1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
|
/**CFile****************************************************************
FileName [abcFx.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Implementation of traditional "fast_extract" algorithm.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - April 26, 2013.]
Revision [$Id: abcFx.c,v 1.00 2013/04/26 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#include "misc/vec/vecWec.h"
#include "misc/vec/vecQue.h"
#include "misc/vec/vecHsh.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
/*
The code in this file implements the traditional "fast_extract" algorithm,
which extracts two-cube divisors concurrently with single-cube two-literal divisors,
as proposed in the TCAD'92 paper by J. Rajski and J. Vasudevamurthi.
Integration notes:
It is assumed that each object (primary input or internal node) in the original network
is associated with a unique integer number, called object identifier (ObjId, for short).
The user's input data given to 'fast_extract" is an array of cubes (pMan->vCubes).
Each cube is an array of integers, in which the first entry contains ObjId of the node,
to which this cube belongs in the original network. The following entries of a cube are
SOP literals of this cube. Each literal is represtned as 2*FaninId + ComplAttr, where FaninId
is ObjId of the fanin node and ComplAttr is 1 if literal is complemented, and 0 otherwise.
The user's output data produced by 'fast_extract' is also an array of cubes (pMan->vCubes).
If no divisors have been extracted, the output array is the same as the input array.
If some divisors have been extracted, the output array contains updated old cubes and new cubes
representing the extracted divisors. The new divisors have their ObjId starting from the
largest ObjId used in the cubes. To give the user more flexibility, which may be needed when some
ObjIds are already used for primary output nodes, which do not participate in fast_extract,
the parameter ObjIdMax is passed to procedure Fx_FastExtract(). The new divisors will receive
their ObjId starting from ObjIdMax onward, as divisor extaction proceeds.
The following two requirements are imposed on the input and output array of cubes:
(1) The array of cubes should be sorted by the first entry in each cube (that is, cubes belonging
to the same node should form a contiguous range).
(2) Literals in a cube should be sorted in the increasing order of the integer numbers.
To integrate this code into a calling application, such as ABC, the input cube array should
be generated (below this is done by the procedure Abc_NtkFxRetrieve) and the output cube array
should be incorporated into the current network (below this is done by the procedure Abc_NtkFxInsert).
In essence, the latter procedure performs the following:
- removes the current fanins and SOPs of each node in the network
- adds new nodes for each new divisor introduced by "fast_extract"
- populates fanins and SOPs of each node, both old and new, as indicaded by the resulting cube array.
Implementation notes:
The implementation is optimized for simplicity and speed of computation.
(1) Main input/output data-structure (pMan->vCubes) is the array of cubes which is dynamically updated by the algorithm.
(2) Auxiliary data-structure (pMan->vLits) is the array of arrays. The i-th array contains IDs of cubes which have literal i.
It may be convenient to think about the first (second) array as rows (columns) of a sparse matrix,
although the sparse matrix data-structure is not used in the proposed implementation.
(3) Hash table (pMan->pHash) hashes the normalized divisors (represented as integer arrays) into integer numbers.
(4) Array of divisor weights (pMan->vWeights), that is, the number of SOP literals to be saved by extacting each divisor.
(5) Priority queue (pMan->vPrio), which sorts divisor (integer numbers) by their weight
(6) Integer array (pMan->vVarCube), which maps each ObjId into the first cube of this object,
or -1, if there is no cubes as in the case of a primary input.
*/
typedef struct Fx_Man_t_ Fx_Man_t;
struct Fx_Man_t_
{
// user's data
Vec_Wec_t * vCubes; // cube -> lit
int LitCountMax;// max size of divisor to extract
// internal data
Vec_Wec_t * vLits; // lit -> cube
Vec_Int_t * vCounts; // literal counts (currently not used)
Hsh_VecMan_t * pHash; // hash table for normalized divisors
Vec_Flt_t * vWeights; // divisor weights
Vec_Que_t * vPrio; // priority queue for divisors by weight
Vec_Int_t * vVarCube; // mapping ObjId into its first cube
// temporary data to update the data-structure when a divisor is extracted
Vec_Int_t * vCubesS; // single cubes for the given divisor
Vec_Int_t * vCubesD; // cube pairs for the given divisor
Vec_Int_t * vCompls; // complemented attribute of each cube pair
Vec_Int_t * vCubeFree; // cube-free divisor
Vec_Int_t * vDiv; // selected divisor
// statistics
abctime timeStart; // starting time
int nVars; // original problem variables
int nLits; // the number of SOP literals
int nDivs; // the number of extracted divisors
