summaryrefslogtreecommitdiffstats
path: root/scripts/par.py
blob: c2f939abf82c76a1b7461d428a13d7e96c3b0f29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
from pyabc import *
import pyabc_split
import redirect
import sys
import os
import time
import math
import main
import filecmp


global G_C,G_T,latches_before_abs,latches_before_pba,n_pos_before,x_factor,methods,last_winner
global last_cex,JV,JP, cex_list,max_bmc, last_cx, pord_on, trim_allowed, temp_dec, abs_ratio, ifbip
global if_no_bip

"""
The functions that are currently available from module _abc are:

int n_ands();
int n_pis();
int n_pos();
int n_latches();
int n_bmc_frames();
int prob_status(); 1 = unsat, 0 = sat, -1 = unsolved
int cex_get()
int cex_put()
int run_command(char* cmd);
int n_nodes();
int n_levels();

bool has_comb_model();
bool has_seq_model();
bool is_true_cex();
bool is_valid_cex();
  return 1 if the number of PIs in the current network and in the current counter-example are equal
int  n_cex_pis();
  return the number of PIs in the current counter-example
int  n_cex_regs();
  return the number of flops in the current counter-example
int  cex_po();
  returns the zero-based output PO number that is SAT by cex
int  cex_frame();
  return the zero-based frame number where the outputs is SAT
The last four APIs return -1, if the counter-example is not defined. 
""" 
#global variables
#________________________________________________
stackno_gabs = stackno_gore = stackno_greg= 0
STATUS_UNKNOWN = -1
STATUS_SAT = 0
STATUS_UNSAT = 1
RESULT = ('SAT' , 'SAT', 'UNSAT', 'UNDECIDED', 'UNDECIDED,', 'ERROR'  )
Sat = Sat_reg = 0
Sat_true = 1
Unsat = 2
Undecided = Undecided_reduction = 3
Undecided_no_reduction = 4
Error = 5
Restart = 6
xfi = x_factor = 1  #set this to higher for larger problems or if you want to try harder during abstraction
max_bmc = -1
last_time = 0
j_last = 0
seed = 113
init_simp = 1
temp_dec = True
ifpord1 = 1
K_backup = init_time = 0
last_verify_time = 20
last_cex = last_winner = 'None'
last_cx = 0
trim_allowed = True
pord_on = False
sec_sw = False
sec_options = ''
cex_list = []
TERM = 'USL'
ifbip = 0 # sets the abtraction method
if_no_bip = 0 #True sets it up so it can use bip and reachx commands.
abs_ratio = .5 #this controls when abstract stops
t_init = 2 #initial time for poor man's concurrency.
methods = ['PDR', 'INTRP', 'BMC',
           'SIM', 'REACHX',
           'PRE_SIMP', 'Simple_prove', 'PDRM', 'REACHM', 'BMC3','Min_Retime',
           'For_Retime','REACHP','REACHN','PDR_sd','prove_part_2',
           'prove_part_3','verify','sleep','PDRM_sd','prove_part_1',
           'run_parallel','INTRPb', 'INTRPm', 'REACHY', 'REACHYc','RareSim','simplify', 'speculate',
           'quick_sec', 'BMC_J', 'BMC2', 'extract -a', 'extract', 'PDRa']
#'0.PDR', '1.INTERPOLATION', '2.BMC', '3.SIMULATION',
#'4.REACHX', '5.PRE_SIMP', '6.SUPER_PROVE(2)', '7.PDRM', '8.REACHM', 9.BMC3'
# 10. Min_ret, 11. For_ret, 12. REACHP, 13. REACHN 14. PDRseed 15.prove_part_2,
#16.prove_part_3, 17.verify, 18.sleep, 19.PDRMm, 20.prove_part_1,
#21.run_parallel, 22.INTRP_bwd, 23. Interp_m 24. REACHY 25. REACHYc 26. Rarity Sim 27. simplify
#28. speculate, 29. quick_sec, 30 bmc3 -S, 31. BMC2 32. extract -a 33. extract 34. pdr_abstract
win_list = [(0,.1),(1,.1),(2,.1),(3,.1),(4,.1),(5,-1),(6,-1),(7,.1)]
FUNCS = ["(pyabc_split.defer(abc)('&get;,pdr -vt=%f'%t))",
         "(pyabc_split.defer(abc)('&get;,imc -vt=%f'%(t)))",
         "(pyabc_split.defer(abc)('&get;,bmc -vt=%f'%t))",
         "(pyabc_split.defer(simulate)(t))",
         "(pyabc_split.defer(abc)('reachx -t %d'%t))",
         "(pyabc_split.defer(pre_simp)())",
##         "(pyabc_split.defer(super_prove)(2))",
         "(pyabc_split.defer(simple)())",
         "(pyabc_split.defer(pdrm)(t))",
         "(pyabc_split.defer(abc)('&get;&reachm -vcs -T %d'%t))",
         "(pyabc_split.defer(abc)('bmc3 -C 1000000 -T %f'%t))",
         "(pyabc_split.defer(abc)('dr;&get;&lcorr;&dc2;&scorr;&put;dr'))",
         "(pyabc_split.defer(abc)('dr -m;&get;&lcorr;&dc2;&scorr;&put;dr'))",
         "(pyabc_split.defer(abc)('&get;&reachp -vr -T %d'%t))",
         "(pyabc_split.defer(abc)('&get;&reachn -vr -T %d'%t))",
##         "(pyabc_split.defer(abc)('&get;,pdr -vt=%f -seed=521'%t))",
         "(pyabc_split.defer(pdrseed)(t))",
         "(pyabc_split.defer(prove_part_2)())",
         "(pyabc_split.defer(prove_part_3)())",
         "(pyabc_split.defer(verify)(JV,t))",
         "(pyabc_split.defer(sleep)(t))",
         "(pyabc_split.defer(pdrmm)(t))",
         "(pyabc_split.defer(prove_part_1)())",
         "(pyabc_split.defer(run_parallel)(JP,t,'TERM'))",
         "(pyabc_split.defer(abc)('&get;,imc -bwd -vt=%f'%t))",
##         "(pyabc_split.defer(abc)('int -C 1000000 -F 10000 -K 2 -T %f'%t))",
         "(pyabc_split.defer(abc)('int -C 1000000 -F 10000 -K 1 -T %f'%t))",
         "(pyabc_split.defer(abc)('&get;&reachy -v -T %d'%t))",
         "(pyabc_split.defer(abc)('&get;&reachy -cv -T %d'%t))",
         "(pyabc_split.defer(simulate2)(t))",
         "(pyabc_split.defer(simplify)())",
         "(pyabc_split.defer(speculate)())",
         "(pyabc_split.defer(quick_sec)(t))",
         "(pyabc_split.defer(bmc_j)(t))",
         "(pyabc_split.defer(abc)('bmc2 -C 1000000 -T %f'%t))",
         "(pyabc_split.defer(extractax)('a'))",
         "(pyabc_split.defer(extractax)())",
         "(pyabc_split.defer(pdra)(t))",
         ]
##         "(pyabc_split.defer(abc)('bmc3 -C 1000000 -T %f -S %d'%(t,int(1.5*max_bmc))))"
#note: interp given 1/2 the time.
allreachs = [4,8,12,13,24,25]
reachs = [24]
##allpdrs = [14,7,34,19,0]
allpdrs = [14,7,34,19]
pdrs = [34,7,14]
allbmcs = [2,9,30,31]
exbmcs = [2,9]
bmcs = [9,30]
allintrps = [1,22,23]
bestintrps = [23]
intrps = [23]
allsims = [3,26]
sims = [26] 
allslps = [18]
slps = [18]
imc1 = [1]

