1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
|
/**CFile****************************************************************
FileName [ivyDsd.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [And-Inverter Graph package.]
Synopsis [Disjoint-support decomposition.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - May 11, 2006.]
Revision [$Id: ivyDsd.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $]
***********************************************************************/
#include "ivy.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// decomposition types
typedef enum {
IVY_DEC_PI, // 0: var
IVY_DEC_CONST1, // 1: CONST1
IVY_DEC_BUF, // 2: BUF
IVY_DEC_AND, // 3: AND
IVY_DEC_EXOR, // 4: EXOR
IVY_DEC_MUX, // 5: MUX
IVY_DEC_MAJ, // 6: MAJ
IVY_DEC_PRIME // 7: undecomposable
} Ivy_DecType_t;
typedef struct Ivy_Dec_t_ Ivy_Dec_t;
struct Ivy_Dec_t_
{
unsigned Type : 4; // the node type (PI, CONST1, AND, EXOR, MUX, PRIME)
unsigned fCompl : 1; // shows if node is complemented (root node only)
unsigned nFans : 3; // the number of fanins
unsigned Fan0 : 4; // fanin 0
unsigned Fan1 : 4; // fanin 1
unsigned Fan2 : 4; // fanin 2
unsigned Fan3 : 4; // fanin 3
unsigned Fan4 : 4; // fanin 4
unsigned Fan5 : 4; // fanin 5
};
static inline int Ivy_DecToInt( Ivy_Dec_t m ) { union { Ivy_Dec_t x; int y; } v; v.x = m; return v.y; }
static inline Ivy_Dec_t Ivy_IntToDec( int m ) { union { Ivy_Dec_t x; int y; } v; v.y = m; return v.x; }
static inline void Ivy_DecClear( Ivy_Dec_t * pNode ) { *pNode = Ivy_IntToDec(0); }
//static inline int Ivy_DecToInt( Ivy_Dec_t Node ) { return *((int *)&Node); }
//static inline Ivy_Dec_t Ivy_IntToDec( int Node ) { return *((Ivy_Dec_t *)&Node); }
//static inline void Ivy_DecClear( Ivy_Dec_t * pNode ) { *((int *)pNode) = 0; }
static unsigned s_Masks[6][2] = {
{ 0x55555555, 0xAAAAAAAA },
{ 0x33333333, 0xCCCCCCCC },
{ 0x0F0F0F0F, 0xF0F0F0F0 },
{ 0x00FF00FF, 0xFF00FF00 },
{ 0x0000FFFF, 0xFFFF0000 },
{ 0x00000000, 0xFFFFFFFF }
};
static inline int Ivy_TruthWordCountOnes( unsigned uWord )
{
uWord = (uWord & 0x55555555) + ((uWord>>1) & 0x55555555);
uWord = (uWord & 0x33333333) + ((uWord>>2) & 0x33333333);
uWord = (uWord & 0x0F0F0F0F) + ((uWord>>4) & 0x0F0F0F0F);
uWord = (uWord & 0x00FF00FF) + ((uWord>>8) & 0x00FF00FF);
return (uWord & 0x0000FFFF) + (uWord>>16);
}
static inline int Ivy_TruthCofactorIsConst( unsigned uTruth, int Var, int Cof, int Const )
{
if ( Const == 0 )
return (uTruth & s_Masks[Var][Cof]) == 0;
else
return (uTruth & s_Masks[Var][Cof]) == s_Masks[Var][Cof];
}
static inline int Ivy_TruthCofactorIsOne( unsigned uTruth, int Var )
{
return (uTruth & s_Masks[Var][0]) == 0;
}
static inline unsigned Ivy_TruthCofactor( unsigned uTruth, int Var )
{
unsigned uCofactor = uTruth & s_Masks[Var >> 1][(Var & 1) == 0];
int Shift = (1 << (Var >> 1));
if ( Var & 1 )