int nCompls; // the number of complements
int nPairsS; // number of lit pairs
int nPairsD; // number of cube pairs
int nDivsS; // single cube divisors
int nDivMux[3]; // 0 = mux, 1 = compl mux, 2 = no mux
};
static inline int Fx_ManGetFirstVarCube( Fx_Man_t * p, Vec_Int_t * vCube ) { return Vec_IntEntry( p->vVarCube, Vec_IntEntry(vCube, 0) ); }
#define Fx_ManForEachCubeVec( vVec, vCubes, vCube, i ) \
for ( i = 0; (i < Vec_IntSize(vVec)) && ((vCube) = Vec_WecEntry(vCubes, Vec_IntEntry(vVec, i))); i++ )
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Retrieves SOP information for fast_extract.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Wec_t * Abc_NtkFxRetrieve( Abc_Ntk_t * pNtk )
{
Vec_Wec_t * vCubes;
Vec_Int_t * vCube;
Abc_Obj_t * pNode;
char * pCube, * pSop;
int nVars, i, v, Lit;
assert( Abc_NtkIsSopLogic(pNtk) );
vCubes = Vec_WecAlloc( 1000 );
Abc_NtkForEachNode( pNtk, pNode, i )
{
pSop = (char *)pNode->pData;
nVars = Abc_SopGetVarNum(pSop);
assert( nVars == Abc_ObjFaninNum(pNode) );
// if ( nVars < 2 ) continue;
Abc_SopForEachCube( pSop, nVars, pCube )
{
vCube = Vec_WecPushLevel( vCubes );
Vec_IntPush( vCube, Abc_ObjId(pNode) );
Abc_CubeForEachVar( pCube, Lit, v )
{
if ( Lit == '0' )
Vec_IntPush( vCube, Abc_Var2Lit(Abc_ObjFaninId(pNode, v), 1) );
else if ( Lit == '1' )
Vec_IntPush( vCube, Abc_Var2Lit(Abc_ObjFaninId(pNode, v), 0) );
}
Vec_IntSelectSort( Vec_IntArray(vCube) + 1, Vec_IntSize(vCube) - 1 );
}
}
return vCubes;
}
/**Function*************************************************************
Synopsis [Inserts SOP information after fast_extract.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkFxInsert( Abc_Ntk_t * pNtk, Vec_Wec_t * vCubes )
{
Vec_Int_t * vCube, * vPres, * vFirst, * vCount;
Abc_Obj_t * pNode, * pFanin;
char * pCube, * pSop;
int i, k, v, Lit, iFanin, iNodeMax = 0;
assert( Abc_NtkIsSopLogic(pNtk) );
// check that cubes have no gaps and are ordered by first node
Lit = -1;
Vec_WecForEachLevel( vCubes, vCube, i )
{
assert( Vec_IntSize(vCube) > 0 );
assert( Lit <= Vec_IntEntry(vCube, 0) );
Lit = Vec_IntEntry(vCube, 0);
}
// find the largest index
Vec_WecForEachLevel( vCubes, vCube, i )
iNodeMax = Abc_MaxInt( iNodeMax, Vec_IntEntry(vCube, 0) );
// quit if nothing changes
if ( iNodeMax < Abc_NtkObjNumMax(pNtk) )
{
printf( "The network is unchanged by fast extract.\n" );
return;
}
// create new nodes
for ( i = Abc_NtkObjNumMax(pNtk); i <= iNodeMax; i++ )
{
pNode = Abc_NtkCreateNode( pNtk );
assert( i == (int)Abc_ObjId(pNode) );
}
// create node fanins
vFirst = Vec_IntStart( Abc_NtkObjNumMax(pNtk) );
vCount = Vec_IntStart( Abc_NtkObjNumMax(pNtk) );
Vec_WecForEachLevel( vCubes, vCube, i )
{
iFanin = Vec_IntEntry( vCube, 0 );
if ( Vec_IntEntry(vCount, iFanin) == 0 )
Vec_IntWriteEntry( vFirst, iFanin, i );
Vec_IntAddToEntry( vCount, iFanin, 1 );
}
// create node SOPs
vPres = Vec_IntStartFull( Abc_NtkObjNumMax(pNtk) );
Abc_NtkForEachNode( pNtk, pNode, i )
{
// if ( Vec_IntEntry(vCount, i) == 0 ) continue;
Abc_ObjRemoveFanins( pNode );
// create fanins
assert( Vec_IntEntry(vCount, i) > 0 );
for ( k = 0; k < Vec_IntEntry(vCount, i); k++ )
{
vCube = Vec_WecEntry( vCubes, Vec_IntEntry(vFirst, i) + k );
assert( Vec_IntEntry( vCube, 0 ) == i );
Vec_IntForEachEntryStart( vCube, Lit, v, 1 )
{
pFanin = Abc_NtkObj(pNtk, Abc_Lit2Var(Lit));
if ( Vec_IntEntry(vPres, Abc_ObjId(pFanin)) >= 0 )
continue;
Vec_IntWriteEntry(vPres, Abc_ObjId(pFanin), Abc_ObjFaninNum(pNode));
Abc_ObjAddFanin( pNode, pFanin );
}
}
// create SOP
pSop = pCube = Abc_SopStart( (Mem_Flex_t *)pNtk->pManFunc, Vec_IntEntry(vCount, i), Abc_ObjFaninNum(pNode) );
for ( k = 0; k < Vec_IntEntry(vCount, i); k++ )
{
vCube = Vec_WecEntry( vCubes, Vec_IntEntry(vFirst, i) + k );
assert( Vec_IntEntry( vCube, 0 ) == i );
Vec_IntForEachEntryStart( vCube, Lit, v, 1 )
{
pFanin = Abc_NtkObj(pNtk, Abc_Lit2Var(Lit));
iFanin = Vec_IntEntry(vPres, Abc_ObjId(pFanin));
assert( iFanin >= 0 && iFanin < Abc_ObjFaninNum(pNode) );
pCube[iFanin] = Abc_LitIsCompl(Lit) ? '0' : '1';
}
pCube += Abc_ObjFaninNum(pNode) + 3;
}
// complement SOP if the original one was complemented
if ( pNode->pData && Abc_SopIsComplement((char *)pNode->pData) )
Abc_SopComplement( pSop );
pNode->pData = pSop;
// clean fanins
Abc_ObjForEachFanin( pNode, pFanin, v )
Vec_IntWriteEntry( vPres, Abc_ObjId(pFanin), -1 );
}
Vec_IntFree( vFirst );
Vec_IntFree( vCount );
Vec_IntFree( vPres );
}
/**Function*************************************************************
Synopsis [Makes sure the nodes do not have complemented and duplicated fanins.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkFxCheck( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pNode;
int i;
// Abc_NtkForEachObj( pNtk, pNode, i )
// Abc_ObjPrint( stdout, pNode );
Abc_NtkForEachNode( pNtk, pNode, i )
if ( !Vec_IntCheckUniqueSmall( &pNode->vFanins ) )
return 0;
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkFxPerform( Abc_Ntk_t * pNtk, int nNewNodesMax, int LitCountMax, int fVerbose, int fVeryVerbose )
{
extern int Fx_FastExtract( Vec_Wec_t * vCubes, int ObjIdMax, int nNewNodesMax, int LitCountMax, int fVerbose, int fVeryVerbose );
