1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
/**CFile****************************************************************
FileName [ivyBalance.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [And-Inverter Graph package.]
Synopsis [Algebraic AIG balancing.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - May 11, 2006.]
Revision [$Id: ivyBalance.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $]
***********************************************************************/
#include "ivy.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
static int Ivy_NodeBalance_rec( Ivy_Man_t * pNew, Ivy_Obj_t * pObj, Vec_Vec_t * vStore, int Level, int fUpdateLevel );
static Vec_Ptr_t * Ivy_NodeBalanceCone( Ivy_Obj_t * pObj, Vec_Vec_t * vStore, int Level );
static int Ivy_NodeBalanceFindLeft( Vec_Ptr_t * vSuper );
static void Ivy_NodeBalancePermute( Ivy_Man_t * p, Vec_Ptr_t * vSuper, int LeftBound, int fExor );
static void Ivy_NodeBalancePushUniqueOrderByLevel( Vec_Ptr_t * vStore, Ivy_Obj_t * pObj );
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Performs algebraic balancing of the AIG.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Man_t * Ivy_ManBalance( Ivy_Man_t * p, int fUpdateLevel )
{
Ivy_Man_t * pNew;
Ivy_Obj_t * pObj, * pDriver;
Vec_Vec_t * vStore;
int i, NewNodeId;
// clean the old manager
Ivy_ManCleanTravId( p );
// create the new manager
pNew = Ivy_ManStart();
// map the nodes
Ivy_ManConst1(p)->TravId = Ivy_EdgeFromNode( Ivy_ManConst1(pNew) );
Ivy_ManForEachPi( p, pObj, i )
pObj->TravId = Ivy_EdgeFromNode( Ivy_ObjCreatePi(pNew) );
// if HAIG is defined, trasfer the pointers to the PIs/latches
// if ( p->pHaig )
// Ivy_ManHaigTrasfer( p, pNew );
// balance the AIG
vStore = Vec_VecAlloc( 50 );
Ivy_ManForEachPo( p, pObj, i )
{
pDriver = Ivy_ObjReal( Ivy_ObjChild0(pObj) );
NewNodeId = Ivy_NodeBalance_rec( pNew, Ivy_Regular(pDriver), vStore, 0, fUpdateLevel );
NewNodeId = Ivy_EdgeNotCond( NewNodeId, Ivy_IsComplement(pDriver) );
Ivy_ObjCreatePo( pNew, Ivy_EdgeToNode(pNew, NewNodeId) );
}
Vec_VecFree( vStore );
if ( (i = Ivy_ManCleanup( pNew )) )
{
// printf( "Cleanup after balancing removed %d dangling nodes.\n", i );
}
// check the resulting AIG
if ( !Ivy_ManCheck(pNew) )
printf( "Ivy_ManBalance(): The check has failed.\n" );
return pNew;
}
/**Function*************************************************************
Synopsis [Procedure used for sorting the nodes in decreasing order of levels.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_NodeCompareLevelsDecrease( Ivy_Obj_t ** pp1, Ivy_Obj_t ** pp2 )
{
int Diff = Ivy_Regular(*pp1)->Level - Ivy_Regular(*pp2)->Level;
if ( Diff > 0 )
return -1;
if ( Diff < 0 )
return 1;
return 0;
}
/**Function*************************************************************
Synopsis [Returns the ID of new node constructed.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_NodeBalance_rec( Ivy_Man_t * pNew, Ivy_Obj_t * pObjOld, Vec_Vec_t * vStore, int Level, int fUpdateLevel )
{
Ivy_Obj_t * pObjNew;
Vec_Ptr_t * vSuper;
int i, NewNodeId;
assert( !Ivy_IsComplement(pObjOld) );
assert( !Ivy_ObjIsBuf(pObjOld) );
// return if the result is known
if ( Ivy_ObjIsConst1(pObjOld) )
return pObjOld->TravId;
if ( pObjOld->TravId )
return pObjOld->TravId;
assert( Ivy_ObjIsNode(pObjOld) );
// get the implication supergate
vSuper = Ivy_NodeBalanceCone( pObjOld, vStore, Level );
if ( vSuper->nSize == 0 )
{ // it means that the supergate contains two nodes in the opposite polarity
pObjOld->TravId = Ivy_EdgeFromNode( Ivy_ManConst0(pNew) );
return pObjOld->TravId;
}
if ( vSuper->nSize < 2 )
printf( "BUG!\n" );
// for each old node, derive the new well-balanced node
for ( i = 0; i < vSuper->nSize; i++ )
{
NewNodeId = Ivy_NodeBalance_rec( pNew, Ivy_Regular(vSuper->pArray[i]), vStore, Level + 1, fUpdateLevel );
NewNodeId = Ivy_EdgeNotCond( NewNodeId, Ivy_IsComplement(vSuper->pArray[i]) );