return uCofactor | (uCofactor << Shift);
return uCofactor | (uCofactor >> Shift);
}
static inline unsigned Ivy_TruthCofactor2( unsigned uTruth, int Var0, int Var1 )
{
return Ivy_TruthCofactor( Ivy_TruthCofactor(uTruth, Var0), Var1 );
}
// returns 1 if the truth table depends on this var (var is regular interger var)
static inline int Ivy_TruthDepends( unsigned uTruth, int Var )
{
return Ivy_TruthCofactor(uTruth, Var << 1) != Ivy_TruthCofactor(uTruth, (Var << 1) | 1);
}
static inline void Ivy_DecSetVar( Ivy_Dec_t * pNode, int iNum, unsigned Var )
{
assert( iNum >= 0 && iNum <= 5 );
switch( iNum )
{
case 0: pNode->Fan0 = Var; break;
case 1: pNode->Fan1 = Var; break;
case 2: pNode->Fan2 = Var; break;
case 3: pNode->Fan3 = Var; break;
case 4: pNode->Fan4 = Var; break;
case 5: pNode->Fan5 = Var; break;
}
}
static inline unsigned Ivy_DecGetVar( Ivy_Dec_t * pNode, int iNum )
{
assert( iNum >= 0 && iNum <= 5 );
switch( iNum )
{
case 0: return pNode->Fan0;
case 1: return pNode->Fan1;
case 2: return pNode->Fan2;
case 3: return pNode->Fan3;
case 4: return pNode->Fan4;
case 5: return pNode->Fan5;
}
return ~0;
}
static int Ivy_TruthDecompose_rec( unsigned uTruth, Vec_Int_t * vTree );
static int Ivy_TruthRecognizeMuxMaj( unsigned uTruth, int * pSupp, int nSupp, Vec_Int_t * vTree );
//int nTruthDsd;
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Computes DSD of truth table of 5 variables or less.]
Description [Returns 1 if the function is a constant or is fully
DSD decomposable using AND/EXOR/MUX gates.]
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_TruthDsd( unsigned uTruth, Vec_Int_t * vTree )
{
Ivy_Dec_t Node;
int i, RetValue;
// set the PI variables
Vec_IntClear( vTree );
for ( i = 0; i < 5; i++ )
Vec_IntPush( vTree, 0 );
// check if it is a constant
if ( uTruth == 0 || ~uTruth == 0 )
{
Ivy_DecClear( &Node );
Node.Type = IVY_DEC_CONST1;
Node.fCompl = (uTruth == 0);
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
return 1;
}
// perform the decomposition
RetValue = Ivy_TruthDecompose_rec( uTruth, vTree );
if ( RetValue == -1 )
return 0;
// get the topmost node
if ( (RetValue >> 1) < 5 )
{ // add buffer
Ivy_DecClear( &Node );
Node.Type = IVY_DEC_BUF;
Node.fCompl = (RetValue & 1);
Node.Fan0 = ((RetValue >> 1) << 1);
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
}
else if ( RetValue & 1 )
{ // check if the topmost node has to be complemented
Node = Ivy_IntToDec( Vec_IntPop(vTree) );
assert( Node.fCompl == 0 );
Node.fCompl = (RetValue & 1);
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
}
if ( uTruth != Ivy_TruthDsdCompute(vTree) )
printf( "Verification failed.\n" );
return 1;
}
/**Function*************************************************************
Synopsis [Computes DSD of truth table.]
Description [Returns the number of topmost decomposition node.]
