summaryrefslogtreecommitdiffstats
path: root/scripts/par.py
blob: 21f209df3befb06752f122e310d48f7304b5773d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
from pyabc import *
import pyabc_split
import redirect
import sys
import os
import time
import math
import main

global G_C,G_T,latches_before_abs,latches_before_pba,n_pos_before,x_factor,methods,last_winner
global last_cex,JV,JP, cex_list,max_bmc, last_cx, pord_on

"""
The functions that are currently available from module _abc are:

int n_ands();
int n_pis();
int n_pos();
int n_latches();
int n_bmc_frames();
int prob_status(); 1 = unsat, 0 = sat, -1 = unsolved
int cex_get()
int cex_put()
int run_command(char* cmd);

bool has_comb_model();
bool has_seq_model();
bool is_true_cex();
bool is_valid_cex();
  return 1 if the number of PIs in the current network and in the current counter-example are equal
int  n_cex_pis();
  return the number of PIs in the current counter-example
int  n_cex_regs();
  return the number of flops in the current counter-example
int  cex_po();
  returns the zero-based output PO number that is SAT by cex
int  cex_frame();
  return the zero-based frame number where the outputs is SAT
The last four APIs return -1, if the counter-example is not defined. 
""" 
#global variables
#________________________________________________
stackno_gabs = stackno_gore = stackno_greg= 0
STATUS_UNKNOWN = -1
STATUS_SAT = 0
STATUS_UNSAT = 1
RESULT = ('SAT' , 'SAT', 'UNSAT', 'UNDECIDED', 'UNDECIDED,', 'UNDECIDED'  )
Sat = Sat_reg = 0
Sat_true = 1
Unsat = 2
Undecided = Undecided_reduction = 3
Undecided_no_reduction = 4
Error = 5
Restart = 6
xfi = x_factor = 1  #set this to higher for larger problems or if you want to try harder during abstraction
max_bmc = -1
last_time = 0
j_last = 0
seed = 113
init_simp = 1
K_backup = init_time = 0
last_verify_time = 20
last_cex = last_winner = 'None'
last_cx = 0
trim_allowed = True
pord_on = False
sec_sw = False
sec_options = ''
cex_list = []
TERM = 'USL'
t_init = 2 #initial time for poor man's concurrency.
methods = ['PDR', 'INTRP', 'BMC',
           'SIM', 'REACHX',
           'PRE_SIMP', 'SUPER_PROVE2', 'PDRM', 'REACHM', 'BMC3','Min_Retime',
           'For_Retime','REACHP','REACHN','PDRsd','prove_part_2',
           'prove_part_3','verify','sleep','PDRMm','prove_part_1',
           'run_parallel','INTRPb', 'INTRPm', 'REACHY', 'REACHYc','RareSim','simplify', 'speculate',
           'quick_sec', 'BMC_J']
#'0.PDR', '1.INTERPOLATION', '2.BMC', '3.SIMULATION',
#'4.REACHX', '5.PRE_SIMP', '6.SUPER_PROVE', '7.PDRM', '8.REACHM', 9.BMC3'
# 10. Min_ret, 11. For_ret, 12. REACHP, 13. REACHN 14. PDRseed 15.prove_part_2,
#16.prove_part_3, 17.verify, 18.sleep, 19.PDRMm, 20.prove_part_1,
#21.run_parallel, 22.INTRP_bwd, 23. Interp_m 24. REACHY 25. REACHYc 26. Rarity Sim 27. simplify
#28. speculate, 29. quick_sec, 30 bmc3 -S
win_list = [(0,.1),(1,.1),(2,.1),(3,.1),(4,.1),(5,-1),(6,-1),(7,.1)]
FUNCS = ["(pyabc_split.defer(abc)('&get;,pdr -vt=%f'%t))",
         "(pyabc_split.defer(abc)('&get;,imc -vt=%f'%(t)))",
         "(pyabc_split.defer(abc)('&get;,bmc -vt=%f'%t))",
         "(pyabc_split.defer(simulate)(t))",
         "(pyabc_split.defer(abc)('reachx -t %d'%t))",
         "(pyabc_split.defer(pre_simp)())",
         "(pyabc_split.defer(super_prove)(2))",
         "(pyabc_split.defer(pdrm)(t))",
         "(pyabc_split.defer(abc)('&get;&reachm -vcs -T %d'%t))",
         "(pyabc_split.defer(abc)('bmc3 -C 1000000 -T %f'%t))",
         "(pyabc_split.defer(abc)('dr;&get;&lcorr;&dc2;&scorr;&put;dr'))",
         "(pyabc_split.defer(abc)('dr -m;&get;&lcorr;&dc2;&scorr;&put;dr'))",
         "(pyabc_split.defer(abc)('&get;&reachp -vr -T %d'%t))",
         "(pyabc_split.defer(abc)('&get;&reachn -vr -T %d'%t))",
         "(pyabc_split.defer(abc)('&get;,pdr -vt=%f -seed=521'%t))",
         "(pyabc_split.defer(prove_part_2)(K))",
         "(pyabc_split.defer(prove_part_3)(K))",
         "(pyabc_split.defer(verify)(JV,t))",
         "(pyabc_split.defer(sleep)(t))",
         "(pyabc_split.defer(pdrmm)(t))",
         "(pyabc_split.defer(prove_part_1)'(%d)'%(K))",
         "(pyabc_split.defer(run_parallel)(JP,t,'TERM'))",
         "(pyabc_split.defer(abc)('&get;,imc -bwd -vt=%f'%t))",
         "(pyabc_split.defer(abc)('int -C 1000000 -F 10000 -K 2 -T %f'%t))",
         "(pyabc_split.defer(abc)('&get;&reachy -v -T %d'%t))",
         "(pyabc_split.defer(abc)('&get;&reachy -cv -T %d'%t))",
         "(pyabc_split.defer(simulate2)(t))",
         "(pyabc_split.defer(simplify)())",
         "(pyabc_split.defer(speculate)())",
         "(pyabc_split.defer(quick_sec)(t))",
         "(pyabc_split.defer(bmc_s)(t))"
         ]
##         "(pyabc_split.defer(abc)('bmc3 -C 1000000 -T %f -S %d'%(t,int(1.5*max_bmc))))"
#note: interp given 1/2 the time.
allreachs = [4,8,12,13,24,25]
reachs = [24]
allpdrs = [0,7,14,19]
pdrs = [0,7]
allbmcs = [2,9,30]
exbmcs = [2,9]
bmcs = [9,30]
allintrps = [1,22,23]
bestintrps = [23]
intrps = [23]
allsims = [3,26]
sims = [3]
allslps = [18]
slps = [18]

JVprove = [7,1,4,24]
JV = pdrs+intrps+bmcs+sims #sets what is run in parallel '17. verify' above
JP = JV + [27] # sets what is run in  '21. run_parallel' above 27 simplify should be last because it can't time out.
#_____________________________________________________________


# Function definitions:
# simple functions: ________________________________________________________________________
# set_globals, abc, q, x, has_any_model, is_sat, is_unsat, push, pop

# ALIASES

def initialize():
    global xfi, max_bmc, last_time,j_last, seed, init_simp, K_backup, last_verify_time
    global init_time, last_cex, last_winner, trim_allowed, t_init, sec_options, sec_sw
    global n_pos_before, n_pos_proved, last_cx, pord_on
    xfi = x_factor = 1  #set this to higher for larger problems or if you want to try harder during abstraction
    max_bmc = -1
    last_time = 0
    j_last = 0
    seed = 113
    init_simp = 1
    K_backup = init_time = 0
    last_verify_time = 20
    last_cex = last_winner = 'None'
    last_cx = 0
    trim_allowed = True
    pord_on = False
    t_init = 2 #this will start sweep time in find_cex_par to 2*t_init here
    sec_sw = False
    sec_options = ''
    cex_list = []
    n_pos_before = n_pos()
    n_pos_proved = 0

def ps():
    print_circuit_stats()

def n_real_inputs():
    """This gives the number of 'real' inputs. This is determined by trimming away inputs that
    have no connection to the logic. This is done by the ABC alias 'trm', which changes the current
    circuit. In some applications we do not want to change the circuit, but just to know how may inputs
    would go away if we did this. So the current circuit is saved and then restored afterwards."""
##    abc('w %s_savetempreal.aig; logic; trim; st ;addpi'%f_name)
    abc('w %s_savetempreal.aig'%f_name)
    with redirect.redirect( redirect.null_file, sys.stdout ):
##        with redirect.redirect( redirect.null_file, sys.stderr ):
        reparam()
    n = n_pis()
    abc('r %s_savetempreal.aig'%f_name)
    return n

def timer(t):
    btime = time.clock()
    time.sleep(t)
    print t
    return time.clock() - btime

def sleep(t):
    time.sleep(t)
    return Undecided
        
def abc(cmd):
    abc_redirect_all(cmd)

def abc_redirect( cmd, dst = redirect.null_file, src = sys.stdout ):
    """This is our main way of calling an ABC function. Redirect, means that we suppress any output from ABC"""
    with redirect.redirect( dst, src ):
        return run_command( cmd )

def abc_redirect_all( cmd ):
    """This is our main way of calling an ABC function. Redirect, means that we suppress any output from ABC, including error printouts"""
    with redirect.redirect( redirect.null_file, sys.stdout ):
        with redirect.redirect( redirect.null_file, sys.stderr ):
            return run_command( cmd )

def convert(t):
    t = int(t*100)
    return str(float(t)/100)

def set_engines(N=0):
    """
    Sets the MC engines that are used in verification according to
    if there are 4 or 8 processors.
    """
    global reachs,pdrs,sims,intrps,bmcs
    if N == 0:
        N = os.sysconf(os.sysconf_names["SC_NPROCESSORS_ONLN"])
    if N == 1:
        reachs = [24]
        pdrs = [7]
##        bmcs = [30]
        bmcs = [9]
        intrps = []
        sims = []
        slps = [18]
    elif N == 2:
        reachs = [24]
        pdrs = [7]
        bmcs = [30]
        intrps = []
        sims = []
        slps = [18]
    elif N == 4:
        reachs = [24]
        pdrs = [7]
        bmcs = [9,30]
        intrps = [23]
        sims = []
        slps = [18]
    elif N == 8:
        reachs = [24]
        pdrs = [0,7]
        bmcs = [9,30]
        intrps = [23]
        sims = [3]
        slps = [18]

def set_globals():
    """This sets global parameters that are used to limit the resources used by all the operations
    bmc, interpolation BDDs, abstract etc. There is a global factor 'x_factor' that can
    control all of the various resource limiting parameters"""
    global G_C,G_T,x_factor
    nl=n_latches()
    na=n_ands()
    np = n_pis()
    #G_C = min(500000,(3*na+500*(nl+np)))
    G_C = x_factor * min(100000,(3*na+500*(nl+np)))
    #G_T = min(250,G_C/2000)
    G_T = x_factor * min(75,G_C/2000)
    G_T = max(1,G_T)
    #print('Global values: BMC conflicts = %d, Max time = %d sec.'%(G_C,G_T))
    
def a():
    """this puts the system into direct abc input mode"""
    print "Entering ABC direct-input mode. Type q to quit ABC-mode"
    n = 0
    while True:
        print '     abc %d> '%n,
        n = n+1
        s = raw_input()
        if s == "q":
            break
        run_command(s)

def remove_spaces(s):
    y = ''
    for t in s:
        if not t == ' ':
            y = y + t
    return y

def read_file_quiet(fname=None):
    """This is the main program used for reading in a new circuit. The global file name is stored (f_name)
    Sometimes we want to know the initial starting name. The file name can have the .aig extension left off
    and it will assume that the .aig extension is implied. This should not be used for .blif files.
    Any time we want to process a new circuit, we should use this since otherwise we would not have the
    correct f_name."""
    global max_bmc,  f_name, d_name, initial_f_name, x_factor, init_initial_f_name, win_list,seed, sec_options
    global win_list, init_simp, po_map
    set_engines(4) #temporary
    ps()
    init_simp = 1
    win_list = [(0,.1),(1,.1),(2,.1),(3,.1),(4,.1),(5,-1),(6,-1),(7,.1)] #initialize winning engine list
    po_map = range(n_pos())
    initialize()
##    x_factor = 1
##    seed = 223
##    max_bmc = -1
    if fname is None:
        print 'Type in the name of the aig file to be read in'
        s = raw_input()
        s = remove_spaces(s)
    else:
        s = fname
    if s[-4:] == '.aig':
        f_name = s[:-4]
    else:
        f_name = s
        s = s+'.aig'
##    run_command(s)
    run_command('&r %s;&put'%s)
    set_globals()
    initial_f_name = f_name
    init_initial_f_name = f_name
    abc('addpi')
    
def read_file():
    global win_list, init_simp, po_map
    read_file_quiet()
##    ps()
##    init_simp = 1
##    win_list = [(0,.1),(1,.1),(2,.1),(3,.1),(4,.1),(5,-1),(6,-1),(7,.1)] #initialize winning engine list
##    po_map = range(n_pos())

def rf():
##    set_engines(4) #temporary
    read_file()

def write_file(s):
    """this is the main method for writing the current circuit to an AIG file on disk.
    It manages the name of the file, by giving an extension (s). The file name 'f_name'
    keeps increasing as more extensions are written. A typical sequence is
    name, name_smp, name_smp_abs, name_smp_abs_spec, name_smp_abs_spec_final"""
    global f_name
    """Writes out the current file as an aig file using f_name appended with argument"""
    f_name = '%s_%s'%(f_name,s)
    ss = '%s.aig'%(f_name)
    print 'WRITING %s: '%ss,
    ps()
    abc('w '+ss)

def bmc_depth():
    """ Finds the number of BMC frames that the latest operation has used. The operation could be BMC, reachability
    interpolation, abstract, speculate. max_bmc is continually increased. It reflects the maximum depth of any version of the circuit
    including g ones, for which it is known that there is not cex out to that depth."""
    global max_bmc
    c = cex_frame()
    if c > 0:
        b = c-1
    else:
        b = n_bmc_frames()
    max_bmc = max(b,max_bmc)
    return max_bmc

def set_max_bmc(b):
    """ Keeps increasing max_bmc which is the maximum number of time frames for
    which the current circuit is known to be UNSAT for"""
    global max_bmc
    max_bmc = max(b,max_bmc)

def print_circuit_stats():
    """Stardard way of outputting statistice about the current circuit"""
    global max_bmc
    i = n_pis()
    o = n_pos()
    l = n_latches()
    a = n_ands()
    b = max(max_bmc,bmc_depth())
    c = cex_frame()
    if b>= 0:
        if c>=0:
            print 'PIs=%d,POs=%d,FF=%d,ANDs=%d,max depth=%d,CEX depth=%d'%(i,o,l,a,b,c)
        elif is_unsat():
            print 'PIs=%d,POs=%d,FF=%d,ANDs=%d,max depth = infinity'%(i,o,l,a)
        else:
            print 'PIs=%d,POs=%d,FF=%d,ANDs=%d,max depth=%d'%(i,o,l,a,b)            
    else:
        if c>=0:
            print 'PIs=%d,POs=%d,FF=%d,ANDs=%d,CEX depth=%d'%(i,o,l,a,c)
        else:
            print 'PIs=%d,POs=%d,FF=%d,ANDs=%d'%(i,o,l,a)

def q():
    exit()

def is_unsat():
    if prob_status() == 1:
        return True
    else:
        return False

def is_sat():
    if prob_status() == 0:
        return True
    else:
        return False

def wc(file):
    """writes <file> so that costraints are preserved explicitly"""
    abc('&get;&w %s'%file)

def rc(file):
    """reads <file> so that if constraints are explicit, it will preserve them"""
    abc('&r %s;&put'%file)                         

#more complex functions: ________________________________________________________
#, abstract, pba, speculate, final_verify, dprove3

def timer(s):
    btime = time.clock()
    abc(s)
    print 'time = %f'%(time.clock() - btime)

def med_simp():
    x = time.time()
    abc("&get;&scl;&dc2;&lcorr;&dc2;&scorr;&fraig;&dc2;&put;dr")
    #abc("dc2rs")
    ps()
    print 'time = %f'%(time.time() - x)

def simplify():
    """Our standard simplification of logic routine. What it does depende on the problem size.
    For large problems, we use the &methods which use a simple circuit based SAT solver. Also problem
    size dictates the level of k-step induction done in 'scorr' The stongest simplification is done if
    n_ands < 20000. Then it used the clause based solver and k-step induction where |k| depends
    on the problem size """
    set_globals()
    abc('&get;&scl;&lcorr;&put')
    n =n_ands()
    p_40 = False
    if (40000 < n and n < 100000):
        p_40 = True
        abc("&get;&dc2;&put;dr;&get;&lcorr;&dc2;&put;dr;&get;&scorr;&fraig;&dc2;&put;dr")
        n = n_ands()
        if n<60000:
            abc("&get;&scorr -F 2;&put;dc2rs")
        else: # n between 60K and 100K
            abc("dc2rs")
    n = n_ands()
    if (30000 < n  and n <= 40000):
        if not p_40:
            abc("&get;&dc2;&put;dr;&get;&lcorr;&dc2;&put;dr;&get;&scorr;&fraig;&dc2;&put;dr")
            abc("&get;&scorr -F 2;&put;dc2rs")
        else:
            abc("dc2rs")            
    n = n_ands()
    if n <= 30000:
        abc('scl -m;drw;dr;lcorr;drw;dr')
        nn = max(1,n)
        m = int(min( 60000/nn, 16))
        if m >= 1:
            j = 1
            while j <= m:
                set_size()
                if j<8:
                    abc('dc2')
                else:
                    abc('dc2rs')
                abc('scorr -C 5000 -F %d'%j)
                if check_size():
                    break
                j = 2*j
                continue
    return get_status()
            
def simulate2(t):
    """Does rarity simulation. Simulation is restricted by the amount
    of memory it might use. At first wide but shallow simulation is done, followed by
    successively more narrow but deeper simulation. 
    seed is globally initiallized to 113 when a new design is read in"""
    global x_factor, f_name, tme, seed
    btime = time.clock()
    diff = 0
    while True:
        f = 5
        w = 255
        for k in range(9): #this controls how deep we go
            f = min(f *2, 3500)
            w = max(((w+1)/2)-1,1)
            abc('sim3 -m -F %d -W %d -R %d'%(f,w,seed))
            seed = seed+23
            if is_sat():
                return 'SAT'
            if ((time.clock()-btime) > t):
                return 'UNDECIDED'