vSuper->pArray[i] = Ivy_EdgeToNode( pNew, NewNodeId );
}
// build the supergate
pObjNew = Ivy_NodeBalanceBuildSuper( pNew, vSuper, Ivy_ObjType(pObjOld), fUpdateLevel );
vSuper->nSize = 0;
// make sure the balanced node is not assigned
assert( pObjOld->TravId == 0 );
pObjOld->TravId = Ivy_EdgeFromNode( pObjNew );
// assert( pObjOld->Level >= Ivy_Regular(pObjNew)->Level );
return pObjOld->TravId;
}
/**Function*************************************************************
Synopsis [Builds implication supergate.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Ivy_Obj_t * Ivy_NodeBalanceBuildSuper( Ivy_Man_t * p, Vec_Ptr_t * vSuper, Ivy_Type_t Type, int fUpdateLevel )
{
Ivy_Obj_t * pObj1, * pObj2;
int LeftBound;
assert( vSuper->nSize > 1 );
// sort the new nodes by level in the decreasing order
Vec_PtrSort( vSuper, Ivy_NodeCompareLevelsDecrease );
// balance the nodes
while ( vSuper->nSize > 1 )
{
// find the left bound on the node to be paired
LeftBound = (!fUpdateLevel)? 0 : Ivy_NodeBalanceFindLeft( vSuper );
// find the node that can be shared (if no such node, randomize choice)
Ivy_NodeBalancePermute( p, vSuper, LeftBound, Type == IVY_EXOR );
// pull out the last two nodes
pObj1 = Vec_PtrPop(vSuper);
pObj2 = Vec_PtrPop(vSuper);
Ivy_NodeBalancePushUniqueOrderByLevel( vSuper, Ivy_Oper(p, pObj1, pObj2, Type) );
}
return Vec_PtrEntry(vSuper, 0);
}
/**Function*************************************************************
Synopsis [Collects the nodes of the supergate.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_NodeBalanceCone_rec( Ivy_Obj_t * pRoot, Ivy_Obj_t * pObj, Vec_Ptr_t * vSuper )
{
int RetValue1, RetValue2, i;
// check if the node is visited
if ( Ivy_Regular(pObj)->fMarkB )
{
// check if the node occurs in the same polarity
for ( i = 0; i < vSuper->nSize; i++ )
if ( vSuper->pArray[i] == pObj )
return 1;
// check if the node is present in the opposite polarity
for ( i = 0; i < vSuper->nSize; i++ )
if ( vSuper->pArray[i] == Ivy_Not(pObj) )
return -1;
assert( 0 );
return 0;
}
// if the new node is complemented or a PI, another gate begins
if ( pObj != pRoot && (Ivy_IsComplement(pObj) || Ivy_ObjType(pObj) != Ivy_ObjType(pRoot) || Ivy_ObjRefs(pObj) > 1 || Vec_PtrSize(vSuper) > 10000) )
{
Vec_PtrPush( vSuper, pObj );
Ivy_Regular(pObj)->fMarkB = 1;
return 0;
}
assert( !Ivy_IsComplement(pObj) );
assert( Ivy_ObjIsNode(pObj) );
// go through the branches
RetValue1 = Ivy_NodeBalanceCone_rec( pRoot, Ivy_ObjReal( Ivy_ObjChild0(pObj) ), vSuper );
RetValue2 = Ivy_NodeBalanceCone_rec( pRoot, Ivy_ObjReal( Ivy_ObjChild1(pObj) ), vSuper );
if ( RetValue1 == -1 || RetValue2 == -1 )
return -1;
// return 1 if at least one branch has a duplicate
return RetValue1 || RetValue2;
}
/**Function*************************************************************
Synopsis [Collects the nodes of the supergate.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Vec_Ptr_t * Ivy_NodeBalanceCone( Ivy_Obj_t * pObj, Vec_Vec_t * vStore, int Level )
{
Vec_Ptr_t * vNodes;
int RetValue, i;
assert( !Ivy_IsComplement(pObj) );
// extend the storage
if ( Vec_VecSize( vStore ) <= Level )
Vec_VecPush( vStore, Level, 0 );
// get the temporary array of nodes
vNodes = Vec_VecEntry( vStore, Level );
Vec_PtrClear( vNodes );
// collect the nodes in the implication supergate
RetValue = Ivy_NodeBalanceCone_rec( pObj, pObj, vNodes );
assert( vNodes->nSize > 1 );
// unmark the visited nodes
Vec_PtrForEachEntry( vNodes, pObj, i )
Ivy_Regular(pObj)->fMarkB = 0;
// if we found the node and its complement in the same implication supergate,
// return empty set of nodes (meaning that we should use constant-0 node)
if ( RetValue == -1 )
vNodes->nSize = 0;
return vNodes;
}
/**Function*************************************************************
Synopsis [Finds the left bound on the next candidate to be paired.]
