summaryrefslogtreecommitdiffstats
path: root/src/aig/ssw/sswCore.c
blob: 9d09d4e723682dc503cefeb2722498b098bc36c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/**CFile****************************************************************

  FileName    [sswCore.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Inductive prover with constraints.]

  Synopsis    [The core procedures.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - September 1, 2008.]

  Revision    [$Id: sswCore.c,v 1.00 2008/09/01 00:00:00 alanmi Exp $]

***********************************************************************/

#include "sswInt.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [This procedure sets default parameters.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ssw_ManSetDefaultParams( Ssw_Pars_t * p )
{
    memset( p, 0, sizeof(Ssw_Pars_t) );
    p->nPartSize      =       0;  // size of the partition
    p->nOverSize      =       0;  // size of the overlap between partitions
    p->nFramesK       =       1;  // the induction depth
    p->nFramesAddSim  =       2;  // additional frames to simulate
    p->nConstrs       =       0;  // treat the last nConstrs POs as seq constraints
    p->nBTLimit       =    1000;  // conflict limit at a node
    p->nBTLimitGlobal = 5000000;  // conflict limit for all runs
    p->nMinDomSize    =     100;  // min clock domain considered for optimization
    p->nItersStop     =      -1;  // stop after the given number of iterations
    p->nResimDelta    =    1000;  // the internal of nodes to resimulate
    p->fPolarFlip     =       0;  // uses polarity adjustment
    p->fLatchCorr     =       0;  // performs register correspondence
    p->fSemiFormal    =       0;  // enable semiformal filtering
    p->fUniqueness    =       0;  // enable uniqueness constraints
    p->fDynamic       =       0;  // dynamic partitioning
    p->fLocalSim      =       0;  // local simulation
    p->fVerbose       =       0;  // verbose stats
    // latch correspondence
    p->fLatchCorrOpt  =       0;  // performs optimized register correspondence
    p->nSatVarMax     =    1000;  // the max number of SAT variables
    p->nRecycleCalls  =      50;  // calls to perform before recycling SAT solver
    // signal correspondence
    p->nSatVarMax2    =    5000;  // the max number of SAT variables
    p->nRecycleCalls2 =     250;  // calls to perform before recycling SAT solver
    // return values
    p->nIters         =       0;  // the number of iterations performed
}

/**Function*************************************************************

  Synopsis    [This procedure sets default parameters.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ssw_ManSetDefaultParamsLcorr( Ssw_Pars_t * p )
{
    Ssw_ManSetDefaultParams( p );
    p->fLatchCorrOpt = 1;
    p->nBTLimit      = 10000;
}