def simulate(t):
    abc('&get')
    result = eq_simulate(t)
    return result

def eq_simulate(t):
    """Simulation is restricted by the amount
    of memory it might use. At first wide but shallow simulation is done, followed by
    successively more narrow but deeper simulation. The aig to be simulated must be in the & space
    If there are equivalences, it will refine them. Otherwise it is a normal similation
    seed is globally initiallized to 113 when a new design is read in"""
    global x_factor, f_name, tme, seed
    btime = time.clock()
    diff = 0
    while True:
        f = 5
        w = 255
        for k in range(9):
            f = min(f *2, 3500)
            r = f/20
            w = max(((w+1)/2)-1,1)
##            abc('&sim3 -R %d -W %d -N %d'%(r,w,seed))
            abc('&sim -F %d -W %d -R %d'%(f,w,seed))
            seed = seed+23
            if is_sat():
                return 'SAT'
            if ((time.clock()-btime) > t):
                return 'UNDECIDED'

def generate_abs(n):
    """generates an abstracted  model (gabs) from the greg file. The gabs file is automatically
    generated in the & space by &abs_derive. We store it away using the f_name of the problem
    being solved at the moment. The f_name keeps changing with an extension given by the latest
    operation done - e.g. smp, abs, spec, final, group. """
    global f_name
    #we have a cex and we use this generate a new gabs file
    abc('&r %s_greg.aig; &abs_derive; &put; w %s_gabs.aig'%(f_name,f_name)) # do we still need the gabs file
    if n == 1:
        #print 'New abstraction: ',
        ps()
    return   

def refine_with_cex():
    """Refines the greg (which contains the original problem with the set of FF's that have been abstracted).
    This uses the current cex to modify the greg file to reflect which regs are in the
    new current abstraction"""
    global f_name
    #print 'CEX in frame %d for output %d'%(cex_frame(),cex_po())
    #abc('&r %s_greg.aig; &abs_refine -t; &w %s_greg.aig'%(f_name,f_name))
    abc('&r %s_greg.aig;&w %s_greg_before.aig'%(f_name,f_name))
##    run_command('&abs_refine -s -M 25; &w %s_greg.aig'%f_name)
    run_command('&abs_refine -s; &w %s_greg.aig'%f_name)
    #print ' %d FF'%n_latches()
    return

def abstraction_refinement(latches_before,NBF):
    """Subroutine of 'abstract' which does the refinement of the abstracted model,
    using counterexamples found by BMC or BDD reachability"""
    global x_factor, f_name, last_verify_time, x, win_list, last_winner, last_cex, t_init, j_last, sweep_time
    global cex_list, last_cx
    sweep_time = 2
    if NBF == -1:
        F = 2000
    else:
        F = 2*NBF
    print '\nIterating abstraction refinement'
    J = slps+intrps+pdrs+bmcs+sims
    print sublist(methods,J)
    last_verify_time = t = x_factor*max(50,max(1,2.5*G_T))
    initial_verify_time = last_verify_time = t
    reg_verify = True
    print 'Verify time set to %d'%last_verify_time
    while True: #cex based refinement
        generate_abs(1) #generate new gabs file from refined greg file
        set_globals()
        latches_after = n_latches()
        if rel_cost_t([pis_before_abs,latches_before_abs, ands_before_abs])> -.1:
            break
        if latches_after >= .90*latches_before:
            break
        t = last_verify_time
        yy = time.time()
        abc('w %s_beforerpm.aig'%f_name)
        rep_change = reparam() #new - must do reconcile after to make cex compatible
        abc('w %s_afterrpm.aig'%f_name)
        if reg_verify:
            status = verify(J,t)
        else:
            status = pord_1_2(t)
###############
        if status == Sat_true:
            print 'Found true cex'
            reconcile(rep_change)
            return Sat_true
        if status == Unsat:
            return status
        if status == Sat:
            reconcile(rep_change) # makes the cex compatible with original before reparam and puts original in work space
            abc('write_status %s_before.status'%f_name)
            refine_with_cex()
            if is_sat(): # if cex can't refine, status is set to Sat_true
                print 'Found true cex in output %d'%cex_po()
                return Sat_true
            else:
                continue
        else:
            break
    print '**** Latches reduced from %d to %d'%(latches_before, n_latches())
    return Undecided_reduction

def abstract():
    """ abstracts using N Een's method 3 - cex/proof based abstraction. The result is further refined using
    simulation, BMC or BDD reachability"""
    global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list, j_last, sims
    global latches_before_abs, ands_before_abs, pis_before_abs
    j_last = 0
    set_globals()
    #win_list = []
    latches_before_abs = n_latches()
    ands_before_abs = n_ands()
    pis_before_abs = n_real_inputs()
    abc('w %s_before_abs.aig'%f_name)
    print 'Start: ',
    ps()
    funcs = [eval('(pyabc_split.defer(initial_abstract)())')]
    # fork off BMC3 and PDRm along with initial abstraction
    t = 10000 #want to run as long as initial abstract takes.
##    J = sims+pdrs+bmcs+intrps
    J = pdrs+bmcs+bestintrps
    if n_latches() < 80:
        J = J + [4]
    funcs = create_funcs(J,t) + funcs
    mtds = sublist(methods,J) + ['initial_abstract'] #important that initial_abstract goes last
    m,NBF = fork_last(funcs,mtds)
    if is_sat():
        print 'Found true counterexample in frame %d'%cex_frame()
        return Sat_true
    if is_unsat():
        return Unsat
    set_max_bmc(NBF)
    NBF = bmc_depth()
    print 'Abstraction good to %d frames'%max_bmc
    #note when things are done in parallel, the &aig is not restored!!!
    abc('&r %s_greg.aig; &w initial_greg.aig; &abs_derive; &put; w initial_gabs.aig; w %s_gabs.aig'%(f_name,f_name))
    set_max_bmc(NBF)
    print 'Initial abstraction: ',
    ps()
    abc('w %s_init_abs.aig'%f_name)
    latches_after = n_latches()
##    if latches_after >= .90*latches_before_abs:
    if ((rel_cost_t([pis_before_abs, latches_before_abs, ands_before_abs])> -.1) or (latches_after >= .90*latches_before_abs)):
        abc('r %s_before_abs.aig'%f_name)
        print "Little reduction!"
        return Undecided_no_reduction
    sims_old = sims
    sims=sims[:1] #make it so that rarity sim is not used since it can't find a cex
    result = abstraction_refinement(latches_before_abs, NBF)
    sims = sims_old
    if result <= Unsat:
        return result
##    if n_latches() >= .90*latches_before_abs:
    if ((rel_cost_t([pis_before_abs, latches_before_abs, ands_before_abs])> -.1) or (latches_after >= .90*latches_before_abs)):
##    if rel_cost_t([pis_before_abs,latches_before_abs, ands_before_abs])> -.1:
        abc('r %s_before_abs.aig'%f_name) #restore original file before abstract.
        print "Little reduction!"
        result = Undecided_no_reduction    
    return result

def initial_abstract_old():
    global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list
    set_globals()
    time = max(1,.1*G_T)
    abc('&get;,bmc -vt=%f'%time)
    set_max_bmc(bmc_depth())
    c = 2*G_C
    f = max(2*max_bmc,20)
    b = min(max(10,max_bmc),200)
    t = x_factor*max(1,2*G_T)
    s = min(max(3,c/30000),10) # stability between 3 and 10 
    cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d'%(b,s,t,t,f)
##    print cmd
    print 'Running initial_abstract with bob=%d,stable=%d,time=%d,depth=%d'%(b,s,t,f)
    abc(cmd)
    abc('&w %s_greg.aig'%f_name)
##    ps()

def initial_abstract():
    global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list, max_bmc
    set_globals()
    time = max(1,.1*G_T)
    abc('&get;,bmc -vt=%f'%time)
    set_max_bmc(bmc_depth())
    c = 2*G_C
    f = max(2*max_bmc,20)
    b = min(max(10,max_bmc),200)
    t = x_factor*max(1,2*G_T)
    s = min(max(3,c/30000),10) # stability between 3 and 10 
    cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d'%(b,s,t,t,f)
##    print cmd
    print 'Running initial_abstract with bob=%d,stable=%d,time=%d,depth=%d'%(b,s,t,f)
    abc(cmd)
    bmc_depth()
##    pba_loop(max_bmc+1)
    abc('&w %s_greg.aig'%f_name)
    return max_bmc

def abs_m():
    set_globals()
    y = time.time()
    nl = n_abs_latches() #initial set of latches
    c = 2*G_C
    t = x_factor*max(1,2*G_T) #total time
    bmd = bmc_depth()
    if bmd < 0:
        abc('bmc3 -T 2') #get initial depth estimate
        bmd = bmc_depth()
    f = bmd
    abc('&get')
    y = time.time()
    cmd = '&abs_cba -v -C %d -T %0.2f -F %d'%(c,.8*t,bmd) #initial absraction
##    print '\n%s'%cmd
    abc(cmd)
    b_old = b = n_bmc_frames()
    f = min(2*bmd,max(bmd,1.6*b))
    print 'cba: latches = %d, depth = %d'%(n_abs_latches(),b)
##    print n_bmc_frames()
    while True:
        if (time.time() - y) > .9*t:
            break
        nal = n_abs_latches()
        cmd = '&abs_cba -v -C %d -T %0.2f -F %d'%(c,.8*t,f) #f is 2*bmd and is the maximum number of frames allowed
##        print '\n%s'%cmd
        abc(cmd)
##        print n_bmc_frames()
        b_old = b
        b = n_bmc_frames() 
        nal_old = nal 
        nal = n_abs_latches() #nal - nal_old is the number of latches added by cba
        #b - b_old is the additional time frames added by cba
        f = min(2*bmd,max(bmd,1.6*b))   #may be this should just be bmd
        f = max(f,1.5*bmd)
        print 'cba: latches = %d, depth = %d'%(nal,b)
        if ((nal == nal_old) and (b >= 1.5*b_old) and b >= 1.5*bmd):
            """
            Went at least bmd depth and saw too many frames without a cex
            (ideally should know how many frames without a cex)
            """
            print 'Too many frames without cex'
            break
        if b > b_old: #if increased depth
            continue
        if nal > .9*nl: # try to minimize latches
##            cmd = '&abs_pba -v -S %d -F %d -T %0.2f'%(b,b+2,.2*t)
            cmd = '&abs_pba -v -F %d -T %0.2f'%(b+2,.2*t)
##            print '\n%s'%cmd
            abc(cmd)
            b = n_bmc_frames()
            nal_old = nal
            nal = n_abs_latches()
            print 'pba: latches = %d, depth = %d'%(nal,b)
##            print n_bmc_frames()
            if nal_old < nal: #if latches increased there was a cex
                continue
            if nal > .9*nl: # if still too big 
                return
        continue 
##    b = n_bmc_frames()
    cmd = '&abs_pba -v -F %d -T %0.2f'%(b+2,.2*t)
##    print '\n%s'%cmd
    abc(cmd)
    b = n_bmc_frames()
    print 'pba: latches = %d, depth = %d'%(n_abs_latches(),b)
##    print n_bmc_frames()
    print 'Total time = %0.2f'%(time.time()-y)

def n_abs_latches():
    abc('&w pba_temp.aig') #save the &space
    abc('&abs_derive;&put')
    abc('&r pba_temp.aig')
    return n_latches()
        
def pba_loop(F):
    n = n_abs_latches()
    while True:
        run_command('&abs_pba -v -C 100000 -F %d'%F)
        abc('&w pba_temp.aig')
        abc('&abs_derive;&put')
        abc('&r pba_temp.aig')
        N = n_latches()
##        if n == N or n == N+1:
##            break
##        elif N > n:
        if N > n:
            print 'cex found'
        break
##        else:
##            break
    
##def sec_m(options):
##    """
##    This assumes that a miter has been loaded into the workspace. The miter has been
##    constructed using &miter. Then we demiter it using command 'demiter'
##    This produces parts 0 and 1, renamed  A_name, and B_name.
##    We then do speculate immediately. Options are passed to &srm2 using the
##    options given by sec_options
##    """
##    global f_name,sec_sw, A_name, B_name, sec_options
##    A_name = f_name+'_part0'
##    B_name = f_name+'_part1'
##    run_command('demiter')
##    #simplify parts A and B here?
##    abc('r %s_part1.aig;scl;dc2;&get;&lcorr;&scorr;&put;dc2;dc2;w %s_part1.aig'%(f_name,f_name))
##    ps()
##    abc('r %s_part0.aig;scl;dc2;&get;&lcorr;&scorr;&put;dc2;dc2;w %s_part0.aig'%(f_name,f_name))
##    ps()
##    #simplify done
##    f_name = A_name
##    return sec(B_name,options)

def ss(options):
    """Alias for super_sec"""
    global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time, sec_options
    sec_options = options
    print 'Executing speculate'
    result = speculate()
    return result


def quick_sec(t):
##    fb_name = f_name[:-3]+'New'
##    abc('&get;&miter -s %s.aig;&put'%fb_name)
##    abc('w %s.%s_miter.aig'%(f_name,fb_name))
    quick_simp()
    verify(slps+ pdrs+bmcs+intrps,t)
    if is_unsat():
        return 'UNSAT'
    if is_sat():
        return 'SAT'
    else:
        return'UNDECIDED'

def pp_sec():
    print 'First file: ',
    read_file_quiet()
    ps()
    abc('&w original_secOld.aig')
    print 'Second file: ',
    read_file_quiet()
    ps()
    abc('&w original_secNew.aig')


def sup_sec():
    global TERM
    """
    form miter of original_sec(Old,New), and then run in parallel quick_sec(28), speculate(29), and
    run_parallel(21) with JP set to 
    """
    global f_name,sec_sw, A_name, B_name, sec_options
    #preprocess files to get rid of dangling FF
    abc('&r original_secOld.aig;&scl -ce;&w Old.aig')
    abc('&r original_secNew.aig;&scl -ce;&w New.aig')
    #done preprocessing
    read_file_quiet('Old')
    abc('&get;&miter -s New.aig;&put')
    set_globals()
    yy = time.time()
    A_name = f_name # Just makes it so that we can refer to A_name later in &srm2
    B_name = 'New'
    f_name = 'miter'
    abc('w %s.aig'%f_name)
    sec_options = 'l'
    sec_sw = True
    JP = [18,27] # sleep and simplify. JP  sets the things run in parallel in method 21.
                    #TERM sets the stopping condition
    TERM = 'USL' #Sat, Unsat or Last
    print sublist(methods,[27,21,28,29]+JV)
    t = 100 #this is the amount of time to run
            #18 is controlled by t, 28(speculate) is not, 29(quick_sec) does quick_simp and then controlled by t
    run_parallel([21,28,29],t,'US') #21 is run_parallel with JP and TERM.
                                    #run simplify for t sec, speculate,
                                    #and quick_sec (quick_simp and then verify(JV) for t)
    if is_unsat():
        return 'UNSAT'
    if is_sat():
        return 'SAT'
    else:
        return 'UNDECIDED' # should do sp or something
        

def sec(B_part,options):
    """
    This assumes that the original aig (renamed A_name below) is already read into the working space.
    Then we form a miter using &miter between two circuits, A_name, and B_name.
    We then do speculate immediately. Optionally we could simplify A and B
    and then form the miter and start from there. The only difference in speculate
    is that &srm2 is used, which only looks at equivalences where one comes from A and
    one from B. Options are -a and -b which says use only flops in A or in B or both. The
    switch sec_sw controls what speculate does when it generates the SRM.
    """
    global f_name,sec_sw, A_name, B_name, sec_options
    yy = time.time()
    A_name = f_name # Just makes it so that we can refer to A_name later in &srm2
    B_name = B_part
    run_command('&get; &miter -s %s.aig; &put'%B_name)
##    abc('orpos')
    f_name = A_name+'.'+B_name+'_miter' # reflect that we are working on a miter.
    abc('w %s.aig'%f_name)
    print 'Miter = ',
    ps()
##    result = pre_simp()
##    write_file('smp')
##    if result <= Unsat:
##        return RESULT[result]
    sec_options = options
    if sec_options == 'ab':
        sec_options = 'l' #it will be changed to 'ab' after &equiv
    sec_sw = True 
    result = speculate() #should do super_sec here.
    sec_options = ''
    sec_sw = False
    if result <= Unsat:
        result = RESULT[result]
    else:
        result = sp()
    print 'Total time = %d'%(time.time() - yy)
    return result

def filter(opts):
    global A_name,B_name
    """ This is for filter which effectively only recognizes options -f -g"""
    if (opts == '' or opts == 'l'): #if 'l' this is used only for initial &equiv2 to get initial equiv creation
        return
    if opts == 'ab':
        run_command('&filter -f %s.aig %s.aig'%(A_name,B_name))
        return
    if not opts == 'f':
        opts = 'g'
    run_command('&filter -%s'%opts)

def check_if_spec_first():
    global sec_sw, A_name, B_name, sec_options, po_map
    set_globals()
    t = max(1,.5*G_T)
    r = max(1,int(t))
    abc('w check_save.aig')
    abc('&w check_and.aig')
    abc("&get; &equiv3 -v -F 20 -T %f -R %d"%(t,5*r))
    filter('g')
    abc("&srm; r gsrm.aig")
    print 'Estimated # POs = %d for initial speculation'%n_pos()
    result = n_pos() > max(50,.25*n_latches())
    abc('r check_save.aig')
    abc('&r check_and.aig')
    return result

def initial_speculate():
    global sec_sw, A_name, B_name, sec_options, po_map
    set_globals()
    t = max(1,.5*G_T)
    r = max(1,int(t))
##    print 'Running &equiv3'
##    abc('&w before3.aig')
    if sec_options == 'l':
        cmd = "&get; &equiv3 -lv -F 20 -T %f -R %d"%(3*t,15*r)
    else:
        cmd = "&get; &equiv3 -v -F 20 -T %f -R %d"%(3*t,15*r)
##    print cmd
    abc(cmd)
##    print 'AND space after &equiv3: ',
##    run_command('&ps')
    if (sec_options == 'l'):
        if sec_sw:
            sec_options = 'ab'
        else:
            sec_options = 'f'
            print sec_options
    filter(sec_options)
    abc('&w initial_gore.aig')
##    print 'Running &srm'
    if sec_sw:
        cmd = "&srm2 -%s %s.aig %s.aig; r gsrm.aig; w %s_gsrm.aig; &w %s_gore.aig"%(sec_options,A_name,B_name,f_name,f_name)
        abc(cmd)
        po_map = range(n_pos())
        return
    else:
        cmd = "&srm; r gsrm.aig; w %s_gsrm.aig; &w %s_gore.aig"%(f_name,f_name)
        abc(cmd)
        if (n_pos() > 100):
            sec_options = 'g'
            print 'sec_option changed to "g"'
            filter(sec_options)
            abc(cmd)
        po_map = range(n_pos())

def test_against_original():
    '''tests whether we have a cex hitting an original PO'''
    abc('&w %s_save.aig'%f_name) #we oreserve whatever was in the & space
    abc('&r %s_gore.aig'%f_name)
    abc('testcex')
    PO = cex_po()
    abc('&r %s_save.aig'%f_name)
    if PO > -1:
##        print 'cex fails an original PO'
        return True
    else:
        return False

def set_cex_po(n=0):
    """
    if cex falsifies a non-real PO return that PO first,
    else see if cex_po is one of the original, then take it next
    else return -1 which means that the cex is not valid and hence an error.
    parameter n = 1 means test the &-space
    """
    global n_pos_before, n_pos_proved #these refer to real POs
    if n == 0:
        abc('testcex -a -O %d'%(n_pos_before-n_pos_proved))
    else:
        abc('testcex -O %d'%(n_pos_before-n_pos_proved))
    PO = cex_po()
    if PO >= (n_pos_before - n_pos_proved): #cex_po is not an original
##        print 'cex PO = %d'%PO
        return PO # after original so take it.
    if n == 0:
        abc('testcex -a')
    else:
        abc('testcex')
    PO = cex_po()
    cx = cex_get()
    if PO > -1:
        if test_against_original(): #this double checks that it is really an original PO
            cex_put(cx)
            return PO
        else:
            return -1 #error
##    if PO < 0 or PO >= (n_pos_before - n_pos_proved): # not a valid cex because already tested outside original.
##        PO = -1 #error
    return PO
##    print 'cex PO = %d'%PO

def speculate():
    """Main speculative reduction routine. Finds candidate sequential equivalences and refines them by simulation, BMC, or reachability
    using any cex found. """    
    global G_C,G_T,n_pos_before, x_factor, n_latches_before, last_verify_time, trim_allowed, n_pos_before
    global t_init, j_last, sec_sw, A_name, B_name, sec_options, po_map, sweep_time, sims, cex_list, n_pos_proved,ifpord1
    global last_cx
    last_cx = 0
    ifpord1 = 1
    if sec_sw:
        print 'A_name = %s, B_name = %s, f_name = %s, sec_options = %s'%(A_name, B_name, f_name, sec_options)
    elif n_ands()> 6000 and sec_options == '':
        sec_options = 'g'
        print 'sec_options set to "g"'
        
    def refine_with_cex():
        """Refines the gore file to reflect equivalences that go away because of cex"""
        global f_name
##        print 'Refining',
##        abc('&r %s_gore.aig;&w %s_gore_before.aig'%(f_name,f_name))
        abc('write_status %s_before.status'%f_name)
        abc('&r %s_gore.aig; &resim -m'%f_name)
        filter(sec_options)
        run_command('&w %s_gore.aig'%f_name)
        return
    