Vec_Wec_t * vCubes;
assert( Abc_NtkIsSopLogic(pNtk) );
// check unique fanins
if ( !Abc_NtkFxCheck(pNtk) )
{
printf( "Abc_NtkFastExtract: Nodes have duplicated fanins. FX is not performed.\n" );
return 0;
}
// sweep removes useless nodes
Abc_NtkCleanup( pNtk, 0 );
// Abc_NtkOrderFanins( pNtk );
// makes sure the SOPs are SCC-free and D1C-free
Abc_NtkMakeLegit( pNtk );
// collect information about the covers
vCubes = Abc_NtkFxRetrieve( pNtk );
// call the fast extract procedure
if ( Fx_FastExtract( vCubes, Abc_NtkObjNumMax(pNtk), nNewNodesMax, LitCountMax, fVerbose, fVeryVerbose ) > 0 )
{
// update the network
Abc_NtkFxInsert( pNtk, vCubes );
Vec_WecFree( vCubes );
if ( !Abc_NtkCheck( pNtk ) )
printf( "Abc_NtkFxPerform: The network check has failed.\n" );
return 1;
}
else
printf( "Warning: The network has not been changed by \"fx\".\n" );
Vec_WecFree( vCubes );
return 0;
}
/**Function*************************************************************
Synopsis [Starting the manager.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Fx_Man_t * Fx_ManStart( Vec_Wec_t * vCubes )
{
Fx_Man_t * p;
p = ABC_CALLOC( Fx_Man_t, 1 );
p->vCubes = vCubes;
// temporary data
p->vCubesS = Vec_IntAlloc( 100 );
p->vCubesD = Vec_IntAlloc( 100 );
p->vCompls = Vec_IntAlloc( 100 );
p->vCubeFree = Vec_IntAlloc( 100 );
p->vDiv = Vec_IntAlloc( 100 );
return p;
}
void Fx_ManStop( Fx_Man_t * p )
{
// Vec_WecFree( p->vCubes );
Vec_WecFree( p->vLits );
Vec_IntFree( p->vCounts );
Hsh_VecManStop( p->pHash );
Vec_FltFree( p->vWeights );
Vec_QueFree( p->vPrio );
Vec_IntFree( p->vVarCube );
// temporary data
Vec_IntFree( p->vCubesS );
Vec_IntFree( p->vCubesD );
Vec_IntFree( p->vCompls );
Vec_IntFree( p->vCubeFree );
Vec_IntFree( p->vDiv );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Printing procedures.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline char Fx_PrintDivLit( int Lit ) { return (Abc_LitIsCompl(Lit) ? 'A' : 'a') + Abc_Lit2Var(Lit); }
static inline void Fx_PrintDivOneReal( Vec_Int_t * vDiv )
{
int i, Lit;
Vec_IntForEachEntry( vDiv, Lit, i )
if ( !Abc_LitIsCompl(Lit) )
printf( "%c", Fx_PrintDivLit(Abc_Lit2Var(Lit)) );
printf( " + " );
Vec_IntForEachEntry( vDiv, Lit, i )
if ( Abc_LitIsCompl(Lit) )
printf( "%c", Fx_PrintDivLit(Abc_Lit2Var(Lit)) );
}
static inline void Fx_PrintDivOne( Vec_Int_t * vDiv )
{
int i, Lit;
Vec_IntForEachEntry( vDiv, Lit, i )
if ( !Abc_LitIsCompl(Lit) )
printf( "%c", Fx_PrintDivLit( Abc_Var2Lit(i, Abc_LitIsCompl(Lit)) ) );
printf( " + " );
Vec_IntForEachEntry( vDiv, Lit, i )
if ( Abc_LitIsCompl(Lit) )
printf( "%c", Fx_PrintDivLit( Abc_Var2Lit(i, Abc_LitIsCompl(Lit)) ) );
}
static inline void Fx_PrintDivArray( Vec_Int_t * vDiv )
{
int i, Lit;
Vec_IntForEachEntry( vDiv, Lit, i )
if ( !Abc_LitIsCompl(Lit) )
printf( "%d(1) ", Abc_Lit2Var(Lit) );
printf( " + " );
Vec_IntForEachEntry( vDiv, Lit, i )
if ( Abc_LitIsCompl(Lit) )
printf( "%d(2) ", Abc_Lit2Var(Lit) );
}
static inline void Fx_PrintDiv( Fx_Man_t * p, int iDiv )
{
int i;
printf( "%4d : ", p->nDivs );
printf( "Div %7d : ", iDiv );
printf( "Weight %5d ", (int)Vec_FltEntry(p->vWeights, iDiv) );
// printf( "Compl %4d ", p->nCompls );
Fx_PrintDivOne( Hsh_VecReadEntry(p->pHash, iDiv) );
for ( i = Vec_IntSize(Hsh_VecReadEntry(p->pHash, iDiv)) + 3; i < 16; i++ )
printf( " " );
printf( "Lits =%7d ", p->nLits );
printf( "Divs =%8d ", Hsh_VecSize(p->pHash) );
Abc_PrintTime( 1, "Time", Abc_Clock() - p->timeStart );
}
static void Fx_PrintDivisors( Fx_Man_t * p )
{
int iDiv;
for ( iDiv = 0; iDiv < Vec_FltSize(p->vWeights); iDiv++ )
Fx_PrintDiv( p, iDiv );
}
static void Fx_PrintLiterals( Fx_Man_t * p )
{
Vec_Int_t * vTemp;
int i;
Vec_WecForEachLevel( p->vLits, vTemp, i )
{
printf( "%c : ", Fx_PrintDivLit(i) );
Vec_IntPrint( vTemp );
}
}
static void Fx_PrintMatrix( Fx_Man_t * p )
{
Vec_Int_t * vCube;
int i, v, Lit, nObjs;
char * pLine;
printf( " " );
nObjs = Vec_WecSize(p->vLits)/2;
for ( i = 0; i < Abc_MinInt(nObjs, 26); i++ )
printf( "%c", 'a' + i );
printf( "\n" );
pLine = ABC_CALLOC( char, nObjs+1 );
Vec_WecForEachLevel( p->vCubes, vCube, i )
{
if ( Vec_IntSize(vCube) == 0 )
continue;
memset( pLine, '-', nObjs );
Vec_IntForEachEntryStart( vCube, Lit, v, 1 )
{
assert( Abc_Lit2Var(Lit) < nObjs );
pLine[Abc_Lit2Var(Lit)] = Abc_LitIsCompl(Lit) ? '0' : '1';
}
printf( "%6d : %s %4d\n", i, pLine, Vec_IntEntry(vCube, 0) );
}
ABC_FREE( pLine );
Fx_PrintLiterals( p );
Fx_PrintDivisors( p );
}
static void Fx_PrintStats( Fx_Man_t * p, abctime clk )
{
printf( "Cubes =%7d ", Vec_WecSizeUsed(p->vCubes) );
printf( "Lits =%7d ", Vec_WecSizeUsed(p->vLits) );
printf( "Divs =%7d ", Hsh_VecSize(p->pHash) );
printf( "Divs+ =%7d ", Vec_QueSize(p->vPrio) );
printf( "Compl =%6d ", p->nDivMux[1] );
printf( "Extr =%6d ", p->nDivs );
// printf( "DivsS =%6d ", p->nDivsS );
// printf( "PairS =%6d ", p->nPairsS );
// printf( "PairD =%6d ", p->nPairsD );
Abc_PrintTime( 1, "Time", clk );
// printf( "\n" );
}
/**Function*************************************************************
Synopsis [Returns 1 if the divisor should be complemented.]