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_TruthDecompose_rec( unsigned uTruth, Vec_Int_t * vTree )
{
Ivy_Dec_t Node;
int Supp[5], Vars0[5], Vars1[5], Vars2[5], * pVars = NULL;
int nSupp, Count0, Count1, Count2, nVars = 0, RetValue, fCompl = 0, i;
unsigned uTruthCof, uCof0, uCof1;
// get constant confactors
Count0 = Count1 = Count2 = nSupp = 0;
for ( i = 0; i < 5; i++ )
{
if ( Ivy_TruthCofactorIsConst(uTruth, i, 0, 0) )
Vars0[Count0++] = (i << 1) | 0;
else if ( Ivy_TruthCofactorIsConst(uTruth, i, 1, 0) )
Vars0[Count0++] = (i << 1) | 1;
else if ( Ivy_TruthCofactorIsConst(uTruth, i, 0, 1) )
Vars1[Count1++] = (i << 1) | 0;
else if ( Ivy_TruthCofactorIsConst(uTruth, i, 1, 1) )
Vars1[Count1++] = (i << 1) | 1;
else
{
uCof0 = Ivy_TruthCofactor( uTruth, (i << 1) | 1 );
uCof1 = Ivy_TruthCofactor( uTruth, (i << 1) | 0 );
if ( uCof0 == ~uCof1 )
Vars2[Count2++] = (i << 1) | 0;
else if ( uCof0 != uCof1 )
Supp[nSupp++] = i;
}
}
assert( Count0 == 0 || Count1 == 0 );
assert( Count0 == 0 || Count2 == 0 );
assert( Count1 == 0 || Count2 == 0 );
// consider the case of a single variable
if ( Count0 == 1 && nSupp == 0 )
return Vars0[0];
// consider more complex decompositions
if ( Count0 == 0 && Count1 == 0 && Count2 == 0 )
return Ivy_TruthRecognizeMuxMaj( uTruth, Supp, nSupp, vTree );
// extract the nodes
Ivy_DecClear( &Node );
if ( Count0 > 0 )
nVars = Count0, pVars = Vars0, Node.Type = IVY_DEC_AND, fCompl = 0;
else if ( Count1 > 0 )
nVars = Count1, pVars = Vars1, Node.Type = IVY_DEC_AND, fCompl = 1, uTruth = ~uTruth;
else if ( Count2 > 0 )
nVars = Count2, pVars = Vars2, Node.Type = IVY_DEC_EXOR, fCompl = 0;
else
assert( 0 );
Node.nFans = nVars+(nSupp>0);
// compute cofactor
uTruthCof = uTruth;
for ( i = 0; i < nVars; i++ )
{
uTruthCof = Ivy_TruthCofactor( uTruthCof, pVars[i] );
Ivy_DecSetVar( &Node, i, pVars[i] );
}
if ( Node.Type == IVY_DEC_EXOR )
fCompl ^= ((Node.nFans & 1) == 0);
if ( nSupp > 0 )
{
assert( uTruthCof != 0 && ~uTruthCof != 0 );
// call recursively
RetValue = Ivy_TruthDecompose_rec( uTruthCof, vTree );
// quit if non-decomposable
if ( RetValue == -1 )
return -1;
// remove the complement from the child if the node is EXOR
if ( Node.Type == IVY_DEC_EXOR && (RetValue & 1) )
{
fCompl ^= 1;
RetValue ^= 1;
}
// set the new decomposition
Ivy_DecSetVar( &Node, nVars, RetValue );
}
else if ( Node.Type == IVY_DEC_EXOR )
fCompl ^= (uTruthCof == 0);
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
return ((Vec_IntSize(vTree)-1) << 1) | fCompl;
}
/**Function*************************************************************
Synopsis [Returns a non-negative number if the truth table is a MUX.]
Description [If the truth table is a MUX, returns the variable as follows:
first, control variable; second, positive cofactor; third, negative cofactor.]
