{
DdManager * dd = (DdManager *)pNtkNew->pManFunc;
Abc_Obj_t * pNode;
DdNode * bSpin, * bCof0, * bCof1;
pNode = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNode, pFanins[0] );
Abc_ObjAddFanin( pNode, pFanins[1] );
Abc_ObjAddFanin( pNode, pFanins[2] );
Abc_ObjAddFanin( pNode, pFanins[3] );
Abc_ObjAddFanin( pNode, pFanins[4] );
Abc_ObjAddFanin( pNode, pFanins[5] );
bSpin = Cudd_bddIthVar(dd, 1);
bCof0 = Cudd_bddIte( dd, bSpin, Cudd_bddIthVar(dd, 3), Cudd_bddIthVar(dd, 2) ); Cudd_Ref( bCof0 );
bCof1 = Cudd_bddIte( dd, bSpin, Cudd_bddIthVar(dd, 5), Cudd_bddIthVar(dd, 4) ); Cudd_Ref( bCof1 );
bSpin = Cudd_bddIthVar(dd, 0);
pNode->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNode->pData );
Cudd_RecursiveDeref( dd, bCof0 );
Cudd_RecursiveDeref( dd, bCof1 );
return pNode;
}
/**Function*************************************************************
Synopsis [Implementes 4:1 MUX using two 4-LUTs.]
Description [The fanins are (c0, c1, d00, d01, d10, d11).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddMux412( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] )
{
DdManager * dd = (DdManager *)pNtkNew->pManFunc;
Abc_Obj_t * pNodeBot, * pNodeTop;
DdNode * bSpin, * bCof0, * bCof1;
// bottom node
pNodeBot = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNodeBot, pFanins[0] );
Abc_ObjAddFanin( pNodeBot, pFanins[1] );
Abc_ObjAddFanin( pNodeBot, pFanins[2] );
Abc_ObjAddFanin( pNodeBot, pFanins[3] );
bSpin = Cudd_bddIthVar(dd, 0);
bCof0 = Cudd_bddIte( dd, Cudd_bddIthVar(dd, 1), Cudd_bddIthVar(dd, 3), Cudd_bddIthVar(dd, 2) ); Cudd_Ref( bCof0 );
bCof1 = Cudd_bddIthVar(dd, 1);
pNodeBot->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNodeBot->pData );
Cudd_RecursiveDeref( dd, bCof0 );
// top node
pNodeTop = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNodeTop, pFanins[0] );
Abc_ObjAddFanin( pNodeTop, pNodeBot );
Abc_ObjAddFanin( pNodeTop, pFanins[4] );
Abc_ObjAddFanin( pNodeTop, pFanins[5] );
bSpin = Cudd_bddIthVar(dd, 0);
bCof0 = Cudd_bddIthVar(dd, 1);
bCof1 = Cudd_bddIte( dd, Cudd_bddIthVar(dd, 1), Cudd_bddIthVar(dd, 3), Cudd_bddIthVar(dd, 2) ); Cudd_Ref( bCof1 );
pNodeTop->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNodeTop->pData );
Cudd_RecursiveDeref( dd, bCof1 );
return pNodeTop;
}
/**Function*************************************************************
Synopsis [Implementes 4:1 MUX using two 4-LUTs.]
Description [The fanins are (c0, c1, d00, d01, d10, d11).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddMux412a( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] )
{
DdManager * dd = (DdManager *)pNtkNew->pManFunc;
Abc_Obj_t * pNodeBot, * pNodeTop;
DdNode * bSpin, * bCof0, * bCof1;
// bottom node
pNodeBot = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNodeBot, pFanins[1] );
Abc_ObjAddFanin( pNodeBot, pFanins[2] );
Abc_ObjAddFanin( pNodeBot, pFanins[3] );
bSpin = Cudd_bddIthVar(dd, 0);
bCof0 = Cudd_bddIthVar(dd, 1);
bCof1 = Cudd_bddIthVar(dd, 2);
pNodeBot->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNodeBot->pData );
// top node
pNodeTop = Abc_NtkCreateNode( pNtkNew );
Abc_ObjAddFanin( pNodeTop, pFanins[0] );
Abc_ObjAddFanin( pNodeTop, pFanins[1] );
Abc_ObjAddFanin( pNodeTop, pNodeBot );
Abc_ObjAddFanin( pNodeTop, pFanins[4] );
Abc_ObjAddFanin( pNodeTop, pFanins[5] );
bSpin = Cudd_bddIthVar(dd, 0);
bCof0 = Cudd_bddIthVar(dd, 2);
bCof1 = Cudd_bddIte( dd, Cudd_bddIthVar(dd, 1), Cudd_bddIthVar(dd, 4), Cudd_bddIthVar(dd, 3) ); Cudd_Ref( bCof1 );
pNodeTop->pData = Cudd_bddIte( dd, bSpin, bCof1, bCof0 ); Cudd_Ref( (DdNode *)pNodeTop->pData );
Cudd_RecursiveDeref( dd, bCof1 );
return pNodeTop;
}
/**Function*************************************************************
Synopsis [Implements 4:1 MUX using three 2:1 MUXes.]