Description [Normalizes the divisor by putting, first, positive control
literal first and, second, positive data1 literal. As the result,
a MUX divisor is (ab + !ac) and an XOR divisor is (ab + !a!b).]
SideEffects []
SeeAlso []
***********************************************************************/
static int Fx_ManDivNormalize( Vec_Int_t * vCubeFree ) // return 1 if complemented
{
int * L = Vec_IntArray(vCubeFree);
int RetValue = 0, LitA0 = -1, LitB0 = -1, LitA1 = -1, LitB1 = -1;
assert( Vec_IntSize(vCubeFree) == 4 );
if ( Abc_LitIsCompl(L[0]) != Abc_LitIsCompl(L[1]) && (L[0] >> 2) == (L[1] >> 2) ) // diff cubes, same vars
{
if ( Abc_LitIsCompl(L[2]) == Abc_LitIsCompl(L[3]) )
return -1;
LitA0 = Abc_Lit2Var(L[0]), LitB0 = Abc_Lit2Var(L[1]);
if ( Abc_LitIsCompl(L[0]) == Abc_LitIsCompl(L[2]) )
{
assert( Abc_LitIsCompl(L[1]) == Abc_LitIsCompl(L[3]) );
LitA1 = Abc_Lit2Var(L[2]), LitB1 = Abc_Lit2Var(L[3]);
}
else
{
assert( Abc_LitIsCompl(L[0]) == Abc_LitIsCompl(L[3]) );
assert( Abc_LitIsCompl(L[1]) == Abc_LitIsCompl(L[2]) );
LitA1 = Abc_Lit2Var(L[3]), LitB1 = Abc_Lit2Var(L[2]);
}
}
else if ( Abc_LitIsCompl(L[1]) != Abc_LitIsCompl(L[2]) && (L[1] >> 2) == (L[2] >> 2) )
{
if ( Abc_LitIsCompl(L[0]) == Abc_LitIsCompl(L[3]) )
return -1;
LitA0 = Abc_Lit2Var(L[1]), LitB0 = Abc_Lit2Var(L[2]);
if ( Abc_LitIsCompl(L[1]) == Abc_LitIsCompl(L[0]) )
LitA1 = Abc_Lit2Var(L[0]), LitB1 = Abc_Lit2Var(L[3]);
else
LitA1 = Abc_Lit2Var(L[3]), LitB1 = Abc_Lit2Var(L[0]);
}
else if ( Abc_LitIsCompl(L[2]) != Abc_LitIsCompl(L[3]) && (L[2] >> 2) == (L[3] >> 2) )
{
if ( Abc_LitIsCompl(L[0]) == Abc_LitIsCompl(L[1]) )
return -1;
LitA0 = Abc_Lit2Var(L[2]), LitB0 = Abc_Lit2Var(L[3]);
if ( Abc_LitIsCompl(L[2]) == Abc_LitIsCompl(L[0]) )
LitA1 = Abc_Lit2Var(L[0]), LitB1 = Abc_Lit2Var(L[1]);
else
LitA1 = Abc_Lit2Var(L[1]), LitB1 = Abc_Lit2Var(L[0]);
}
else
return -1;
assert( LitA0 == Abc_LitNot(LitB0) );
if ( Abc_LitIsCompl(LitA0) )
{
ABC_SWAP( int, LitA0, LitB0 );
ABC_SWAP( int, LitA1, LitB1 );
}
assert( !Abc_LitIsCompl(LitA0) );
if ( Abc_LitIsCompl(LitA1) )
{
LitA1 = Abc_LitNot(LitA1);
LitB1 = Abc_LitNot(LitB1);
RetValue = 1;
}
assert( !Abc_LitIsCompl(LitA1) );
// arrange literals in such as a way that
// - the first two literals are control literals from different cubes
// - the third literal is non-complented data input
// - the forth literal is possibly complemented data input
L[0] = Abc_Var2Lit( LitA0, 0 );
L[1] = Abc_Var2Lit( LitB0, 1 );
L[2] = Abc_Var2Lit( LitA1, 0 );
L[3] = Abc_Var2Lit( LitB1, 1 );
return RetValue;
}
/**Function*************************************************************
Synopsis [Find a cube-free divisor of the two cubes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Fx_ManDivFindCubeFree( Vec_Int_t * vArr1, Vec_Int_t * vArr2, Vec_Int_t * vCubeFree )
{
int * pBeg1 = vArr1->pArray + 1; // skip variable ID
int * pBeg2 = vArr2->pArray + 1; // skip variable ID
int * pEnd1 = vArr1->pArray + vArr1->nSize;
int * pEnd2 = vArr2->pArray + vArr2->nSize;
int Counter = 0, fAttr0 = 0, fAttr1 = 1;
Vec_IntClear( vCubeFree );
while ( pBeg1 < pEnd1 && pBeg2 < pEnd2 )
{
if ( *pBeg1 == *pBeg2 )
pBeg1++, pBeg2++, Counter++;
else if ( *pBeg1 < *pBeg2 )
Vec_IntPush( vCubeFree, Abc_Var2Lit(*pBeg1++, fAttr0) );
else
{
if ( Vec_IntSize(vCubeFree) == 0 )
fAttr0 = 1, fAttr1 = 0;
Vec_IntPush( vCubeFree, Abc_Var2Lit(*pBeg2++, fAttr1) );
}
}
while ( pBeg1 < pEnd1 )
Vec_IntPush( vCubeFree, Abc_Var2Lit(*pBeg1++, fAttr0) );
while ( pBeg2 < pEnd2 )
Vec_IntPush( vCubeFree, Abc_Var2Lit(*pBeg2++, fAttr1) );
if ( Vec_IntSize(vCubeFree) == 0 )
printf( "The SOP has duplicated cubes.\n" );
else if ( Vec_IntSize(vCubeFree) == 1 )
printf( "The SOP has contained cubes.\n" );
else if ( Vec_IntSize(vCubeFree) == 2 && Abc_Lit2Var(Abc_Lit2Var(Vec_IntEntry(vCubeFree, 0))) == Abc_Lit2Var(Abc_Lit2Var(Vec_IntEntry(vCubeFree, 1))) )
printf( "The SOP has distance-1 cubes or it is not a prime cover. Please make sure the result verifies.\n" );
assert( !Abc_LitIsCompl(Vec_IntEntry(vCubeFree, 0)) );
