1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
|
/**CFile****************************************************************
FileName [abcLut.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Superchoicing for K-LUTs.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcLut.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#include "opt/cut/cut.h"
ABC_NAMESPACE_IMPL_START
#define LARGE_LEVEL 1000000
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
#define SCL_LUT_MAX 6 // the maximum LUT size
#define SCL_VARS_MAX 15 // the maximum number of variables
#define SCL_NODE_MAX 1000 // the maximum number of nodes
typedef struct Abc_ManScl_t_ Abc_ManScl_t;
struct Abc_ManScl_t_
{
// paramers
int nLutSize; // the LUT size
int nCutSizeMax; // the max number of leaves of the cone
int nNodesMax; // the max number of divisors in the cone
int nWords; // the number of machine words in sim info
// structural representation of the cone
Vec_Ptr_t * vLeaves; // leaves of the cut
Vec_Ptr_t * vVolume; // volume of the cut
int pBSet[SCL_VARS_MAX]; // bound set
// functional representation of the cone
unsigned * uTruth; // truth table of the cone
// representation of truth tables
unsigned ** uVars; // elementary truth tables
unsigned ** uSims; // truth tables of the nodes
unsigned ** uCofs; // truth tables of the cofactors
};
static Vec_Ptr_t * s_pLeaves = NULL;
static Cut_Man_t * Abc_NtkStartCutManForScl( Abc_Ntk_t * pNtk, int nLutSize );
static Abc_ManScl_t * Abc_ManSclStart( int nLutSize, int nCutSizeMax, int nNodesMax );
static void Abc_ManSclStop( Abc_ManScl_t * p );
static void Abc_NodeLutMap( Cut_Man_t * pManCuts, Abc_Obj_t * pObj );
static Abc_Obj_t * Abc_NodeSuperChoiceLut( Abc_ManScl_t * pManScl, Abc_Obj_t * pObj );
static int Abc_NodeDecomposeStep( Abc_ManScl_t * pManScl );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Performs superchoicing for K-LUTs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkSuperChoiceLut( Abc_Ntk_t * pNtk, int nLutSize, int nCutSizeMax, int fVerbose )
{
ProgressBar * pProgress;
Abc_ManCut_t * pManCut;
Abc_ManScl_t * pManScl;
Cut_Man_t * pManCuts;
Abc_Obj_t * pObj, * pFanin, * pObjTop;
int i, LevelMax, nNodes;
int nNodesTried, nNodesDec, nNodesExist, nNodesUsed;
assert( Abc_NtkIsSopLogic(pNtk) );
if ( nLutSize < 3 || nLutSize > SCL_LUT_MAX )
{
printf( "LUT size (%d) does not belong to the interval: 3 <= LUT size <= %d\n", nLutSize, SCL_LUT_MAX );
return 0;
}
if ( nCutSizeMax <= nLutSize || nCutSizeMax > SCL_VARS_MAX )
{
printf( "Cut size (%d) does not belong to the interval: LUT size (%d) < Cut size <= %d\n", nCutSizeMax, nLutSize, SCL_VARS_MAX );
return 0;
}
assert( nLutSize <= SCL_LUT_MAX );
assert( nCutSizeMax <= SCL_VARS_MAX );
nNodesTried = nNodesDec = nNodesExist = nNodesUsed = 0;
// set the delays of the CIs
Abc_NtkForEachCi( pNtk, pObj, i )
pObj->Level = 0;
//Abc_NtkLevel( pNtk );
// start the managers
pManScl = Abc_ManSclStart( nLutSize, nCutSizeMax, 1000 );
pManCuts = Abc_NtkStartCutManForScl( pNtk, nLutSize );
pManCut = Abc_NtkManCutStart( nCutSizeMax, 100000, 100000, 100000 );
s_pLeaves = Abc_NtkManCutReadCutSmall( pManCut );
pManScl->vVolume = Abc_NtkManCutReadVisited( pManCut );
// process each internal node (assuming topological order of nodes!!!)
