1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
/**CFile****************************************************************
FileName [intCheck.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Interpolation engine.]
Synopsis [Procedures to perform incremental inductive check.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 24, 2008.]
Revision [$Id: intCheck.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "intInt.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
// checking manager
struct Inter_Check_t_
{
int nFramesK; // the number of timeframes (K=1 for simple induction)
int nVars; // the current number of variables in the solver
Aig_Man_t * pFrames; // unrolled timeframes
Cnf_Dat_t * pCnf; // CNF of unrolled timeframes
sat_solver * pSat; // SAT solver
Vec_Int_t * vOrLits; // OR vars in each time frame (total number is the number nFrames)
Vec_Int_t * vAndLits; // AND vars in the last timeframe (total number is the number of interpolants)
Vec_Int_t * vAssLits; // assumptions (the union of the two)
};
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Create timeframes of the manager for interpolation.]
Description [The resulting manager is combinational. The primary inputs
corresponding to register outputs are ordered first.]
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Inter_ManUnrollFrames( Aig_Man_t * pAig, int nFrames )
{
Aig_Man_t * pFrames;
Aig_Obj_t * pObj, * pObjLi, * pObjLo;
int i, f;
assert( Saig_ManRegNum(pAig) > 0 );
pFrames = Aig_ManStart( Aig_ManNodeNum(pAig) * nFrames );
// map the constant node
Aig_ManConst1(pAig)->pData = Aig_ManConst1( pFrames );
// create variables for register outputs
Saig_ManForEachLo( pAig, pObj, i )
pObj->pData = Aig_ObjCreatePi( pFrames );
// add timeframes
for ( f = 0; f < nFrames; f++ )
{
// create PI nodes for this frame
Saig_ManForEachPi( pAig, pObj, i )
pObj->pData = Aig_ObjCreatePi( pFrames );
// add internal nodes of this frame
Aig_ManForEachNode( pAig, pObj, i )
pObj->pData = Aig_And( pFrames, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
// save register inputs
Saig_ManForEachLi( pAig, pObj, i )
pObj->pData = Aig_ObjChild0Copy(pObj);
// transfer to register outputs
Saig_ManForEachLiLo( pAig, pObjLi, pObjLo, i )
{
pObjLo->pData = pObjLi->pData;
Aig_ObjCreatePo( pFrames, (Aig_Obj_t *)pObjLo->pData );
}
}
Aig_ManCleanup( pFrames );
return pFrames;
}
/**Function*************************************************************
Synopsis [This procedure sets default values of interpolation parameters.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Inter_Check_t * Inter_CheckStart( Aig_Man_t * pTrans, int nFramesK )
{
Inter_Check_t * p;
// create solver
p = ABC_CALLOC( Inter_Check_t, 1 );
p->vOrLits = Vec_IntAlloc( 100 );
p->vAndLits = Vec_IntAlloc( 100 );
p->vAssLits = Vec_IntAlloc( 100 );
// generate the timeframes
p->pFrames = Inter_ManUnrollFrames( pTrans, nFramesK );
assert( Aig_ManPiNum(p->pFrames) == nFramesK * Saig_ManPiNum(pTrans) + Saig_ManRegNum(pTrans) );
assert( Aig_ManPoNum(p->pFrames) == nFramesK * Saig_ManRegNum(pTrans) );
// convert to CNF
p->pCnf = Cnf_Derive( p->pFrames, Aig_ManPoNum(p->pFrames) );
p->pSat = (sat_solver *)Cnf_DataWriteIntoSolver( p->pCnf, 1, 0 );
// assign parameters
p->nFramesK = nFramesK;
p->nVars = p->pCnf->nVars;
return p;
}
/**Function*************************************************************
Synopsis [This procedure sets default values of interpolation parameters.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Inter_CheckStop( Inter_Check_t * p )
{
if ( p == NULL )
return;
Vec_IntFree( p->vOrLits );
Vec_IntFree( p->vAndLits );
Vec_IntFree( p->vAssLits );
Cnf_DataFree( p->pCnf );
Aig_ManStop( p->pFrames );
sat_solver_delete( p->pSat );
ABC_FREE( p );
}
/**Function*************************************************************
Synopsis [Creates one OR-gate: A + B = C.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Inter_CheckAddOrGate( Inter_Check_t * p, int iVarA, int iVarB, int iVarC )
{
int RetValue, pLits[3];
// add A => C or !A + C
pLits[0] = toLitCond(iVarA, 1);
pLits[1] = toLitCond(iVarC, 0);
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
// add B => C or !B + C
pLits[0] = toLitCond(iVarB, 1);
pLits[1] = toLitCond(iVarC, 0);
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
// add !A & !B => !C or A + B + !C
pLits[0] = toLitCond(iVarA, 0);
pLits[1] = toLitCond(iVarB, 0);
pLits[2] = toLitCond(iVarC, 1);
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 );
assert( RetValue );
}
/**Function*************************************************************
Synopsis [Creates equality: A = B.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Inter_CheckAddEqual( Inter_Check_t * p, int iVarA, int iVarB )
{
int RetValue, pLits[3];
// add A => B or !A + B
pLits[0] = toLitCond(iVarA, 1);
pLits[1] = toLitCond(iVarB, 0);
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
// add B => A or !B + A
pLits[0] = toLitCond(iVarB, 1);
pLits[1] = toLitCond(iVarA, 0);
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
}
/**Function*************************************************************
Synopsis [Perform the checking.]