return Counter;
}
/**Function*************************************************************
Synopsis [Procedures operating on a two-cube divisor.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Fx_ManDivFindPivots( Vec_Int_t * vDiv, int * pLit0, int * pLit1 )
{
int i, Lit;
*pLit0 = -1;
*pLit1 = -1;
Vec_IntForEachEntry( vDiv, Lit, i )
{
if ( Abc_LitIsCompl(Lit) )
{
if ( *pLit1 == -1 )
*pLit1 = Abc_Lit2Var(Lit);
}
else
{
if ( *pLit0 == -1 )
*pLit0 = Abc_Lit2Var(Lit);
}
if ( *pLit0 >= 0 && *pLit1 >= 0 )
return;
}
}
static inline int Fx_ManDivRemoveLits( Vec_Int_t * vCube, Vec_Int_t * vDiv, int fCompl )
{
int i, Lit, Count = 0;
assert( !fCompl || Vec_IntSize(vDiv) == 4 );
Vec_IntForEachEntry( vDiv, Lit, i )
Count += Vec_IntRemove1( vCube, Abc_Lit2Var(Lit) ^ (fCompl && i > 1) ); // the last two lits can be complemented
return Count;
}
static inline void Fx_ManDivAddLits( Vec_Int_t * vCube, Vec_Int_t * vCube2, Vec_Int_t * vDiv )
{
int i, Lit, * pArray;
// Vec_IntClear( vCube );
// Vec_IntClear( vCube2 );
Vec_IntForEachEntry( vDiv, Lit, i )
if ( Abc_LitIsCompl(Lit) )
Vec_IntPush( vCube2, Abc_Lit2Var(Lit) );
else
Vec_IntPush( vCube, Abc_Lit2Var(Lit) );
if ( Vec_IntSize(vDiv) == 4 && Vec_IntSize(vCube) == 3 )
{
assert( Vec_IntSize(vCube2) == 3 );
pArray = Vec_IntArray(vCube);
if ( pArray[1] > pArray[2] )
ABC_SWAP( int, pArray[1], pArray[2] );
pArray = Vec_IntArray(vCube2);
if ( pArray[1] > pArray[2] )
ABC_SWAP( int, pArray[1], pArray[2] );
}
}
/**Function*************************************************************
Synopsis [Setting up the data-structure.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fx_ManCreateLiterals( Fx_Man_t * p, int nVars )
{
Vec_Int_t * vCube;
int i, k, Lit, Count;
// find the number of variables
p->nVars = p->nLits = 0;
Vec_WecForEachLevel( p->vCubes, vCube, i )
{
assert( Vec_IntSize(vCube) > 0 );
p->nVars = Abc_MaxInt( p->nVars, Vec_IntEntry(vCube, 0) );
p->nLits += Vec_IntSize(vCube) - 1;
Vec_IntForEachEntryStart( vCube, Lit, k, 1 )
p->nVars = Abc_MaxInt( p->nVars, Abc_Lit2Var(Lit) );
}
// p->nVars++;
assert( p->nVars < nVars );
p->nVars = nVars;
// count literals
p->vCounts = Vec_IntStart( 2*p->nVars );
Vec_WecForEachLevel( p->vCubes, vCube, i )
Vec_IntForEachEntryStart( vCube, Lit, k, 1 )
Vec_IntAddToEntry( p->vCounts, Lit, 1 );
// start literals
p->vLits = Vec_WecStart( 2*p->nVars );
Vec_IntForEachEntry( p->vCounts, Count, Lit )
Vec_IntGrow( Vec_WecEntry(p->vLits, Lit), Count );
// fill out literals
Vec_WecForEachLevel( p->vCubes, vCube, i )
Vec_IntForEachEntryStart( vCube, Lit, k, 1 )
Vec_WecPush( p->vLits, Lit, i );
// create mapping of variable into the first cube
p->vVarCube = Vec_IntStartFull( p->nVars );
Vec_WecForEachLevel( p->vCubes, vCube, i )
if ( Vec_IntEntry(p->vVarCube, Vec_IntEntry(vCube, 0)) == -1 )
Vec_IntWriteEntry( p->vVarCube, Vec_IntEntry(vCube, 0), i );
}
int Fx_ManCubeSingleCubeDivisors( Fx_Man_t * p, Vec_Int_t * vPivot, int fRemove, int fUpdate )
{
int k, n, Lit, Lit2, iDiv;
if ( Vec_IntSize(vPivot) < 2 )
return 0;
Vec_IntForEachEntryStart( vPivot, Lit, k, 1 )
Vec_IntForEachEntryStart( vPivot, Lit2, n, k+1 )
{
assert( Lit < Lit2 );
Vec_IntClear( p->vCubeFree );
Vec_IntPush( p->vCubeFree, Abc_Var2Lit(Abc_LitNot(Lit), 0) );
Vec_IntPush( p->vCubeFree, Abc_Var2Lit(Abc_LitNot(Lit2), 1) );
iDiv = Hsh_VecManAdd( p->pHash, p->vCubeFree );
if ( !fRemove )
{
if ( Vec_FltSize(p->vWeights) == iDiv )
{
Vec_FltPush(p->vWeights, -2);
p->nDivsS++;
}
assert( iDiv < Vec_FltSize(p->vWeights) );
Vec_FltAddToEntry( p->vWeights, iDiv, 1 );
p->nPairsS++;
}
else
{
assert( iDiv < Vec_FltSize(p->vWeights) );
Vec_FltAddToEntry( p->vWeights, iDiv, -1 );
p->nPairsS--;
}
if ( fUpdate )
{
if ( Vec_QueIsMember(p->vPrio, iDiv) )
Vec_QueUpdate( p->vPrio, iDiv );
else if ( !fRemove )
Vec_QuePush( p->vPrio, iDiv );
}
}
return Vec_IntSize(vPivot) * (Vec_IntSize(vPivot) - 1) / 2;
}
void Fx_ManCubeDoubleCubeDivisors( Fx_Man_t * p, int iFirst, Vec_Int_t * vPivot, int fRemove, int fUpdate )