JVprove = [7,23,4,24]
JV = pdrs+intrps+bmcs+sims #sets what is run in parallel '17. verify' above
JP = JV + [27] # sets what is run in  '21. run_parallel' above 27 simplify should be last because it can't time out.
#_____________________________________________________________


# Function definitions:
# simple functions: ________________________________________________________________________
# set_globals, abc, q, x, has_any_model, is_sat, is_unsat, push, pop

# ALIASES

def initialize():
    global xfi, max_bmc, last_time,j_last, seed, init_simp, K_backup, last_verify_time
    global init_time, last_cex, last_winner, trim_allowed, t_init, sec_options, sec_sw
    global n_pos_before, n_pos_proved, last_cx, pord_on, temp_dec, abs_time
    xfi = x_factor = 1  #set this to higher for larger problems or if you want to try harder during abstraction
    max_bmc = -1
    last_time = 0
    j_last = 0
    seed = 113
    init_simp = 1
    temp_dec = True
    K_backup = init_time = 0
    last_verify_time = 20
    last_cex = last_winner = 'None'
    last_cx = 0
    trim_allowed = True
    pord_on = False
    t_init = 2 #this will start sweep time in find_cex_par to 2*t_init here
    sec_sw = False
    sec_options = ''
    cex_list = []
    n_pos_before = n_pos()
    n_pos_proved = 0
    abs_time = 10000

def set_abs_method():
    """ controls the way we do abstraction, 0 = no bip, 1 = old way, 2 use new bip and -dwr
    see absab()
    """
    global ifbip
    print 'Set method of abstraction: \n0 = use vta and no bips, \n1 = old way, \nelse = use ,abs and -dwr'
    s = raw_input()
    s = remove_spaces(s)
    if s == '1':
        ifbip = 1 #old way
    elif s == '0':
        ifbip = 0 #use vta and no bip
    else:
        ifbip = 2 #use ,abc -dwr
    print 'ifbip set to %d. Note engines are set only when read_file is done'%ifbip
    
def ps():
    print_circuit_stats()

def n_real_inputs():
    """This gives the number of 'real' inputs. This is determined by trimming away inputs that
    have no connection to the logic. This is done by the ABC alias 'trm', which changes the current
    circuit. In some applications we do not want to change the circuit, but just to know how may inputs
    would go away if we did this. So the current circuit is saved and then restored afterwards."""
##    abc('w %s_savetempreal.aig; logic; trim; st ;addpi'%f_name)
    abc('w %s_savetempreal.aig'%f_name)
    with redirect.redirect( redirect.null_file, sys.stdout ):
##        with redirect.redirect( redirect.null_file, sys.stderr ):
        reparam()
    n = n_pis()
    abc('r %s_savetempreal.aig'%f_name)
    return n

def timer(t):
    btime = time.clock()
    time.sleep(t)
    print t
    return time.clock() - btime

def sleep(t):
    time.sleep(t)
    return Undecided
        
def abc(cmd):
    abc_redirect_all(cmd)

def abc_redirect( cmd, dst = redirect.null_file, src = sys.stdout ):
    """This is our main way of calling an ABC function. Redirect, means that we suppress any output from ABC"""
    with redirect.redirect( dst, src ):
        return run_command( cmd )

def abc_redirect_all( cmd ):
    """This is our main way of calling an ABC function. Redirect, means that we suppress any output from ABC, including error printouts"""
    with redirect.redirect( redirect.null_file, sys.stdout ):
        with redirect.redirect( redirect.null_file, sys.stderr ):
            return run_command( cmd )

def convert(t):
    t = int(t*100)
    return str(float(t)/100)