Description [The fanins are (c0, c1, d00, d01, d10, d11).]
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddMux413( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanins[] )
{
Abc_Obj_t * pNodesBot[3], * pNodesTop[3];
// left bottom
pNodesBot[0] = pFanins[1];
pNodesBot[1] = pFanins[2];
pNodesBot[2] = pFanins[3];
pNodesTop[1] = Abc_NtkBddMux21( pNtkNew, pNodesBot );
// right bottom
pNodesBot[0] = pFanins[1];
pNodesBot[1] = pFanins[4];
pNodesBot[2] = pFanins[5];
pNodesTop[2] = Abc_NtkBddMux21( pNtkNew, pNodesBot );
// top node
pNodesTop[0] = pFanins[0];
return Abc_NtkBddMux21( pNtkNew, pNodesTop );
}
/**Function*************************************************************
Synopsis [Finds unique cofactors of the function on the given level.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
DdNode * Abc_NtkBddCofactors_rec( DdManager * dd, DdNode * bNode, int iCof, int iLevel, int nLevels )
{
DdNode * bNode0, * bNode1;
if ( Cudd_IsConstant(bNode) || iLevel == nLevels )
return bNode;
if ( Cudd_ReadPerm( dd, Cudd_NodeReadIndex(bNode) ) > iLevel )
{
bNode0 = bNode;
bNode1 = bNode;
}
else if ( Cudd_IsComplement(bNode) )
{
bNode0 = Cudd_Not(cuddE(Cudd_Regular(bNode)));
bNode1 = Cudd_Not(cuddT(Cudd_Regular(bNode)));
}
else
{
bNode0 = cuddE(bNode);
bNode1 = cuddT(bNode);
}
if ( (iCof >> (nLevels-1-iLevel)) & 1 )
return Abc_NtkBddCofactors_rec( dd, bNode1, iCof, iLevel + 1, nLevels );
return Abc_NtkBddCofactors_rec( dd, bNode0, iCof, iLevel + 1, nLevels );
}
/**Function*************************************************************
Synopsis [Finds unique cofactors of the function on the given level.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkBddCofactors( DdManager * dd, DdNode * bNode, int Level )
{
Vec_Ptr_t * vCofs;
int i, nCofs = (1<<Level);
assert( Level > 0 && Level < 10 );
vCofs = Vec_PtrAlloc( 8 );
for ( i = 0; i < nCofs; i++ )
Vec_PtrPush( vCofs, Abc_NtkBddCofactors_rec( dd, bNode, i, 0, Level ) );
return vCofs;
}
/**Function*************************************************************
Synopsis [Comparison procedure for two integers.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static int Vec_PtrSortCompare( void ** pp1, void ** pp2 )
{
if ( *pp1 < *pp2 )
return -1;
if ( *pp1 > *pp2 )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Converts the node to MUXes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkCreateCofLut( Abc_Ntk_t * pNtkNew, DdManager * dd, DdNode * bCof, Abc_Obj_t * pNode, int Level )
{
int fVerbose = 0;
DdNode * bFuncNew;
Abc_Obj_t * pNodeNew;
int i;
assert( Abc_ObjFaninNum(pNode) > Level );
// create a new node
pNodeNew = Abc_NtkCreateNode( pNtkNew );
// add the fanins in the order, in which they appear in the reordered manager
for ( i = Level; i < Abc_ObjFaninNum(pNode); i++ )
Abc_ObjAddFanin( pNodeNew, Abc_ObjFanin(pNode, i)->pCopy );
if ( fVerbose )
{