{
Vec_Int_t * vCube;
int i, iDiv, Base;
Vec_WecForEachLevelStart( p->vCubes, vCube, i, iFirst )
{
if ( Vec_IntSize(vCube) == 0 || vCube == vPivot )
continue;
if ( Vec_WecIntHasMark(vCube) && Vec_WecIntHasMark(vPivot) && vCube > vPivot )
continue;
if ( Vec_IntEntry(vCube, 0) != Vec_IntEntry(vPivot, 0) )
break;
Base = Fx_ManDivFindCubeFree( vCube, vPivot, p->vCubeFree );
if ( Vec_IntSize(p->vCubeFree) == 4 )
{
int Value = Fx_ManDivNormalize( p->vCubeFree );
if ( Value == 0 )
p->nDivMux[0]++;
else if ( Value == 1 )
p->nDivMux[1]++;
else
p->nDivMux[2]++;
}
if ( p->LitCountMax && p->LitCountMax < Vec_IntSize(p->vCubeFree) )
continue;
iDiv = Hsh_VecManAdd( p->pHash, p->vCubeFree );
if ( !fRemove )
{
if ( iDiv == Vec_FltSize(p->vWeights) )
Vec_FltPush(p->vWeights, -Vec_IntSize(p->vCubeFree));
assert( iDiv < Vec_FltSize(p->vWeights) );
Vec_FltAddToEntry( p->vWeights, iDiv, Base + Vec_IntSize(p->vCubeFree) - 1 );
p->nPairsD++;
}
else
{
assert( iDiv < Vec_FltSize(p->vWeights) );
Vec_FltAddToEntry( p->vWeights, iDiv, -(Base + Vec_IntSize(p->vCubeFree) - 1) );
p->nPairsD--;
}
if ( fUpdate )
{
if ( Vec_QueIsMember(p->vPrio, iDiv) )
Vec_QueUpdate( p->vPrio, iDiv );
else if ( !fRemove )
Vec_QuePush( p->vPrio, iDiv );
}
}
}
void Fx_ManCreateDivisors( Fx_Man_t * p )
{
Vec_Int_t * vCube;
float Weight;
int i;
// alloc hash table
assert( p->pHash == NULL );
p->pHash = Hsh_VecManStart( 1000 );
p->vWeights = Vec_FltAlloc( 1000 );
// create single-cube two-literal divisors
Vec_WecForEachLevel( p->vCubes, vCube, i )
Fx_ManCubeSingleCubeDivisors( p, vCube, 0, 0 ); // add - no update
assert( p->nDivsS == Vec_FltSize(p->vWeights) );
// create two-cube divisors
Vec_WecForEachLevel( p->vCubes, vCube, i )
Fx_ManCubeDoubleCubeDivisors( p, i+1, vCube, 0, 0 ); // add - no update
// create queue with all divisors
p->vPrio = Vec_QueAlloc( Vec_FltSize(p->vWeights) );
Vec_QueSetCosts( p->vPrio, Vec_FltArrayP(p->vWeights) );
Vec_FltForEachEntry( p->vWeights, Weight, i )
if ( Weight > 0.0 )
Vec_QuePush( p->vPrio, i );
}
/**Function*************************************************************
Synopsis [Compress the cubes by removing unused ones.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Fx_ManCompressCubes( Vec_Wec_t * vCubes, Vec_Int_t * vLit2Cube )
{
int i, CubeId, k = 0;
Vec_IntForEachEntry( vLit2Cube, CubeId, i )
if ( Vec_IntSize(Vec_WecEntry(vCubes, CubeId)) > 0 )
Vec_IntWriteEntry( vLit2Cube, k++, CubeId );
Vec_IntShrink( vLit2Cube, k );
}
/**Function*************************************************************
Synopsis [Find command cube pairs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
static inline int Fx_ManGetCubeVar( Vec_Wec_t * vCubes, int iCube ) { return Vec_IntEntry( Vec_WecEntry(vCubes, iCube), 0 ); }
void Fx_ManFindCommonPairs( Vec_Wec_t * vCubes, Vec_Int_t * vPart0, Vec_Int_t * vPart1, Vec_Int_t * vPairs, Vec_Int_t * vCompls, Vec_Int_t * vDiv, Vec_Int_t * vCubeFree )
{
int * pBeg1 = vPart0->pArray;
int * pBeg2 = vPart1->pArray;
int * pEnd1 = vPart0->pArray + vPart0->nSize;
int * pEnd2 = vPart1->pArray + vPart1->nSize;
int i, k, i_, k_, fCompl, CubeId1, CubeId2;
Vec_IntClear( vPairs );
Vec_IntClear( vCompls );
while ( pBeg1 < pEnd1 && pBeg2 < pEnd2 )
{
CubeId1 = Fx_ManGetCubeVar(vCubes, *pBeg1);
CubeId2 = Fx_ManGetCubeVar(vCubes, *pBeg2);
if ( CubeId1 == CubeId2 )
{
for ( i = 1; pBeg1+i < pEnd1; i++ )
if ( CubeId1 != Fx_ManGetCubeVar(vCubes, pBeg1[i]) )
break;
for ( k = 1; pBeg2+k < pEnd2; k++ )
if ( CubeId1 != Fx_ManGetCubeVar(vCubes, pBeg2[k]) )
break;
for ( i_ = 0; i_ < i; i_++ )
for ( k_ = 0; k_ < k; k_++ )
{
if ( pBeg1[i_] == pBeg2[k_] )
continue;
Fx_ManDivFindCubeFree( Vec_WecEntry(vCubes, pBeg1[i_]), Vec_WecEntry(vCubes, pBeg2[k_]), vCubeFree );
fCompl = (Vec_IntSize(vCubeFree) == 4 && Fx_ManDivNormalize(vCubeFree) == 1);
if ( !Vec_IntEqual( vDiv, vCubeFree ) )
continue;
Vec_IntPush( vPairs, pBeg1[i_] );
Vec_IntPush( vPairs, pBeg2[k_] );
Vec_IntPush( vCompls, fCompl );
}
pBeg1 += i;
pBeg2 += k;
}