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_TruthRecognizeMuxMaj( unsigned uTruth, int * pSupp, int nSupp, Vec_Int_t * vTree )
{
Ivy_Dec_t Node;
int i, k, RetValue0, RetValue1;
unsigned uCof0, uCof1, Num;
char Count[3];
assert( nSupp >= 3 );
// start the node
Ivy_DecClear( &Node );
Node.Type = IVY_DEC_MUX;
Node.nFans = 3;
// try each of the variables
for ( i = 0; i < nSupp; i++ )
{
// get the cofactors with respect to these variables
uCof0 = Ivy_TruthCofactor( uTruth, (pSupp[i] << 1) | 1 );
uCof1 = Ivy_TruthCofactor( uTruth, pSupp[i] << 1 );
// go through all other variables and make sure
// each of them belongs to the support of one cofactor
for ( k = 0; k < nSupp; k++ )
{
if ( k == i )
continue;
if ( Ivy_TruthDepends(uCof0, pSupp[k]) && Ivy_TruthDepends(uCof1, pSupp[k]) )
break;
}
if ( k < nSupp )
continue;
// MUX decomposition exists
RetValue0 = Ivy_TruthDecompose_rec( uCof0, vTree );
if ( RetValue0 == -1 )
break;
RetValue1 = Ivy_TruthDecompose_rec( uCof1, vTree );
if ( RetValue1 == -1 )
break;
// both of them exist; create the node
Ivy_DecSetVar( &Node, 0, pSupp[i] << 1 );
Ivy_DecSetVar( &Node, 1, RetValue1 );
Ivy_DecSetVar( &Node, 2, RetValue0 );
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
return ((Vec_IntSize(vTree)-1) << 1) | 0;
}
// check majority gate
if ( nSupp > 3 )
return -1;
if ( Ivy_TruthWordCountOnes(uTruth) != 16 )
return -1;
// this is a majority gate; determine polarity
Node.Type = IVY_DEC_MAJ;
Count[0] = Count[1] = Count[2] = 0;
for ( i = 0; i < 8; i++ )
{
Num = 0;
for ( k = 0; k < 3; k++ )
if ( i & (1 << k) )
Num |= (1 << pSupp[k]);
assert( Num < 32 );
if ( (uTruth & (1 << Num)) == 0 )
continue;
for ( k = 0; k < 3; k++ )
if ( i & (1 << k) )
Count[k]++;
}
assert( Count[0] == 1 || Count[0] == 3 );
assert( Count[1] == 1 || Count[1] == 3 );
assert( Count[2] == 1 || Count[2] == 3 );
Ivy_DecSetVar( &Node, 0, (pSupp[0] << 1)|(Count[0] == 1) );
Ivy_DecSetVar( &Node, 1, (pSupp[1] << 1)|(Count[1] == 1) );
Ivy_DecSetVar( &Node, 2, (pSupp[2] << 1)|(Count[2] == 1) );
Vec_IntPush( vTree, Ivy_DecToInt(Node) );
return ((Vec_IntSize(vTree)-1) << 1) | 0;
}
/**Function*************************************************************
Synopsis [Computes truth table of decomposition tree for verification.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Ivy_TruthDsdCompute_rec( int iNode, Vec_Int_t * vTree )
{
unsigned uTruthChild, uTruthTotal;
int Var, i;
// get the node
Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) );
// compute the node function
if ( Node.Type == IVY_DEC_CONST1 )
return s_Masks[5][ !Node.fCompl ];
if ( Node.Type == IVY_DEC_PI )
return s_Masks[iNode][ !Node.fCompl ];
if ( Node.Type == IVY_DEC_BUF )
{
uTruthTotal = Ivy_TruthDsdCompute_rec( Node.Fan0 >> 1, vTree );
return Node.fCompl? ~uTruthTotal : uTruthTotal;
}
if ( Node.Type == IVY_DEC_AND )
{
uTruthTotal = s_Masks[5][1];
for ( i = 0; i < (int)Node.nFans; i++ )
{
Var = Ivy_DecGetVar( &Node, i );
uTruthChild = Ivy_TruthDsdCompute_rec( Var >> 1, vTree );
uTruthTotal = (Var & 1)? uTruthTotal & ~uTruthChild : uTruthTotal & uTruthChild;
}
return Node.fCompl? ~uTruthTotal : uTruthTotal;