def set_engines(N=0):
    """
    Called only when read_file is called.
    Sets the MC engines that are used in verification according to
    if there are 4 or 8 processors. if if_no_bip = 1, we will not use any bip and reachx engines
    """
    global reachs,pdrs,sims,intrps,bmcs,n_proc,abs_ratio,ifbip
    if N == 0:
        N = n_proc = os.sysconf(os.sysconf_names["SC_NPROCESSORS_ONLN"])
    if N == 1:
        reachs = [24]
        pdrs = [7]
##        bmcs = [30]
        bmcs = [9]
        intrps = []
        sims = []
        slps = [18]
    elif N == 2:
        reachs = [24]
        pdrs = [7]
        bmcs = [30]
        intrps = []
        sims = []
        slps = [18]
    elif N == 4:
        reachs = [24]
        pdrs = [34,7]
        if if_no_bip:
            allpdrs = pdrs = [7,19]
        bmcs = [9,30]
        intrps = [23]
        sims = []
        slps = [18]
    elif N == 8:
        reachs = [24]
        pdrs = [34,7,14]
        intrps = [23,1]
        if if_no_bip:
            allpdrs = pdrs = [7,19]
            intrps = [23]
        bmcs = [9,30]
        sims = [26] #use default
        slps = [18]

def set_globals():
    """This sets global parameters that are used to limit the resources used by all the operations
    bmc, interpolation BDDs, abstract etc. There is a global factor 'x_factor' that can
    control all of the various resource limiting parameters"""
    global G_C,G_T,x_factor
    nl=n_latches()
    na=n_ands()
    np = n_pis()
    #G_C = min(500000,(3*na+500*(nl+np)))
    G_C = x_factor * min(100000,(3*na+500*(nl+np)))
    #G_T = min(250,G_C/2000)
    G_T = x_factor * min(75,G_C/2000)
    G_T = max(1,G_T)
    #print('Global values: BMC conflicts = %d, Max time = %d sec.'%(G_C,G_T))
    
def a():
    """this puts the system into direct abc input mode"""
    print "Entering ABC direct-input mode. Type q to quit ABC-mode"
    n = 0
    while True:
        print '     abc %d> '%n,
        n = n+1
        s = raw_input()
        if s == "q":
            break
        run_command(s)

def remove_spaces(s):
    y = ''
    for t in s:
        if not t == ' ':
            y = y + t
    return y

def seq_name(f):
    names = []
    f = f + '_'
    names = []
    while len(f)>0:
        j = f.find('_')
        if j == -1:
            break
        names = names + [f[:j]]
##        print names
        f = f[j+1:]
##        print f
    return names

def revert(f,n):
    l = seq_name(f)
    for j in range(n):
        if len(l)>0:
            l.pop()
    name = construct(l)
    return name

def construct(l):
    ll = l
    name = ''
    while len(l)>0:
        name = '_'+ll.pop()+name
    return name[1:]

def process_sat():
    l = seq_name(f_name)

def read_file_quiet(fname=None):
    """This is the main program used for reading in a new circuit. The global file name is stored (f_name)
    Sometimes we want to know the initial starting name. The file name can have the .aig extension left off
    and it will assume that the .aig extension is implied. This should not be used for .blif files.
    Any time we want to process a new circuit, we should use this since otherwise we would not have the
    correct f_name."""
    global max_bmc,  f_name, d_name, initial_f_name, x_factor, init_initial_f_name, win_list,seed, sec_options
    global win_list, init_simp, po_map
    abc('fraig_restore') #clear out any residual fraig_store
    set_engines() #temporary
    init_simp = 1
    win_list = [(0,.1),(1,.1),(2,.1),(3,.1),(4,.1),(5,-1),(6,-1),(7,.1)] #initialize winning engine list
    po_map = range(n_pos())
    initialize()
##    x_factor = 1
##    seed = 223
##    max_bmc = -1
    if fname is None:
        print 'Type in the name of the aig file to be read in'
        s = raw_input()
        s = remove_spaces(s)
##        print s
    else:
        s = fname
    if s[-4:] == '.aig':
        f_name = s[:-4]
    elif s[-5:] == '.blif':
        f_name = s[:-5]
    else:
        f_name = s
        s = s+'.aig'
##    run_command(s)
##    print s
    if s[-4:] == '.aig':
        run_command('&r %s;&put'%s) #warning: changes names to generic ones.
    else: #this is a blif file
        run_command('r %s'%s)
        abc('st;&get;&put') #changes names to generic ones for doing cec later.
        run_command('zero;w %s.aig'%f_name)
    set_globals()
    init_initial_f_name = initial_f_name = f_name
    print 'Initial f_name = %s'%f_name
    abc('addpi')
    #check_pos() #this removes constant outputs with a warning -
    #needed when using iso. Need another fix for using iso.
    run_command('fold')
    ps()
    return
        
    
def read_file():
    global win_list, init_simp, po_map
    read_file_quiet()
##    ps()
##    init_simp = 1
##    win_list = [(0,.1),(1,.1),(2,.1),(3,.1),(4,.1),(5,-1),(6,-1),(7,.1)] #initialize winning engine list
##    po_map = range(n_pos())

def rf():
##    set_engines(4) #temporary
    read_file()

def write_file(s):
    """this is the main method for writing the current circuit to an AIG file on disk.
    It manages the name of the file, by giving an extension (s). The file name 'f_name'
    keeps increasing as more extensions are written. A typical sequence is
    name, name_smp, name_smp_abs, name_smp_abs_spec, name_smp_abs_spec_final"""
    global f_name
    """Writes out the current file as an aig file using f_name appended with argument"""
    f_name = '%s_%s'%(f_name,s)
    ss = '%s.aig'%(f_name)
    print 'WRITING %s: '%ss,
    ps()
    abc('w '+ss)

def bmc_depth():
    """ Finds the number of BMC frames that the latest operation has used. The operation could be BMC, reachability
    interpolation, abstract, speculate. max_bmc is continually increased. It reflects the maximum depth of any version of the circuit
    including g ones, for which it is known that there is not cex out to that depth."""
    global max_bmc
    c = cex_frame()
    if c > 0:
        b = c-1
    else:
        b = n_bmc_frames()
    max_bmc = max(b,max_bmc)
    return max_bmc

def null_status():
    """ resets the status to the default values but note that the &space is changed"""
    abc('&get;&put')

def set_max_bmc(b):
    """ Keeps increasing max_bmc which is the maximum number of time frames for
    which the current circuit is known to be UNSAT for"""
    global max_bmc
    max_bmc = max(b,max_bmc)