else if ( CubeId1 < CubeId2 )
pBeg1++;
else
pBeg2++;
}
}
/**Function*************************************************************
Synopsis [Updates the data-structure when one divisor is selected.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Fx_ManUpdate( Fx_Man_t * p, int iDiv )
{
Vec_Int_t * vCube, * vCube2, * vLitP, * vLitN;
Vec_Int_t * vDiv = p->vDiv;
int nLitsNew = p->nLits - (int)Vec_FltEntry(p->vWeights, iDiv);
int i, k, Lit0, Lit1, iVarNew, RetValue;
// get the divisor and select pivot variables
p->nDivs++;
Vec_IntClear( vDiv );
Vec_IntAppend( vDiv, Hsh_VecReadEntry(p->pHash, iDiv) );
Fx_ManDivFindPivots( vDiv, &Lit0, &Lit1 );
assert( Lit0 >= 0 && Lit1 >= 0 );
// if the input cover is not prime, it may happen that we are extracting divisor (x + !x)
// although it is not strictly correct, it seems to be fine to just skip such divisors
if ( Abc_Lit2Var(Lit0) == Abc_Lit2Var(Lit1) && Vec_IntSize(Hsh_VecReadEntry(p->pHash, iDiv)) == 2 )
return;
// collect single-cube-divisor cubes
Vec_IntClear( p->vCubesS );
if ( Vec_IntSize(vDiv) == 2 )
{
Fx_ManCompressCubes( p->vCubes, Vec_WecEntry(p->vLits, Abc_LitNot(Lit0)) );
Fx_ManCompressCubes( p->vCubes, Vec_WecEntry(p->vLits, Abc_LitNot(Lit1)) );
Vec_IntTwoRemoveCommon( Vec_WecEntry(p->vLits, Abc_LitNot(Lit0)), Vec_WecEntry(p->vLits, Abc_LitNot(Lit1)), p->vCubesS );
}
// collect double-cube-divisor cube pairs
Fx_ManCompressCubes( p->vCubes, Vec_WecEntry(p->vLits, Lit0) );
Fx_ManCompressCubes( p->vCubes, Vec_WecEntry(p->vLits, Lit1) );
Fx_ManFindCommonPairs( p->vCubes, Vec_WecEntry(p->vLits, Lit0), Vec_WecEntry(p->vLits, Lit1), p->vCubesD, p->vCompls, vDiv, p->vCubeFree );
// subtract cost of single-cube divisors
Fx_ManForEachCubeVec( p->vCubesS, p->vCubes, vCube, i )
Fx_ManCubeSingleCubeDivisors( p, vCube, 1, 1 ); // remove - update
Fx_ManForEachCubeVec( p->vCubesD, p->vCubes, vCube, i )
Fx_ManCubeSingleCubeDivisors( p, vCube, 1, 1 ); // remove - update
// mark the cubes to be removed
Vec_WecMarkLevels( p->vCubes, p->vCubesS );
Vec_WecMarkLevels( p->vCubes, p->vCubesD );
// subtract cost of double-cube divisors
Fx_ManForEachCubeVec( p->vCubesS, p->vCubes, vCube, i )
Fx_ManCubeDoubleCubeDivisors( p, Fx_ManGetFirstVarCube(p, vCube), vCube, 1, 1 ); // remove - update
Fx_ManForEachCubeVec( p->vCubesD, p->vCubes, vCube, i )
Fx_ManCubeDoubleCubeDivisors( p, Fx_ManGetFirstVarCube(p, vCube), vCube, 1, 1 ); // remove - update
// unmark the cubes to be removed
Vec_WecUnmarkLevels( p->vCubes, p->vCubesS );
Vec_WecUnmarkLevels( p->vCubes, p->vCubesD );
// create new divisor
iVarNew = Vec_WecSize( p->vLits ) / 2;
assert( Vec_IntSize(p->vVarCube) == iVarNew );
Vec_IntPush( p->vVarCube, Vec_WecSize(p->vCubes) );
vCube = Vec_WecPushLevel( p->vCubes );
Vec_IntPush( vCube, iVarNew );
if ( Vec_IntSize(vDiv) == 2 )
{
Vec_IntPush( vCube, Abc_LitNot(Lit0) );
Vec_IntPush( vCube, Abc_LitNot(Lit1) );
}
else
{
vCube2 = Vec_WecPushLevel( p->vCubes );
vCube = Vec_WecEntry( p->vCubes, Vec_WecSize(p->vCubes) - 2 );
Vec_IntPush( vCube2, iVarNew );
Fx_ManDivAddLits( vCube, vCube2, vDiv );
}
// do not add new cubes to the matrix
p->nLits += Vec_IntSize( vDiv );
// create new literals
vLitP = Vec_WecPushLevel( p->vLits );
vLitN = Vec_WecPushLevel( p->vLits );
vLitP = Vec_WecEntry( p->vLits, Vec_WecSize(p->vLits) - 2 );
// create updated single-cube divisor cubes
Fx_ManForEachCubeVec( p->vCubesS, p->vCubes, vCube, i )
{
RetValue = Vec_IntRemove1( vCube, Abc_LitNot(Lit0) );
RetValue += Vec_IntRemove1( vCube, Abc_LitNot(Lit1) );
assert( RetValue == 2 );
Vec_IntPush( vCube, Abc_Var2Lit(iVarNew, 0) );
Vec_IntPush( vLitP, Vec_WecLevelId(p->vCubes, vCube) );
p->nLits--;
}
// create updated double-cube divisor cube pairs
k = 0;
p->nCompls = 0;
assert( Vec_IntSize(p->vCubesD) % 2 == 0 );
assert( Vec_IntSize(p->vCubesD) == 2 * Vec_IntSize(p->vCompls) );
for ( i = 0; i < Vec_IntSize(p->vCubesD); i += 2 )
{
int fCompl = Vec_IntEntry(p->vCompls, i/2);
p->nCompls += fCompl;
vCube = Vec_WecEntry( p->vCubes, Vec_IntEntry(p->vCubesD, i) );