/**Function*************************************************************

  Synopsis    [Performs computation of signal correspondence with constraints.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Ssw_SignalCorrespondenceRefine( Ssw_Man_t * p )
{
    int nSatProof, nSatCallsSat, nRecycles, nSatFailsReal, nUniques;
    Aig_Man_t * pAigNew;
    int RetValue, nIter;
    int clk, clkTotal = clock();
    // get the starting stats
    p->nLitsBeg  = Ssw_ClassesLitNum( p->ppClasses );
    p->nNodesBeg = Aig_ManNodeNum(p->pAig);
    p->nRegsBeg  = Aig_ManRegNum(p->pAig);
    // refine classes using BMC
    if ( p->pPars->fVerbose )
    {
        printf( "Before BMC: " );
        Ssw_ClassesPrint( p->ppClasses, 0 );
    }
    if ( !p->pPars->fLatchCorr )
    { 
        p->pMSat = Ssw_SatStart( 0 );
        Ssw_ManSweepBmc( p );
        if ( p->pPars->nFramesK > 1 && p->pPars->fUniqueness )
            Ssw_UniqueRegisterPairInfo( p );
        Ssw_SatStop( p->pMSat );
        p->pMSat = NULL;
        Ssw_ManCleanup( p );
    }
    if ( p->pPars->fVerbose )
    {
        printf( "After  BMC: " );
        Ssw_ClassesPrint( p->ppClasses, 0 );
    }
    // apply semi-formal filtering
/*
    if ( p->pPars->fSemiFormal )
    {
        Aig_Man_t * pSRed;
        Ssw_FilterUsingSemi( p, 0, 2000, p->pPars->fVerbose );
//        Ssw_FilterUsingSemi( p, 1, 100000, p->pPars->fVerbose );
        pSRed = Ssw_SpeculativeReduction( p );
        Aig_ManDumpBlif( pSRed, "srm.blif", NULL, NULL );
        Aig_ManStop( pSRed );
    }
*/
    // refine classes using induction
    nSatProof = nSatCallsSat = nRecycles = nSatFailsReal = nUniques = 0;
    for ( nIter = 0; ; nIter++ )
    {
clk = clock();
        p->pMSat = Ssw_SatStart( 0 );
        if ( p->pPars->fLatchCorrOpt )
        {
            RetValue = Ssw_ManSweepLatch( p );
            if ( p->pPars->fVerbose )
            {
                printf( "%3d : C =%7d. Cl =%7d. Pr =%6d. Cex =%5d. R =%4d. F =%4d. ", 
                    nIter, Ssw_ClassesCand1Num(p->ppClasses), Ssw_ClassesClassNum(p->ppClasses), 
                    p->nSatProof-nSatProof, p->nSatCallsSat-nSatCallsSat, 
                    p->nRecycles-nRecycles, p->nSatFailsReal-nSatFailsReal );
                ABC_PRT( "T", clock() - clk );
            } 
        }
        else
        {
            if ( p->pPars->fDynamic )
                RetValue = Ssw_ManSweepDyn( p );
            else
                RetValue = Ssw_ManSweep( p );
            p->pPars->nConflicts += p->pMSat->pSat->stats.conflicts;
            if ( p->pPars->fVerbose )
            {
                printf( "%3d : C =%7d. Cl =%7d. LR =%6d. NR =%6d. ", 
                    nIter, Ssw_ClassesCand1Num(p->ppClasses), Ssw_ClassesClassNum(p->ppClasses), 
                    p->nConstrReduced, Aig_ManNodeNum(p->pFrames) );
                if ( p->pPars->fUniqueness )
                    printf( "U =%4d. ", p->nUniques-nUniques );
                else if ( p->pPars->fDynamic )
                {
                    printf( "Cex =%5d. ", p->nSatCallsSat-nSatCallsSat );
                    printf( "R =%4d. ",   p->nRecycles-nRecycles );
                }
                printf( "F =%5d. %s ", p->nSatFailsReal-nSatFailsReal, 
                    (Saig_ManPoNum(p->pAig)==1 && Ssw_ObjIsConst1Cand(p->pAig,Aig_ObjFanin0(Aig_ManPo(p->pAig,0))))? "+" : "-" );
                ABC_PRT( "T", clock() - clk );
            } 
//            if ( p->pPars->fDynamic && p->nSatCallsSat-nSatCallsSat < 100 )
//                p->pPars->nBTLimit = 10000;
        }
        nSatProof     = p->nSatProof;
        nSatCallsSat  = p->nSatCallsSat;
        nRecycles     = p->nRecycles;
        nSatFailsReal = p->nSatFailsReal;
        nUniques      = p->nUniques;

        p->nVarsMax  = AIG_MAX( p->nVarsMax,  p->pMSat->nSatVars );
        p->nCallsMax = AIG_MAX( p->nCallsMax, p->pMSat->nSolverCalls );
        Ssw_SatStop( p->pMSat );
        p->pMSat = NULL;
        Ssw_ManCleanup( p );
        if ( !RetValue ) 
            break;

        if ( p->pPars->nItersStop >= 0 && p->pPars->nItersStop == nIter )
        {
            Aig_Man_t * pSRed = Ssw_SpeculativeReduction( p );
            Aig_ManDumpBlif( pSRed, "srm.blif", NULL, NULL );
            Aig_ManStop( pSRed );
            printf( "Iterative refinement is stopped after iteration %d.\n", nIter );
            printf( "The network is reduced using candidate equivalences.\n" );
            printf( "Speculatively reduced miter is saved in file \"%s\".\n", "srm.blif" );
            printf( "If the miter is SAT, the reduced result is incorrect.\n" );
            break;
        }
    } 
    p->pPars->nIters = nIter + 1;
p->timeTotal = clock() - clkTotal;
    pAigNew = Aig_ManDupRepr( p->pAig, 0 );
    Aig_ManSeqCleanup( pAigNew );
    // get the final stats
    p->nLitsEnd  = Ssw_ClassesLitNum( p->ppClasses );
    p->nNodesEnd = Aig_ManNodeNum(pAigNew);
    p->nRegsEnd  = Aig_ManRegNum(pAigNew);
    return pAigNew;
}