Description [Returns 1 if the check has passed.]
SideEffects []
SeeAlso []
***********************************************************************/
int Inter_CheckPerform( Inter_Check_t * p, Cnf_Dat_t * pCnfInt, int nTimeNewOut )
{
Aig_Obj_t * pObj, * pObj2;
int i, f, VarA, VarB, RetValue, Entry, status;
int nRegs = Aig_ManPiNum(pCnfInt->pMan);
assert( Aig_ManPoNum(p->pCnf->pMan) == p->nFramesK * nRegs );
assert( Aig_ManPoNum(pCnfInt->pMan) == 1 );
// set runtime limit
if ( nTimeNewOut )
sat_solver_set_runtime_limit( p->pSat, nTimeNewOut );
// add clauses to the SAT solver
Cnf_DataLift( pCnfInt, p->nVars );
for ( f = 0; f <= p->nFramesK; f++ )
{
// add clauses to the solver
for ( i = 0; i < pCnfInt->nClauses; i++ )
{
RetValue = sat_solver_addclause( p->pSat, pCnfInt->pClauses[i], pCnfInt->pClauses[i+1] );
assert( RetValue );
}
// add equality clauses for the flop variables
Aig_ManForEachPi( pCnfInt->pMan, pObj, i )
{
pObj2 = f ? Aig_ManPo(p->pFrames, i + (f-1) * nRegs) : Aig_ManPi(p->pFrames, i);
Inter_CheckAddEqual( p, pCnfInt->pVarNums[pObj->Id], p->pCnf->pVarNums[pObj2->Id] );
}
// add final clauses
if ( f < p->nFramesK )
{
if ( f == Vec_IntSize(p->vOrLits) ) // find time here
{
// add literal to this frame
VarB = pCnfInt->pVarNums[ Aig_ManPo(pCnfInt->pMan, 0)->Id ];
Vec_IntPush( p->vOrLits, VarB );
}
else
{
// add OR gate for this frame
VarA = Vec_IntEntry( p->vOrLits, f );
VarB = pCnfInt->pVarNums[ Aig_ManPo(pCnfInt->pMan, 0)->Id ];
Inter_CheckAddOrGate( p, VarA, VarB, p->nVars + pCnfInt->nVars );
Vec_IntWriteEntry( p->vOrLits, f, p->nVars + pCnfInt->nVars ); // using var ID!
}
}
else
{
// add AND gate for this frame
VarB = pCnfInt->pVarNums[ Aig_ManPo(pCnfInt->pMan, 0)->Id ];
Vec_IntPush( p->vAndLits, VarB );
}
// update variable IDs
Cnf_DataLift( pCnfInt, pCnfInt->nVars + 1 );
p->nVars += pCnfInt->nVars + 1;
}
Cnf_DataLift( pCnfInt, -p->nVars );
assert( Vec_IntSize(p->vOrLits) == p->nFramesK );
// collect the assumption literals
Vec_IntClear( p->vAssLits );
Vec_IntForEachEntry( p->vOrLits, Entry, i )
Vec_IntPush( p->vAssLits, toLitCond(Entry, 0) );
Vec_IntForEachEntry( p->vAndLits, Entry, i )
Vec_IntPush( p->vAssLits, toLitCond(Entry, 1) );
/*
if ( pCnfInt->nLiterals == 3635 )
{
int s = 0;
}
*/
// call the SAT solver
status = sat_solver_solve( p->pSat, Vec_IntArray(p->vAssLits),
Vec_IntArray(p->vAssLits) + Vec_IntSize(p->vAssLits),
(ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 );
return status == l_False;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|