vCube2 = Vec_WecEntry( p->vCubes, Vec_IntEntry(p->vCubesD, i+1) );
RetValue = Fx_ManDivRemoveLits( vCube, vDiv, fCompl ); // cube 2*i
RetValue += Fx_ManDivRemoveLits( vCube2, vDiv, fCompl ); // cube 2*i+1
assert( RetValue == Vec_IntSize(vDiv) );
if ( Vec_IntSize(vDiv) == 2 || fCompl )
{
Vec_IntPush( vCube, Abc_Var2Lit(iVarNew, 1) );
Vec_IntPush( vLitN, Vec_WecLevelId(p->vCubes, vCube) );
}
else
{
Vec_IntPush( vCube, Abc_Var2Lit(iVarNew, 0) );
Vec_IntPush( vLitP, Vec_WecLevelId(p->vCubes, vCube) );
}
p->nLits -= Vec_IntSize(vDiv) + Vec_IntSize(vCube2) - 2;
// remove second cube
Vec_IntWriteEntry( p->vCubesD, k++, Vec_WecLevelId(p->vCubes, vCube) );
Vec_IntClear( vCube2 );
}
assert( k == Vec_IntSize(p->vCubesD) / 2 );
Vec_IntShrink( p->vCubesD, k );
Vec_IntSort( p->vCubesD, 0 );
// add cost of single-cube divisors
Fx_ManForEachCubeVec( p->vCubesS, p->vCubes, vCube, i )
Fx_ManCubeSingleCubeDivisors( p, vCube, 0, 1 ); // add - update
Fx_ManForEachCubeVec( p->vCubesD, p->vCubes, vCube, i )
Fx_ManCubeSingleCubeDivisors( p, vCube, 0, 1 ); // add - update
// mark the cubes to be removed
Vec_WecMarkLevels( p->vCubes, p->vCubesS );
Vec_WecMarkLevels( p->vCubes, p->vCubesD );
// add cost of double-cube divisors
Fx_ManForEachCubeVec( p->vCubesS, p->vCubes, vCube, i )
Fx_ManCubeDoubleCubeDivisors( p, Fx_ManGetFirstVarCube(p, vCube), vCube, 0, 1 ); // add - update
Fx_ManForEachCubeVec( p->vCubesD, p->vCubes, vCube, i )
Fx_ManCubeDoubleCubeDivisors( p, Fx_ManGetFirstVarCube(p, vCube), vCube, 0, 1 ); // add - update
// unmark the cubes to be removed
Vec_WecUnmarkLevels( p->vCubes, p->vCubesS );
Vec_WecUnmarkLevels( p->vCubes, p->vCubesD );
// add cost of the new divisor
if ( Vec_IntSize(vDiv) > 2 )
{
vCube = Vec_WecEntry( p->vCubes, Vec_WecSize(p->vCubes) - 2 );
vCube2 = Vec_WecEntry( p->vCubes, Vec_WecSize(p->vCubes) - 1 );
Fx_ManCubeSingleCubeDivisors( p, vCube, 0, 1 ); // add - update
Fx_ManCubeSingleCubeDivisors( p, vCube2, 0, 1 ); // add - update
Vec_IntForEachEntryStart( vCube, Lit0, i, 1 )
Vec_WecPush( p->vLits, Lit0, Vec_WecLevelId(p->vCubes, vCube) );
Vec_IntForEachEntryStart( vCube2, Lit0, i, 1 )
Vec_WecPush( p->vLits, Lit0, Vec_WecLevelId(p->vCubes, vCube2) );
}
// remove these cubes from the lit array of the divisor
Vec_IntForEachEntry( vDiv, Lit0, i )
{
Vec_IntTwoRemove( Vec_WecEntry(p->vLits, Abc_Lit2Var(Lit0)), p->vCubesD );
if ( p->nCompls && i > 1 ) // the last two lits are possibly complemented
Vec_IntTwoRemove( Vec_WecEntry(p->vLits, Abc_LitNot(Abc_Lit2Var(Lit0))), p->vCubesD );
}
// check predicted improvement: (new SOP lits == old SOP lits - divisor weight)
assert( p->nLits == nLitsNew );
}
/**Function*************************************************************
Synopsis [Implements the traditional fast_extract algorithm.]
Description [J. Rajski and J. Vasudevamurthi, "The testability-
preserving concurrent decomposition and factorization of Boolean
expressions", IEEE TCAD, Vol. 11, No. 6, June 1992, pp. 778-793.]
SideEffects []
SeeAlso []
***********************************************************************/
int Fx_FastExtract( Vec_Wec_t * vCubes, int ObjIdMax, int nNewNodesMax, int LitCountMax, int fVerbose, int fVeryVerbose )
{
int fVeryVeryVerbose = 0;
int i, iDiv;
Fx_Man_t * p;
abctime clk = Abc_Clock();
// initialize the data-structure
p = Fx_ManStart( vCubes );
p->LitCountMax = LitCountMax;
Fx_ManCreateLiterals( p, ObjIdMax );
Fx_ManCreateDivisors( p );
if ( fVeryVerbose )
Fx_PrintMatrix( p );
if ( fVerbose )
Fx_PrintStats( p, Abc_Clock() - clk );
// perform extraction
p->timeStart = Abc_Clock();
for ( i = 0; i < nNewNodesMax && Vec_QueTopCost(p->vPrio) > 0.0; i++ )
{
iDiv = Vec_QuePop(p->vPrio);
if ( fVeryVerbose )
Fx_PrintDiv( p, iDiv );
Fx_ManUpdate( p, iDiv );
if ( fVeryVeryVerbose )
Fx_PrintMatrix( p );
}
if ( fVerbose )
Fx_PrintStats( p, Abc_Clock() - clk );
Fx_ManStop( p );
// return the result
Vec_WecRemoveEmpty( vCubes );
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|