##    def refine_with_cexs():
##        """Refines the gore file to reflect equivalences that go away because of cexs in cex_list"""
##        global f_name, cex_list
##        print 'Multiple refining'
##        abc('&r %s_gore.aig'%f_name)
####        run_command('&ps')
##        for j in range(len(cex_list)):
##            cx = cex_list[j]
##            if cx == None:
##                continue
##            cex_put(cx)
##            run_command('&resim -m') #put the jth cex into the cex space and use it to refine the equivs
##        filter(sec_options)
##        abc('&w %s_gore.aig'%f_name)
####        run_command('&ps')
##        cex_list = [] #done with this list.
##        return

    def set_cex(lst):
        """ assumes only one in lst """
        for j in range(len(lst)):
            cx = lst[j]
            if cx == None:
                continue
            else:
                cex_put(cx)
                break

##    def test_all_cexs(lst):
##        """tests all cex"s to see if any violate original POs
##        if it does, return the original PO number
##        if not return -1
##        """
##        global n_pos_before, cex_list
##        run_command('&r %s_gore.aig'%f_name)
##        for j in range(len(cex_list)):
##            cx = lst[j]
##            if cx == None:
##                continue
##            cex_put(cx)
##            PO = set_cex_po()   #if cex falsifies non-real PO it will set this first
##            if PO == -1:        # there is a problem with cex since it does not falsify any PO
##                continue        #we continue because there may be another valid cex in list
##            return PO           #we will only process one cex for now.
##        return -1               #a real PO is not falsified by any of the cexs

    def generate_srm():
        """generates a speculated reduced model (srm) from the gore file"""
        global f_name, po_map, sec_sw, A_name, B_name, sec_options, n_pos_proved
##        print 'Generating'
        pos = n_pos()
        ab = n_ands()
        if sec_sw:
            run_command('&r %s_gore.aig; &srm2 -%s %s.aig %s.aig; r gsrm.aig; w %s_gsrm.aig'%(f_name,sec_options,A_name,B_name,f_name))
        else:
            abc('&r %s_gore.aig; &srm ; r gsrm.aig; w %s_gsrm.aig'%(f_name,f_name)) #do we still need to write the gsrm file
##        ps()
        po_map = range(n_pos())
##        cmd = '&get;&lcorr;&scorr;&trim -i;&put;w %s_gsrm.aig'%f_name
##        cmd = 'lcorr;&get;&trim -i;&put;w %s_gsrm.aig'%f_name
##        print 'Executing %s'%cmd
##        abc(cmd)
        ps()
        n_pos_proved = 0
        return 'OK'
    
    n_pos_before = n_pos()
    n_pos_proved = 0
    n_latches_before = n_latches()    
    set_globals()
    t = max(1,.5*G_T)#irrelevant
    r = max(1,int(t))
    j_last = 0
    J = sims+pdrs+bmcs+intrps
    funcs = [eval('(pyabc_split.defer(initial_speculate)())')]
    funcs = create_funcs(J,10000)+funcs #want other functins to run until initial speculate stops
    mtds = sublist(methods,J) + ['initial_speculate'] #important that initial_speculate goes last
    fork_last(funcs,mtds)
##    ps()
    if is_unsat():
        return Unsat
    if is_sat():
        return Sat_true
    if n_pos_before == n_pos():
        print 'No new outputs. Quitting speculate'
        return Undecided_no_reduction # return result is unknown
##    cmd = 'lcorr;&get;&trim -i;&put;w %s_gsrm.aig'%f_name
    #print 'Executing %s'%cmd
    abc('w initial_gsrm.aig')
##    ps()
##    abc(cmd)
    print 'Initial speculation: ',
    ps()
    if n_latches() == 0:
        return check_sat()
    if sec_options == 'l' and sec_sw:
        sec_options = 'ab' #finished with initial speculate with the 'l' option
        print "sec_options set to 'ab'"
    elif sec_options == 'l':
        sec_options = 'f'
        print "sec_options set to 'f'"
    po_map = range(n_pos()) #we need this because the initial_speculate is done in parallel and po_map is not passed back.
    npi = n_pis()
    set_globals()
    if is_sat():
        return Sat_true
    simp_sw = init = True
    print '\nIterating speculation refinement'
    sims_old = sims
    sims = sims[:1] #make it so rarity simulation is not used since it can't find a cex.
    J = slps+sims+pdrs+intrps+bmcs
    print sublist(methods,J)
    t = max(50,max(1,2*G_T))
    last_verify_time = t
    print 'Verify time set to %d'%last_verify_time
    reg_verify = True
    ref_time = time.time()
    sweep_time = 2
    ifpord1=1
    while True: # refinement loop
        set_globals()
        yy = time.time()
        if not init:
            abc('r %s_gsrm.aig'%f_name) #this is done only to set the size of the previous gsrm.
            abc('w %s_gsrm_before.aig'%f_name)
            set_size()
            result = generate_srm()
            yy = time.time()
            # if the size of the gsrm did not change after generating a new gsrm
            # and if the cex is valid for the gsrm, then the only way this can happen is if
            # the cex_po is an original one.
            if check_size(): #same size before and after
                if check_cex(): #valid cex failed to refine possibly
                    if 0 <= cex_po() and cex_po() < (n_pos_before - n_pos_proved): #original PO
                        print 'Found cex in original output = %d'%cex_po()
                        print 'Refinement time = %s'%convert(time.time() - ref_time)
                        return Sat_true
                    elif check_same_gsrm(f_name): #if two gsrms are same, then failed to refine
                        print 'CEX failed to refine'
                        return Error
                else:
                    print 'not a valid cex'
                    return Error
            if n_latches() == 0:
                print 'Refinement time = %s'%convert(time.time() - ref_time)
                return check_sat()
        init = False # make it so that next time it is not the first time through
        if not t == last_verify_time: # heuristic that if increased last verify time,
                                      # then try pord_all 
            t = last_verify_time
            if reg_verify:
                t_init = (time.time() - yy)/2 #start poor man's concurrency at last cex fime found
                t_init = min(10,t_init)
                reg_verify = False #will cause pord_all to be used next
                print 'pord_all turned on'
                t = last_verify_time
                print 'Verify time set to %d'%t
        abc('w %s_beforerpm.aig'%f_name)
        rep_change = reparam() #must be paired with reconcile below if cex
        abc('w %s_afterrpm.aig'%f_name)
        if reg_verify:
            result = verify(J,t)
        else:
            result = pord_1_2(t)
        if result == Unsat:
            print 'UNSAT'
            print 'Refinement time = %s'%convert(time.time() - ref_time)
            return Unsat
        if result < Unsat:
            if not reg_verify:
                set_cex(cex_list)
##        if reg_verify: 
            reconcile(rep_change) #end of pairing with reparam()
            assert (npi == n_cex_pis()),'ERROR: #pi = %d, #cex_pi = %d'%(npi,n_cex_pis())
            abc('&r %s_gore.aig;&w %s_gore_before.aig'%(f_name,f_name)) #we are making sure that none of the original POs fail
            PO = set_cex_po() #testing the &space
            if (-1 < PO and PO < (n_pos_before-n_pos_proved)):
                print 'Found cex in original output = %d'%cex_po()
                print 'Refinement time = %s'%convert(time.time() - ref_time)
                return Sat_true
            if PO == -1:
                return Error
            refine_with_cex()    #change the number of equivalences
            continue
##            else: # we used pord_all()
##                cex_list = reconcile_all(cex_list, rep_change)  #end of pairing with reparam()
##                PO = test_all_cexs(cex_list) #we have to make sure that none of the cex's fail the original POs.
##                if 0 <= PO and PO < (n_pos_before - n_pos_proved):
##                    print 'PO = %d, n_pos_before = %d, n_pos_proved = %d'%(PO,n_pos_before, n_pos_proved)
##                    print 'Found one of cexs in original output = %d'%cex_po()
##                    print 'Refinement time = %0.2f'%(time.time() - ref_time)
##                    return Sat_true
##                if PO == -1:
##                    return Error
##                refine_with_cexs()
##                continue
        elif (is_unsat() or n_pos() == 0):
            print 'UNSAT'
            print 'Refinement time = %s'%convert(time.time() - ref_time)
            return Unsat
        else: #if undecided, record last verification time
            print 'Refinement returned undecided in %d sec.'%t
            last_verify_time = t
            #########################added
            if reg_verify: #try one last time with parallel POs cex detection (find_cex_par) if not already tried
                abc('r %s_beforerpm.aig'%f_name) # to continue refinement, need to restore original
                t_init = min(last_verify_time,(time.time() - yy)/2) #start poor man's concurrency at last cex fime found
                t_init = min(10,t_init)
                reg_verify = False
                t = last_verify_time # = 2*last_verify_time
                abc('w %s_beforerpm.aig'%f_name)
                rep_change = reparam() #must be paired with reconcile()below
                abc('w %s_afterrpm.aig'%f_name)
                result = pord_1_2(t) #main call to verification
                if result == Unsat:
                    print 'UNSAT'
                    print 'Refinement time = %s'%convert(time.time() - ref_time)
                    return Unsat
                if is_sat():
                    assert result == get_status(),'result: %d, status: %d'%(result,get_status())
                    set_cex(cex_list)
                    reconcile(rep_change)
                    PO = set_cex_po() #testing the &space
                    if (-1 < PO and PO < (n_pos_before-n_pos_proved)):
                        print 'Found cex in original output = %d'%cex_po()
                        print 'Refinement time = %s'%convert(time.time() - ref_time)
                        return Sat_true
                    if PO == -1:
                        return Error
                    refine_with_cex()    #change the number of equivalences
                    continue
##                    cex_list = reconcile_all(cex_list, rep_change)  #end of pairing with reparam()
##                    PO = test_all_cexs(cex_list) #we have to make sure that none of the cex's fail the original POs.
##                    if 0 <= PO and PO < (n_pos_before - n_pos_proved):
##                        print 'found SAT in true output = %d'%cex_po()
##                        print 'Refinement time = %s'%convert(time.time() - ref_time)
##                        return Sat_true
##                    if PO == -1:
##                        return Error
##                    refine_with_cexs()#change the number of equivalences
##                    continue
                elif is_unsat():
                    print 'UNSAT'
                    print 'Refinement time = %s'%convert(time.time() - ref_time)
                    return Unsat
                else: #if undecided, record last verification time
                    last_verify_time = t
                    print 'UNDECIDED'
                    break
            ################### added
            else:
                break
    sims = sims_old
    print 'UNDECIDED'
    print 'Refinement time = %s'%convert(time.time() - ref_time)
    write_file('spec')
    if n_pos_before == n_pos():
        return Undecided_no_reduction 
    else:
        return Undecided_reduction

def simple_bip(t=1000):
    y = time.time()
    J = [0,1,2,30,5] #5 is pre_simp
    funcs = create_funcs(J,t)
    mtds =sublist(methods,J)
    fork_last(funcs,mtds)
    result = get_status()
    if result > Unsat:
        write_file('smp')
        result = verify(slps+[0,1,2,30],t)
    print 'Time for simple_bip = %0.2f'%(time.time()-y)
    return RESULT[result] 

def simple_prove(t=1000):
    y = time.time()
    J = [7,9,23,30,5]
    funcs = create_funcs(J,t)
    mtds =sublist(methods,J)
    fork_last(funcs,mtds)
    result = get_status()
    if result > Unsat:
        write_file('smp')
        result = verify(slps+[7,9,23,30],t)
    print 'Time for simple_prove = %0.2f'%(time.time()-y)
    return RESULT[result] 

def check_same_gsrm(f):
##    return False #disable the temporarily until can figure out why this is there
    """checks gsrm miters before and after refinement and if equal there is an error"""
    global f_name
    abc('r %s_gsrm.aig'%f)
##    ps()
    run_command('miter -c %s_gsrm_before.aig'%f)
##    ps()
    abc('&get; ,bmc -timeout=5')
    result = True #if the same
    if is_sat(): #if different
        result = False
    abc('r %s_gsrm.aig'%f)
##    ps()
    return result

def check_cex():
    """ check if the last cex still asserts one of the outputs.
    If it does then we have an error"""
    global f_name
    abc('read_status %s_before.status'%f_name)
    abc('&r %s_gsrm_before.aig'%f_name)
##    abc('&r %s_gsrm.aig'%f_name)
    run_command('testcex')
    print 'cex po = %d'%cex_po()
    return cex_po() >=0
##    if cex_po() == -1: # means gsrm changes after refinement - no output is asserted.
##        return False
##    else:
##        return True

def set_size():
    """Stores  the problem size of the current design.
    Size is defined as (PIs, POs, ANDS, FF)""" 
    global npi, npo, nands, nff, nmd
    npi = n_pis()
    npo = n_pos()
    nands = n_ands()
    nff = n_latches()
    nmd = max_bmc
    #print npi,npo,nands,nff

def check_size():
    """Assumes the problem size has been set by set_size before some operation.
    This checks if the size was changed
    Size is defined as (PIs, POs, ANDS, FF, max_bmc)
    Returns TRUE is size is the same""" 
    global npi, npo, nands, nff, nmd
    #print n_pis(),n_pos(),n_ands(),n_latches()
    result = ((npi == n_pis()) and (npo == n_pos()) and (nands == n_ands()) and (nff == n_latches()) )
    return result

def inferior_size():
    """Assumes the problem size has been set by set_size beore some operation.
    This checks if the new size is inferior (larger) to the old one 
    Size is defined as (PIs, POs, ANDS, FF)""" 
    global npi, npo, nands, nff
    result = ((npi < n_pis()) or (npo < n_pos()) or (nands < n_ands()) )
    return result

def quick_verify(n):
    """Low resource version of final_verify n = 1 means to do an initial
    simplification first. Also more time is allocated if n =1"""
    global last_verify_time
    trim()
    if n == 1:
        simplify()
        if n_latches == 0:
            return check_sat()
        trim()
        if is_sat():
            return Sat_true
    #print 'After trimming: ',
    #ps()
    set_globals()
    last_verify_time = t = max(1,.4*G_T)
    if n == 1:
        last_verify_time = t = max(1,2*G_T)
    print 'Verify time set to %d '%last_verify_time
    J = [18] + intrps+bmcs+pdrs+sims
    status = verify(J,t)
    return status