nNodes = Abc_NtkObjNumMax(pNtk);
pProgress = Extra_ProgressBarStart( stdout, nNodes );
Abc_NtkForEachObj( pNtk, pObj, i )
{
// if ( i != nNodes-1 )
// continue;
Extra_ProgressBarUpdate( pProgress, i, NULL );
if ( i >= nNodes )
break;
if ( Abc_ObjFaninNum(pObj) != 2 )
continue;
nNodesTried++;
// map this node using regular cuts
// pObj->Level = 0;
Abc_NodeLutMap( pManCuts, pObj );
// compute the cut
pManScl->vLeaves = Abc_NodeFindCut( pManCut, pObj, 0 );
if ( Vec_PtrSize(pManScl->vLeaves) <= nLutSize )
continue;
// get the volume of the cut
if ( Vec_PtrSize(pManScl->vVolume) > SCL_NODE_MAX )
continue;
nNodesDec++;
// decompose the cut
pObjTop = Abc_NodeSuperChoiceLut( pManScl, pObj );
if ( pObjTop == NULL )
continue;
nNodesExist++;
// if there is no delay improvement, skip; otherwise, update level
if ( pObjTop->Level >= pObj->Level )
{
Abc_NtkDeleteObj_rec( pObjTop, 1 );
continue;
}
pObj->Level = pObjTop->Level;
nNodesUsed++;
}
Extra_ProgressBarStop( pProgress );
// delete the managers
Abc_ManSclStop( pManScl );
Abc_NtkManCutStop( pManCut );
Cut_ManStop( pManCuts );
// get the largest arrival time
LevelMax = 0;
Abc_NtkForEachCo( pNtk, pObj, i )
{
pFanin = Abc_ObjFanin0( pObj );
// skip inv/buf
if ( Abc_ObjFaninNum(pFanin) == 1 )
pFanin = Abc_ObjFanin0( pFanin );
// get the new level
LevelMax = Abc_MaxInt( LevelMax, (int)pFanin->Level );
}
if ( fVerbose )
printf( "Try = %d. Dec = %d. Exist = %d. Use = %d. SUPER = %d levels of %d-LUTs.\n",
nNodesTried, nNodesDec, nNodesExist, nNodesUsed, LevelMax, nLutSize );
// if ( fVerbose )
// printf( "The network is superchoiced for %d levels of %d-LUTs.\n", LevelMax, nLutSize );
// clean the data field
Abc_NtkForEachObj( pNtk, pObj, i )
pObj->pNext = NULL;
// check
if ( !Abc_NtkCheck( pNtk ) )
{
printf( "Abc_NtkSuperChoiceLut: The network check has failed.\n" );
return 0;
}
return 1;
}
/**Function*************************************************************
Synopsis [Performs LUT mapping of the node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeLutMap( Cut_Man_t * pManCuts, Abc_Obj_t * pObj )
{
Cut_Cut_t * pCut;
Abc_Obj_t * pFanin;
int i, DelayMax;
pCut = (Cut_Cut_t *)Abc_NodeGetCutsRecursive( pManCuts, pObj, 0, 0 );
assert( pCut != NULL );
assert( pObj->Level == 0 );
// go through the cuts
pObj->Level = LARGE_LEVEL;
for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
{
DelayMax = 0;
for ( i = 0; i < (int)pCut->nLeaves; i++ )
{
pFanin = Abc_NtkObj( pObj->pNtk, pCut->pLeaves[i] );
// assert( Abc_ObjIsCi(pFanin) || pFanin->Level > 0 ); // should hold if node ordering is topological
if ( DelayMax < (int)pFanin->Level )
DelayMax = pFanin->Level;
}
if ( (int)pObj->Level > DelayMax )
pObj->Level = DelayMax;
}
assert( pObj->Level < LARGE_LEVEL );
pObj->Level++;
// printf( "%d(%d) ", pObj->Id, pObj->Level );
}
/**Function*************************************************************
Synopsis [Starts the cut manager for rewriting.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Cut_Man_t * Abc_NtkStartCutManForScl( Abc_Ntk_t * pNtk, int nLutSize )
{
static Cut_Params_t Params, * pParams = &Params;
Cut_Man_t * pManCut;
Abc_Obj_t * pObj;
int i;
// start the cut manager
memset( pParams, 0, sizeof(Cut_Params_t) );
pParams->nVarsMax = nLutSize; // the max cut size ("k" of the k-feasible cuts)
pParams->nKeepMax = 500; // the max number of cuts kept at a node
pParams->fTruth = 0; // compute truth tables
pParams->fFilter = 1; // filter dominated cuts
pParams->fSeq = 0; // compute sequential cuts
pParams->fDrop = 0; // drop cuts on the fly
pParams->fVerbose = 0; // the verbosiness flag
pParams->nIdsMax = Abc_NtkObjNumMax( pNtk );
pManCut = Cut_ManStart( pParams );
if ( pParams->fDrop )
Cut_ManSetFanoutCounts( pManCut, Abc_NtkFanoutCounts(pNtk) );
// set cuts for PIs
Abc_NtkForEachCi( pNtk, pObj, i )
if ( Abc_ObjFanoutNum(pObj) > 0 )
Cut_NodeSetTriv( pManCut, pObj->Id );
return pManCut;
}
/**Function*************************************************************
Synopsis [Starts the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_ManScl_t * Abc_ManSclStart( int nLutSize, int nCutSizeMax, int nNodesMax )