Extra_bddPrint( dd, bCof );
printf( "\n" );
printf( "\n" );
}
// transfer the function
bFuncNew = Extra_bddMove( dd, bCof, -Level ); Cudd_Ref( bFuncNew );
if ( fVerbose )
{
Extra_bddPrint( dd, bFuncNew );
printf( "\n" );
printf( "\n" );
}
pNodeNew->pData = Extra_TransferLevelByLevel( dd, (DdManager *)pNtkNew->pManFunc, bFuncNew ); Cudd_Ref( (DdNode *)pNodeNew->pData );
//Extra_bddPrint( pNtkNew->pManFunc, pNodeNew->pData );
//printf( "\n" );
//printf( "\n" );
Cudd_RecursiveDeref( dd, bFuncNew );
return pNodeNew;
}
/**Function*************************************************************
Synopsis [Performs one step of Ashenhurst-Curtis decomposition.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddCurtis( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, Vec_Ptr_t * vCofs, Vec_Ptr_t * vUniq )
{
DdManager * ddOld = (DdManager *)pNode->pNtk->pManFunc;
DdManager * ddNew = (DdManager *)pNtkNew->pManFunc;
DdNode * bCof, * bUniq, * bMint, * bTemp, * bFunc, * bBits[10], ** pbCodeVars;
Abc_Obj_t * pNodeNew = NULL, * pNodeBS[10];
int nLutSize = Abc_Base2Log( Vec_PtrSize(vCofs) );
int nBits = Abc_Base2Log( Vec_PtrSize(vUniq) );
int b, c, u, i;
assert( nBits + 2 <= nLutSize );
assert( nLutSize < Abc_ObjFaninNum(pNode) );
// start BDDs for the decompoosed blocks
for ( b = 0; b < nBits; b++ )
bBits[b] = Cudd_ReadLogicZero(ddNew), Cudd_Ref( bBits[b] );
// add each bound set minterm to one of the blccks
Vec_PtrForEachEntry( DdNode *, vCofs, bCof, c )
{
Vec_PtrForEachEntry( DdNode *, vUniq, bUniq, u )
if ( bUniq == bCof )
break;
assert( u < Vec_PtrSize(vUniq) );
for ( b = 0; b < nBits; b++ )
{
if ( ((u >> b) & 1) == 0 )
continue;
bMint = Extra_bddBitsToCube( ddNew, c, nLutSize, ddNew->vars, 1 ); Cudd_Ref( bMint );
bBits[b] = Cudd_bddOr( ddNew, bTemp = bBits[b], bMint ); Cudd_Ref( bBits[b] );
Cudd_RecursiveDeref( ddNew, bTemp );
Cudd_RecursiveDeref( ddNew, bMint );
}
}
// create bound set nodes
for ( b = 0; b < nBits; b++ )
{
pNodeBS[b] = Abc_NtkCreateNode( pNtkNew );
for ( i = 0; i < nLutSize; i++ )
Abc_ObjAddFanin( pNodeBS[b], Abc_ObjFanin(pNode, i)->pCopy );
pNodeBS[b]->pData = bBits[b]; // takes ref
}
// create composition node
pNodeNew = Abc_NtkCreateNode( pNtkNew );
// add free set variables first
for ( i = nLutSize; i < Abc_ObjFaninNum(pNode); i++ )
Abc_ObjAddFanin( pNodeNew, Abc_ObjFanin(pNode, i)->pCopy );
// add code bit variables next
for ( b = 0; b < nBits; b++ )
Abc_ObjAddFanin( pNodeNew, pNodeBS[b] );
// derive function of the composition node
bFunc = Cudd_ReadLogicZero(ddNew); Cudd_Ref( bFunc );
pbCodeVars = ddNew->vars + Abc_ObjFaninNum(pNode) - nLutSize;
Vec_PtrForEachEntry( DdNode *, vUniq, bUniq, u )
{
bUniq = Extra_bddMove( ddOld, bUniq, -nLutSize ); Cudd_Ref( bUniq );
bUniq = Extra_TransferLevelByLevel( ddOld, ddNew, bTemp = bUniq ); Cudd_Ref( bUniq );
Cudd_RecursiveDeref( ddOld, bTemp );