/**Function*************************************************************

  Synopsis    [Performs computation of signal correspondence with constraints.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Ssw_SignalCorrespondence( Aig_Man_t * pAig, Ssw_Pars_t * pPars )
{
    Ssw_Pars_t Pars;
    Aig_Man_t * pAigNew;
    Ssw_Man_t * p;
    assert( Aig_ManRegNum(pAig) > 0 );
    // reset random numbers
    Aig_ManRandom( 1 );
    // if parameters are not given, create them
    if ( pPars == NULL )
        Ssw_ManSetDefaultParams( pPars = &Pars );
    // consider the case of empty AIG
    if ( Aig_ManNodeNum(pAig) == 0 )
    {
        pPars->nIters = 0;
        // Ntl_ManFinalize() needs the following to satisfy an assertion
        Aig_ManReprStart( pAig,Aig_ManObjNumMax(pAig) );
        return Aig_ManDupOrdered(pAig);
    }
    // check and update parameters
    if ( pPars->fUniqueness )
    {
        pPars->nFramesAddSim = 0;
        if ( pPars->nFramesK != 2 )
            printf( "Setting K = 2 for uniqueness constraints to work.\n" );
        pPars->nFramesK = 2;
    }
    if ( pPars->fLatchCorrOpt )
    {
        pPars->fLatchCorr = 1;
        pPars->nFramesAddSim = 0;
        if ( (pAig->vClockDoms && Vec_VecSize(pAig->vClockDoms) > 0) )
           return Ssw_SignalCorrespondencePart( pAig, pPars );
    }
    else
    {
        assert( pPars->nFramesK > 0 );
        // perform partitioning
        if ( (pPars->nPartSize > 0 && pPars->nPartSize < Aig_ManRegNum(pAig))
             || (pAig->vClockDoms && Vec_VecSize(pAig->vClockDoms) > 0)  )
            return Ssw_SignalCorrespondencePart( pAig, pPars );
    }
    // start the induction manager
    p = Ssw_ManCreate( pAig, pPars );
    // compute candidate equivalence classes
//    p->pPars->nConstrs = 1;
    if ( p->pPars->nConstrs == 0 )
    {
        // perform one round of seq simulation and generate candidate equivalence classes
        p->ppClasses = Ssw_ClassesPrepare( pAig, pPars->nFramesK, pPars->fLatchCorr, pPars->nMaxLevs, pPars->fVerbose );
//        p->ppClasses = Ssw_ClassesPrepareTargets( pAig );
        if ( pPars->fLatchCorrOpt )
            p->pSml = Ssw_SmlStart( pAig, 0, 2, 1 );
        else if ( pPars->fDynamic )
            p->pSml = Ssw_SmlStart( pAig, 0, p->nFrames + p->pPars->nFramesAddSim, 1 );
        else
            p->pSml = Ssw_SmlStart( pAig, 0, 1 + p->pPars->nFramesAddSim, 1 );
        Ssw_ClassesSetData( p->ppClasses, p->pSml, Ssw_SmlObjHashWord, Ssw_SmlObjIsConstWord, Ssw_SmlObjsAreEqualWord );
    }
    else
    {
        // create trivial equivalence classes with all nodes being candidates for constant 1
        p->ppClasses = Ssw_ClassesPrepareSimple( pAig, pPars->fLatchCorr, pPars->nMaxLevs );
        Ssw_ClassesSetData( p->ppClasses, NULL, NULL, Ssw_SmlObjIsConstBit, Ssw_SmlObjsAreEqualBit );
    }
    if ( p->pPars->fLocalSim )
        p->pVisited = ABC_CALLOC( int, Ssw_SmlNumFrames( p->pSml ) * Aig_ManObjNumMax(p->pAig) );
    // perform refinement of classes
    pAigNew = Ssw_SignalCorrespondenceRefine( p );    
    if ( pPars->fUniqueness )
        printf( "Uniqueness constraints = %3d. Prevented counter-examples = %3d.\n", 
            p->nUniquesAdded, p->nUniquesUseful );
    // cleanup
    Ssw_ManStop( p );
    return pAigNew;
}

/**Function*************************************************************

  Synopsis    [Performs computation of latch correspondence.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Ssw_LatchCorrespondence( Aig_Man_t * pAig, Ssw_Pars_t * pPars )
{
    Ssw_Pars_t Pars;
    if ( pPars == NULL )
        Ssw_ManSetDefaultParamsLcorr( pPars = &Pars );
    return Ssw_SignalCorrespondence( pAig, pPars );
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////