}
if ( Node.Type == IVY_DEC_EXOR )
{
uTruthTotal = 0;
for ( i = 0; i < (int)Node.nFans; i++ )
{
Var = Ivy_DecGetVar( &Node, i );
uTruthTotal ^= Ivy_TruthDsdCompute_rec( Var >> 1, vTree );
assert( (Var & 1) == 0 );
}
return Node.fCompl? ~uTruthTotal : uTruthTotal;
}
assert( Node.fCompl == 0 );
if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ )
{
unsigned uTruthChildC, uTruthChild1, uTruthChild0;
int VarC, Var1, Var0;
VarC = Ivy_DecGetVar( &Node, 0 );
Var1 = Ivy_DecGetVar( &Node, 1 );
Var0 = Ivy_DecGetVar( &Node, 2 );
uTruthChildC = Ivy_TruthDsdCompute_rec( VarC >> 1, vTree );
uTruthChild1 = Ivy_TruthDsdCompute_rec( Var1 >> 1, vTree );
uTruthChild0 = Ivy_TruthDsdCompute_rec( Var0 >> 1, vTree );
assert( Node.Type == IVY_DEC_MAJ || (VarC & 1) == 0 );
uTruthChildC = (VarC & 1)? ~uTruthChildC : uTruthChildC;
uTruthChild1 = (Var1 & 1)? ~uTruthChild1 : uTruthChild1;
uTruthChild0 = (Var0 & 1)? ~uTruthChild0 : uTruthChild0;
if ( Node.Type == IVY_DEC_MUX )
return (uTruthChildC & uTruthChild1) | (~uTruthChildC & uTruthChild0);
else
return (uTruthChildC & uTruthChild1) | (uTruthChildC & uTruthChild0) | (uTruthChild1 & uTruthChild0);
}
assert( 0 );
return 0;
}
/**Function*************************************************************
Synopsis [Computes truth table of decomposition tree for verification.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Ivy_TruthDsdCompute( Vec_Int_t * vTree )
{
return Ivy_TruthDsdCompute_rec( Vec_IntSize(vTree)-1, vTree );
}
/**Function*************************************************************
Synopsis [Prints the decomposition tree.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthDsdPrint_rec( FILE * pFile, int iNode, Vec_Int_t * vTree )
{
int Var, i;
// get the node
Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) );
// compute the node function
if ( Node.Type == IVY_DEC_CONST1 )
fprintf( pFile, "Const1%s", (Node.fCompl? "\'" : "") );
else if ( Node.Type == IVY_DEC_PI )
fprintf( pFile, "%c%s", 'a' + iNode, (Node.fCompl? "\'" : "") );
else if ( Node.Type == IVY_DEC_BUF )
{
Ivy_TruthDsdPrint_rec( pFile, Node.Fan0 >> 1, vTree );
fprintf( pFile, "%s", (Node.fCompl? "\'" : "") );
}
else if ( Node.Type == IVY_DEC_AND )
{
fprintf( pFile, "AND(" );
for ( i = 0; i < (int)Node.nFans; i++ )
{
Var = Ivy_DecGetVar( &Node, i );
Ivy_TruthDsdPrint_rec( pFile, Var >> 1, vTree );
fprintf( pFile, "%s", (Var & 1)? "\'" : "" );
if ( i != (int)Node.nFans-1 )
fprintf( pFile, "," );
}
fprintf( pFile, ")%s", (Node.fCompl? "\'" : "") );
}
else if ( Node.Type == IVY_DEC_EXOR )
{
fprintf( pFile, "EXOR(" );
for ( i = 0; i < (int)Node.nFans; i++ )
{
Var = Ivy_DecGetVar( &Node, i );
Ivy_TruthDsdPrint_rec( pFile, Var >> 1, vTree );
if ( i != (int)Node.nFans-1 )
fprintf( pFile, "," );
assert( (Var & 1) == 0 );
}
fprintf( pFile, ")%s", (Node.fCompl? "\'" : "") );
}
else if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ )
{
int VarC, Var1, Var0;
assert( Node.fCompl == 0 );
VarC = Ivy_DecGetVar( &Node, 0 );
Var1 = Ivy_DecGetVar( &Node, 1 );
Var0 = Ivy_DecGetVar( &Node, 2 );
fprintf( pFile, "%s", (Node.Type == IVY_DEC_MUX)? "MUX(" : "MAJ(" );