{
Abc_ManScl_t * p;
int i, k;
assert( sizeof(unsigned) == 4 );
p = ABC_ALLOC( Abc_ManScl_t, 1 );
memset( p, 0, sizeof(Abc_ManScl_t) );
p->nLutSize = nLutSize;
p->nCutSizeMax = nCutSizeMax;
p->nNodesMax = nNodesMax;
p->nWords = Extra_TruthWordNum(nCutSizeMax);
// allocate simulation info
p->uVars = (unsigned **)Extra_ArrayAlloc( nCutSizeMax, p->nWords, 4 );
p->uSims = (unsigned **)Extra_ArrayAlloc( nNodesMax, p->nWords, 4 );
p->uCofs = (unsigned **)Extra_ArrayAlloc( 2 << nLutSize, p->nWords, 4 );
memset( p->uVars[0], 0, nCutSizeMax * p->nWords * 4 );
// assign elementary truth tables
for ( k = 0; k < p->nCutSizeMax; k++ )
for ( i = 0; i < p->nWords * 32; i++ )
if ( i & (1 << k) )
p->uVars[k][i>>5] |= (1 << (i&31));
// other data structures
// p->vBound = Vec_IntAlloc( nCutSizeMax );
return p;
}
/**Function*************************************************************
Synopsis [Stops the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_ManSclStop( Abc_ManScl_t * p )
{
// Vec_IntFree( p->vBound );
ABC_FREE( p->uVars );
ABC_FREE( p->uSims );
ABC_FREE( p->uCofs );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Performs superchoicing for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned * Abc_NodeSuperChoiceTruth( Abc_ManScl_t * pManScl )
{
Abc_Obj_t * pObj;
unsigned * puData0, * puData1, * puData = NULL;
char * pSop;
int i, k;
// set elementary truth tables
Vec_PtrForEachEntry( Abc_Obj_t *, pManScl->vLeaves, pObj, i )
pObj->pNext = (Abc_Obj_t *)pManScl->uVars[i];
// compute truth tables for internal nodes
Vec_PtrForEachEntry( Abc_Obj_t *, pManScl->vVolume, pObj, i )
{
// set storage for the node's simulation info
pObj->pNext = (Abc_Obj_t *)pManScl->uSims[i];
// get pointer to the simulation info
puData = (unsigned *)pObj->pNext;
puData0 = (unsigned *)Abc_ObjFanin0(pObj)->pNext;
puData1 = (unsigned *)Abc_ObjFanin1(pObj)->pNext;
// simulate
pSop = (char *)pObj->pData;
if ( pSop[0] == '0' && pSop[1] == '0' )
for ( k = 0; k < pManScl->nWords; k++ )
puData[k] = ~puData0[k] & ~puData1[k];
else if ( pSop[0] == '0' )
for ( k = 0; k < pManScl->nWords; k++ )
puData[k] = ~puData0[k] & puData1[k];
else if ( pSop[1] == '0' )
for ( k = 0; k < pManScl->nWords; k++ )
puData[k] = puData0[k] & ~puData1[k];
else
for ( k = 0; k < pManScl->nWords; k++ )
puData[k] = puData0[k] & puData1[k];
}
return puData;
}
/**Function*************************************************************
Synopsis [Performs superchoicing for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeSuperChoiceCollect2_rec( Abc_Obj_t * pObj, Vec_Ptr_t * vVolume )
{
if ( pObj->fMarkC )
return;
pObj->fMarkC = 1;
assert( Abc_ObjFaninNum(pObj) == 2 );
Abc_NodeSuperChoiceCollect2_rec( Abc_ObjFanin0(pObj), vVolume );
Abc_NodeSuperChoiceCollect2_rec( Abc_ObjFanin1(pObj), vVolume );
Vec_PtrPush( vVolume, pObj );
}
/**Function*************************************************************
Synopsis [Performs superchoicing for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeSuperChoiceCollect2( Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vVolume )
{
Abc_Obj_t * pObj;
int i;
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
pObj->fMarkC = 1;
Vec_PtrClear( vVolume );
Abc_NodeSuperChoiceCollect2_rec( pRoot, vVolume );
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
pObj->fMarkC = 0;
Vec_PtrForEachEntry( Abc_Obj_t *, vVolume, pObj, i )
pObj->fMarkC = 0;
}
/**Function*************************************************************
Synopsis [Performs superchoicing for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeSuperChoiceCollect_rec( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vVolume )
{
if ( pObj->fMarkB )
{
Vec_PtrPush( vLeaves, pObj );
pObj->fMarkB = 0;
}
if ( pObj->fMarkC )
return;
pObj->fMarkC = 1;
assert( Abc_ObjFaninNum(pObj) == 2 );
Abc_NodeSuperChoiceCollect_rec( Abc_ObjFanin0(pObj), vLeaves, vVolume );
Abc_NodeSuperChoiceCollect_rec( Abc_ObjFanin1(pObj), vLeaves, vVolume );
Vec_PtrPush( vVolume, pObj );
}
/**Function*************************************************************
Synopsis [Performs superchoicing for one node.]