##def process_status():
##    if n_latches() == 0:
##        status = check_sat()
##    else:
##        status = get_status()
##    return status

def process_status(status):
    """ if there are no FF, the problem is combinational and we still have to check if UNSAT"""
    if n_latches() == 0:
        return check_sat()
    return status

    
def get_status():
    """this simply translates the problem status encoding done by ABC
    (-1,0,1)=(undecided,SAT,UNSAT) into the status code used by our
    python code. -1,0,1 => 3,0,2
    """
    if n_latches() == 0:
        return check_sat()
    status = prob_status() #interrogates ABC for the current status of the problem.
    # 0 = SAT i.e. Sat_reg = 0 so does not have to be changed.
    if status == 1:
        status = Unsat
    if status == -1: #undecided
        status = Undecided
    return status

def reparam():
    """eliminates PIs which if used in abstraction or speculation must be restored by
    reconcile and the cex made compatible with file beforerpm"""
##    return
    rep_change = False
    n = n_pis()
##    abc('w t1.aig')
    abc('&get;,reparam -aig=%s_rpm.aig; r %s_rpm.aig'%(f_name,f_name))
##    abc('w t2.aig')
##    abc('testcex')
    if n_pis() == 0:
        print 'Number of PIs reduced to 0. Added a dummy PI'
        abc('addpi')
    nn = n_pis()
    if nn < n:
        print 'Reparam: PIs %d => %d'%(n,nn)
        rep_change = True
    return rep_change

def reconcile(rep_change):
    """used to make current cex compatible with file before reparam() was done.
    However, the cex may have come
    from extracting a single output and verifying this.
    Then the cex_po is 0 but the PO it fails could be anything.
    So testcex rectifies this."""
    global n_pos_before, n_pos_proved
##    print 'rep_change = %s'%rep_change
    if rep_change == False:
        return
    abc('&r %s_beforerpm.aig; &w tt_before.aig'%f_name)
    abc('write_status %s_after.status;write_status tt_after.status'%f_name)
    abc('&r %s_afterrpm.aig;&w tt_after.aig'%f_name)
    POa = set_cex_po(1)   #this should set cex_po() to correct PO. A 1 here means it uses &space to check
    abc('reconcile %s_beforerpm.aig %s_afterrpm.aig'%(f_name,f_name))
    # reconcile modifies cex and restores work AIG to beforerpm
    abc('write_status %s_before.status;write_status tt_before.status'%f_name)
    POb = set_cex_po()
##    assert POa == POb, 'cex PO afterrpm = %d, cex PO beforerpm = %d'%(POa,POb)
    if POa != POb:
        abc('&r %s_beforerpm.aig; &w tt_before.aig'%f_name)
        abc('&r %s_afterrpm.aig; &w tt_after.aig'%f_name)
        print 'cex PO afterrpm = %d, cex PO beforerpm = %d'%(POa,POb)
##        assert POa == POb, 'cex PO afterrpm = %d, cex PO beforerpm = %d'%(POa,POb)

def reconcile_all(lst, rep_change):
    """reconciles the list of cex's"""
    global f_name, n_pos_before, n_pos_proved
    if rep_change == False:
        return lst
    list = []
    for j in range(len(lst)):
        cx = lst[j]
        if cx == None:
            continue
        cex_put(cx)
        reconcile(rep_change)
        list = list + [cex_get()]
    return list
    

def try_rpm():
    """rpm is a cheap way of doing reparameterization and is an abstraction method, so may introduce false cex's.
    It finds a minimum cut between the PIs and the main sequential logic and replaces this cut by free inputs.
    A quick BMC is then done, and if no cex is found, we assume the abstraction is valid. Otherwise we revert back
    to the original problem before rpm was tried."""
    global x_factor
    if n_ands() > 30000:
        return
    set_globals()
    pis_before = n_pis()
    abc('w %s_savetemp.aig'%f_name)
    abc('rpm')
    result = 0
    if n_pis() < .5*pis_before:
        bmc_before = bmc_depth()
        #print 'running quick bmc to see if rpm is OK'
        t = max(1,.1*G_T)
        #abc('bmc3 -C %d, -T %f'%(.1*G_C, t))
        abc('&get;,bmc -vt=%f'%t)
        if is_sat(): #rpm made it sat by bmc test, so undo rpm
            abc('r %s_savetemp.aig'%f_name)
        else:
            trim()
            print 'WARNING: rpm reduced PIs to %d. May make SAT.'%n_pis()
            result = 1
    else:
        abc('r %s_savetemp.aig'%f_name)
    return result
            
def verify(J,t):
    """This method is used for finding a cex during refinement, but can also
    be used for proving the property. t is the maximum time to be used by
    each engine J is the list of methods to run in parallel. See FUNCS for list"""
    global x_factor, final_verify_time, last_verify_time, methods
    set_globals()
    t = int(max(1,t))
    N = bmc_depth()
    L = n_latches()
    I = n_real_inputs()
##    mtds = sublist(methods,J)
    #heuristic that if bmc went deep, then reachability might also
    if ( ((I+L<350)&(N>100))  or  (I+L<260) or (L<80) ):
        J = J+reachs
        J = remove_intrps(J)
        if L < 80:
            J=J+[4]
    mtds = sublist(methods,J)
    print mtds
    #print J,t
    F = create_funcs(J,t)
    (m,result) = fork(F,mtds) #FORK here
    assert result == get_status(),'result: %d, status: %d'%(result,get_status())
    return result

    
def check_sat():
    """This is called if all the FF have disappeared, but there is still some logic left. In this case,
    the remaining logic may be UNSAT, which is usually the case, but this has to be proved. The ABC command 'dsat' is used fro combinational problems"""
    if not n_latches() == 0:
        print 'circuit is not combinational'
        return Undecided
##    print 'Circuit is combinational - checking with dsat'
    abc('&get') #save the current circuit
    abc('orpos;dsat -C %d'%G_C)
    if is_sat():
        return Sat_true
    elif is_unsat():
        return Unsat
    else:
        abc('&put') #restore
        return Undecided_no_reduction

def try_era(s):
    """era is explicit state enumeration that ABC has. It only works if the number of PIs is small,
    but there are cases where it works and nothing else does"""
    if n_pis() > 12:
        return
    cmd = '&get;&era -mv -S %d;&put'%s
    print 'Running %s'%cmd
    run_command(cmd)

def try_induction(C):
    """Sometimes proving the property directly using induction works but not very often.
    For 'ind' to work, it must have only 1 output, so all outputs are or'ed together temporarily"""
    return Undecided_reduction
    print '\n***Running induction'
    abc('w %s_temp.aig'%f_name)
    abc('orpos; ind -uv -C %d -F 10'%C)
    abc('r %s_savetemp.aig'%f_name)
    status = prob_status()
    if not status == 1:
        return Undecided_reduction
    print 'Induction succeeded'
    return Unsat

def final_verify_recur(K):
    """During prove we make backups as we go. These backups have increasing abstractions done, which can cause
    non-verification by allowing false counterexamples. If an abstraction fails with a cex, we can back up to
    the previous design before the last abstraction and try to proceed from there. K is the backup number we
    start with and this decreases as the backups fails. For each backup, we just try final_verify.
    If ever we back up to 0, which is the backup just after simplify, we then try speculate on this. This often works
    well if the problem is a SEC problem where there are a lot of equivalences across the two designs."""
    global last_verify_time
    #print 'Proving final_verify_recur(%d)'%K
    last_verify_time = 2*last_verify_time
    print 'Verify time increased to %d'%last_verify_time
    for j in range(K):
        i = K-(j+1)
        abc('r %s_backup_%d.aig'%(initial_f_name,i))
        if ((i == 0) or (i ==2)): #don't try final verify on original last one
            status = prob_status()
            break
        print '\nVerifying backup number %d:'%i,
        #abc('r %s_backup_%d.aig'%(initial_f_name,i))
        ps()
        #J = [18,0,1,2,3,7,14]
        J = slps+sims+intrps+bmcs+pdrs
        t = last_verify_time
        status = verify(J,t)
        if status >= Unsat:
            return status
        if  i > 0:
            print 'SAT returned, Running less abstract backup'
            continue
        break
    if ((i == 0) and (status > Unsat) and (n_ands() > 0)):
        print '\n***Running speculate on initial backup number %d:'%i,
        abc('r %s_backup_%d.aig'%(initial_f_name,i))
        ps()
        if n_ands() < 20000:
##            pre_simp()
            status = speculate()
            if ((status <= Unsat) or (status == Error)):
                return status
        #J = [18,0,1,2,3,7,14]
        J = slps+sims+intrps+bmcs+pdrs
        t = 2*last_verify_time
        print 'Verify time increased to %d'%last_verify_time
        status = verify(J,t)
    if status == Unsat:
        return status
    else:
        return Undecided_reduction
        
def smp():
    abc('smp')
    write_file('smp')

def dprove():
    abc('dprove -cbjupr')

def trim():
    global trim_allowed
    if not trim_allowed:
        return
##    abc('trm;addpi')
    reparam()
##    print 'exiting trim'

def prs():
    y = time.clock()
    pre_simp()
    print 'Time = %s'%convert(time.clock() - y)
    write_file('smp')

def pre_simp():
    """This uses a set of simplification algorithms which preprocesses a design.
    Includes forward retiming, quick simp, signal correspondence with constraints, trimming away
    PIs, and strong simplify"""
    global trim_allowed
    set_globals()
    abc('&get; &scl; &put')
    if (n_ands() > 200000 or n_latches() > 50000 or n_pis() > 40000):
        print 'Problem too large, simplification skipped'
        return 'Undecided'
    if ((n_ands() > 0) or (n_latches()>0)):
        trim()
##        ps()
    if n_latches() == 0:
        return check_sat()
    best_fwrd_min([10,11])
    ps()
    status = try_scorr_constr()
    if ((n_ands() > 0) or (n_latches()>0)):
        trim()
    if n_latches() == 0:
        return check_sat()
    status = process_status(status)
    if status <= Unsat:
        return status
    simplify()
    print 'Simplify: ',
    ps()
    if n_latches() == 0:
        return check_sat()
    if trim_allowed:
        t = min(15,.3*G_T)
##        try_tempor(t)
        try_temps(15)
        if n_latches() == 0:
            return check_sat()
        try_phase()
        if n_latches() == 0:
            return check_sat()
        if ((n_ands() > 0) or (n_latches()>0)):
            trim()
    status = process_status(status)
    if status <= Unsat:
        return status
    return process_status(status)

def try_scorr_constr():
    set_size()
    abc('w %s_savetemp.aig'%f_name)
    status = scorr_constr()
    if inferior_size():
        abc('r %s_savetemp.aig'%f_name)
    return status


def factors(n):
    l = [1,]
    nn = n
    while n > 1:
        for i in (2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53):
            if not i <nn:
                break
            if n%i == 0:
                l = l + [i,]
                n = n/i
        if not n == 1:
            l = l + [n,]
        break
    return sorted(l)

def select(x,y):
    z = []
    for i in range(len(x)):
        if x[i]:
            z = z + [y[i],]
    return z
    
def ok_phases(n):
    """ only try those where the resulting n_ands does not exceed 60000"""
    f = factors(n)
    sp = subproducts(f)
    s = map(lambda m:m*n_ands()< 90000,sp)
    z = select(s,sp)
    return z

def subproducts(ll):
    ss = (product(ll),)
    #print ll
    n = len(ll)
    if n == 1:
        return ss
    for i in range(n):
        kk = drop(i,ll)
        #print kk
        ss = ss+(product(kk),)
        #print ss
        ss = ss+subproducts(kk)
        #print ss
    result =tuple(set(ss))
    #result.sort()
    return tuple(sorted(result))

def product(ll):
    n = len(ll)
    p = 1
    if n == 1:
        return ll[0]
    for i in range(n):
        p = p*ll[i]
    return p

def drop(i,ll):
    return ll[:i]+ll[i+1:]

def try_phase():
    """Tries phase abstraction. ABC returns the maximum clock phase it found using n_phases.
    Then unnrolling is tried up to that phase and the unrolled model is quickly
    simplified (with retiming to see if there is a significant reduction.
    If not, then revert back to original"""
    global init_simp
    trim()
    n = n_phases()
##    if ((n == 1) or (n_ands() > 45000) or init_simp == 0):
    if ((n == 1) or (n_ands() > 45000)):
        return
##    init_simp = 0
    print 'Trying phase abstraction - Max phase = %d'%n,
    #ps()
##    trim()
    #ps()
    abc('w %s_phase_temp.aig'%f_name)
    na = n_ands()
    nl = n_latches()
    ni = n_pis()
    no = n_pos()
    z = ok_phases(n)
    print z,
    if len(z) == 1:
        return
    #p = choose_phase()
    p = z[1]
    abc('phase -F %d'%p)
##    ps()
    #print z
    if no == n_pos(): #nothing happened because p is not mod period
        print 'Phase %d is incompatible'%p
        abc('r %s_phase_temp.aig'%f_name)
        if len(z)< 3:
            return
        else:
            p = z[2]
            #print 'Trying phase = %d:  '%p,
            abc('phase -F %d'%p)
            if no == n_pos(): #nothing happened because p is not mod period
                print 'Phase %d is incompatible'%p
                abc('r %s_phase_temp.aig'%f_name)
                return
    #print 'Trying phase = %d:  '%p,
    print 'Simplifying with %d phases: => '%p,
    simplify()
    trim()
    ps()
    cost = rel_cost([ni,nl,na])
    print 'New relative cost = %f'%(cost)
    if cost <  -.01:
        abc('w %s_phase_temp.aig'%f_name)
        if ((n_latches() == 0) or (n_ands() == 0)):
            return
        if n_phases() == 1: #this bombs out if no latches
            return
        else:
            try_phase()
            return
    elif len(z)>2: #Try the next eligible phase.
        abc('r %s_phase_temp.aig'%f_name)
        if p == z[2]: #already tried this
            return
        p = z[2]
        print 'Trying phase = %d: => '%p,
        abc('phase -F %d'%p)
        if no == n_pos(): #nothing happened because p is not mod period
            print 'Phase = %d is not compatible'%p
            return
        ps()
        print 'Simplify with %d phases: '%p,
        simplify()
        trim()
        ps()
        cost = rel_cost([ni,nl,na])
        print 'New relative cost = %f'%(cost)
        if cost < -.01:
            print 'Phase abstraction with %d phases obtained:'%p,
            print_circuit_stats()
            abc('w %s_phase_temp.aig'%f_name)
            if ((n_latches() == 0) or (n_ands() == 0)):
                return
            if n_phases() == 1: # this bombs out if no latches
                return
            else:
                try_phase()
                return
    abc('r %s_phase_temp.aig'%f_name)
    #ps()
    return

def try_temp(t=15):
    btime = time.clock()
    trim()
    print'Trying temporal decomposition - for max %s sec. '%convert(t),
    abc('w %s_best.aig'%f_name)
    ni = n_pis()
    nl = n_latches()
    na = n_ands()
    best = [ni,nl,na]
    F = create_funcs([18],t) #create a timer function
    F = F + [eval('(pyabc_split.defer(abc)("tempor -s; trm; scr; trm; tempor; trm; scr; trm"))')]
    for i,res in pyabc_split.abc_split_all(F):
        break
    cost = rel_cost(best)
    print 'Cost = %0.2f'%cost
    if cost < .01:
        ps()
        return
    else:
        abc('r %s_best.aig'%f_name)

def try_temps(t=15):
    best = (n_pis(),n_latches(),n_ands())
    while True:
        try_temp(t)
        if ((best == (n_pis(),n_latches(),n_ands())) or n_ands() > .9 * best[2] ):
            break
        elif n_latches() == 0:
            break
        else:
            best = (n_pis(),n_latches(),n_ands())
        
def try_tempor(t):
    btime = time.clock()
    trim()
    print'Trying temporal decomposition - for max %s sec. '%convert(t),
    abc('w %s_best.aig'%f_name)
    ni = n_pis()
    nl = n_latches()
    na = n_ands()
    best = [ni,nl,na]
    F = create_funcs([18],t) #create a timer function
    #Caution: trm done in the following removes POs and PIs
##    F = F + [eval('(pyabc_split.defer(abc)("tempor -s -C %d; trm; lcr; scr; trm"))'%(2*na))]
##    F = F + [eval('(pyabc_split.defer(abc)("tempor -C %d; trm; lcr; scr; trm"))'%(2*na))]
    F = F + [eval('(pyabc_split.defer(abc)("tempor -s; trm; lcr; scr; trm"))')]
    F = F + [eval('(pyabc_split.defer(abc)("tempor -C; trm; lcr; scr; trm"))')]
    n_done = 0
    new_best = 0
##    debug_here()
    for i,res in pyabc_split.abc_split_all(F):
        if i == 0:
            break
        else:
            cost = rel_cost(best)
            print 'Cost = %0.2f'%cost
            if cost < .01:
                abc('w %s_best.aig'%f_name)
                best = [n_pis(),n_latches(),n_ands()]
                new_best = 1
            n_done = n_done+1
            if n_done == 2:
                break
            else:
                continue
    abc('r %s_best.aig'%f_name)
    ps()
    if new_best == 0: #nothing new
        print 'No reduction or timeout occurred'
        return
    if n_latches() == 0:
        return
    abc('scr;smp')
    trim()
    cost = rel_cost_t([ni,nl,na]) #see how much it improved
##    print 'rel_cost_t = %0.2f'%cost
    if (cost < -.01):
        print 'time = %f: '%(time.clock() - btime),
        if cost < -1:
            print 'Trying second tempor'
            try_tempor(t)
        print 'Reduction: time=%f'%(time.clock() - btime)
        return
    else:
        print 'No reduction'
        return    

def rel_cost_t(J):
    """ weighted relative costs versus previous stats."""
    if n_latches() == 0:
        return -10
    nli = J[0]+J[1]
    na = J[2]
    if ((nli == 0) or (na == 0)):
        return 100
    nri = n_real_inputs()
    #ri = (float(nri)-float(ni))/float(ni)
    rli = (float(n_latches()+nri)-float(nli))/float(nli)
    ra = (float(n_ands())-float(na))/float(na)
##    cost = 10*rli + .1*ra
    cost = 10*rli + .5*ra
##    print 'cost = %0.2f'%c
##    print 'cost = %0.2f'%cost
    return cost    

def rel_cost(J):
    """ weighted relative costs versus previous stats."""
    global f_name
    if n_latches() == 0:
        return -10
    nri = n_real_inputs()
    ni = J[0]
    nl = J[1]
    na = J[2]
    if (ni == 0 or na == 0 or nl == 0):
        return 100
    ri = (float(nri)-float(ni))/float(ni)
    rl = (float(n_latches())-float(nl))/float(nl)
    ra = (float(n_ands())-float(na))/float(na)
    cost = 1*ri + 10*rl + .1*ra
##    print 'Relative cost = %0.2f'%cost
    return cost

def best_fwrd_min(J):
    global f_name, methods
    mtds = sublist(methods,J)
    F = create_funcs(J,0)
    #print 'Trying forward retiming: running %s in parallel'%(mtds)
    (m,result) = fork_best(F,mtds) #FORK here
    print '%s: '%mtds[m],
    
def try_forward():
    """Attempts most forward retiming, and latch correspondence there. If attempt fails to help simplify, then we revert back to the original design
    This can be effective for equivalence checking problems where synthesis used retiming"""
    abc('w %s_savetemp.aig'%f_name)
    if n_ands() < 30000:
        abc('dr')
        abc('lcorr')
        nl = n_latches()
        na = n_ands()
        abc('w %s_savetemp0.aig'%f_name)
        abc('r %s_savetemp.aig'%f_name) 
        abc('dr -m')
        abc('lcorr')
        abc('dr')
        if ((n_latches() <= nl) and (n_ands() < na)):
            print 'Forward retiming reduced size to: ',
            print_circuit_stats()
            return
        else:
            abc('r %s_savetemp0.aig'%f_name)
            return
    return

def quick_simp():
    """A few quick ways to simplify a problem before more expensive methods are applied.
    Uses & commands if problem is large. These commands use the new circuit based SAT solver"""
    na = n_ands()
    if na < 30000:
        abc('scl -m;lcorr;drw')
    else:
        abc('&get;&scl;&lcorr;&put;drw')

def scorr_constr():
    """Extracts implicit constraints and uses them in signal correspondence
    Constraints that are found are folded back when done"""
##################### Temporary
#    return Undecided_no_reduction
#####################
    na = max(1,n_ands())
    n_pos_before = n_pos()
    if ((na > 40000) or n_pos()>1):
        return Undecided_no_reduction
    abc('w %s_savetemp.aig'%f_name)
    if n_ands() < 3000:
        cmd = 'unfold -a -F 2'
    else:
        cmd = 'unfold'
    abc(cmd)
    if n_pos() == n_pos_before:
        print 'No constraints found'
        return Undecided_no_reduction
    if (n_ands() > na): #no constraints found
        abc('r %s_savetemp.aig'%f_name)
        return Undecided_no_reduction
    #print_circuit_stats()
    na = max(1,n_ands())
##    f = 1
    f = 18000/na
    f = min(f,4)
    f = max(1,f)
    print 'Number of constraints = %d, frames = %d'%((n_pos() - n_pos_before),f)
    abc('scorr -c -F %d'%f)
    abc('fold')
    trim()
    ps()
    return Undecided_no_reduction

def try_scorr_c(f):
    """ Trying multiple frames because current version has a bug."""
    set_globals()
    abc('unfold -F %d'%f)
    abc('scorr -c -F %d'%f)
    abc('fold')
    t = max(1,.1*G_T)
    abc('&get;,bmc3 -vt=%f'%t)
    if is_sat(): 
        return 0
    else:
        trim()
        return 1
    

def input_x_factor():
    """Sets the global x_factor according to user input"""
    global x_factor, xfi
    print 'Type in x_factor:',
    xfi = x_factor = input()
    print 'x_factor set to %f'%x_factor

