1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
/**CFile****************************************************************
FileName [abcDressw.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Network and node package.]
Synopsis [Transfers names from one netlist to the other.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: abcDressw.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "base/abc/abc.h"
#include "aig/aig/aig.h"
#include "proof/dch/dch.h"
ABC_NAMESPACE_IMPL_START
/*
Procedure Abc_NtkDressComputeEquivs() implemented in this file computes
equivalence classes of objects of the two networks (pNtk1 and pNtk2).
It is possible that pNtk1 is the network before synthesis and pNtk2 is the
network after synthesis. The equiv classes of nodes from these networks
can be used to transfer the names from pNtk1 to pNtk2, or vice versa.
The above procedure returns the array (Vec_Ptr_t) of integer arrays (Vec_Int_t).
Each of the integer arrays contains entries of one equivalence class.
Each entry (EquivId) contains the following information:
(1) object ID, which is a number 'num', such that 0 <= 'num' < MaxId
where MaxId is the largest ID of nodes in a network
(2) the polarity of the node, which is a binary number, 0 or 1, giving
the node's value when pattern (000...0) is applied to the inputs
(3) the number of the network, 0 or 1, which stands for pNtk1 and pNtk2, respectively
The first array in the array of arrays is empty, or contains nodes that
are equivalent to a constant (if such nodes appear in the network).
Given EquivID defined above, use the APIs below to get its components.
*/
// declarations to be added to the application code
extern int Abc_ObjEquivId2ObjId( int EquivId );
extern int Abc_ObjEquivId2Polar( int EquivId );
extern int Abc_ObjEquivId2NtkId( int EquivId );
// definition that may remain in this file
int Abc_ObjEquivId2ObjId( int EquivId ) { return EquivId >> 2; }
int Abc_ObjEquivId2Polar( int EquivId ) { return (EquivId >> 1) & 1; }
int Abc_ObjEquivId2NtkId( int EquivId ) { return EquivId & 1; }
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
extern Aig_Man_t * Abc_NtkToDar( Abc_Ntk_t * pNtk, int fExors, int fRegisters );
extern void Dch_ComputeEquivalences( Aig_Man_t * pAig, Dch_Pars_t * pPars );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Creates the dual-output miter.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Aig_ManCreateDualOutputMiter( Aig_Man_t * p1, Aig_Man_t * p2 )
{
Aig_Man_t * pNew;
Aig_Obj_t * pObj;
int i;
assert( Aig_ManCiNum(p1) == Aig_ManCiNum(p2) );
assert( Aig_ManCoNum(p1) == Aig_ManCoNum(p2) );
pNew = Aig_ManStart( Aig_ManObjNumMax(p1) + Aig_ManObjNumMax(p2) );
// add first AIG
Aig_ManConst1(p1)->pData = Aig_ManConst1(pNew);
Aig_ManForEachCi( p1, pObj, i )
pObj->pData = Aig_ObjCreateCi( pNew );
Aig_ManForEachNode( p1, pObj, i )
pObj->pData = Aig_And( pNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
// add second AIG
Aig_ManConst1(p2)->pData = Aig_ManConst1(pNew);
Aig_ManForEachCi( p2, pObj, i )
pObj->pData = Aig_ManCi( pNew, i );
Aig_ManForEachNode( p2, pObj, i )
pObj->pData = Aig_And( pNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
// add the outputs
for ( i = 0; i < Aig_ManCoNum(p1); i++ )
{
Aig_ObjCreateCo( pNew, Aig_ObjChild0Copy(Aig_ManCo(p1, i)) );
Aig_ObjCreateCo( pNew, Aig_ObjChild0Copy(Aig_ManCo(p2, i)) );
}
Aig_ManCleanup( pNew );
return pNew;
}
/**Function*************************************************************
Synopsis [Sets polarity attribute of each object in the network.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkDressMapSetPolarity( Abc_Ntk_t * pNtk )
{
Abc_Obj_t * pObj, * pAnd;
int i;
// each node refers to the the strash copy whose polarity is set
Abc_NtkForEachObj( pNtk, pObj, i )
{
if ( (pAnd = Abc_ObjRegular(pObj->pCopy)) && Abc_ObjType(pAnd) != ABC_OBJ_NONE ) // strashed object is present and legal
pObj->fPhase = pAnd->fPhase ^ Abc_ObjIsComplement(pObj->pCopy);
}
}
/**Function*************************************************************
Synopsis [Create mapping of node IDs of pNtk into equiv classes of pMiter.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Abc_NtkDressMapClasses( Aig_Man_t * pMiter, Abc_Ntk_t * pNtk )
{
Vec_Int_t * vId2Lit;
Abc_Obj_t * pObj, * pAnd;
Aig_Obj_t * pObjMan, * pObjMiter, * pObjRepr;
int i;
vId2Lit = Vec_IntAlloc( 0 );