Description [Orders the leaves topologically.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeSuperChoiceCollect( Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vVolume )
{
Abc_Obj_t * pObj;
int i, nLeaves;
nLeaves = Vec_PtrSize(vLeaves);
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
pObj->fMarkB = pObj->fMarkC = 1;
Vec_PtrClear( vVolume );
Vec_PtrClear( vLeaves );
Abc_NodeSuperChoiceCollect_rec( pRoot, vLeaves, vVolume );
assert( Vec_PtrSize(vLeaves) == nLeaves );
Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
pObj->fMarkC = 0;
Vec_PtrForEachEntry( Abc_Obj_t *, vVolume, pObj, i )
pObj->fMarkC = 0;
}
/**Function*************************************************************
Synopsis [Performs superchoicing for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeLeavesRemove( Vec_Ptr_t * vLeaves, unsigned uPhase, int nVars )
{
int i;
for ( i = nVars - 1; i >= 0; i-- )
if ( uPhase & (1 << i) )
Vec_PtrRemove( vLeaves, Vec_PtrEntry(vLeaves, i) );
}
/**Function*************************************************************
Synopsis [Performs superchoicing for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NodeGetLevel( Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanin;
int i, Level;
Level = 0;
Abc_ObjForEachFanin( pObj, pFanin, i )
Level = Abc_MaxInt( Level, (int)pFanin->Level );
return Level + 1;
}
/**Function*************************************************************
Synopsis [Performs superchoicing for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Abc_Obj_t * Abc_NodeSuperChoiceLut( Abc_ManScl_t * p, Abc_Obj_t * pObj )
{
Abc_Obj_t * pFanin, * pObjNew;
int i, nVars, uSupport, nSuppVars;
// collect the cone using DFS (excluding leaves)
Abc_NodeSuperChoiceCollect2( pObj, p->vLeaves, p->vVolume );
assert( Vec_PtrEntryLast(p->vVolume) == pObj );
// compute the truth table
p->uTruth = Abc_NodeSuperChoiceTruth( p );
// get the support of this truth table
nVars = Vec_PtrSize(p->vLeaves);
uSupport = Extra_TruthSupport(p->uTruth, nVars);
nSuppVars = Extra_WordCountOnes(uSupport);
assert( nSuppVars <= nVars );
if ( nSuppVars == 0 )
{
pObj->Level = 0;
return NULL;
}
if ( nSuppVars == 1 )
{
// find the variable
for ( i = 0; i < nVars; i++ )
if ( uSupport & (1 << i) )
break;
assert( i < nVars );
pFanin = (Abc_Obj_t *)Vec_PtrEntry( p->vLeaves, i );
pObj->Level = pFanin->Level;
return NULL;
}
// support-minimize the truth table
if ( nSuppVars != nVars )
{
Extra_TruthShrink( p->uCofs[0], p->uTruth, nSuppVars, nVars, uSupport );
Extra_TruthCopy( p->uTruth, p->uCofs[0], nVars );
Abc_NodeLeavesRemove( p->vLeaves, ((1 << nVars) - 1) & ~uSupport, nVars );
}
// return NULL;
// decompose the truth table recursively
while ( Vec_PtrSize(p->vLeaves) > p->nLutSize )
if ( !Abc_NodeDecomposeStep( p ) )
{
Vec_PtrForEachEntry( Abc_Obj_t *, p->vLeaves, pFanin, i )
if ( Abc_ObjIsNode(pFanin) && Abc_ObjFanoutNum(pFanin) == 0 )
Abc_NtkDeleteObj_rec( pFanin, 1 );
return NULL;
}
// create the topmost node