Ivy_TruthDsdPrint_rec( pFile, VarC >> 1, vTree );
fprintf( pFile, "%s", (VarC & 1)? "\'" : "" );
fprintf( pFile, "," );
Ivy_TruthDsdPrint_rec( pFile, Var1 >> 1, vTree );
fprintf( pFile, "%s", (Var1 & 1)? "\'" : "" );
fprintf( pFile, "," );
Ivy_TruthDsdPrint_rec( pFile, Var0 >> 1, vTree );
fprintf( pFile, "%s", (Var0 & 1)? "\'" : "" );
fprintf( pFile, ")" );
}
else assert( 0 );
}
/**Function*************************************************************
Synopsis [Prints the decomposition tree.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthDsdPrint( FILE * pFile, Vec_Int_t * vTree )
{
fprintf( pFile, "F = " );
Ivy_TruthDsdPrint_rec( pFile, Vec_IntSize(vTree)-1, vTree );
fprintf( pFile, "\n" );
}
/**Function*************************************************************
Synopsis [Implement DSD in the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_ManDsdConstruct_rec( Ivy_Man_t * p, Vec_Int_t * vFront, int iNode, Vec_Int_t * vTree )
{
Ivy_Obj_t * pResult, * pChild, * pNodes[16];
int Var, i;
// get the node
Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) );
// compute the node function
if ( Node.Type == IVY_DEC_CONST1 )
return Ivy_NotCond( Ivy_ManConst1(p), Node.fCompl );
if ( Node.Type == IVY_DEC_PI )
{
pResult = Ivy_ManObj( p, Vec_IntEntry(vFront, iNode) );
return Ivy_NotCond( pResult, Node.fCompl );
}
if ( Node.Type == IVY_DEC_BUF )
{
pResult = Ivy_ManDsdConstruct_rec( p, vFront, Node.Fan0 >> 1, vTree );
return Ivy_NotCond( pResult, Node.fCompl );
}
if ( Node.Type == IVY_DEC_AND || Node.Type == IVY_DEC_EXOR )
{
for ( i = 0; i < (int)Node.nFans; i++ )
{
Var = Ivy_DecGetVar( &Node, i );
assert( Node.Type == IVY_DEC_AND || (Var & 1) == 0 );
pChild = Ivy_ManDsdConstruct_rec( p, vFront, Var >> 1, vTree );
pChild = Ivy_NotCond( pChild, (Var & 1) );
pNodes[i] = pChild;
}
// Ivy_MultiEval( pNodes, Node.nFans, Node.Type == IVY_DEC_AND ? IVY_AND : IVY_EXOR );
pResult = Ivy_Multi( p, pNodes, Node.nFans, Node.Type == IVY_DEC_AND ? IVY_AND : IVY_EXOR );
return Ivy_NotCond( pResult, Node.fCompl );
}
assert( Node.fCompl == 0 );
if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ )
{
int VarC, Var1, Var0;
VarC = Ivy_DecGetVar( &Node, 0 );
Var1 = Ivy_DecGetVar( &Node, 1 );
Var0 = Ivy_DecGetVar( &Node, 2 );
pNodes[0] = Ivy_ManDsdConstruct_rec( p, vFront, VarC >> 1, vTree );
pNodes[1] = Ivy_ManDsdConstruct_rec( p, vFront, Var1 >> 1, vTree );
pNodes[2] = Ivy_ManDsdConstruct_rec( p, vFront, Var0 >> 1, vTree );
assert( Node.Type == IVY_DEC_MAJ || (VarC & 1) == 0 );
pNodes[0] = Ivy_NotCond( pNodes[0], (VarC & 1) );
pNodes[1] = Ivy_NotCond( pNodes[1], (Var1 & 1) );
pNodes[2] = Ivy_NotCond( pNodes[2], (Var0 & 1) );
if ( Node.Type == IVY_DEC_MUX )
return Ivy_Mux( p, pNodes[0], pNodes[1], pNodes[2] );
else
return Ivy_Maj( p, pNodes[0], pNodes[1], pNodes[2] );
}
assert( 0 );
return 0;
}
/**Function*************************************************************
Synopsis [Implement DSD in the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_ManDsdConstruct( Ivy_Man_t * p, Vec_Int_t * vFront, Vec_Int_t * vTree )
{
int Entry, i;
// implement latches on the frontier (TEMPORARY!!!)