Vec_IntFill( vId2Lit, Abc_NtkObjNumMax(pNtk), -1 );
Abc_NtkForEachNode( pNtk, pObj, i )
{
// get the pointer to the miter node corresponding to pObj
if ( (pAnd = Abc_ObjRegular(pObj->pCopy)) && Abc_ObjType(pAnd) != ABC_OBJ_NONE && // strashed node is present and legal
(pObjMan = Aig_Regular((Aig_Obj_t *)pAnd->pCopy)) && Aig_ObjType(pObjMan) != AIG_OBJ_NONE && // AIG node is present and legal
(pObjMiter = Aig_Regular((Aig_Obj_t *)pObjMan->pData)) && Aig_ObjType(pObjMiter) != AIG_OBJ_NONE ) // miter node is present and legal
{
// get the representative of the miter node
pObjRepr = Aig_ObjRepr( pMiter, pObjMiter );
pObjRepr = pObjRepr? pObjRepr : pObjMiter;
// map pObj (whose ID is i) into the repr node ID (i.e. equiv class)
Vec_IntWriteEntry( vId2Lit, i, Aig_ObjId(pObjRepr) );
}
}
return vId2Lit;
}
/**Function*************************************************************
Synopsis [Returns the vector of given equivalence class of objects.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Int_t * Abc_ObjDressClass( Vec_Ptr_t * vRes, Vec_Int_t * vClass2Num, int Class )
{
int ClassNumber;
assert( Class > 0 );
ClassNumber = Vec_IntEntry( vClass2Num, Class );
assert( ClassNumber != 0 );
if ( ClassNumber > 0 )
return (Vec_Int_t *)Vec_PtrEntry( vRes, ClassNumber ); // previous class
// create new class
Vec_IntWriteEntry( vClass2Num, Class, Vec_PtrSize(vRes) );
Vec_PtrPush( vRes, Vec_IntAlloc(4) );
return (Vec_Int_t *)Vec_PtrEntryLast( vRes );
}
/**Function*************************************************************
Synopsis [Returns the ID of a node in an equivalence class.]
Description [The ID is composed of three parts: object ID, followed
by one bit telling the phase of this node, followed by one bit
telling the network to which this node belongs.]
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_ObjDressMakeId( Abc_Ntk_t * pNtk, int ObjId, int iNtk )
{
return (ObjId << 2) | (Abc_NtkObj(pNtk,ObjId)->fPhase << 1) | iNtk;
}
/**Function*************************************************************
Synopsis [Computes equivalence classes of objects in pNtk1 and pNtk2.]
Description [Internal procedure.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkDressMapIds( Aig_Man_t * pMiter, Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2 )
{
Vec_Ptr_t * vRes;
Vec_Int_t * vId2Lit1, * vId2Lit2, * vCounts0, * vCounts1, * vClassC, * vClass2Num;
int i, Class;
// start the classes
vRes = Vec_PtrAlloc( 1000 );
// set polarity of the nodes
Abc_NtkDressMapSetPolarity( pNtk1 );
Abc_NtkDressMapSetPolarity( pNtk2 );
// create mapping of node IDs of pNtk1/pNtk2 into the IDs of equiv classes of pMiter
vId2Lit1 = Abc_NtkDressMapClasses( pMiter, pNtk1 );
vId2Lit2 = Abc_NtkDressMapClasses( pMiter, pNtk2 );
// count the number of nodes in each equivalence class
vCounts0 = Vec_IntStart( Aig_ManObjNumMax(pMiter) );
Vec_IntForEachEntry( vId2Lit1, Class, i )
if ( Class >= 0 )
Vec_IntAddToEntry( vCounts0, Class, 1 );
vCounts1 = Vec_IntStart( Aig_ManObjNumMax(pMiter) );
Vec_IntForEachEntry( vId2Lit2, Class, i )
if ( Class >= 0 )
Vec_IntAddToEntry( vCounts1, Class, 1 );
// get the costant class
vClassC = Vec_IntAlloc( 100 );
Vec_IntForEachEntry( vId2Lit1, Class, i )
if ( Class == 0 )
Vec_IntPush( vClassC, Abc_ObjDressMakeId(pNtk1, i, 0) );
Vec_IntForEachEntry( vId2Lit2, Class, i )
if ( Class == 0 )
Vec_IntPush( vClassC, Abc_ObjDressMakeId(pNtk2, i, 1) );
Vec_PtrPush( vRes, vClassC );
// map repr node IDs into class numbers
vClass2Num = Vec_IntAlloc( 0 );
Vec_IntFill( vClass2Num, Aig_ManObjNumMax(pMiter), -1 );
// keep classes having at least one element from pNtk1 and one from pNtk2
Vec_IntForEachEntry( vId2Lit1, Class, i )
if ( Class > 0 && Vec_IntEntry(vCounts0, Class) && Vec_IntEntry(vCounts1, Class) )
Vec_IntPush( Abc_ObjDressClass(vRes, vClass2Num, Class), Abc_ObjDressMakeId(pNtk1, i, 0) );
Vec_IntForEachEntry( vId2Lit2, Class, i )
if ( Class > 0 && Vec_IntEntry(vCounts0, Class) && Vec_IntEntry(vCounts1, Class) )
Vec_IntPush( Abc_ObjDressClass(vRes, vClass2Num, Class), Abc_ObjDressMakeId(pNtk2, i, 1) );
// package them accordingly
Vec_IntFree( vClass2Num );
Vec_IntFree( vCounts0 );
Vec_IntFree( vCounts1 );
Vec_IntFree( vId2Lit1 );
Vec_IntFree( vId2Lit2 );
return vRes;
}
/**Function*************************************************************
Synopsis [Computes equivalence classes of objects in pNtk1 and pNtk2.]