##def prove_sec():
##    """
##    Like 'prove' proves all the outputs together. Speculation is done first
##    If undecided, the do super_prove.
##    """
##    global x_factor,xfi,f_name, last_verify_time,K_backup, sec_options
##    max_bmc = -1
##    K_backup = K = 0
##    result = prove_part_1(K) #initial simplification here
##    if n_latches() == 0:
##        return 1,result
##    K = K_backup
##    if ((result == 'SAT') or (result == 'UNSAT')):
##        return 1,result
##    assert K==1, 'K = %d'%K
##    result = prove_part_3(K) #speculation done here
##    if ((result == 'SAT') or (result == 'UNSAT')):
##        return 1,result
##    else:
##        return 1,super_prove(0)
##
##    #################### End of ss
##    K = K_backup
##    #print 'after speculate'
##    status = get_status()
##    assert 0<K and K<4, 'K = %d'%K
##    if K > 1: # for K = 1, we will leave final verification for later
##        print 'Entering final_verify_recur(%d) from prove()'%K
##        status = final_verify_recur(K) # will start verifying with final verify
##                    #starting at backup number K-1 (either K = 2 or 3 here
##                    #1 if spec found true sat on abs, 2 can happen if abstraction
##                    #did not work but speculation worked,
##                    #3 if still undecided after spec)
##    else: #K=1 means that abstraction did not work and was proved wrong by speculation
##        if a == 0:
##            result = prove_spec_first()
##            if ((result == 'SAT') or (result == 'UNSAT')):
##                return 1,result
##    write_file('final')
##    return (not K == 1),RESULT[status]

def prove(a):
    """Proves all the outputs together. If ever an abstraction
        was done then if SAT is returned,
        we make RESULT return "undecided".
        If a == 1 skip speculate. K is the number of the next backup
        if a == 2 skip initial simplify and speculate"""
    global x_factor,xfi,f_name, last_verify_time,K_backup, t_init, sec_options
    spec_first = False
    max_bmc = -1
    K_backup = K = 0
    if a == 2: #skip initial simplification
        print 'Using quick simplification',
        abc('lcorr;drw')
        status = process_status(get_status())
        if status <= Unsat:
            result = RESULT[status]
        else:
            ps()
            write_file('smp')
            abc('w %s_backup_%d.aig'%(initial_f_name,K)) #writing backup 0
            K_backup = K = K+1
            result = 'UNDECIDED'
    else:
        result = prove_part_1(K) #initial simplification here
        if ((result == 'SAT') or (result == 'UNSAT')):
            return 1,result
        if n_latches() == 0:
            return 1,result
        if a == 0:
            spec_first = False
##            spec_first = check_if_spec_first()
            if spec_first:
                sec_options = 'g'
                print 'sec_options set to "g"'
    if n_latches() == 0:
        return 1,result
    K = K_backup
    if ((result == 'SAT') or (result == 'UNSAT')):
        return 1,result
    assert K==1, 'K = %d'%K
    t_init = 2
    if spec_first and a == 0:
        result = prove_part_3(K)
    else:
        result = prove_part_2(K) #abstraction done here
    K = K_backup
    if ((result == 'SAT') or (result == 'UNSAT')):
        return 1,result
    assert 0<K and K<3, 'K = %d'%K 
    if a == 0:
        t_init = 2
        if spec_first:
            result = prove_part_2(K) #speculation 2one here
        else:
            result = prove_part_3(K)
        if ((result == 'SAT') or (result == 'UNSAT')):
            return 1,result
    K = K_backup
    #print 'after speculate'
    status = get_status()
    assert 0<K and K<4, 'K = %d'%K
    if (((K > 2) and (n_pos()>1)) or ((K == 2) and  spec_first)): # for K = 1, we will leave final verification for later
        print 'Entering final_verify_recur(%d) from prove()'%K
        status = final_verify_recur(K) # will start verifying with final verify
                    #starting at backup number K-1 (either K = 2 or 3 here
                    #1 if spec found true sat on abs, 2 can happen if abstraction
                    #did not work but speculation worked,
                    #3 if still undecided after spec)
    #K=1 or 2 and not spec_first means that abstraction did not work and was proved wrong by speculation
    elif ((a == 0) and K == 1):
            t_init = 2
            result = prove_spec_first()
            if ((result == 'SAT') or (result == 'UNSAT')):
                return 1,result
    write_file('final')
    return (not K == 1),RESULT[status]

def psf():
    x = time.time()
    result = prove_spec_first()
    print 'Total clock time for %s = %f sec.'%(init_initial_f_name,(time.time() - x))
    return result

def prove_spec_first():
    """Proves all the outputs together. If ever an abstraction
        was done then if SAT is returned,
        we make RESULT return "undecided".
        """
    global x_factor,xfi,f_name, last_verify_time,K_backup
    max_bmc = -1
    K_backup = K = 1
##    result = prove_part_1(K) #initial simplification here
##    if n_latches() == 0:
##        return result
##    K = K_backup
##    if ((result == 'SAT') or (result == 'UNSAT')):
##        return result
##    assumes that initial simplification has been done already.
    assert K==1, 'K = %d'%K
    result = prove_part_3(K) #speculation done here
    K = K_backup
    if ((result == 'SAT') or (result == 'UNSAT')):
        return result
    assert 0<K and K<3, 'K = %d'%K
    K = K_backup #K = 1 => speculation did not do anything
    if K == 1: # so don't try abstraction because it did not work the first time
        return 'UNDECIDED'
    result = prove_part_2(K) #abstraction done here
    if result == 'UNSAT':
        return result
    if result == 'SAT': # abstraction proved speculation wrong.
        K = 2
    assert 0<K and K<4, 'K = %d'%K
    if K > 1: # for K = 1, we will leave final verification for later
        print 'Entering final_verify_recur(%d) from prove()'%K
        status = final_verify_recur(K) # will start verifying with final verify
                    #starting at backup number K-1 (either K = 2 or 3 here
                    #1 if spec found true sat on abs, 2 can happen if
                    #speculation worked but abstraction proved it wrong,
                    #3 if still undecided after spec and abstraction)
    write_file('final')
    return RESULT[status]


def prove_part_1(K):
    global x_factor,xfi,f_name, last_verify_time,K_backup
    #K=0
    print 'Initial: ',
    print_circuit_stats()
    x_factor = xfi
    print 'x_factor = %f'%x_factor
    print '\n***Running pre_simp'
    set_globals()
    if n_latches() > 0:
##        status = pre_simp()
        set_globals()
        t = 1000
        funcs = [eval('(pyabc_split.defer(pre_simp)())')]
##        J = sims+pdrs+bmcs+intrps
        J = pdrs+bmcs+bestintrps
        funcs = create_funcs(J,t)+ funcs #important that pre_simp goes last
        mtds =sublist(methods,J) + ['pre_simplify']
        fork_last(funcs,mtds)
##        funcs = [eval(FUNCS[3])] + [eval(FUNCS[0])] + [eval(FUNCS[1])] + [eval(FUNCS[2])] + [eval(FUNCS[9])] + [eval(FUNCS[7])] + funcs
##        fork_last(funcs,['SIM', 'PDR','INTRP','BMC', 'BMC3', 'PDRm','pre_simp'])
        status = get_status()
    else:
        status = check_sat()
    if ((status <= Unsat) or (n_latches() == 0)):
        return RESULT[status]
    if n_ands() == 0:
        abc('&get;,bmc -vt=2')
        if is_sat():
            return 'SAT'
    trim()
    write_file('smp')
    abc('w %s_backup_%d.aig'%(initial_f_name,K)) #writing backup 0
    K_backup = K = K+1
    #K=1 
    set_globals()
    return 'UNDECIDED'

def prove_part_2(K):
    """does the abstraction part of prove"""
    global x_factor,xfi,f_name, last_verify_time,K_backup, trim_allowed
    print'\n***Running abstract'
    nl_b = n_latches()
    status = abstract() #ABSTRACTION done here
##    write_file('abs')
##    print 'Abstract finished'
    if status == Undecided_no_reduction:
        K_backup = K = K-1 #K = 0
    if status == Unsat:
        write_file('abs')
        return RESULT[status]
##    trim()
    #just added in
    if status < Unsat:
        write_file('abs')
        print 'CEX in frame %d'%cex_frame()
        return RESULT[status]
    if  K > 0:
        t_old = trim_allowed
        if pord_on:
            trim_allowed = False
        pre_simp()
        trime_allowed = t_old
    #end of added in
    write_file('abs')
    status = process_status(status)
    if ((status <= Unsat)  or  status == Error):
        if  status < Unsat:
            print 'CEX in frame %d'%cex_frame()
            return RESULT[status]
        return RESULT[status]
    abc('w %s_backup_%d.aig'%(initial_f_name,K)) # writing backup 1 (or 0) after abstraction
    K_backup = K = K+1
    #K = 1 or 2 here
    return 'UNDECIDED'
    
def prove_part_3(K):
    """does the speculation part of prove"""
    global x_factor,xfi,f_name, last_verify_time,K_backup, init_initial_f_name
    global max_bmc, sec_options
    #K_backup = K = K +1 #K = 1 or 2 K =1 means that abstraction did not reduce
    assert 0 < K and K < 3, 'K = %d'%K
    if ((n_ands() > 10000) and sec_options == ''):
        sec_options = 'g'
        print 'sec_options set to "g"'
    if n_ands() == 0:
        print 'Speculation skipped because no AND nodes'
    else:
        print '\n***Running speculate'
##        pre_simp()
        status = speculate() #SPECULATION done here
        if status == Unsat:
            return RESULT[status]
        old_f_name = f_name
##        if not status < Unsat:
##            pre_simp()
##        write_file('spec1')
##        #we do not do the continuation of speculation right now so the following is not needed.
##        #abc('&r %s_gore.aig;&w %s_gore.aig'%(old_f_name,f_name)) #very subtle -needed for continuing spec refinement
        status = process_status(status)
        if status == Unsat:
            return RESULT[status]
        elif ((status < Unsat) or (status == Error)):
            print 'CEX in frame %d'%cex_frame()
            if K == 1: #if K = 1 then abstraction was not done.
                print 'speculate found cex on original'
                return RESULT[status] # speculate found cex on original
            K_backup = K = K-1 #since spec found a true cex, then result of abstract was wrong
            print 'cex means that abstraction was invalid'
            print 'Initial simplified AIG restored => ',
            abc('r %s_smp.aig'%init_initial_f_name)
            max_bmc = -1
            ps()
            assert K == 1, 'K = %d'%K
        else: 
            trim()
            print 'Problem still undecided'
            abc('w %s_backup_%d.aig'%(initial_f_name,K)) # writing backup 2 or 1
                                                        # 2 after speculation and abstraction
                                                        # 1 if abstraction did not reduce
            K_backup = K = K+1
            assert 1<K and K<4, 'K = %d'%K
##            write_file('spec2')
    trim()
    return 'UNDECIDED'

def prove_all(dir,t):
    """Prove all aig files in this directory using super_prove and record the results in results.txt"""
##    t = 1000 #This is the timeoout value
    xtime = time.time()
##    dir = main.list_aig('')
    results = []
    f =open('results_%d.txt'%len(dir), 'w')
    for name in dir:
        read_file_quiet(name)
        print '\n         **** %s:'%name,
        ps()
        F = create_funcs([18,6],t) #create timer function as i = 0 Here is the timer
        for i,res in pyabc_split.abc_split_all(F):
            break
        tt = time.time()
        if i == 0:
            res = 'Timeout'
        str = '%s: %s, time = %s'%(name,res,convert(tt-xtime))
        if res == 'SAT':
            str = str + ', cex_frame = %d'%cex_frame()
        str = str +'\n'
        f.write(str)
        f.flush()
        results = results + ['%s: %s, time = %s'%(name,res,convert(tt-xtime))]
        xtime = tt
##    print results
    f.close()
    return results

    
def prove_g_pos(a):
    """Proves the outputs clustered by a parameter a. 
    a is the disallowed increase in latch support Clusters must be contiguous
    If a = 0 then outputs are proved individually. Clustering is done from last to first
    Output 0 is attempted to be proved inductively using other outputs as constraints.
    Proved outputs are removed if all the outputs have not been proved.
    If ever one of the proofs returns SAT, we stop and do not try any other outputs."""
    global f_name, max_bmc,x_factor,x
    x = time.time()
    #input_x_factor()
    init_f_name = f_name
    print 'Beginning prove_g_pos'
    prove_all_ind()
    print 'Number of outputs reduced to %d by fast induction with constraints'%n_pos()
    print '\n****Running second level prove****************\n'
    reparam()
##    try_rpm()
##    k,result = prove(1) # 1 here means do not try speculate.
##    if result == 'UNSAT':
##        print 'Second prove returned UNSAT'
##        return result
##    if result == 'SAT':
##        print 'CEX found'
##        return result
    print '\n********** Proving each output separately ************'
    #prove_all_ind()
    #print 'Number of outputs reduced to %d by fast induction with constraints'%n_pos()
    f_name = init_f_name
    abc('w %s_osavetemp.aig'%f_name)
    n = n_pos()
    print 'Number of outputs = %d'%n
    #count = 0
    #Now prove each remaining output separately.
    pos_proved = []
    J = 0
    jnext = n-1
    while jnext >= 0:
        max_bmc = -1
        f_name = init_f_name
        abc('r %s_osavetemp.aig'%f_name)
        #Do in reverse order
        jnext_old = jnext
        if a == 0: # do not group
            extract(jnext,jnext)
            jnext = jnext -1 
        else:
            jnext = group(a,jnext)
        if jnext_old > jnext+1:
            print '\nProving outputs [%d-%d]'%(jnext + 1,jnext_old)
        else:
            print '\nProving output %d'%(jnext_old)
        #ps()
        f_name = f_name + '_%d'%jnext_old
        result = prove_1()
        if result == 'UNSAT':
            if jnext_old > jnext+1:
                print '********  PROVED OUTPUTS [%d-%d]  ******** '%(jnext+1,jnext_old)
            else:
                print '********  PROVED OUTPUT %d  ******** '%(jnext_old)
            pos_proved = pos_proved + range(jnext +1,jnext_old+1)
            continue
        if result == 'SAT':
            print 'One of output in (%d to %d) is SAT'%(jnext + 1,jnext_old)
            return result
        else:
            print '********  UNDECIDED on OUTPUTS %d thru %d  ******** '%(jnext+1,jnext_old)
    f_name = init_f_name
    abc('r %s_osavetemp.aig'%f_name)
    if not len(pos_proved) == n:
        print 'Eliminating %d proved outputs'%(len(pos_proved))
        remove(pos_proved)
        trim()
        write_file('group')
        result = 'UNDECIDED'
    else:
        print 'Proved all outputs. The problem is proved UNSAT'
        result = 'UNSAT'
    print 'Total clock time for prove_g_pos = %f sec.'%(time.time() - x)
    return result

def prove_pos(i):
    """
    i=1 means to execute prove_all_ind first
    Proved outputs are removed if all the outputs have not been proved.
    If ever one of the proofs returns SAT, we continue and try to resolve other outputs."""
    global f_name, max_bmc,x_factor,x
    x = time.time()
    #input_x_factor()
    init_f_name = f_name
    print 'Beginning prove_pos'
    remove_0_pos()
    if i:
        prove_all_ind()
    print 'Number of outputs reduced to %d by quick induction with constraints'%n_pos()
    print '********** Proving each output separately ************'
    f_name = init_f_name
    abc('w %s_osavetemp.aig'%f_name)
    n = n_pos()
    print 'Number of outputs = %d'%n
    pos_proved = []
    pos_disproved = []
    J = 0
    jnext = n-1
    while jnext >= 0:
        max_bmc = -1
        f_name = init_f_name
        abc('r %s_osavetemp.aig'%f_name)
        #Do in reverse order
        jnext_old = jnext
        extract(jnext,jnext)
        jnext = jnext -1 
        print '\nProving output %d'%(jnext_old)
        f_name = f_name + '_%d'%jnext_old
##        result = prove_1()    
        result = super_prove(2) #do not do initial simplification
        if result == 'UNSAT':
            print '********  PROVED OUTPUT %d  ******** '%(jnext_old)
            pos_proved = pos_proved + range(jnext +1,jnext_old+1)
            continue
        if result == 'SAT':
            print '********  DISPROVED OUTPUT %d  ******** '%(jnext_old)
            pos_disproved = pos_disproved + range(jnext +1,jnext_old+1)
            continue
        else:
            print '********  UNDECIDED on OUTPUT %d  ******** '%(jnext_old)
    f_name = init_f_name
    abc('r %s_osavetemp.aig'%f_name)
    list = pos_proved + pos_disproved
    print 'Proved the following outputs: %s'%pos_proved
    print 'Disproved the following outputs: %s'%pos_disproved
    if not len(list) == n:
        print 'Eliminating %d resolved outputs'%(len(list))
        remove(list)
        trim()
        write_file('group')
        result = 'UNRESOLVED'
    else:
        print 'Proved or disproved all outputs. The problem is proved RESOLVED'
        result = 'RESOLVED'
    print 'Total clock time for prove_pos = %f sec.'%(time.time() - x)
    return result

def remove_pos(lst):
    """Takes a list of pairs where the first part of a pair is the PO number and
    the second is the result 1 = disproved, 2 = proved, 3 = unresolved. Then removes
    the proved and disproved outputs and returns the aig with the unresolved
    outputs"""
    proved = disproved = unresolved = []
    for j in range(len(lst)):
        jj = lst[j]
        if jj[1] == 2:
            proved = proved + [jj[0]]
        if (jj[1] == 1 or (jj[1] == 0)):
            disproved = disproved +[jj[0]]
        if jj[1] > 2:
            unresolved = unresolved +[jj[0]]
    print '%d outputs proved'%len(proved)
##    print disproved
##    abc('w xxx__yyy.aig')
    if not proved == []:
        if ((max(proved)>n_pos()-1) or min(proved)< 0):
            print proved
        remove(proved)
            