bMint = Extra_bddBitsToCube( ddNew, u, nBits, pbCodeVars, 0 ); Cudd_Ref( bMint );
bMint = Cudd_bddAnd( ddNew, bTemp = bMint, bUniq ); Cudd_Ref( bMint );
Cudd_RecursiveDeref( ddNew, bTemp );
Cudd_RecursiveDeref( ddNew, bUniq );
bFunc = Cudd_bddOr( ddNew, bTemp = bFunc, bMint ); Cudd_Ref( bFunc );
Cudd_RecursiveDeref( ddNew, bTemp );
Cudd_RecursiveDeref( ddNew, bMint );
}
pNodeNew->pData = bFunc; // takes ref
return pNodeNew;
}
/**Function*************************************************************
Synopsis [Tries to decompose using cofactoring into two LUTs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddFindCofactor( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, int nLutSize )
{
Abc_Obj_t * pNodeBot, * pNodeTop;
DdManager * ddOld = (DdManager *)pNode->pNtk->pManFunc;
DdManager * ddNew = (DdManager *)pNtkNew->pManFunc;
DdNode * bCof0 = NULL, * bCof1 = NULL, * bSupp, * bTemp, * bVar;
DdNode * bCof0n, * bCof1n;
int i, iCof, iFreeVar, fCof1Smaller = -1;
assert( Abc_ObjFaninNum(pNode) == nLutSize + 1 );
for ( iCof = 0; iCof < Abc_ObjFaninNum(pNode); iCof++ )
{
bVar = Cudd_bddIthVar( ddOld, iCof );
bCof0 = Cudd_Cofactor( ddOld, (DdNode *)pNode->pData, Cudd_Not(bVar) ); Cudd_Ref( bCof0 );
bCof1 = Cudd_Cofactor( ddOld, (DdNode *)pNode->pData, bVar ); Cudd_Ref( bCof1 );
if ( Cudd_SupportSize( ddOld, bCof0 ) <= nLutSize - 2 )
{
fCof1Smaller = 0;
break;
}
if ( Cudd_SupportSize( ddOld, bCof1 ) <= nLutSize - 2 )
{
fCof1Smaller = 1;
break;
}
Cudd_RecursiveDeref( ddOld, bCof0 );
Cudd_RecursiveDeref( ddOld, bCof1 );
}
if ( iCof == Abc_ObjFaninNum(pNode) )
return NULL;
// find unused variable
bSupp = Cudd_Support( ddOld, fCof1Smaller? bCof1 : bCof0 ); Cudd_Ref( bSupp );
iFreeVar = -1;
for ( i = 0; i < Abc_ObjFaninNum(pNode); i++ )
{
assert( i == Cudd_ReadPerm(ddOld, i) );
if ( i == iCof )
continue;
for ( bTemp = bSupp; !Cudd_IsConstant(bTemp); bTemp = cuddT(bTemp) )
if ( i == (int)Cudd_NodeReadIndex(bTemp) )
break;
if ( Cudd_IsConstant(bTemp) )
{
iFreeVar = i;
break;
}
}
assert( iFreeVar != iCof && iFreeVar < Abc_ObjFaninNum(pNode) );
Cudd_RecursiveDeref( ddOld, bSupp );
// transfer the cofactors
bCof0n = Extra_TransferLevelByLevel( ddOld, ddNew, bCof0 ); Cudd_Ref( bCof0n );
bCof1n = Extra_TransferLevelByLevel( ddOld, ddNew, bCof1 ); Cudd_Ref( bCof1n );
Cudd_RecursiveDeref( ddOld, bCof0 );
Cudd_RecursiveDeref( ddOld, bCof1 );
// create bottom node
pNodeBot = Abc_NtkCreateNode( pNtkNew );
for ( i = 0; i < Abc_ObjFaninNum(pNode); i++ )
Abc_ObjAddFanin( pNodeBot, Abc_ObjFanin(pNode, i)->pCopy );
pNodeBot->pData = fCof1Smaller? bCof0n : bCof1n;
// create top node
pNodeTop = Abc_NtkCreateNode( pNtkNew );
for ( i = 0; i < Abc_ObjFaninNum(pNode); i++ )
if ( i == iFreeVar )
Abc_ObjAddFanin( pNodeTop, pNodeBot );
else
Abc_ObjAddFanin( pNodeTop, Abc_ObjFanin(pNode, i)->pCopy );
// derive the new function
pNodeTop->pData = Cudd_bddIte( ddNew,