Description [Returns the array (Vec_Ptr_t) of integer arrays (Vec_Int_t).
Each of the integer arrays contains entries of one equivalence class.
Each entry contains the following information: the network number (0/1),
the polarity (0/1) and the object ID in the the network (0 <= num < MaxId)
where MaxId is the largest number of an ID of an object in that network.]
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Abc_NtkDressComputeEquivs( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nConflictLimit, int fVerbose )
{
Dch_Pars_t Pars, * pPars = &Pars;
Abc_Ntk_t * pAig1, * pAig2;
Aig_Man_t * pMan1, * pMan2, * pMiter;
Vec_Ptr_t * vRes;
assert( !Abc_NtkIsStrash(pNtk1) );
assert( !Abc_NtkIsStrash(pNtk2) );
// convert network into AIG
pAig1 = Abc_NtkStrash( pNtk1, 1, 1, 0 );
pAig2 = Abc_NtkStrash( pNtk2, 1, 1, 0 );
pMan1 = Abc_NtkToDar( pAig1, 0, 0 );
pMan2 = Abc_NtkToDar( pAig2, 0, 0 );
// derive the miter
pMiter = Aig_ManCreateDualOutputMiter( pMan1, pMan2 );
// set up parameters for SAT sweeping
Dch_ManSetDefaultParams( pPars );
pPars->nBTLimit = nConflictLimit;
pPars->fVerbose = fVerbose;
// perform SAT sweeping
Dch_ComputeEquivalences( pMiter, pPars );
// now, pMiter is annotated with the equivl class info
// convert this info into the resulting array
vRes = Abc_NtkDressMapIds( pMiter, pNtk1, pNtk2 );
Aig_ManStop( pMiter );
Aig_ManStop( pMan1 );
Aig_ManStop( pMan2 );
Abc_NtkDelete( pAig1 );
Abc_NtkDelete( pAig2 );
return vRes;
}
/**Function*************************************************************
Synopsis [Prints information about node equivalences.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkDressPrintEquivs( Vec_Ptr_t * vRes )
{
Vec_Int_t * vClass;
int i, k, Entry;
Vec_PtrForEachEntry( Vec_Int_t *, vRes, vClass, i )
{
printf( "Class %5d : ", i );
printf( "Num =%5d ", Vec_IntSize(vClass) );
Vec_IntForEachEntry( vClass, Entry, k )
printf( "%5d%c%d ",
Abc_ObjEquivId2ObjId(Entry),
Abc_ObjEquivId2Polar(Entry)? '-':'+',
Abc_ObjEquivId2NtkId(Entry) );
printf( "\n" );
}
}
/**Function*************************************************************
Synopsis [Prints information about node equivalences.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkDressPrintStats( Vec_Ptr_t * vRes, int nNodes0, int nNodes1, abctime Time )
{
Vec_Int_t * vClass;
int i, k, Entry;
int NegAll[2] = {0}, PosAll[2] = {0}, PairsAll = 0, PairsOne = 0;
int Pos[2], Neg[2];
// count the number of equivalences in each class
Vec_PtrForEachEntry( Vec_Int_t *, vRes, vClass, i )
{
Pos[0] = Pos[1] = 0;
Neg[0] = Neg[1] = 0;
Vec_IntForEachEntry( vClass, Entry, k )
{
if ( Abc_ObjEquivId2NtkId(Entry) )
{
if ( Abc_ObjEquivId2Polar(Entry) )
Neg[1]++; // negative polarity in network 1
else
Pos[1]++; // positive polarity in network 1
}
else
{
if ( Abc_ObjEquivId2Polar(Entry) )
Neg[0]++; // negative polarity in network 0
else
Pos[0]++; // positive polarity in network 0
}
}
PosAll[0] += Pos[0]; // total positive polarity in network 0
PosAll[1] += Pos[1]; // total positive polarity in network 1
NegAll[0] += Neg[0]; // total negative polarity in network 0
NegAll[1] += Neg[1]; // total negative polarity in network 1
