1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
/**CFile****************************************************************
FileName [darPrec.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [DAG-aware AIG rewriting.]
Synopsis [Truth table precomputation.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - April 28, 2007.]
Revision [$Id: darPrec.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $]
***********************************************************************/
#include "darInt.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Allocated one-memory-chunk array.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
char ** Dar_ArrayAlloc( int nCols, int nRows, int Size )
{
char ** pRes;
char * pBuffer;
int i;
assert( nCols > 0 && nRows > 0 && Size > 0 );
pBuffer = ABC_ALLOC( char, nCols * (sizeof(void *) + nRows * Size) );
pRes = (char **)pBuffer;
pRes[0] = pBuffer + nCols * sizeof(void *);
for ( i = 1; i < nCols; i++ )
pRes[i] = pRes[0] + i * nRows * Size;
return pRes;
}
/**Function********************************************************************
Synopsis [Computes the factorial.]
Description []
SideEffects []
SeeAlso []
******************************************************************************/
int Dar_Factorial( int n )
{
int i, Res = 1;
for ( i = 1; i <= n; i++ )
Res *= i;
return Res;
}
/**Function********************************************************************
Synopsis [Fills in the array of permutations.]
Description []
SideEffects []
SeeAlso []
******************************************************************************/
void Dar_Permutations_rec( char ** pRes, int nFact, int n, char Array[] )
{
char ** pNext;
int nFactNext;
int iTemp, iCur, iLast, k;
if ( n == 1 )
{
pRes[0][0] = Array[0];
return;
}
// get the next factorial
nFactNext = nFact / n;
// get the last entry
iLast = n - 1;
for ( iCur = 0; iCur < n; iCur++ )
{
// swap Cur and Last
iTemp = Array[iCur];
Array[iCur] = Array[iLast];
Array[iLast] = iTemp;
// get the pointer to the current section
pNext = pRes + (n - 1 - iCur) * nFactNext;
// set the last entry
for ( k = 0; k < nFactNext; k++ )
pNext[k][iLast] = Array[iLast];
// call recursively for this part
Dar_Permutations_rec( pNext, nFactNext, n - 1, Array );
// swap them back
iTemp = Array[iCur];
Array[iCur] = Array[iLast];
Array[iLast] = iTemp;
}
}
/**Function********************************************************************
Synopsis [Computes the set of all permutations.]
Description [The number of permutations in the array is n!. The number of
entries in each permutation is n. Therefore, the resulting array is a
two-dimentional array of the size: n! x n. To ABC_FREE the resulting array,
call ABC_FREE() on the pointer returned by this procedure.]
SideEffects []
SeeAlso []
******************************************************************************/
char ** Dar_Permutations( int n )
{
char Array[50];
char ** pRes;
int nFact, i;
// allocate memory
nFact = Dar_Factorial( n );
pRes = Dar_ArrayAlloc( nFact, n, sizeof(char) );
// fill in the permutations
for ( i = 0; i < n; i++ )
Array[i] = i;
Dar_Permutations_rec( pRes, nFact, n, Array );
// print the permutations
/*
{
int i, k;
for ( i = 0; i < nFact; i++ )
{
printf( "{" );
for ( k = 0; k < n; k++ )
printf( " %d", pRes[i][k] );
printf( " }\n" );
}
}
*/
return pRes;
}
/**Function*************************************************************
Synopsis [Permutes the given vector of minterms.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Dar_TruthPermute_int( int * pMints, int nMints, char * pPerm, int nVars, int * pMintsP )
{
int m, v;
// clean the storage for minterms
memset( pMintsP, 0, sizeof(int) * nMints );
// go through minterms and add the variables
for ( m = 0; m < nMints; m++ )
for ( v = 0; v < nVars; v++ )
if ( pMints[m] & (1 << v) )
pMintsP[m] |= (1 << pPerm[v]);
}
/**Function*************************************************************