#functions for proving multiple outputs in parallel
#__________________________________________________

def prove_only(j):
    """ extract the jth output and try to prove it"""
    global max_bmc, init_initial_f_name, initial_f_name, f_name,x
    #abc('w %s__xsavetemp.aig'%f_name)
    extract(j,j)
    set_globals()
    ps()
    print '\nProving output %d'%(j)
    f_name = f_name + '_%d'%j
    result = prove_1()
    #abc('r %s__xsavetemp.aig'%f_name)
    if result == 'UNSAT':
        print '********  PROVED OUTPUT %d  ******** '%(j)
        return Unsat
    if result == 'SAT':
        print '********  DISPROVED OUTPUT %d  ******** '%(j)
        return Sat
    else:
        print '********  UNDECIDED on OUTPUT %d  ******** '%(j)
        return Undecided

def verify_only(j,t):
    """ extract the jth output and try to prove it"""
    global max_bmc, init_initial_f_name, initial_f_name, f_name,x, reachs, last_cex, last_winner, methods
##    ps()
##    print 'Output = %d'%j
    extract(j,j)
##    ps()
    set_globals()
    if n_latches() == 0:
        result = check_sat()
    else:
        f_name = f_name + '_%d'%j
        # make it so that jabc is not used here
        reachs_old = reachs
        reachs = reachs[1:] #just remove jabc from this.
        res = verify(slps+sims+pdrs+bmcs+intrps,t) #keep the number running at the same time as small as possible.
##        res = verify(sims+pdrs+bmcs+intrps,t) #keep the number running at the same time as small as possible.
        reachs = reachs_old
        result = get_status()
        assert res == result,'result: %d, status: %d'%(res,get_status())
    if result > Unsat:
##        print result
##        print '******* %d is undecided ***********'%j
        return result
    elif result == Unsat:
##        print '******** PROVED OUTPUT %d  ******** '%(j)
        return result
    elif ((result < Unsat) and (not result == None)):
        print '******** %s DISPROVED OUTPUT %d  ******** '%(last_cex,j)
##        print ('writing %d.status'%j), result, get_status()
        abc('write_status %d.status'%j)
        last_winner = last_cex
        return result
    else:
        print '****** %d result is %d'%(j,result) 
        return result

def verify_range(j,k,t):
    """ extract the jth thru kth output and try to prove their OR"""
    global max_bmc, init_initial_f_name, initial_f_name, f_name,x, reachs, last_cex, last_winner, methods
    extract(j,k)
    abc('orpos')
    set_globals()
    if n_latches() == 0:
        result = check_sat()
    else:
        f_name = f_name + '_%d'%j
        # make it so that jabc is not used here
        reachs_old = reachs
        reachs = reachs[1:] #just remove jabc from this.
        res = verify(sims+pdrs+bmcs+intrps,t) #keep the number running at the sme time as small as possible.
        reachs = reachs_old
        result = get_status()
        assert res == result,'result: %d, status: %d'%(res,get_status())
    if result > Unsat:
##        print result
##        print '******* %d is undecided ***********'%j
        return result
    elif result == Unsat:
##        print '******** PROVED OUTPUT %d  ******** '%(j)
        return result
    elif ((result < Unsat) and (not result == None)):
        print '******** %s DISPROVED OUTPUT %d  ******** '%(last_cex,j)
##        print ('writing %d.status'%j), result, get_status()
        abc('write_status %d.status'%j)
        last_winner = last_cex
        return result
    else:
        print '****** %d result is %d'%(j,result) 
        return result

def prove_n_par(n,j):
    """prove n outputs in parallel starting at j"""
    F = []
    for i in range(n):
        F = F + [eval('(pyabc_split.defer(prove_only)(%s))'%(j+i))]
    #print S
    #F = eval(S)
    result = []
    print 'Proving outputs %d thru %d in parallel'%(j,j+n-1)
    for i,res in pyabc_split.abc_split_all(F):
        result = result +[(j+i,res)]
    #print result
    return result

def prove_pos_par(t,BREAK):
    """Prove all outputs in parallel and break on BREAK"""
    return run_parallel([],t,BREAK)

def prove_pos_par0(n):
    """ Group n POs grouped and prove in parallel until all outputs have been proved"""
    f_name = initial_f_name
    abc('w %s__xsavetemp.aig'%f_name)
    result = []
    j = 0
    N = n_pos()
    while j < N-n:
        abc('r %s__xsavetemp.aig'%f_name)
        result = result + prove_n_par(n,j)
        j = j+n
    if N > j:
        result = result + prove_n_par(N-j,j)
    abc('r %s__xsavetemp.aig'%initial_f_name)
    ps()
    print result
    remove_pos(result)
    write_file('group')
    return

def prop_decomp():
    """decompose a single property into multiple ones (only for initial single output),
    by finding single and double literal primes of the outputs."""
    if n_pos()>1:
        return
    run_command('outdec -v -L 2')
    if n_pos()>1:
        ps()


def distribute(N,div):
    """
    we are going to verify outputs in groups
    """
    n = N/div
    rem = N - (div * (N/div))
    result = []
    for j in range(div):
        if rem >0:
            result = result +[n+1]
            rem = rem -1
        else:
            result = result + [n]
    return result    

def find_cex_par(tt):
    """prove n outputs at once and quit at first cex. Otherwise if no cex found return aig
    with the unproved outputs"""
    global trim_allowed,last_winner, last_cex, n_pos_before, t_init, j_last, sweep_time
    b_time = time.time() #Wall clock time
    n = n_pos()
    remove_0_pos()
    N = n_pos()
    full_time = all_proc = False
    print 'Number of POs: %d => %d'%(n,N)
    if N == 0:
        return Unsat
##    inc = 5  #******* increment for grouping for sweep set here *************
##    inc = min(12,max(inc, int(.1*N)))
    inc = 1+N/100
##    if N <1.5*inc: # if near the increment for grouping try to get it below.
##        prove_all_ind()
##        N = n_pos()
    if inc == 1:
        prove_all_ind()
        N = n_pos()
    T = int(tt) #this is the total time to be taken in final verification run before quitting speculation
##    if inc == 10:
##        t_init = 10
##    t = max(t_init/2,T/20)
##    if N <= inc:
##        t = T
##    print "inc = %d, Sweep time = %s, j_group = %d"%(inc,convert(t),j_last)
    t = sweep_time/2 #start sweeping at last time where cex was found.
##    it used to be t = 1 here but it did not make sense although seemed to work.
##    inc = 2
    while True: #poor man's concurrency
        N = n_pos()
        if N == 0:
            return Unsat
        #sweep_time controls so that when sweep starts after a cex, it starts at the last sweep time
        t = max(2,2*t) #double sweep time
        if t > .75*T:
            t = T
            full_time = True
        if ((N <= inc) or (N < 13)):
            t = sweep_time = T
            full_time = True
            inc = 1
##            sweep_time = 2*sweep_time
        if not t == T:
            t= sweep_time = max(t,sweep_time)
##            t = sweep_time
##new heuristic
        if (all_proc and sweep_time > 8): #stop poor man's concurrency and jump to full time.
            t = sweep_time = T
            full_time - True #this might be used to stop speculation when t = T and the last sweep
##                           found no cex and we do not prove Unsat on an output
        abc('w %s__ysavetemp.aig'%f_name)
        ps()
        if N < 50:
            inc = 1
        print "inc = %d, Sweep time = %s, j_last = %d"%(inc,convert(t),j_last)
        F = []
##        G = []
        #make new lambda functions since after the last pass some of the functions may have been proved and eliminated.
        for i in range(N):
            F = F + [eval('(pyabc_split.defer(verify_only)(%d,%s))'%(i,convert(T)))] #make time large and let sleep timer control timeouts
##            G = G + [range(i,i+1)]
        ######
        result = []
        outcome = ''
        N = len(F)
        rng = range(1+(N-1)/inc)
        rng = rng[j_last:]+rng[:j_last] #pick up in range where last found cex.
##        print 'rng = ',
##        print rng
        k = -1
        bb_time = time.time()
        for j in rng:
            k = k+1 #keeps track of how many groups we have processed.
            j_last = j
            J = j*inc
            JJ = J+inc
            JJ = min(N,JJ)
            if J == JJ-1:
                print 'Function = %d '%J,
            else:
                print 'Functions = [%d,%d]'%(J,JJ-1)
            Fj = create_funcs([18],t+1) #create timer function as i = 0 Here is the timer
            Fj = Fj + F[J:JJ]
            count = 0
            fj_time = time.time()
            abc('r %s__ysavetemp.aig'%f_name) #important need to restore aig here so the F refers to right thing when doing verify_only.
##                                             # because verify_only changes the aig.
##            ps()
            for i,res in pyabc_split.abc_split_all(Fj):
                count = count+1
                Ji = J+i-1 #gives output number
                if ((res == 0) or (res == 1)):
                    abc('read_status %d.status'%Ji)
                    res = get_status()
                    outcome = 'CEX: Frame = %d, PO = %d, Time = %s'%(cex_frame(),Ji,convert((time.time() - fj_time)))
                    break
                if i == 0: #sleep timer expired
                    outcome = '*** Time expired in %s sec. Next group = %d to %d ***'%(convert(time.time() - fj_time),JJ,min(N,JJ+inc))
                    break
                elif res == None: #this should not happen
                    print res
                    print Ji,RESULT[res],
                else: # output Ji was proved
                    result = result + [[Ji,res]]
                    if count >= inc:
                        outcome = '--- all group processed without cex ---'
                        all_proc = True
                        break
                    continue #this can only happen if inc > 1
            # end of for i loop
            if ((res < Unsat) and (not res == None)): 
                break
            else:
                continue # continue j loop
        #end of for j loop
        if k < len(rng):      
            t_init = t/2 #next time start with this time.
        else:
            j_last = j_last+1 #this was last j and we did not find cex, so start at next group
        print outcome + ' => ' ,
        if ((res < Unsat) and (not res == None)):
            t_init = t/2
            abc('read_status %d.status'%Ji) #make sure we got the right status file.
            #actually if doing abstraction we could remove proved outputs now, but we do not. -**inefficiency**
            return res
        else: #This implies that no outputs were disproved. Thus can remove proved outputs.
            abc('r %s__ysavetemp.aig'%f_name) #restore original aig
            if not result == []:
                res = []
                for j in range(len(result)):
                    k = result[j]
                    if k[1] == 2:
                        res = res + [k[0]]
##                print res
##                result = mapp(res,G)
                result = res
##                print result
                remove(result) #remove the outputs that were proved UNSAT.
                #This is OK for both abstract and speculate
                print 'Number of POs reduced to %d'%n_pos()
                if n_pos() == 0:
                    return Unsat
            if t>=T:
                return Undecided
            else:
                continue
    return Undecided

def remap_pos():
    """ maintains a map of current outputs to original outputs"""
    global po_map
    k = j = 0
    new = []
    assert n_pos() == len(po_map), 'length of po_map, %d, and current # POs, %d, don"t agree'%(len(po_map),n_pos())
    for j in range(len(po_map)):
        N = n_pos()
        abc('removepo -N %d'%k) # this removes the output if it is 0 driven
        if n_pos() == N:
            new = new + [po_map[j]]
            k = k+1
    if len(new) < len(po_map):
##        print 'New map = ',
##        print new
        po_map = new

def prove_mapped():
    """
    assumes that srm is in workspace and takes the unsolved outputs and proves
    them by using proved outputs as constraints.
    """
    global po_map
##    print po_map
    po_map.sort() #make sure mapped outputs are in order
    for j in po_map: #put unsolved outputs first
        run_command('swappos -N %d'%j)
        print j
    N = n_pos()
    assert N > len(po_map), 'n_pos = %d, len(po_map) = %d'%(N, len(po_map))
    run_command('constr -N %d'%(N-len(po_map))) #make the other outputs constraints
    run_command('fold') #fold constraints into remaining outputs.
    ps()
    prove_all_mtds(100)
    
def mapp(R,G):
    result = []
    for j in range(len(R)):
        result = result + G[R[j]]
    return result
        
#_______________________________________        

    
def prove_g_pos_split():
    """like prove_g_pos but quits when any output is undecided"""
    global f_name, max_bmc,x_factor,x
    x = time.clock()
    #input_x_factor()
    init_f_name = f_name
    print 'Beginning prove_g_pos_split'
    prove_all_ind()
    print 'Number of outputs reduced to %d by fast induction with constraints'%n_pos()
    reparam()
##    try_rpm()
    print '********** Proving each output separately ************'  
    f_name = init_f_name
    abc('w %s_osavetemp.aig'%f_name)
    n = n_pos()
    print 'Number of outputs = %d'%n
    pos_proved = []
    J = 0
    jnext = n-1
    while jnext >= 0:
        max_bmc = -1
        f_name = init_f_name
        abc('r %s_osavetemp.aig'%f_name)
        jnext_old = jnext
        extract(jnext,jnext)
        jnext = jnext -1
        print '\nProving output %d'%(jnext_old)
        f_name = f_name + '_%d'%jnext_old
        result = prove_1()
        if result == 'UNSAT':
            if jnext_old > jnext+1:
                print '********  PROVED OUTPUTS [%d-%d]  ******** '%(jnext+1,jnext_old)
            else:
                print '********  PROVED OUTPUT %d  ******** '%(jnext_old)
            pos_proved = pos_proved + range(jnext +1,jnext_old+1)
            continue
        if result == 'SAT':
            print 'One of output in (%d to %d) is SAT'%(jnext + 1,jnext_old)
            return result
        else:
            print '********  UNDECIDED on OUTPUTS %d thru %d  ******** '%(jnext+1,jnext_old)
            print 'Eliminating %d proved outputs'%(len(pos_proved))
            # remove outputs proved and return
            f_name = init_f_name
            abc('r %s_osavetemp.aig'%f_name)
            remove(pos_proved)
            trim()
            write_file('group')            
            return 'UNDECIDED'
    f_name = init_f_name
    abc('r %s_osavetemp.aig'%f_name)
    if not len(pos_proved) == n:
        print 'Eliminating %d proved outputs'%(len(pos_proved))
        remove(pos_proved)
        trim()
        write_file('group')
        result = 'UNDECIDED'
    else:
        print 'Proved all outputs. The problem is proved UNSAT'
        result = 'UNSAT'
    print 'Total time = %f sec.'%(time.clock() - x)
    return result

def group(a,n):
    """Groups together outputs beginning at output n and any contiguous preceeding output
    that does not increase the latch support by a or more"""
    global f_name, max_bmc
    nlt = n_latches()
    extract(n,n)
    nli = n_latches()
    if n == 0:
        return n-1
    for J in range(1,n+1):
        abc('r %s_osavetemp.aig'%f_name)
        j = n-J
        #print 'Running %d to %d'%(j,n)
        extract(j,n)
        #print 'n_latches = %d'%n_latches()
        #if n_latches() >= nli + (nlt - nli)/2:
        if n_latches() == nli:
            continue
        if n_latches() > nli+a:
            break
    abc('r %s_osavetemp.aig'%f_name)
##    if j == 1:
##        j = j-1
    print 'extracting [%d-%d]'%(j,n)
    extract(j,n)
    ps()
    return j-1
        
def extract(n1,n2):
    """Extracts outputs n1 through n2"""
    no = n_pos()
    if n2 > no:
        return 'range exceeds number of POs'
    abc('cone -s -O %d -R %d'%(n1, 1+n2-n1))
    #abc('scl')   # eliminated because need to keep same number of inputs.

def remove_intrps(J):
    JJ = []
    for i in J:
        if i in allintrps:
            continue
        else:
            JJ = JJ +[i]
    return JJ
        
    

def remove(lst):
    """Removes outputs in list"""
    global po_map
    n_before = n_pos()
    zero(lst)
##    remap_pos()
    remove_0_pos()
    print 'list',
    lst
    print 'n_before = %d, n_list = %d, n_after = %d'%(n_before, len(lst), n_pos())
    

def zero(list):
    """Zeros out POs in list"""
    for j in list:
        run_command('zeropo -N %d'%j)

def remove_0_pos():
    global po_map
    """removes the 0 pos, but no pis because we might get cexs and need the correct number of pis
    Should keep tract of if original POs are 0 and are removed.
    Can this happen outside of prove_all_ind or
    pord_all which can set proved outputs to 0???
    """
    run_command('&get; &trim -i; &put; addpi') #adds a pi only if there are none
    po_map = range(n_pos())
##    # gone back to original method of removing pos. Thus po_map is irrelevant
##    remap_pos()
##    abc('addpi')

def psp():
    quick_simp()
    result = run_parallel([6,21],500,'US') #runs 'run_parallel' and sp() in parallel. run_parallel uses
                #JP and TERM to terminate.
    return result

def sp():
    """Alias for super_prove"""
    print 'Executing super_prove'
    result = super_prove(0)
    return result