Cudd_bddIthVar(ddNew, iCof),
fCof1Smaller? bCof1n : Cudd_bddIthVar(ddNew, iFreeVar),
fCof1Smaller? Cudd_bddIthVar(ddNew, iFreeVar) : bCof0n );
Cudd_Ref( (DdNode *)pNodeTop->pData );
Cudd_RecursiveDeref( ddNew, fCof1Smaller? bCof1n : bCof0n );
return pNodeTop;
}
/**Function*************************************************************
Synopsis [Decompose the function once.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NtkBddDecompose( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, int nLutSize, int fVerbose )
{
Vec_Ptr_t * vCofs, * vUniq;
DdManager * dd = (DdManager *)pNode->pNtk->pManFunc;
DdNode * bCof;
Abc_Obj_t * pNodeNew = NULL;
Abc_Obj_t * pCofs[20];
int i;
assert( Abc_ObjFaninNum(pNode) > nLutSize );
// try to decompose with two LUTs (the best case for Supp = LutSize + 1)
if ( Abc_ObjFaninNum(pNode) == nLutSize + 1 )
{
pNodeNew = Abc_NtkBddFindCofactor( pNtkNew, pNode, nLutSize );
if ( pNodeNew != NULL )
{
if ( fVerbose )
printf( "Decomposing %d-input node %d using MUX.\n",
Abc_ObjFaninNum(pNode), Abc_ObjId(pNode) );
return pNodeNew;
}
}
// cofactor w.r.t. the bound set variables
vCofs = Abc_NtkBddCofactors( dd, (DdNode *)pNode->pData, nLutSize );
vUniq = Vec_PtrDup( vCofs );
Vec_PtrUniqify( vUniq, (int (*)())Vec_PtrSortCompare );
// only perform decomposition with it is support reduring with two less vars
if( Vec_PtrSize(vUniq) > (1 << (nLutSize-2)) )
{
Vec_PtrFree( vCofs );
vCofs = Abc_NtkBddCofactors( dd, (DdNode *)pNode->pData, 2 );
if ( fVerbose )
printf( "Decomposing %d-input node %d using cofactoring with %d cofactors.\n",
Abc_ObjFaninNum(pNode), Abc_ObjId(pNode), Vec_PtrSize(vCofs) );
// implement the cofactors
pCofs[0] = Abc_ObjFanin(pNode, 0)->pCopy;
pCofs[1] = Abc_ObjFanin(pNode, 1)->pCopy;
Vec_PtrForEachEntry( DdNode *, vCofs, bCof, i )
pCofs[2+i] = Abc_NtkCreateCofLut( pNtkNew, dd, bCof, pNode, 2 );
if ( nLutSize == 4 )
pNodeNew = Abc_NtkBddMux412( pNtkNew, pCofs );
else if ( nLutSize == 5 )
pNodeNew = Abc_NtkBddMux412a( pNtkNew, pCofs );
else if ( nLutSize == 6 )
pNodeNew = Abc_NtkBddMux411( pNtkNew, pCofs );
else assert( 0 );
}
// alternative decompose using MUX-decomposition
else
{
if ( fVerbose )
printf( "Decomposing %d-input node %d using Curtis with %d unique columns.\n",
Abc_ObjFaninNum(pNode), Abc_ObjId(pNode), Vec_PtrSize(vUniq) );
pNodeNew = Abc_NtkBddCurtis( pNtkNew, pNode, vCofs, vUniq );
}
Vec_PtrFree( vCofs );
Vec_PtrFree( vUniq );
return pNodeNew;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkLutminConstruct( Abc_Ntk_t * pNtkClp, Abc_Ntk_t * pNtkDec, int nLutSize, int fVerbose )
{
Vec_Ptr_t * vNodes;
Abc_Obj_t * pNode, * pFanin;
int i, k;
vNodes = Abc_NtkDfs( pNtkClp, 0 );
Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pNode, i )
{
if ( Abc_ObjFaninNum(pNode) <= nLutSize )
{
pNode->pCopy = Abc_NtkDupObj( pNtkDec, pNode, 0 );
Abc_ObjForEachFanin( pNode, pFanin, k )