def print_circuit_stats():
    """Stardard way of outputting statistice about the current circuit"""
    global max_bmc
    i = n_pis()
    o = n_pos()
    l = n_latches()
    a = n_ands()
    s='ANDs'
    if a == -1:
        a = n_nodes()
        s = 'Nodes'
    b = max(max_bmc,bmc_depth())
    c = cex_frame()
    if b>= 0:
        if c>=0:
            print 'PIs=%d,POs=%d,FF=%d,%s=%d,max depth=%d,CEX depth=%d'%(i,o,l,s,a,b,c)
        elif is_unsat():
            print 'PIs=%d,POs=%d,FF=%d,%s=%d,max depth = infinity'%(i,o,l,s,a)
        else:
            print 'PIs=%d,POs=%d,FF=%d,%s=%d,max depth=%d'%(i,o,l,s,a,b)            
    else:
        if c>=0:
            print 'PIs=%d,POs=%d,FF=%d,%s=%d,CEX depth=%d'%(i,o,l,s,a,c)
        else:
            print 'PIs=%d,POs=%d,FF=%d,%s=%d'%(i,o,l,s,a)

def q():
    exit()

def is_unsat():
    if prob_status() == 1:
        return True
    else:
        return False

def is_sat():
    if prob_status() == 0:
        return True
    else:
        return False

def wc(file):
    """writes <file> so that costraints are preserved explicitly"""
    abc('&get;&w %s'%file)

def rc(file):
    """reads <file> so that if constraints are explicit, it will preserve them"""
    abc('&r %s;&put'%file)                         

#more complex functions: ________________________________________________________
#, abstract, pba, speculate, final_verify, dprove3

def timer(s):
    btime = time.clock()
    abc(s)
    print 'time = %f'%(time.clock() - btime)

def med_simp():
    x = time.time()
    abc("&get;&scl;&dc2;&lcorr;&dc2;&scorr;&fraig;&dc2;&put;dr")
    #abc("dc2rs")
    ps()
    print 'time = %f'%(time.time() - x)

def simplify():
    """Our standard simplification of logic routine. What it does depende on the problem size.
    For large problems, we use the &methods which use a simple circuit based SAT solver. Also problem
    size dictates the level of k-step induction done in 'scorr' The stongest simplification is done if
    n_ands < 20000. Then it used the clause based solver and k-step induction where |k| depends
    on the problem size """
    set_globals()
    abc('&get;&scl;&lcorr;&put')
    p_40 = False
    n =n_ands()
    if n >= 70000:
        abc('&get;&scorr -C 0;&put')
    n =n_ands()
    if n >= 100000:
        abc('&get;&scorr -k;&put')
    if (70000 < n and n < 100000):
        p_40 = True
        abc("&get;&dc2;&put;dr;&get;&lcorr;&dc2;&put;dr;&get;&scorr;&fraig;&dc2;&put;dr")
        n = n_ands()
##        if n<60000:
        if n < 80000:
            abc("&get;&scorr -F 2;&put;dc2rs")
        else: # n between 60K and 100K
            abc("dc2rs")
    n = n_ands()
##    if (30000 < n  and n <= 40000):
    if (60000 < n  and n <= 70000):
        if not p_40:
            abc("&get;&dc2;&put;dr;&get;&lcorr;&dc2;&put;dr;&get;&scorr;&fraig;&dc2;&put;dr")
            abc("&get;&scorr -F 2;&put;dc2rs")
        else:
            abc("dc2rs")            
    n = n_ands()
##    if n <= 60000:
    if n <= 70000:
        abc('scl -m;drw;dr;lcorr;drw;dr')
        nn = max(1,n)
        m = int(min( 70000/nn, 16))
        if m >= 1:
            j = 1
            while j <= m:
                set_size()
                if j<8:
                    abc('dc2')
                else:
                    abc('dc2rs')
                abc('scorr -C 5000 -F %d'%j)
                if check_size():
                    break
                j = 2*j
                print 'ANDs=%d,'%n_ands(),
                if n_ands() >= .98 * nands:
                     break
                continue
            if not check_size():
                print '\n'
    return get_status()
            
def simulate2(t):
    """Does rarity simulation. Simulation is restricted by the amount
    of memory it might use. At first wide but shallow simulation is done, followed by
    successively more narrow but deeper simulation. 
    seed is globally initiallized to 113 when a new design is read in"""
    global x_factor, f_name, tme, seed
    btime = time.clock()
    diff = 0
    while True:
        f = 100
        w = 16
        b = 16
        r = 500
        for k in range(9): #this controls how deep we go
            f = min(f*2, 3500)
            w = max(((w+1)/2)-1,1)
            abc('sim3 -F %d -W %d -N %d -R %d -B %d'%(f,w,seed,r,b))
            seed = seed+23
            if is_sat():
                return 'SAT'
            if ((time.clock()-btime) > t):
                return 'UNDECIDED'

def simulate(t):
    abc('&get')
    result = eq_simulate(t)
    return result

def eq_simulate(t):
    """Simulation is restricted by the amount
    of memory it might use. At first wide but shallow simulation is done, followed by
    successively more narrow but deeper simulation. The aig to be simulated must be in the & space
    If there are equivalences, it will refine them. Otherwise it is a normal similation
    seed is globally initiallized to 113 when a new design is read in"""
    global x_factor, f_name, tme, seed
    btime = time.clock()
    diff = 0
    while True:
        f = 5
        w = 255
        for k in range(9):
            f = min(f *2, 3500)
            r = f/20
            w = max(((w+1)/2)-1,1)
##            abc('&sim3 -R %d -W %d -N %d'%(r,w,seed))
            abc('&sim -F %d -W %d -R %d'%(f,w,seed))
            seed = seed+23
            if is_sat():
                return 'SAT'
            if ((time.clock()-btime) > t):
                return 'UNDECIDED'