// assuming that the name can be transferred to only one node
PairsAll += Abc_MinInt(Neg[0] + Pos[0], Neg[1] + Pos[1]);
PairsOne += Abc_MinInt(Neg[0], Neg[1]) + Abc_MinInt(Pos[0], Pos[1]);
}
printf( "Total number of equiv classes = %7d.\n", Vec_PtrSize(vRes) );
printf( "Participating nodes from both networks = %7d.\n", NegAll[0]+PosAll[0]+NegAll[1]+PosAll[1] );
printf( "Participating nodes from the first network = %7d. (%7.2f %% of nodes)\n", NegAll[0]+PosAll[0], 100.0*(NegAll[0]+PosAll[0])/(nNodes0+1) );
printf( "Participating nodes from the second network = %7d. (%7.2f %% of nodes)\n", NegAll[1]+PosAll[1], 100.0*(NegAll[1]+PosAll[1])/(nNodes1+1) );
printf( "Node pairs (any polarity) = %7d. (%7.2f %% of names can be moved)\n", PairsAll, 100.0*PairsAll/(nNodes0+1) );
printf( "Node pairs (same polarity) = %7d. (%7.2f %% of names can be moved)\n", PairsOne, 100.0*PairsOne/(nNodes0+1) );
ABC_PRT( "Total runtime", Time );
}
/**Function*************************************************************
Synopsis [Transfers IDs from pNtk1 to pNtk2 using equivalence classes.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkDress2Transfer( Abc_Ntk_t * pNtk0, Abc_Ntk_t * pNtk1, Vec_Ptr_t * vRes, int fVerbose )
{
Vec_Int_t * vClass;
Abc_Obj_t * pObj0, * pObj1;
int i, k, fComp0, fComp1, Entry;
int CounterInv = 0, Counter = 0;
char * pName;
Vec_PtrForEachEntry( Vec_Int_t *, vRes, vClass, i )
{
pObj0 = pObj1 = NULL;
fComp0 = fComp1 = 0;
Vec_IntForEachEntry( vClass, Entry, k )
{
if ( Abc_ObjEquivId2NtkId(Entry) )
{
pObj1 = Abc_NtkObj( pNtk1, Abc_ObjEquivId2ObjId(Entry) );
fComp1 = Abc_ObjEquivId2Polar(Entry);
}
else
{
pObj0 = Abc_NtkObj( pNtk0, Abc_ObjEquivId2ObjId(Entry) );
fComp0 = Abc_ObjEquivId2Polar(Entry);
}
}
if ( pObj0 == NULL || pObj1 == NULL )
continue;
// if the node already has a name, quit
pName = Nm_ManFindNameById( pNtk0->pManName, pObj0->Id );
if ( pName != NULL )
continue;
// if the other node has no name, quit
pName = Nm_ManFindNameById( pNtk1->pManName, pObj1->Id );
if ( pName == NULL )
continue;
// assign name
if ( fComp0 ^ fComp1 )
{
Abc_ObjAssignName( pObj0, pName, "_inv" );
CounterInv++;
}
else
{
Abc_ObjAssignName( pObj0, pName, NULL );
Counter++;
}
}
if ( fVerbose )
{
printf( "Total number of names assigned = %5d. (Dir = %5d. Compl = %5d.)\n",
Counter + CounterInv, Counter, CounterInv );
}
}
/**Function*************************************************************
Synopsis [Transfers names from pNtk1 to pNtk2.]
Description [Internally calls new procedure for mapping node IDs of
both networks into the shared equivalence classes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkDress2( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nConflictLimit, int fVerbose )
{
Vec_Ptr_t * vRes;
abctime clk = Abc_Clock();
vRes = Abc_NtkDressComputeEquivs( pNtk1, pNtk2, nConflictLimit, fVerbose );
// Abc_NtkDressPrintEquivs( vRes );
Abc_NtkDressPrintStats( vRes, Abc_NtkNodeNum(pNtk1), Abc_NtkNodeNum(pNtk1), Abc_Clock() - clk );
Abc_NtkDress2Transfer( pNtk1, pNtk2, vRes, fVerbose );
Vec_VecFree( (Vec_Vec_t *)vRes );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|