pObjNew = Abc_NtkCreateNode( pObj->pNtk );
Vec_PtrForEachEntry( Abc_Obj_t *, p->vLeaves, pFanin, i )
Abc_ObjAddFanin( pObjNew, pFanin );
// create the function
pObjNew->pData = Abc_SopCreateFromTruth( (Mem_Flex_t *)pObj->pNtk->pManFunc, Vec_PtrSize(p->vLeaves), p->uTruth ); // need ISOP
pObjNew->Level = Abc_NodeGetLevel( pObjNew );
return pObjNew;
}
/**Function*************************************************************
Synopsis [Procedure used for sorting the nodes in increasing order of levels.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NodeCompareLevelsInc( int * pp1, int * pp2 )
{
Abc_Obj_t * pNode1, * pNode2;
pNode1 = (Abc_Obj_t *)Vec_PtrEntry(s_pLeaves, *pp1);
pNode2 = (Abc_Obj_t *)Vec_PtrEntry(s_pLeaves, *pp2);
if ( pNode1->Level < pNode2->Level )
return -1;
if ( pNode1->Level > pNode2->Level )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Selects the earliest arriving nodes from the array.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NodeDecomposeSort( Abc_Obj_t ** pLeaves, int nVars, int * pBSet, int nLutSize )
{
Abc_Obj_t * pTemp[SCL_VARS_MAX];
int i, k, kBest, LevelMin;
assert( nLutSize < nVars );
assert( nVars <= SCL_VARS_MAX );
// copy nodes into the internal storage
// printf( "(" );
for ( i = 0; i < nVars; i++ )
{
pTemp[i] = pLeaves[i];
// printf( " %d", pLeaves[i]->Level );
}
// printf( " )\n" );
// choose one node at a time
for ( i = 0; i < nLutSize; i++ )
{
kBest = -1;
LevelMin = LARGE_LEVEL;
for ( k = 0; k < nVars; k++ )
if ( pTemp[k] && LevelMin > (int)pTemp[k]->Level )
{
LevelMin = pTemp[k]->Level;
kBest = k;
}
pBSet[i] = kBest;
pTemp[kBest] = NULL;
}
}
/**Function*************************************************************
Synopsis [Performs superchoicing for one node.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NodeDecomposeStep( Abc_ManScl_t * p )
{
static char pCofClasses[1<<SCL_LUT_MAX][1<<SCL_LUT_MAX];
static char nCofClasses[1<<SCL_LUT_MAX];
Abc_Ntk_t * pNtk;
Abc_Obj_t * pObjNew, * pFanin, * pNodesNew[SCL_LUT_MAX];
unsigned * pTruthCof, * pTruthClass, * pTruth, uPhase;
int i, k, c, v, w, nVars, nVarsNew, nClasses, nCofs;
// set the network
pNtk = ((Abc_Obj_t *)Vec_PtrEntry(p->vLeaves, 0))->pNtk;
// find the earliest nodes
nVars = Vec_PtrSize(p->vLeaves);
assert( nVars > p->nLutSize );
/*
for ( v = 0; v < nVars; v++ )
p->pBSet[v] = v;
qsort( (void *)p->pBSet, (size_t)nVars, sizeof(int),
(int (*)(const void *, const void *)) Abc_NodeCompareLevelsInc );
*/
Abc_NodeDecomposeSort( (Abc_Obj_t **)Vec_PtrArray(p->vLeaves), Vec_PtrSize(p->vLeaves), p->pBSet, p->nLutSize );
assert( ((Abc_Obj_t *)Vec_PtrEntry(p->vLeaves, p->pBSet[0]))->Level <=
((Abc_Obj_t *)Vec_PtrEntry(p->vLeaves, p->pBSet[1]))->Level );
// cofactor w.r.t. the selected variables
Extra_TruthCopy( p->uCofs[1], p->uTruth, nVars );
c = 2;
for ( v = 0; v < p->nLutSize; v++ )
for ( k = 0; k < (1<<v); k++ )
{
Extra_TruthCopy( p->uCofs[c], p->uCofs[c/2], nVars );