def generate_abs(n):
    """generates an abstracted  model (gabs) from the greg file. The gabs file is automatically
    generated in the & space by &abs_derive. We store it away using the f_name of the problem
    being solved at the moment. The f_name keeps changing with an extension given by the latest
    operation done - e.g. smp, abs, spec, final, group. """
    global f_name
    #we have a cex and we use this generate a new gabs file
    abc('&r %s_greg.aig; &abs_derive; &put; w %s_gabs.aig'%(f_name,f_name)) # do we still need the gabs file
    if n == 1:
        #print 'New abstraction: ',
        ps()
    return   

def refine_with_cex():
    """Refines the greg (which contains the original problem with the set of FF's that have been abstracted).
    This uses the current cex to modify the greg file to reflect which regs are in the
    new current abstraction"""
    global f_name
    #print 'CEX in frame %d for output %d'%(cex_frame(),cex_po())
    #abc('&r %s_greg.aig; &abs_refine -t; &w %s_greg.aig'%(f_name,f_name))
    abc('&r %s_greg.aig;&w %s_greg_before.aig'%(f_name,f_name))
##    run_command('&abs_refine -s -M 25; &w %s_greg.aig'%f_name)
    run_command('&abs_refine -s; &w %s_greg.aig'%f_name)
    #print ' %d FF'%n_latches()
    return

def iter_tempor():
    na = n_ands()
    while True:
        abc('w save.aig')
        npi = n_pis()
        print npi
        abc('tempor -T 5 -F 8')
        print 'tempor = ',
        ps()
        x = trim()
##        if n_pis() > 2*npi:
##            abc('r save.aig')
##            return 'UNDECIDED'  
        abc('dr')
        print 'retime = ',
        ps()
        simplify()
        trim()
        print 'simplify -> trim = ',
        ps()
        if n_ands() > na:
            abc('r save.aig')
            ps()
            print 'No improvement'
            return 'UNDECIDED'  
        na = n_ands()
        ps()
        if n_latches() == 0:
            return RESULT[check_sat()]


def abstraction_refinement(latches_before,NBF,ratio=.75):
    """Subroutine of 'abstract' which does the refinement of the abstracted model,
    using counterexamples found by BMC or BDD reachability"""
    global x_factor, f_name, last_verify_time, x, win_list, last_winner, last_cex, t_init, j_last, sweep_time
    global cex_list, last_cx
    sweep_time = 2
    if NBF == -1:
        F = 2000
    else:
        F = 2*NBF
    print '\nIterating abstraction refinement'
    J = slps+intrps+pdrs+bmcs+sims
    print sublist(methods,J)
    last_verify_time = t = x_factor*max(50,max(1,2.5*G_T))
    t = 1000 #temporary
    t = abs_time
    initial_verify_time = last_verify_time = t
    reg_verify = True
    print 'Verify time set to %d'%last_verify_time
    while True: #cex based refinement
        generate_abs(1) #generate new gabs file from refined greg file
        set_globals()
        latches_after = n_latches()
        if small_abs(ratio):
            break
        t = last_verify_time
        yy = time.time()
        abc('w %s_beforerpm.aig'%f_name)
        rep_change = reparam() #new - must do reconcile after to make cex compatible
        abc('w %s_afterrpm.aig'%f_name)
##        if reg_verify:
        status = verify(J,t)
##        else:
##            status = pord_1_2(t)
###############
        if status == Sat_true:
            print 'Found true cex'
            reconcile(rep_change)
            return Sat_true
        if status == Unsat:
            return status
        if status == Sat:
            abc('write_status %s_after.status'%f_name)
            reconcile(rep_change) # makes the cex compatible with original before reparam and puts original in work space
            abc('write_status %s_before.status'%f_name)
            refine_with_cex()
            if is_sat(): # if cex can't refine, status is set to Sat_true
                print 'Found true cex in output %d'%cex_po()
                return Sat_true
            else:
                continue
        else:
            break
    print '**** Latches reduced from %d to %d'%(latches_before, n_latches())
    return Undecided_reduction

def small_abs(ratio=.75):
    """ tests is the abstraction is too large"""
    return ((rel_cost_t([pis_before_abs,latches_before_abs, ands_before_abs])> -.1)
           or (n_latches() >= ratio*latches_before_abs))

##def abstract(if_bip=True):
##    global ratio
##    if if_bip:
##        return abstractb(True) #old method using abstraction refinement
##    else:
##        return abstractb(False) #not using bip and reachx