Description [The nodes in the array are in the decreasing order of levels.
The last node in the array has the smallest level. By default it would be paired
with the next node on the left. However, it may be possible to pair it with some
other node on the left, in such a way that the new node is shared. This procedure
finds the index of the left-most node, which can be paired with the last node.]
SideEffects []
SeeAlso []
***********************************************************************/
int Ivy_NodeBalanceFindLeft( Vec_Ptr_t * vSuper )
{
Ivy_Obj_t * pObjRight, * pObjLeft;
int Current;
// if two or less nodes, pair with the first
if ( Vec_PtrSize(vSuper) < 3 )
return 0;
// set the pointer to the one before the last
Current = Vec_PtrSize(vSuper) - 2;
pObjRight = Vec_PtrEntry( vSuper, Current );
// go through the nodes to the left of this one
for ( Current--; Current >= 0; Current-- )
{
// get the next node on the left
pObjLeft = Vec_PtrEntry( vSuper, Current );
// if the level of this node is different, quit the loop
if ( Ivy_Regular(pObjLeft)->Level != Ivy_Regular(pObjRight)->Level )
break;
}
Current++;
// get the node, for which the equality holds
pObjLeft = Vec_PtrEntry( vSuper, Current );
assert( Ivy_Regular(pObjLeft)->Level == Ivy_Regular(pObjRight)->Level );
return Current;
}
/**Function*************************************************************
Synopsis [Moves closer to the end the node that is best for sharing.]
Description [If there is no node with sharing, randomly chooses one of
the legal nodes.]
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_NodeBalancePermute( Ivy_Man_t * p, Vec_Ptr_t * vSuper, int LeftBound, int fExor )
{
Ivy_Obj_t * pObj1, * pObj2, * pObj3, * pGhost;
int RightBound, i;
// get the right bound
RightBound = Vec_PtrSize(vSuper) - 2;
assert( LeftBound <= RightBound );
if ( LeftBound == RightBound )
return;
// get the two last nodes
pObj1 = Vec_PtrEntry( vSuper, RightBound + 1 );
pObj2 = Vec_PtrEntry( vSuper, RightBound );
if ( Ivy_Regular(pObj1) == p->pConst1 || Ivy_Regular(pObj2) == p->pConst1 )
return;
// find the first node that can be shared
for ( i = RightBound; i >= LeftBound; i-- )
{
pObj3 = Vec_PtrEntry( vSuper, i );
if ( Ivy_Regular(pObj3) == p->pConst1 )
{
Vec_PtrWriteEntry( vSuper, i, pObj2 );
Vec_PtrWriteEntry( vSuper, RightBound, pObj3 );
return;
}
pGhost = Ivy_ObjCreateGhost( p, pObj1, pObj3, fExor? IVY_EXOR : IVY_AND, IVY_INIT_NONE );
if ( Ivy_TableLookup( p, pGhost ) )
{
if ( pObj3 == pObj2 )
return;
Vec_PtrWriteEntry( vSuper, i, pObj2 );
Vec_PtrWriteEntry( vSuper, RightBound, pObj3 );
return;
}
}
/*
// we did not find the node to share, randomize choice
{
int Choice = rand() % (RightBound - LeftBound + 1);
pObj3 = Vec_PtrEntry( vSuper, LeftBound + Choice );
if ( pObj3 == pObj2 )
return;
Vec_PtrWriteEntry( vSuper, LeftBound + Choice, pObj2 );
Vec_PtrWriteEntry( vSuper, RightBound, pObj3 );
}
*/
}
/**Function*************************************************************
Synopsis [Inserts a new node in the order by levels.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Ivy_NodeBalancePushUniqueOrderByLevel( Vec_Ptr_t * vStore, Ivy_Obj_t * pObj )
{
Ivy_Obj_t * pObj1, * pObj2;
int i;
if ( Vec_PtrPushUnique(vStore, pObj) )
return;
// find the p of the node
for ( i = vStore->nSize-1; i > 0; i-- )
{
pObj1 = vStore->pArray[i ];
pObj2 = vStore->pArray[i-1];
if ( Ivy_Regular(pObj1)->Level <= Ivy_Regular(pObj2)->Level )
break;
vStore->pArray[i ] = pObj2;
vStore->pArray[i-1] = pObj1;
}
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|