##def super_sec(options):
##    """Main proof technique now for seq eq checking. Does original prove and if after speculation there are multiple output left
##    if will try to prove each output separately, in reverse order. It will quit at the first output that fails
##    to be proved, or any output that is proved SAT"""
##    global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time, sec_options
##    sec_options = options
##    init_initial_f_name = initial_f_name
##    if x_factor > 1:
##        print 'x_factor = %f'%x_factor
##        input_x_factor()
##    max_bmc = -1
##    x = time.time()
##    k = 2
##    K,result = prove_sec()
##    if ((result == 'SAT') or (result == 'UNSAT')):
##        print '%s: total clock time taken by super_prove = %f sec.'%(result,(time.time() - x))
##        return
##    elif ((result[:3] == 'UND') and (n_latches() == 0)):
##        return result
##    print '%s: total clock time taken by super_prove = %f sec.'%(result,(time.time() - x))
##    if n_pos() > 1:
##        print 'Entering prove_g_pos'
##        result = prove_g_pos(0)
##        print result
##        if result == 'UNSAT':
##            print 'Total clock time taken by super_prove = %f sec.'%(time.time() - x)
##            return result
##        if result == 'SAT':
##            k = 1 #Don't try to prove UNSAT on an abstraction that had SAT
##                    # should go back to backup 1 since probably spec was bad.
##            if check_abs(): #if same as abstract version, check original simplified version
##                k = 0
##    y = time.time()
##    if K == 0: #K = 0 means that speculate found cex in abstraction.
##        k=0
##    print 'Entering BMC_VER_result(%d)'%k
##    result = BMC_VER_result(k)
##    #print 'win_list = ',win_list
##    print 'Total clock time taken by last gasp verification = %f sec.'%(time.time() - y)
##    print 'Total clock time for %s = %f sec.'%(init_initial_f_name,(time.time() - x))
##    return result

def super_prove(n=0):
    """Main proof technique now. Does original prove and if after speculation there are multiple output left
    if will try to prove each output separately, in reverse order. It will quit at the first output that fails
    to be proved, or any output that is proved SAT
    n controls call to prove(n)
    n = 2 means skip initial simplify and speculate,
    n=1 skip initial simp.
    """
    global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time
    init_initial_f_name = initial_f_name
    if x_factor > 1:
        print 'x_factor = %f'%x_factor
        input_x_factor()
    max_bmc = -1
    x = time.time()
    k = 2
    if n == 2:
        K,result = prove(2)
    else:
        K,result = prove(0)
    if ((result == 'SAT') or (result == 'UNSAT')):
        print '%s: total clock time taken by super_prove = %f sec.'%(result,(time.time() - x))
        return result
    elif ((result[:3] == 'UND') and (n_latches() == 0)):
        return result
    print '%s: total clock time taken by super_prove = %f sec.'%(result,(time.time() - x))
    y = time.time()
    if K == 0: #K = 0 means that speculate found cex in abstraction.
        k=0
    if n == 2:
        print 'Entering BMC_VER()'
        result = BMC_VER() #typically called from a super_prove run in parallel.
        if result == 'SAT': #this is because we have done an abstraction and cex is invalid.
            result = 'UNDECIDED'
    else:
        print 'Entering BMC_VER_result(%d)'%k
        result = BMC_VER_result(k)
    #print 'win_list = ',win_list
    print result
    print 'Total clock time taken by last gasp verification = %f sec.'%(time.time() - y)
    print 'Total clock time for %s = %f sec.'%(init_initial_f_name,(time.time() - x))
    return result

def reachm(t):
    x = time.clock()
    #print 'trying reachm'
    abc('&get;&reachm -vcs -T %d'%t)
    print 'reachm done in time = %f'%(time.clock() - x)
    return get_status()

def reachp(t):
    x = time.clock()
    #print 'trying reachm2'
    abc('&get;&reachp -rv -T %d'%t)
    print 'reachm2 done in time = %f'%(time.clock() - x)
    return get_status()

def reachn(t):
    x = time.clock()
    #print 'trying reachm3'
    abc('&get;&reachn -rv -T %d'%t)
    print 'reachm3 done in time = %f'%(time.clock() - x)
    return get_status()
    
def reachx(t):
    x = time.time()
    #print 'trying reachx'
    abc('reachx -t %d'%t)
    print 'reachx  done in time = %f'%(time.time() - x)
    return get_status()

def reachy(t):
    x = time.clock()
    #print 'trying reachy'
    abc('&get;&reachy -v -T %d'%t)
    print 'reachy done in time = %f'%(time.clock() - x)
    return get_status()
    

def create_funcs(J,t):
    """evaluates strings indexed by J in methods given by FUNCS
    Returns a list of lambda functions for the strings in FUNCs
    If J = [], then create provers for all POs"""
    funcs = []
    for j in range(len(J)):
        k=J[j]
        funcs = funcs + [eval(FUNCS[k])]
    return funcs

def check_abs():
    global init_initial_f_name
    abc('w %s_save.aig'%init_initial_f_name)
    ni = n_pis()
    nl = n_latches()
    na = n_ands()
    abc('r %s_smp_abs.aig'%init_initial_f_name)
    if ((ni == n_pis()) and (nl == n_latches()) and (na == n_ands())):
        return True
    else:
        abc('r %s_save.aig'%init_initial_f_name)
        return False

"""make a special version of BMC_VER_result that just works on the current network"""
def BMC_VER():
    global init_initial_f_name, methods, last_verify_time
    #print init_initial_f_name
    xt = time.time()
    result = 5
    t = max(2*last_verify_time,100)
    print 'Verify time set to %d'%t
    N = bmc_depth()
    L = n_latches()
    I = n_real_inputs()
    X = pyabc_split.defer(abc)
    J = slps + pdrs + [23] + bmcs
    if ( ((I+L<350)&(N>100))  or  (I+L<260) or (L<80) ):
        J = J+reachs # add all reach methods
        if L < 80:
            J = J + [4]
    F = create_funcs(J,t)
    mtds = sublist(methods,J)
    print '%s'%mtds
    (m,result) = fork_break(F,mtds,'US')
    print '(m,result) = %d,%s'%(m,result)
    result = RESULT[result]
    print 'BMC_VER() result = %s'%result
    return result

        
def BMC_VER_result(n):
    global init_initial_f_name, methods, last_verify_time
    #print init_initial_f_name
    xt = time.time()
    result = 5
    if n == 0:
        abc('r %s_smp.aig'%init_initial_f_name)
        print '\n***Running proof on initial simplified circuit\n',
        ps()
    elif n == 1:
        abc('r %s_smp_abs.aig'%init_initial_f_name)        
        print '\n***Running proof on abstracted circuit',
        ps()
    else: # n was 2
        print '\n***Running proof on final unproved circuit',
        ps()
    t = max(2*last_verify_time,1000)
    print 'Verify time set to %d'%t
    #status = verify(J,t)
    N = bmc_depth()
    L = n_latches()
    I = n_real_inputs()
    X = pyabc_split.defer(abc)
    J = slps + pdrs + [23] +bmcs
##    [0,1,7,14] # try pdr, interpolation, and pdrm
##    if n == 0:
##        J = J+ bmcs #add BMC #eveen if n =1 or 2 we want to find a cex
    #heuristic that if bmc went deep, then reachability might also
    if ( ((I+L<350)&(N>100))  or  (I+L<260) or (L<80) ):
        #J = J+[4,13] #add reachx and reachn
        J = J+reachs # add all reach methods
        if L < 80:
            J = J + [4]
    #F = eval(S)
    F = create_funcs(J,t)
    mtds = sublist(methods,J)
    print '%s'%mtds
    (m,result) = fork(F,mtds)
    result = get_status()
    if result == Unsat:
        return 'UNSAT'
    if n == 0:
        if result < Unsat:
            return 'SAT'
        if result > Unsat: #still undefined
            return 'UNDECIDED'
    elif n == 1: #just tried abstract version - try initial simplified version
        if result < Unsat:
            return BMC_VER_result(0)
        else: #if undecided on good abstracted version, does not make sense to try initial one
            return 'UNDECIDED'
    else: # n was 2, just tried final unresolved version - now try abstract version
        if result < Unsat: 
            return BMC_VER_result(1) #try abstract version
        else: #undecided on final unproved circuit. Probably can't do better.
            return 'UNDECIDED'
            
def try_split():
    abc('w %s_savetemp.aig'%f_name)
    na = n_ands()
    split(3)
    if n_ands()> 2*na:
        abc('r %s_savetemp.aig'%f_name)
    
def time_diff():
    global last_time
    new_time = time.clock()
    diff = new_time - last_time
    last_time = new_time
    result = 'Lapsed time = %.2f sec.'%diff
    return result

def prove_all_ind():
    """Tries to prove output k by induction, using other outputs as constraints.
    If ever an output is proved
    it is set to 0 so it can't be used in proving another output to break circularity.
    Finally all zero'ed ooutputs are removed.
    Prints out unproved outputs Finally removes 0 outputs
    """
    global n_pos_proved, n_pos_before
    n_proved = 0
    N = n_pos()
##    remove_0_pos()
##    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    if n_pos() == 1:
        return
    abc('w %s_osavetemp.aig'%f_name)
    lst = range(n_pos())
##    list.reverse()
##    for j in list[1:]:
    for j in lst:
##        abc('zeropo -N 0')
        abc('swappos -N %d'%j)
##        remove_0_pos() #may not have to do this if constr works well with 0'ed outputs
        abc('constr -N %d'%(n_pos()-1))
        abc('fold')
        n = max(1,n_ands())
        f = max(1,min(40000/n,16))
        f = int(f)
        abc('ind -ux -C 10000 -F %d'%f)
##        run_command('print_status')
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Unsat:
##            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
            if j < n_pos_before - n_pos_proved:
                n_proved = n_proved + 1 # keeps track of real POs proved.
        elif status < Unsat:
            print '-%d'%j,
        else:
            print '*%d'%j,
    remove_0_pos()
    n_pos_proved = n_pos_proved + n_proved 
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def prove_all_mtds(t):
    """
    Tries to prove output k  with multiple methods in parallel,
    using other outputs as constraints. If ever an output is proved
    it is set to 0 so it can't be used in proving another output to break circularity.
    Finally all zero'ed ooutputs are removed.
    """
    N = n_pos()
##    remove_0_pos()
##    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    abc('w %s_osavetemp.aig'%f_name)
    list = range(n_pos())
    for j in list:
        run_command('swappos -N %d'%j)
##        remove_0_pos() #may not have to do this if constr works well with 0'ed outputs
        abc('constr -N %d'%(n_pos()-1))
        abc('fold')
##        cmd = '&get;,pdr -vt=%d'%t #put in parallel.
##        abc(cmd)
        verify(pdrs+bmcs+intrps+sims,t)
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Unsat:
            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
        print '%d'%j,
    assert not is_sat(), 'one of the POs is SAT' #we can do better than this
    remove_0_pos()
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def prove_all_pdr(t):
    """Tries to prove output k by pdr, using other outputs as constraints. If ever an output is proved
    it is set to 0 so it can't be used in proving another output to break circularity.
    Finally all zero'ed ooutputs are removed. """
    N = n_pos()
##    remove_0_pos()
    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    abc('w %s_osavetemp.aig'%f_name)
    list = range(n_pos())
    for j in list:
        abc('swappos -N %d'%j)
##        remove_0_pos() #may not have to do this if constr works well with 0'ed outputs
        abc('constr -N %d'%(n_pos()-1))
        abc('fold')
        cmd = '&get;,pdr -vt=%d'%t #put in parallel.
        abc(cmd)
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Unsat:
            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
        print '%d'%j,
    remove_0_pos()
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def prove_each_ind():
    """Tries to prove output k by induction,  """
    N = n_pos()
    remove_0_pos()
    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    abc('w %s_osavetemp.aig'%f_name)
    list = range(n_pos())
    for j in list:
        abc('cone -s -O %d'%j)
        n = max(1,n_ands())
        f = max(1,min(40000/n,16))
        f = int(f)
        abc('ind -u -C 10000 -F %d'%f)
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Unsat:
            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
        print '%d'%j,
    remove_0_pos()
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def prove_each_pdr(t):
    """Tries to prove output k by PDR. If ever an output is proved
    it is set to 0. Finally all zero'ed ooutputs are removed. """
    N = n_pos()
    remove_0_pos()
    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    abc('w %s_osavetemp.aig'%f_name)
    list = range(n_pos())
    for j in list:
        abc('cone -O %d -s'%j)
        abc('scl -m')
        abc('&get;,pdr -vt=%d'%t)
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Unsat:
            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
        print '%d'%j,
    remove_0_pos()
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def disprove_each_bmc(t):
    """Tries to prove output k by PDR. If ever an output is proved
    it is set to 0. Finally all zero'ed ooutputs are removed. """
    N = n_pos()
    remove_0_pos()
    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    abc('w %s_osavetemp.aig'%f_name)
    list = range(n_pos())
    for j in list:
        abc('cone -O %d -s'%j)
        abc('scl -m')
        abc('bmc3 -T %d'%t)
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Sat:
            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
        print '%d'%j,
    remove_0_pos()
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def pord_1_2(t):
    """ two phase pord. First one tries with 10% of the time. If not solved then try with full time"""
    global n_pos_proved, ifpord1, pord_on
    pord_on = True # make sure that we do not reparameterize after abstract in prove_2
    n_pos_proved = 0
    if ifpord1:
        print 'Trying each output for %0.2f sec'%(.1*t)
        result = pord_all(.1*t) #we want to make sure that there is no easy cex.
        if (result <= Unsat):
            return result
    ifpord1 = 0
    print 'Trying each output for %0.2f sec'%t
    result = pord_all(t+2*G_T) #make sure there is enough time to abstract
    pord_on = False #done with pord
    return result

def pord_all(t):
    """Tries to prove or disprove each output j by PDRM BMC3 or SIM. in time t"""
    global cex_list, n_pos_proved, last_cx, pord_on, ifpord1
    print 'last_cx = %d'%last_cx
    btime = time.time()
    N = n_pos()
##    remove_0_pos()
    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
##    bmc_ss(t)
##    if is_sat():
##        cex_list = cex_get_vector()
##        return Sat
    prove_all_ind() ############ change this to keep track of n_pos_proved
    nn = n_pos()
    abc('w %s_osavetemp.aig'%f_name)
    if nn < 4: #Just cut to the chase immediately.
        return Undecided
    lst = range(n_pos())
    proved = disproved = []
##    abc('&get') #using this space to save original file
##    with redirect.redirect( redirect.null_file, sys.stdout ):
##        with redirect.redirect( redirect.null_file, sys.stderr ):
    cx_list = []
    n_proved = 0
    lcx = last_cx + 1
    lst = lst[lcx:]+lst[:lcx]
    lst.reverse()
    n_und = 0
    for j in lst:
        print ''
        print j,
        abc('&put; cone -O %d -s'%j)
        abc('scl -m')
##                ps()
##        run_parallel(slps+sims+bmcs+pdrs+[6],t,'US')
        result = run_sp2_par(t)
        print 'run_sp2_par result is %s'%result
        if result == 'UNDECIDED':
            n_und = n_und + 1
            status = Undecided
            if ((n_und > 1) and not ifpord1):
                break
        elif result == 'SAT':
            status = Sat
            disproved = disproved + [j]
            last_cx = j
            cx = cex_get()
            cx_list = cx_list + [cx]
            assert len(cx_list) == len(disproved), cx_list
            if len(cx_list) > 0:
                break
        else: #is unsat here
            status = Unsat
            proved = proved + [j]
            if j < n_pos_before - n_pos_proved:
                n_proved = n_proved +1
    n_pos_proved = n_pos_proved + n_proved
    print '\nProved %d outputs'%len(proved)
    print 'Disproved %d outputs'%len(disproved)
    print 'Time for pord_all was %0.2f'%(time.time() - btime)
    NN = len(proved+disproved)
    cex_list = cx_list
    if len(disproved)>0:
        assert status == Sat, 'status = %d'%status
        return Sat
    else:
        abc('r %s_osavetemp.aig'%f_name)
##        abc('&put') # returning original to work spece
        remove(proved)
        print '\nThe number of unproved POs reduced from %d to %d'%(N,n_pos())
        if n_pos() > 0:
            return Undecided
        else:
            return Unsat

def bmc_ss(t):
    """
    finds a set cexs in t seconds starting at 2*N where N is depth of bmc -T 1
    The cexs are put in the global cex_list
    """
    global cex_list
    x = time.time()
    tt = min(10,max(1,.05*t))
    abc('bmc3 -T %0.2f'%tt)
    N = n_bmc_frames()
    if N <= max_bmc:
        return Undecided
##    print bmc_depth()
##    abc('bmc3 -C 1000000 -T %f -S %d'%(t,int(1.5*max(3,max_bmc))))
    run_command('bmc3 -vs -C 1000000 -T %f -S %d'%(t,2*N))
    if is_sat():
        cex_list = cex_get_vector() #does this get returned from a concurrent process?
        n = count_non_None(cex_list)
        print '%d cexs found in %0.2f sec at frame %d'%(n,(time.time()-x),cex_frame())
    return get_status()

def list_non_None(lst):
    """ return [i for i,s in enumerate(cex_list) if not s == None]"""
    L = []
    for i in range(len(lst)):
        if not lst[i] == None:
            L = L + [i]
    return L

def count_non_None(lst):
    #return len([i for i,s in enumerate(cex_list) if not s == None]
    count = 0
    for i in range(len(lst)):
        if not lst[i] == None:
            count = count + 1
    return count

def remove_disproved_pos(lst):
    for i in range(len(lst)):
        if not lst[i] == None:
            abc('zeropo -N %d'%i)
    remove_0_pos()
        
def bmc_s(t):
    """ finds a cex in t seconds starting at 2*N where N is depth of bmc -T 1"""
    x = time.time()
    tt = min(5,max(1,.05*t))
    abc('bmc3 -T %0.2f'%tt)
    if is_sat():
        print 'cex found in %0.2f sec at frame %d'%((time.time()-x),cex_frame())
        return get_status()
##    abc('bmc3 -T 1')
    N = n_bmc_frames()
##    print bmc_depth()
##    abc('bmc3 -C 1000000 -T %f -S %d'%(t,int(1.5*max(3,max_bmc))))
    cmd = 'bmc3 -J 2 -D 4000 -C 1000000 -T %f -S %d'%(t,2*N)
##    print cmd
    abc(cmd)
    if is_sat():
        print 'cex found in %0.2f sec at frame %d'%((time.time()-x),cex_frame())
    return get_status()


def pdr(t):
    abc('&get; ,pdr -vt=%f'%t)
    return RESULT[get_status()]

def pdrm(t):
    abc('pdr -v -C 0 -T %f'%t)
    return RESULT[get_status()]

def pdrmm(t):
    abc('pdr -mv -C 0 -T %f'%t)
    return RESULT[get_status()]

def split(n):
    abc('orpos;&get')
    abc('&posplit -v -N %d;&put;dc2'%n)
    trim()

def keep_splitting():
    for j in range(5):
        split(5+j)
        no = n_pos()
        status = prove_g_pos_split()
        if status <= Unsat:
            return status
        if no == n_pos():
            return Undecided

def drill(n):
    run_command('&get; &reachm -vcs -H 5 -S %d -T 50 -C 40'%n)

def prove_1():
    """
    A version of prove(). Called only during prove_pos or prove_g_pos or prove_only when we
    have speculated and produced multiple outputs. Does speculation only in final_verify_recur.
    Proves all the outputs together. If ever an abstraction was done then
    if SAT is returned,we make RESULT return "undecided".
    """
    global x_factor,xfi,f_name,x, initial_f_name
    x = time.time()
    max_bmc = -1
    K = 0
    print 'Initial: ',
    ps()
    x_factor = xfi
    print 'x_factor = %f'%x_factor
    write_file('smp')
    initial_f_name_save = initial_f_name #needed because we are making local backups here.
    initial_f_name = '%s_temp'%initial_f_name
    abc('w %s_backup_%d.aig'%(initial_f_name,K)) #backup 0
    K = K +1 #K = 1 is next backup
    set_globals()
    print'\n***Running abstract'
    nl_b = n_latches()
    status = abstract()
    trim()
    write_file('abs')
    status = process_status(status)
    if ((status <= Unsat)  or  status == Error):
        if  status < Unsat:
            print 'CEX in frame %d'%cex_frame(),
            print 'abstract found a cex in unabstacted circuit'
            print 'Time for proof = %f sec.'%(time.time() - x)
            initial_f_name = initial_f_name_save
            return RESULT[status]
        print 'Time for proof = %f sec.'%(time.time() - x)
        initial_f_name = initial_f_name_save
        return RESULT[status]
    abc('w %s_backup_%d.aig'%(initial_f_name,K)) #backup 1
    print 'Entering final_verify_recur(2) from prove_1()'
    status = final_verify_recur(2) 
    trim()
    write_file('final')
    print 'Time for proof = %f sec.'%(time.time() - x)
    initial_f_name = initial_f_name_save
    return RESULT[status]
    
def pre_reduce():
    x = time.clock()
    pre_simp()
    write_file('smp')
    abstract()
    write_file('abs')
    print 'Time = %f'%(time.clock() - x)

def sublist(L,I):
    # return [s for i,s in enumerate(L) if i in I]
    z = []
    for i in range(len(I)):
        s = L[I[i]],
        s = list(s)
        z = z + s
    return z