def abstractb():
    """ abstracts using N Een's method 3 - cex/proof based abstraction. The result is further refined using
    simulation, BMC or BDD reachability. abs_ratio is the the limit for accepting an abstraction"""
    global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list, j_last, sims
    global latches_before_abs, ands_before_abs, pis_before_abs, abs_ratio
    if ifbip < 1:
        print 'using ,abs in old way'
    tt = time.time()
    j_last = 0
    set_globals()
    #win_list = []
    latches_before_abs = n_latches()
    ands_before_abs = n_ands()
    pis_before_abs = n_real_inputs()
    abc('w %s_before_abs.aig'%f_name)
    print 'Start: ',
    ps()
    funcs = [eval('(pyabc_split.defer(initial_abstract)())')]
    # fork off BMC3 and PDRm along with initial abstraction
    t = 10000 #want to run as long as initial abstract takes.
##    J = sims+pdrs+bmcs+intrps
    J = slps+pdrs+bmcs+intrps
    J = modify_methods(J,1)
##    if n_latches() < 80:
##        J = J + [4]
    funcs = create_funcs(J,t) + funcs
    mtds = sublist(methods,J) + ['initial_abstract'] #important that initial_abstract goes last
    m,result = fork_last(funcs,mtds)
    if is_sat():
        print 'Found true counterexample in frame %d'%cex_frame()
        return Sat_true
    if is_unsat():
        return Unsat
##    set_max_bmc(NBF)
    NBF = bmc_depth()
    print 'Abstraction good to %d frames'%max_bmc
    #note when things are done in parallel, the &aig is not restored!!!
    abc('&r %s_greg.aig; &w initial_greg.aig; &abs_derive; &put; w initial_gabs.aig; w %s_gabs.aig'%(f_name,f_name))
    set_max_bmc(NBF)
    print 'Initial abstraction: ',
    ps()
    abc('w %s_init_abs.aig'%f_name)
    latches_after = n_latches()
##    if latches_after >= .90*latches_before_abs: #the following should match similar statement
##    if ((rel_cost_t([pis_before_abs, latches_before_abs, ands_before_abs])> -.1) or
##        (latches_after >= .75*latches_before_abs)):
    if small_abs(abs_ratio):
        abc('r %s_before_abs.aig'%f_name)
        print "Little reduction!"
        print 'Abstract time wasted = %0.2f'%(time.time()-tt)
        return Undecided_no_reduction
    sims_old = sims
    sims=sims[:1] #make it so that rarity sim is not used since it can't find a cex
    result = abstraction_refinement(latches_before_abs, NBF,abs_ratio)
    sims = sims_old
    if result <= Unsat:
        return result
##    if n_latches() >= .90*latches_before_abs:
##    if ((rel_cost_t([pis_before_abs, latches_before_abs, ands_before_abs])> -.1) or (latches_after >= .90*latches_before_abs)):
##    if rel_cost_t([pis_before_abs,latches_before_abs, ands_before_abs])> -.1:
    if small_abs(abs_ratio): #r is ratio of final to initial latches in absstraction. If greater then True
        abc('r %s_before_abs.aig'%f_name) #restore original file before abstract.
        print "Little reduction!  ",
        print 'Abstract time wasted = %0.2f'%(time.time()-tt)
        result = Undecided_no_reduction
        return result
    #new
    else:
        write_file('abs') #this is only written if it was not solved and some change happened.
    print 'Abstract time = %0.2f'%(time.time()-tt)
    return result

def initial_abstract_old():
    global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list
    set_globals()
    time = max(1,.1*G_T)
    abc('&get;,bmc -vt=%f'%time)
    set_max_bmc(bmc_depth())
    c = 2*G_C
    f = max(2*max_bmc,20)
    b = min(max(10,max_bmc),200)
    t = x_factor*max(1,2*G_T)
    s = min(max(3,c/30000),10) # stability between 3 and 10 
    cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d'%(b,s,t,t,f)
##    print cmd
    print 'Running initial_abstract with bob=%d,stable=%d,time=%d,depth=%d'%(b,s,t,f)
    abc(cmd)
    abc('&w %s_greg.aig'%f_name)
##    ps()

def initial_abstract(t=100):
    global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list, max_bmc, ifbip
    set_globals()
    time = max(1,.1*G_T)
    time = min(time,t)
    abc('&get;,bmc -vt=%f'%time)
    set_max_bmc(bmc_depth())
    c = 2*G_C
    f = max(2*max_bmc,20)
    b = min(max(10,max_bmc),200)
    t1 = x_factor*max(1,2*G_T)
    t = max(t1,t)
    s = min(max(3,c/30000),10) # stability between 3 and 10
    cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d'%(b,s,t,t,f)
    if ifbip == 2:
        cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d -dwr=%s_vabs'%(b,s,t,t,f,f_name)
        print 'Using -dwr=%s_vabs'%f_name
##    print cmd
    print 'Running initial_abstract with bob=%d,stable=%d,time=%d,depth=%d'%(b,s,t,f)
    abc(cmd)
    bmc_depth()
##    pba_loop(max_bmc+1)
    abc('&w %s_greg.aig'%f_name)
    return max_bmc

def abs_m():
    set_globals()
    y = time.time()
    nl = n_abs_latches() #initial set of latches
    c = 2*G_C
    t = x_factor*max(1,2*G_T) #total time
    bmd = bmc_depth()
    if bmd < 0:
        abc('bmc3 -T 2') #get initial depth estimate
        bmd = bmc_depth()
    f = bmd
    abc('&get')
    y = time.time()
    cmd = '&abs_cba -v -C %d -T %0.2f -F %d'%(c,.8*t,bmd) #initial absraction
##    print '\n%s'%cmd
    abc(cmd)
    b_old = b = n_bmc_frames()
    f = min(2*bmd,max(bmd,1.6*b))
    print 'cba: latches = %d, depth = %d'%(n_abs_latches(),b)
##    print n_bmc_frames()
    while True:
        if (time.time() - y) > .9*t:
            break
        nal = n_abs_latches()
        cmd = '&abs_cba -v -C %d -T %0.2f -F %d'%(c,.8*t,f) #f is 2*bmd and is the maximum number of frames allowed
##        print '\n%s'%cmd
        abc(cmd)
##        print n_bmc_frames()
        b_old = b
        b = n_bmc_frames() 
        nal_old = nal 
        nal = n_abs_latches() #nal - nal_old is the number of latches added by cba
        #b - b_old is the additional time frames added by cba
        f = min(2*bmd,max(bmd,1.6*b))   #may be this should just be bmd
        f = max(f,1.5*bmd)
        print 'cba: latches = %d, depth = %d'%(nal,b)
        if ((nal == nal_old) and (b >= 1.5*b_old) and b >= 1.5*bmd):
            """
            Went at least bmd depth and saw too many frames without a cex
            (ideally should know how many frames without a cex)
            """
            print 'Too many frames without cex'
            break
        if b > b_old: #if increased depth
            continue
        if nal > .9*nl: # try to minimize latches
##            cmd = '&abs_pba -v -S %d -F %d -T %0.2f'%(b,b+2,.2*t)
            cmd = '&abs_pba -v -F %d -T %0.2f'%(b+2,.2*t)
##            print '\n%s'%cmd
            abc(cmd)
            b = n_bmc_frames()
            nal_old = nal
            nal = n_abs_latches()
            print 'pba: latches = %d, depth = %d'%(nal,b)
##            print n_bmc_frames()
            if nal_old < nal: #if latches increased there was a cex
                continue
            if nal > .9*nl: # if still too big 
                return
        continue 
##    b = n_bmc_frames()
    cmd = '&abs_pba -v -F %d -T %0.2f'%(b+2,.2*t)
##    print '\n%s'%cmd
    abc(cmd)
    b = n_bmc_frames()
    print 'pba: latches = %d, depth = %d'%(n_abs_latches(),b)
##    print n_bmc_frames()
    print 'Total time = %0.2f'%(time.time()-y)