Abc_ObjAddFanin( pNode->pCopy, pFanin->pCopy );
}
else
pNode->pCopy = Abc_NtkBddDecompose( pNtkDec, pNode, nLutSize, fVerbose );
}
Vec_PtrFree( vNodes );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkLutminInt( Abc_Ntk_t * pNtk, int nLutSize, int fVerbose )
{
extern void Abc_NtkBddReorder( Abc_Ntk_t * pNtk, int fVerbose );
Abc_Ntk_t * pNtkDec;
// minimize BDDs
// Abc_NtkBddReorder( pNtk, fVerbose );
Abc_NtkBddReorder( pNtk, 0 );
// decompose one output at a time
pNtkDec = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_BDD );
// make sure the new manager has enough inputs
Cudd_bddIthVar( (DdManager *)pNtkDec->pManFunc, Abc_NtkGetFaninMax(pNtk) );
// put the results into the new network (save new CO drivers in old CO drivers)
Abc_NtkLutminConstruct( pNtk, pNtkDec, nLutSize, fVerbose );
// finalize the new network
Abc_NtkFinalize( pNtk, pNtkDec );
// make the network minimum base
Abc_NtkMinimumBase( pNtkDec );
return pNtkDec;
}
/**Function*************************************************************
Synopsis [Performs minimum-LUT decomposition of the network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Ntk_t * Abc_NtkLutmin( Abc_Ntk_t * pNtkInit, int nLutSize, int fVerbose )
{
extern int Abc_NtkFraigSweep( Abc_Ntk_t * pNtk, int fUseInv, int fExdc, int fVerbose, int fVeryVerbose );
Abc_Ntk_t * pNtkNew, * pTemp;
int i;
if ( nLutSize < 4 )
{
printf( "The LUT count (%d) should be at least 4.\n", nLutSize );
return NULL;
}
if ( nLutSize > 6 )
{
printf( "The LUT count (%d) should not exceed 6.\n", nLutSize );
return NULL;
}
// create internal representation
if ( Abc_NtkIsStrash(pNtkInit) )
pNtkNew = Abc_NtkDup( pNtkInit );
else
pNtkNew = Abc_NtkStrash( pNtkInit, 0, 1, 0 );
// collapse the network
pNtkNew = Abc_NtkCollapse( pTemp = pNtkNew, 10000, 0, 1, 0 );
Abc_NtkDelete( pTemp );
if ( pNtkNew == NULL )
return NULL;
// convert it to BDD
if ( !Abc_NtkIsBddLogic(pNtkNew) )
Abc_NtkToBdd( pNtkNew );
// iterate decomposition
for ( i = 0; Abc_NtkGetFaninMax(pNtkNew) > nLutSize; i++ )
{
if ( fVerbose )
printf( "*** Iteration %d:\n", i+1 );
if ( fVerbose )
printf( "Decomposing network with %d nodes and %d max fanin count for K = %d.\n",
Abc_NtkNodeNum(pNtkNew), Abc_NtkGetFaninMax(pNtkNew), nLutSize );
pNtkNew = Abc_NtkLutminInt( pTemp = pNtkNew, nLutSize, fVerbose );
Abc_NtkDelete( pTemp );
}
// fix the problem with complemented and duplicated CO edges
Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 );
// merge functionally equivalent nodes
Abc_NtkFraigSweep( pNtkNew, 1, 0, 0, 0 );
// make sure everything is okay
if ( !Abc_NtkCheck( pNtkNew ) )
{
printf( "Abc_NtkLutmin: The network check has failed.\n" );
return 0;
}
return pNtkNew;
}
#else
Abc_Ntk_t * Abc_NtkLutmin( Abc_Ntk_t * pNtkInit, int nLutSize, int fVerbose ) { return NULL; }
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|