Synopsis [Permutes the function.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Dar_TruthPermute( unsigned Truth, char * pPerms, int nVars, int fReverse )
{
unsigned Result;
int * pMints;
int * pMintsP;
int nMints;
int i, m;
assert( nVars < 6 );
nMints = (1 << nVars);
pMints = ABC_ALLOC( int, nMints );
pMintsP = ABC_ALLOC( int, nMints );
for ( i = 0; i < nMints; i++ )
pMints[i] = i;
Dar_TruthPermute_int( pMints, nMints, pPerms, nVars, pMintsP );
Result = 0;
if ( fReverse )
{
for ( m = 0; m < nMints; m++ )
if ( Truth & (1 << pMintsP[m]) )
Result |= (1 << m);
}
else
{
for ( m = 0; m < nMints; m++ )
if ( Truth & (1 << m) )
Result |= (1 << pMintsP[m]);
}
ABC_FREE( pMints );
ABC_FREE( pMintsP );
return Result;
}
/**Function*************************************************************
Synopsis [Changes the phase of the function.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
unsigned Dar_TruthPolarize( unsigned uTruth, int Polarity, int nVars )
{
// elementary truth tables
static unsigned Signs[5] = {
0xAAAAAAAA, // 1010 1010 1010 1010 1010 1010 1010 1010
0xCCCCCCCC, // 1010 1010 1010 1010 1010 1010 1010 1010
0xF0F0F0F0, // 1111 0000 1111 0000 1111 0000 1111 0000
0xFF00FF00, // 1111 1111 0000 0000 1111 1111 0000 0000
0xFFFF0000 // 1111 1111 1111 1111 0000 0000 0000 0000
};
unsigned uTruthRes, uCof0, uCof1;
int nMints, Shift, v;
assert( nVars < 6 );
nMints = (1 << nVars);
uTruthRes = uTruth;
for ( v = 0; v < nVars; v++ )
if ( Polarity & (1 << v) )
{
uCof0 = uTruth & ~Signs[v];
uCof1 = uTruth & Signs[v];
Shift = (1 << v);
uCof0 <<= Shift;
uCof1 >>= Shift;
uTruth = uCof0 | uCof1;
}
return uTruth;
}
/**Function*************************************************************
Synopsis [Computes NPN canonical forms for 4-variable functions.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Dar_Truth4VarNPN( unsigned short ** puCanons, char ** puPhases, char ** puPerms, unsigned char ** puMap )
{
unsigned short * uCanons;
unsigned char * uMap;
unsigned uTruth, uPhase, uPerm;
char ** pPerms4, * uPhases, * uPerms;
int nFuncs, nClasses;
int i, k;
nFuncs = (1 << 16);
uCanons = ABC_ALLOC( unsigned short, nFuncs );
uPhases = ABC_ALLOC( char, nFuncs );
uPerms = ABC_ALLOC( char, nFuncs );
uMap = ABC_ALLOC( unsigned char, nFuncs );
memset( uCanons, 0, sizeof(unsigned short) * nFuncs );
memset( uPhases, 0, sizeof(char) * nFuncs );
memset( uPerms, 0, sizeof(char) * nFuncs );
memset( uMap, 0, sizeof(unsigned char) * nFuncs );
pPerms4 = Dar_Permutations( 4 );
nClasses = 1;
nFuncs = (1 << 15);
for ( uTruth = 1; uTruth < (unsigned)nFuncs; uTruth++ )
{
// skip already assigned
if ( uCanons[uTruth] )
{
assert( uTruth > uCanons[uTruth] );
uMap[~uTruth & 0xFFFF] = uMap[uTruth] = uMap[uCanons[uTruth]];
continue;
}
uMap[uTruth] = nClasses++;
for ( i = 0; i < 16; i++ )
{
uPhase = Dar_TruthPolarize( uTruth, i, 4 );
for ( k = 0; k < 24; k++ )
{
uPerm = Dar_TruthPermute( uPhase, pPerms4[k], 4, 0 );
if ( uCanons[uPerm] == 0 )
{
uCanons[uPerm] = uTruth;
uPhases[uPerm] = i;
uPerms[uPerm] = k;
uPerm = ~uPerm & 0xFFFF;
uCanons[uPerm] = uTruth;
uPhases[uPerm] = i | 16;
uPerms[uPerm] = k;
}
else
assert( uCanons[uPerm] == uTruth );
}
uPhase = Dar_TruthPolarize( ~uTruth & 0xFFFF, i, 4 );
for ( k = 0; k < 24; k++ )
{
uPerm = Dar_TruthPermute( uPhase, pPerms4[k], 4, 0 );
if ( uCanons[uPerm] == 0 )
{
uCanons[uPerm] = uTruth;
uPhases[uPerm] = i;
uPerms[uPerm] = k;
uPerm = ~uPerm & 0xFFFF;
uCanons[uPerm] = uTruth;
uPhases[uPerm] = i | 16;
uPerms[uPerm] = k;
}
else
assert( uCanons[uPerm] == uTruth );
}
}
}
uPhases[(1<<16)-1] = 16;
assert( nClasses == 222 );
ABC_FREE( pPerms4 );
if ( puCanons )
*puCanons = uCanons;
else
ABC_FREE( uCanons );
if ( puPhases )
*puPhases = uPhases;
else
ABC_FREE( uPhases );
if ( puPerms )
*puPerms = uPerms;
else
ABC_FREE( uPerms );
if ( puMap )
*puMap = uMap;
else
ABC_FREE( uMap );
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
|