def n_abs_latches():
    abc('&w pba_temp.aig') #save the &space
    abc('&abs_derive;&put')
    abc('&r pba_temp.aig')
    return n_latches()
        
def pba_loop(F):
    n = n_abs_latches()
    while True:
        run_command('&abs_pba -v -C 0 -F %d'%F)
        abc('&w pba_temp.aig')
        abc('&abs_derive;&put')
        abc('&r pba_temp.aig')
        N = n_latches()
##        if n == N or n == N+1:
##            break
##        elif N > n:
        if N > n:
            print 'cex found'
        break

def ssm(options=''):
    """ Now this should be the same as super_prove(1) """
    y = time.time()
    result = prove_part_1() # simplify first
    if result == 'UNDECIDED':
        result = ss(options)
    print 'Total time taken on file %s by function ssm(%s) = %d sec.'%(initial_f_name,options,(time.time() - y))
    return result

def ssmg():
    return ssm('g')
def ssmf():
    return ssm('f')


def ss(options=''):
    """
    Alias for super_sec
    This is the preferred command if the problem (miter) is suspected to be a SEC problem
    """
    global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time, sec_options
    sec_options = options
    print '\n*************Executing speculate************'
    y = time.time()
    abc('scl')
    result = speculate()
    # if result is 1 then it is a real SAT since we did not do anything before
    if result > 2: #save the result and read in with /rf so that files are initialized correctly
        if not '_spec' in f_name:
            write_file('spec') #make sure we do not overwrite original file
        read_file_quiet('%s'%f_name) #this resets f_name and initial_f_name etc.
        print '\n*************Executing super_prove ************'
        print 'New f_name = %s'%f_name
        result = sp()
        if result == 'SAT':
            result = 'UNDECIDED' #because speculation was done initially.
    elif result == 1:
        result = 'SAT'
    else:
        result = RESULT[result]
    print 'Total time taken on file %s by function ss(%s) = %d sec.'%(initial_f_name,options,(time.time() - y))
    return result

def quick_sec(t):
##    fb_name = f_name[:-3]+'New'
##    abc('&get;&miter -s %s.aig;&put'%fb_name)
##    abc('w %s.%s_miter.aig'%(f_name,fb_name))
    quick_simp()
    verify(slps+ pdrs+bmcs+intrps,t)
    if is_unsat():
        return 'UNSAT'
    if is_sat():
        return 'SAT'
    else:
        return'UNDECIDED'

def pre_sec():
    """ put files to be compared into Old and New aigs. Simplify, but
    turn off reparameterization so that PIs in Old and New match after simplification.
    """
    global trim_allowed
##    trim_allowed = False
##    print 'trim allowed = ',trim_allowed
    print 'First file: ',
    read_file_quiet() #note - reads into & space and then does &put
    ps()
    prs(False)
    ps()
    abc('&w Old.aig')
    print 'Second file: ',
    read_file_quiet()
    ps()
    prs(False)
    ps()
    abc('&w New.aig')
        
def cec():
    print 'Type in the name of the aig file to be compared against'
    s = raw_input()
    s = remove_spaces(s)
    if not 'aig' in s:
        s = s+'.aig'
    run_command("&get;&cec -v %s"%s)

def sec(B_part,options):
    """
    Use this for AB filtering and not sup_sec
    Use pp_sec to make easy names for A and B, namely Old and New.
    This assumes that the original aig (renamed A_name below) is already read into the working space.
    Then we form a miter using &miter between two circuits, A_name, and B_name.
    We then do speculate immediately. Optionally we could simplify A and B
    and then form the miter and start from there. The only difference in speculate
    is that &srm2 is used, which only looks at equivalences where one comes from A and
    one from B. Options are -a and -b which says use only flops in A or in B or both. The
    switch sec_sw controls what speculate does when it generates the SRM.
    """
    global f_name,sec_sw, A_name, B_name, sec_options
    yy = time.time()
    A_name = f_name # Just makes it so that we can refer to A_name later in &srm2
    B_name = B_part
    run_command('&get; &miter -s %s.aig; &put'%B_name)
##    abc('orpos')
    f_name = A_name+'_'+B_name+'_miter' # reflect that we are working on a miter.
    abc('w %s.aig'%f_name)
    print 'Miter = ',
    ps()
    sec_options = options
    if sec_options == 'ab':
        sec_options = 'l' #it will be changed to 'ab' after &equiv
    sec_sw = True 
    result = speculate() 
    sec_options = ''
    sec_sw = False
    if result <= Unsat:
        result = RESULT[result]
    else:
        result = sp()
        if result == 'SAT':
            result = 'UNDECIDED'
    print 'Total time = %d'%(time.time() - yy)
    return result

def filter(opts):
    global A_name,B_name
##    print 'Filtering with options = %s'%opts
    """ This is for filter which effectively only recognizes options -f -g"""
    if (opts == '' or opts == 'l'): #if 'l' this is used only for initial &equiv2 to get initial equiv creation
        return
    if opts == 'ab':
        print A_name ,
        print B_name
        run_command('&ps')
        run_command('&filter -f %s.aig %s.aig'%(A_name,B_name))
        return
    if not opts == 'f':
        opts = 'g'
    run_command('&filter -%s'%opts)