#PARALLEL FUNCTIONS
"""  funcs should look like
funcs = [pyabc_split.defer(abc)('&get;,bmc -vt=50;&put'),pyabc_split.defer(super_prove)()]
After this is executed funcs becomes a special list of lambda functions
which are given to abc_split_all to be executed as in below.
It has been set up so that each of the functions works on the current aig and
possibly transforms it. The new aig and status is always read into the master when done
"""


def tf():
    result = top_fork()
    return result

def top_fork(J,t):
    global x_factor, final_verify_time, last_verify_time, methods
    set_globals()
    mtds = sublist(methods,J)
    F = create_funcs(J,t)
    print 'Running %s in parallel for max %d sec.'%(mtds,t)
    (m,result) = fork_last(F,mtds) #FORK here
    return get_status()

def run_sp2_par(t):
    """ Runs the single method super_prove(2), timed for t seconds."""
    global cex_list,methods
    J = slps+[6]
    funcs = create_funcs(J,t) 
    y = time.time()
    for i,res in pyabc_split.abc_split_all(funcs):
        #print 'i,res = %d,%s'%(i,res)
        t = time.time()-y
        if i == 0:
            print 'sleep timer expired in %0.2f'%t
            return 'UNDECIDED'
        else:
            if res == 'UNSAT':
                print 'SUPER_PROVE2 proved UNSAT in %0.2f sec.'%t
                return 'UNSAT'
            elif res == 'UNDECIDED':
                print 'SUPER_PROVE2 proved UNDECIDED in %0.2f sec.'%t
                return 'UNDECIDED'
            else:
                print 'SUPER_PROVE2 found cex in %0.2f sec.'%t
                return 'SAT'
            

def run_parallel(J,t,BREAK):
    """ Runs the listed methods J, each for time = t, in parallel and
    breaks according to BREAK = subset of '?USLB'"""
    global cex_list,  methods
    mtds = sublist(methods,J)
    F = create_funcs(J,t) #if J = [] we are going to create functions that process each output separately.
                            #if 18, then these are run in parallel with sleep
    if ((J == []) ):
        result = fork_break(F,mtds,BREAK)
##        #redirect here to suppress printouts.
##        with redirect.redirect( redirect.null_file, sys.stdout ):
##            with redirect.redirect( redirect.null_file, sys.stderr ):
##                result = fork_break(F,mtds,BREAK)
    elif 'L' in BREAK:
        result = fork_last(F,mtds)
    elif 'B' in BREAK:
        result = fork_best(F,mtds)
    else:
        result = fork_break(F,mtds,BREAK)
    return result

def fork_all(funcs,mtds):
    """Runs funcs in parallel and continue running until all are done"""
    global methods
    y = time.time()
    for i,res in pyabc_split.abc_split_all(funcs):
        status = prob_status()
        t = time.time()-y
        if not status == -1: #solved here
            if status == 1: #unsat
                print '%s proved UNSAT in %f sec.'%(mtds[i],t)
            else:
                print '%s found cex in %f sec. - '%(mtds[i],t),
                if not mtds[i] == 'REACHM':
                    print 'cex depth at %d'%cex_frame()
                else:
                    print ' '
            continue
        else:
            print '%s was undecided in %f sec. '%(mtds[i],t)
    return i,res

def fork_break(funcs,mtds,BREAK):
    """
    Runs funcs in parallel and breaks according to BREAK <= '?US'
    If mtds = 'sleep' or [], we are proving outputs in parallel
    Saves cex's found in cex_list in case we are proving POs.
    """
    global methods,last_verify_time,seed,cex_list,last_winner,last_cex
    seed = seed + 3 # since parallel processes do not chenge the seed in the prime process, we need to change it here
    cex_list = lst = []
    y = time.time() #use wall clock time because parent fork process does not use up compute time.
    for i,res in pyabc_split.abc_split_all(funcs):
        status = get_status()
        t = time.time()-y
        lm = len(mtds)
        if ((lm < 2) and not i == 0): # the only single mtds case is where it is 'sleep'
            M = 'Output %d'%(i-lm)
        else:
            M = mtds[i]
            last_winner = M
        if M == 'sleep':
            print 'sleep: time expired in %s sec.'%convert(t)
            assert status >= Unsat,'status = %d'%status
            break
        if ((status > Unsat) and '?' in BREAK): #undecided
                break
        elif status == Unsat: #unsat
            print '%s: UNSAT in %s sec.'%(M,convert(t))
            if 'U' in BREAK:
                break
        elif status < Unsat: #status == 0 - cex found
            if M in methods:                
                if methods.index(M) in exbmcs+allreachs+allpdrs+[1]: #set the known best depth so far. [1] is interp
                    set_max_bmc(n_bmc_frames())
            last_cex = M
            print '%s: -- cex in %0.2f sec. at depth %d => '%(M,t,cex_frame()),
            cex_list = cex_list+[cex_get()] #accumulates multiple cex's and puts them on list.
            if len(cex_list)>1:
                print 'len(cex_list): %d'%len(cex_list)
            if 'S' in BREAK:
                break
        else:
            continue
    return i,status

def fork_best(funcs,mts):
    """ fork the functions, If not solved, take the best result in terms of AIG size"""
    global f_name
    n = len(mts)-1
    y = time.time()
    m_best = -1
    best_size = [n_pis(),n_latches(),n_ands()]
##    print best_size
    abc('w %s_best_aig.aig'%f_name)
    for i,res in pyabc_split.abc_split_all(funcs):
        status = prob_status()
##        print i,
##        ps()
##        print i,res,
        #ps()
        if not status == -1: #solved here
            m = i
            t = time.time()-y
            if status == 1: #unsat
                print '%s proved UNSAT in %f sec.'%(mtds[i],t)
            else:
                print '%s found cex in %f sec. - '%(mtds[i],t),
            break
        else:
            cost = rel_cost(best_size)
##            print i,cost
            if cost < 0:
                best_size = [n_pis(),n_latches(),n_ands()]
##                print best_size
                m_best = i
##                print m_best
                abc('w %s_best_aig.aig'%f_name)
    abc('r %s_best_aig.aig'%f_name)
    return m_best,res

def fork_last(funcs,mtds):
    """ fork the functions, and take first definitive answer, but
    if last method ends first, then kill others"""
    n = len(mtds)-1
    m = -1
    y = time.time()
    lst = ''
    print mtds
    for i,res in pyabc_split.abc_split_all(funcs):
        status = prob_status()
        if not status == -1: #solved here
            m = i
            t = int(time.time()-y)
            if status == 1: #unsat
                print '%s proved UNSAT in %d sec.'%(mtds[i],t)
            else:
                print '%s found cex in %s sec. - '%(mtds[i],convert(t)),
            break
        elif i == n:
            t = int(time.time()-y)
            m = i
            print '%s: %d sec.'%(mtds[i],t)
            ps()
            break
        elif mtds[i] == 'sleep':
            t = time.time()-y
            print 'sleep timer expired in %0.2f'%t
            break
        lst = lst + ', '+mtds[i]
    return m,res

def fork(funcs,mtds):
    """ runs funcs in parallel This keeps track of the verify time
    when a cex was found, and if the time to find
    the cex was > 1/2 allowed time, then last_verify_time is increased by 2"""
    global win_list, methods, last_verify_time,seed
    beg_time = time.time()
    i,res = fork_break(funcs,mtds,'US') #break on Unsat of Sat.
    t = time.time()-beg_time        #wall clock time because fork does not take any compute time.
    if t > .4*last_verify_time:
##    if t > .15*last_verify_time: ##### temp
        t = last_verify_time = last_verify_time + .1*t
        #print 'verify time increased to %s'%convert(t)
    assert res == get_status(),'res: %d, status: %d'%(res,get_status())
    return i,res


def save_time(M,t):
    global win_list,methods
    j = methods.index(M)
    win_list = win_list + [(j,t)]
    #print win_list

def summarize(lst):
    result = [0]*10
    for j in range(len(lst)):
        k = lst[j]
        result[k[0]]=result[k[0]]+k[1]
    return result

def top_n(lst,n):
    result = []
    ll = list(lst) #makes a copy
    m = min(n,len(ll))
    for i in range(m):
        mx_index = ll.index(max(ll))
        result = result + [mx_index]
        ll[mx_index] = -1
    return result

def super_pre_simp():
    while True:
        nff = n_latches()
        print 'Calling pre_simp'
        pre_simp()
        if n_latches() == nff:
            break

#______________________________
#new synthesis command

def synculate(t):
    """
    Finds candidate sequential equivalences and refines them by simulation, BMC, or reachability
    using any cex found. If any are proved, then they are used to reduce the circuit. The final aig
    is a new synthesized circuit where all the proved equivalences are merged.
    If we put this in a loop with increasing verify times, then each time we work with a simpler model
    and new equivalences. Should approach srm. If in a loop, we can remember the cex_list so that we don't
    have to deal with disproved equivalences. Then use refine_with_cexs to trim the initial equivalences.
    If used in synthesis, need to distinguish between
    original outputs and new ones. Things to take care of: 1. a PO should not go away until it has been processes by merged_proved_equivalences
    2. Note that &resim does not use the -m option where as in speculation - m is used. It means that if
    an original PO isfound to be SAT, the computation quits becasue one of the output
    miters has been disproved.
    """    
    global G_C,G_T,n_pos_before, x_factor, n_latches_before, last_verify_time, f_name,cex_list, max_verify_time
    
    
    def refine_with_cexs():
        """Refines the gores file to reflect equivalences that go away because of cexs in cex_list"""
        global f_name
        abc('&r %s_gores.aig'%f_name)
        for j in range(len(cex_list)):
            cex_put(cex_list[j])
            run_command('&resim') #put the jth cex into the cex space and use it to refine the equivs
        abc('&w %s_gores.aig'%f_name)
        return
    
    def generate_srms():
        """generates a synthesized reduced model (srms) from the gores file"""
        global f_name, po_map
        abc('&r %s_gores.aig; &srm -sf; r gsrms.aig; w %s_gsrms.aig'%(f_name,f_name))
        print 'New srms = ',ps()
        po_map = range(n_pos())
        return 'OK'

    def merge_proved_equivalences():
        #this only changes the gores file.
        run_command('&r %s_gores.aig; &equiv_mark -vf %s_gsrms.aig; &reduce -v; &w %s_gores.aig'%(f_name,f_name,f_name))
        return

    def generate_equivalences():
        set_globals()
        t = max(1,.5*G_T)
        r = max(1,int(t))
        cmd = "&get; &equiv2 -C %d -F 200 -T %f -S 1 -R %d"%((G_C),t,r)
        abc(cmd)
        #run_command('&ps')
        eq_simulate(.5*t)
        #run_command('&ps')
        cmd = '&semi -W 63 -S 5 -C 500 -F 20 -T %d'%(.5*t)
        abc(cmd)
        #run_command('&ps')
        run_command('&w %s_gores.aig'%f_name)

    remove_0_pos() #makes sure no 0 pos to start
    cex_list = []
    n_pos_before = n_pos()
    n_latches_before = n_latches()
##    print 'Generating equivalences'
    generate_equivalences()
##    print 'Generating srms file'
    generate_srms() #this should not create new 0 pos
##    if n_pos()>100:
##        removed
    remove_0_pos()
    n_pos_last = n_pos()
    if n_pos_before == n_pos():
        print 'No equivalences found. Quitting synculate'
        return Undecided_no_reduction
    print 'Initial synculation: ',ps()
##    ps()
    set_globals()
    simp_sw = init = True
    simp_sw = False #temporary
    print '\nIterating synculation refinement'
    abc('w initial_sync.aig')
    max_verify_time = t
    print 'max_verify_time = %d'%max_verify_time
    """
        in the following loop we increase max_verify_time by twice time spent to find last cexs or Unsat's
        We iterate only when we have proved cex + unsat > 1/2 n_pos. Then we update srms and repeat.        
    """
    while True:                 # refinement loop
        t = max_verify_time     #this may have been increased since the last loop
##        print 'max_verify_time = %d'%max_verify_time
        set_globals()
        if not init:
            generate_srms()     #generates a new gsrms file and leaves it in workspace
##            print 'generate_srms done'
            if n_pos() == n_pos_before:
                break
            if n_pos() == n_pos_last:   #if nothing new, then quit if max_verification time is reached.
                if t > max_verify_time:
                    break
            if simp_sw:                     #Warning: If this holds then simplify could create some 0 pos
                na = n_ands()
                simplify()
                while True:
                    npo = n_pos()
##                    print 'npos = %d'%npo
                    merge_proved_equivalences() #So we need to merge them here. Can merging create more???
                    generate_srms()
                    if npo == n_pos():
                        break
                if n_ands() > .7*na:            #if not significant reduction, stop simplification
                    simp_sw = False             #simplify only once.
            if n_latches() == 0:
                return check_sat()
        n_pos_last = n_pos()
        init = False                        # make it so that next time it is not the first time through
        syn_par(t)
        if (len(cex_list)+len(result)) == 0: #nothing happened aand ran out of time.
            break
        abc('w %s_gsrms.aig'%f_name)
        #print 'No. of cexs after syn_parallel = %d'%len(cex_list)
        merge_proved_equivalences()         #changes the underlying gores file by merging fanouts of proved eqs
        #print 'merge done'
        refine_with_cexs()                  #changes the gores file by refining the equivalences in it using cex_list.
        #print 'refine_with_cexs done'
        continue
    extract(0,n_pos_before) #get rid of unproved outputs
    return

def syn_par(t):
    """prove n outputs at once and quit at first cex. Otherwise if no cex found return aig
    with the unproved outputs"""
    global trim_allowed,max_verify_time, n_pos_before
    global cex_list, result
    b_time = time.time()
    n = n_pos()
    if n == n_pos_before:
        return
    mx = n_pos()
    if n_pos() - n_pos_before > 50:
        mx = n_pos_before + 50
    r = range(n_pos_before, mx)     
    N = max(1,(mx-n_pos_before)/2)
    abc('w %s__ysavetemp.aig'%f_name) 
    F = [eval(FUNCS[18])] #create a timer function
    #print r
    for i in r:
        F = F + [eval('(pyabc_split.defer(verify_only)(%d,%d))'%(i,t))]
    cex_list = result = []
    outcome = ''
    #redirect printout here
##    with redirect.redirect( redirect.null_file, sys.stdout ):
##        with redirect.redirect( redirect.null_file, sys.stderr ):
    for i,res in pyabc_split.abc_split_all(F):
        status = get_status()
##        print i
        if i == 0:          #timed out
            outcome = 'time expired after = %d'%(time.time() - b_time)
            break
        if status < Unsat:
            cex_list = cex_list + [cex_get()]                    
        if status == Unsat:
            result = result + [r[i-1]]
        if (len(result)+len(cex_list))>= N:
            T = time.time() - b_time
            if T > max_verify_time/2:
                max_verify_time = 2*T
            break
        continue
    if not outcome == '':
        print outcome
##    print 'cex_list,prove_list = ',cex_list,result
    abc('r %s__ysavetemp.aig'%f_name) #restore initial aig so that pos can be 0'ed out
    if not result == []: # found some unsat's
##        min_r = min(result)
##        max_r = max(result)
##        no = n_pos()
##        assert (0 <= min_r and max_r < no), 'min_r, max_r, length = %d, %d, %d'%(min_r,max_r,len(result))
        zero(result)
    return
    #print "Number PO's proved = %d"%len(result)

def absec(n):
    #abc('w t.aig')
    for j in range(n):
        print '\nFrame %d'%(j+1)
        run_command('absec -F %d'%(j+1))
        if is_unsat():
            print 'UNSAT'
            break
    

"""
    we might be proving some original pos as we go, and on the other hand we might have some equivalences that we
    can't prove. There are two uses, in verification
    verification - we want to remove the proved pos whether they are original or not. But if a cex for an original, then need to
                    remember this.
    synthesis - the original outputs need to be kept and ignored in terms of cex's - supposedly they can't be proved.
"""

""" Experimental"""

def csec():
    global f_name
    if os.path.exists('%s_part0.aig'%f_name):
        os.remove('%s_part0.aig'%f_name)
    run_command('demiter')
    if not os.path.exists('%s_part0.aig'%f_name):
        return
    run_command('r %s_part0.aig'%f_name)
    ps()
    run_command('comb')
    ps()
    abc('w %s_part0comb.aig'%f_name)
    run_command('r %s_part1.aig'%f_name)
    ps()
    run_command('comb')
    ps()
    abc('w %s_part1comb.aig'%f_name)
    run_command('&get; &cec %s_part0comb.aig'%(f_name))
    if is_sat():
        return 'SAT'
    if is_unsat():
        return 'UNSAT'
    else:
        return 'UNDECIDED'

    ###########################
####        we will verify outputs ORed in groups of g[i]
####        here we take div = N so no ORing
##        div = max(1,N/1)
##        g = distribute(N,div)
##        if len(g) <= 1:
##            t = tt
##        g.reverse()
####        print g
##        x = 0
##        G = []
##        for i in range(div):
##            y = x+g[i]
##            F = F + [eval('(pyabc_split.defer(verify_range)(%d,%d,%s))'%(x,y,convert(t)))]
##            G = G + [range(x,y)]
##            x = y
####        print G
###########################

def sop_balance(k):
    abc('st; if -K %d;ps'%k)
    for i in range(2):
        run_command('st; if -K %d;ps'%k)
    run_command('st; if  g -C %d -K %d;ps'%(k+4,k+4))
    for i in range(3):
        run_command('st;&get; &dch; &put; if -K %d;ps'%k)

def map_lut_dch(k):
    for i in range(5):
        run_command('st;if -a -K %d; ps; st; dch; ps; if -a -K %d; ps; mfs ;ps; lutpack; ps'%(k,k))
    
def map_lut(k):
    for i in range(5):
        run_command('st; if -e -K %d; ps;  mfs ;ps; lutpack -L 50; ps'%(k))