Vec_IntForEachEntry( vFront, Entry, i )
Vec_IntWriteEntry( vFront, i, Ivy_LeafId(Entry) );
// recursively construct the tree
return Ivy_ManDsdConstruct_rec( p, vFront, Vec_IntSize(vTree)-1, vTree );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthDsdComputePrint( unsigned uTruth )
{
static Vec_Int_t * vTree = NULL;
if ( vTree == NULL )
vTree = Vec_IntAlloc( 12 );
if ( Ivy_TruthDsd( uTruth, vTree ) )
Ivy_TruthDsdPrint( stdout, vTree );
else
printf( "Undecomposable\n" );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthTestOne( unsigned uTruth )
{
static int Counter = 0;
static Vec_Int_t * vTree = NULL;
// decompose
if ( vTree == NULL )
vTree = Vec_IntAlloc( 12 );
if ( !Ivy_TruthDsd( uTruth, vTree ) )
{
// printf( "Undecomposable\n" );
}
else
{
// nTruthDsd++;
printf( "%5d : ", Counter++ );
Extra_PrintBinary( stdout, &uTruth, 32 );
printf( " " );
Ivy_TruthDsdPrint( stdout, vTree );
if ( uTruth != Ivy_TruthDsdCompute(vTree) )
printf( "Verification failed.\n" );
}
// Vec_IntFree( vTree );
}
#if 0
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthTest()
{
FILE * pFile;
char Buffer[100];
unsigned uTruth;
int i;
pFile = fopen( "npn4.txt", "r" );
for ( i = 0; i < 222; i++ )
// pFile = fopen( "npn5.txt", "r" );
// for ( i = 0; i < 616126; i++ )
{
fscanf( pFile, "%s", Buffer );
Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 );
// Extra_ReadHexadecimal( &uTruth, Buffer+2, 5 );
uTruth |= (uTruth << 16);
// uTruth = ~uTruth;
Ivy_TruthTestOne( uTruth );
}
fclose( pFile );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthTest3()
{
FILE * pFile;
char Buffer[100];
unsigned uTruth;
int i;
pFile = fopen( "npn3.txt", "r" );
for ( i = 0; i < 14; i++ )
{
fscanf( pFile, "%s", Buffer );
Extra_ReadHexadecimal( &uTruth, Buffer+2, 3 );
uTruth = uTruth | (uTruth << 8) | (uTruth << 16) | (uTruth << 24);
Ivy_TruthTestOne( uTruth );
}
fclose( pFile );
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_TruthTest5()
{
FILE * pFile;
char Buffer[100];
unsigned uTruth;
int i;
// pFile = fopen( "npn4.txt", "r" );
// for ( i = 0; i < 222; i++ )
pFile = fopen( "npn5.txt", "r" );
for ( i = 0; i < 616126; i++ )
{
fscanf( pFile, "%s", Buffer );
// Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 );
Extra_ReadHexadecimal( &uTruth, Buffer+2, 5 );
// uTruth |= (uTruth << 16);
// uTruth = ~uTruth;
Ivy_TruthTestOne( uTruth );
}
fclose( pFile );
}
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|