Extra_TruthCopy( p->uCofs[c+1], p->uCofs[c/2], nVars );
Extra_TruthCofactor0( p->uCofs[c], nVars, p->pBSet[v] );
Extra_TruthCofactor1( p->uCofs[c+1], nVars, p->pBSet[v] );
c += 2;
}
assert( c == (2 << p->nLutSize) );
// count unique cofactors
nClasses = 0;
nCofs = (1 << p->nLutSize);
for ( i = 0; i < nCofs; i++ )
{
pTruthCof = p->uCofs[ nCofs + i ];
for ( k = 0; k < nClasses; k++ )
{
pTruthClass = p->uCofs[ nCofs + pCofClasses[k][0] ];
if ( Extra_TruthIsEqual( pTruthCof, pTruthClass, nVars ) )
{
pCofClasses[k][(int)nCofClasses[k]++ ] = i;
break;
}
}
if ( k != nClasses )
continue;
// not found
pCofClasses[nClasses][0] = i;
nCofClasses[nClasses] = 1;
nClasses++;
if ( nClasses > nCofs/2 )
return 0;
}
// the number of cofactors is acceptable
nVarsNew = Abc_Base2Log( nClasses );
assert( nVarsNew < p->nLutSize );
// create the remainder truth table
// for each class of cofactors, multiply cofactor truth table by its code
Extra_TruthClear( p->uTruth, nVars );
for ( k = 0; k < nClasses; k++ )
{
pTruthClass = p->uCofs[ nCofs + pCofClasses[k][0] ];
for ( v = 0; v < nVarsNew; v++ )
if ( k & (1 << v) )
Extra_TruthAnd( pTruthClass, pTruthClass, p->uVars[p->pBSet[v]], nVars );
else
Extra_TruthSharp( pTruthClass, pTruthClass, p->uVars[p->pBSet[v]], nVars );
Extra_TruthOr( p->uTruth, p->uTruth, pTruthClass, nVars );
}
// create nodes
pTruth = p->uCofs[0];
for ( v = 0; v < nVarsNew; v++ )
{
Extra_TruthClear( pTruth, p->nLutSize );
for ( k = 0; k < nClasses; k++ )
if ( k & (1 << v) )
for ( i = 0; i < nCofClasses[k]; i++ )
{
pTruthCof = p->uCofs[1];
Extra_TruthFill( pTruthCof, p->nLutSize );
for ( w = 0; w < p->nLutSize; w++ )
if ( pCofClasses[k][i] & (1 << (p->nLutSize-1-w)) )
Extra_TruthAnd( pTruthCof, pTruthCof, p->uVars[w], p->nLutSize );
else
Extra_TruthSharp( pTruthCof, pTruthCof, p->uVars[w], p->nLutSize );
Extra_TruthOr( pTruth, pTruth, pTruthCof, p->nLutSize );
}
// implement the node
pObjNew = Abc_NtkCreateNode( pNtk );
for ( i = 0; i < p->nLutSize; i++ )
{
pFanin = (Abc_Obj_t *)Vec_PtrEntry( p->vLeaves, p->pBSet[i] );
Abc_ObjAddFanin( pObjNew, pFanin );
}
// create the function
pObjNew->pData = Abc_SopCreateFromTruth( (Mem_Flex_t *)pNtk->pManFunc, p->nLutSize, pTruth ); // need ISOP
pObjNew->Level = Abc_NodeGetLevel( pObjNew );
pNodesNew[v] = pObjNew;
}
// put the new nodes back into the list
for ( v = 0; v < nVarsNew; v++ )
Vec_PtrWriteEntry( p->vLeaves, p->pBSet[v], pNodesNew[v] );
// compute the variables that should be removed
uPhase = 0;
for ( v = nVarsNew; v < p->nLutSize; v++ )
uPhase |= (1 << p->pBSet[v]);
// remove entries from the array
Abc_NodeLeavesRemove( p->vLeaves, uPhase, nVars );
// update truth table
Extra_TruthShrink( p->uCofs[0], p->uTruth, nVars - p->nLutSize + nVarsNew, nVars, ((1 << nVars) - 1) & ~uPhase );
Extra_TruthCopy( p->uTruth, p->uCofs[0], nVars );
assert( !Extra_TruthVarInSupport( p->uTruth, nVars, nVars - p->nLutSize + nVarsNew ) );
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|