def check_if_spec_first():
    global sec_sw, A_name, B_name, sec_options, po_map
    set_globals()
    t = max(1,.5*G_T)
    r = max(1,int(t))
    abc('w check_save.aig')
    abc('&w check_and.aig')
    abc("&get; &equiv3 -v -F 20 -T %f -R %d"%(t,5*r))
    filter('g')
    abc("&srm; r gsrm.aig")
    print 'Estimated # POs = %d for initial speculation'%n_pos()
    result = n_pos() > max(50,.25*n_latches())
    abc('r check_save.aig')
    abc('&r check_and.aig')
    return result

def initial_speculate(sec_opt=''):
    global sec_sw, A_name, B_name, sec_options, po_map
    set_globals()
    if sec_options == '':
        sec_options = sec_opt
    t = max(1,.5*G_T)
    r = max(1,int(t))
    print 'Initial sec_options = %s'%sec_options
    if sec_options == 'l':
        cmd = "&get; &equiv3 -lv -F 20 -T %f -R %d"%(3*t,15*r)
    else:
        cmd = "&get; &equiv3 -v -F 20 -T %f -R %d"%(3*t,15*r)
    print cmd
    abc(cmd)
##    print 'AND space after &equiv3: ',
    run_command('&ps')
    if (sec_options == 'l'):
        if sec_sw:
            sec_options = 'ab'
        else:
            sec_options = 'f'
##    print 'A_name: ',
##    run_command('r %s.aig;ps'%A_name)
##    print 'B_name: ',
##    run_command('r %s.aig;ps'%B_name)
    filter(sec_options)
    abc('&w initial_gore.aig')
##    print 'Running &srm'
    if sec_sw:
        print 'miter: ',
        run_command('&ps')
        print 'A_name: ',
        run_command('r %s.aig;ps'%A_name)
        print 'B_name: ',
        run_command('r %s.aig;ps'%B_name)
        cmd = "&srm2 -%s %s.aig %s.aig; r gsrm.aig; w %s_gsrm.aig; &w %s_gore.aig"%(sec_options,A_name,B_name,f_name,f_name)
        abc(cmd)
        po_map = range(n_pos())
        return
    else:
##        abc('&r %s_gore.aig; &srm ; r gsrm.aig; w %s_gsrm.aig'%(f_name,f_name))
        cmd = "&srm; r gsrm.aig; w %s_gsrm.aig; &w %s_gore.aig"%(f_name,f_name)
##        print 'Running %s'%cmd
        abc(cmd)
        print 'done with &srm'
        po_map = range(n_pos())
        if sec_options == '':
            if n_pos() > 200:
                sec_options = 'g'
                print 'sec_options set to %s'%'g'
                abc('&r %s_gore.aig'%f_name)
                filter(sec_options)
                print 'Running &srm'
                cmd = "&srm; r gsrm.aig; ps;w %s_gsrm.aig;&ps; &w %s_gore.aig"%(f_name,f_name)
                print 'Running %s'%cmd
                abc(cmd)
                po_map = range(n_pos())
        

def test_against_original():
    '''tests whether we have a cex hitting an original PO'''
    abc('&w %s_save.aig'%f_name) #we preserve whatever was in the & space
    abc('&r %s_gore.aig'%f_name) #This is the original
    abc('testcex')
    PO = cex_po()
##    print 'test_against original gives PO = %d'%PO 
    abc('&r %s_save.aig'%f_name)
    if PO > -1:
##        print 'cex fails an original PO'
        return True
    else:
        abc('write_status %s_status.status'%f_name)
        return False

def set_cex_po(n=0):
    """
    if cex falsifies a non-real PO return that PO first,
    else see if cex_po is one of the original, then take it next
    else return -1 which means that the cex is not valid and hence an error.
    parameter n = 1 means test the &-space
    """
    global n_pos_before, n_pos_proved #these refer to real POs
    if n == 0:
        abc('testcex -a -O %d'%(n_pos_before-n_pos_proved)) #test regular AIG space
    else:
        abc('testcex -O %d'%(n_pos_before-n_pos_proved)) #test the &-AIG
    PO = cex_po()
##    print 'cex_po = %d, n_pos_before = %d, n_pos_proved = %d'%(PO, n_pos_before, n_pos_proved)
    if PO >= (n_pos_before - n_pos_proved): #cex_po is not an original
##        print '1. cex PO = %d'%PO
        return PO # after original so take it.
    if n == 0:
        abc('testcex -a') #test regular
    else:
        abc('testcex')  #test &space
    PO = cex_po()
##    print '2. cex PO = %d'%PO
    cx = cex_get()
    if PO > -1:
        if test_against_original(): #this double checks that it is really an original PO
            cex_put(cx)
##            print 'test_against_original was valid'
            return PO
        else:
            print '1. PO not valid'
            return -1 #error
    if PO < 0 or PO >= (n_pos_before - n_pos_proved): # not a valid cex because already tested outside original.
        print '2. PO is not valid'
        PO = -1 #error
##    print '3. cex PO = %d'%PO
    return PO

def speculate():
    """Main speculative reduction routine. Finds candidate sequential equivalences and refines them by simulation, BMC, or reachability
    using any cex found. """    
    global G_C,G_T,n_pos_before, x_factor, n_latches_before, last_verify_time, trim_allowed, n_pos_before
    global t_init, j_last, sec_sw, A_name, B_name, sec_options, po_map, sweep_time, sims, cex_list, n_pos_proved,ifpord1
    global last_cx
    last_cx = 0
    ifpord1 = 1
    initial_po_size = last_srm_po_size = n_pos()
    initial_sizes = [n_pis(),n_pos(),n_latches(),n_ands()]
    if sec_sw:
        print 'A_name = %s, B_name = %s, f_name = %s, sec_options = %s'%(A_name, B_name, f_name, sec_options)
    elif n_ands()> 36000 and sec_options == '':
        sec_options = 'g'
        print 'sec_options set to "g"'
        
    def refine_with_cex():
        """Refines the gore file to reflect equivalences that go away because of cex"""
        global f_name
        abc('write_status %s_before.status'%f_name)
        abc('&r %s_gore.aig; &resim -m'%f_name)
        filter(sec_options)
        run_command('&w %s_gore.aig'%f_name)
        return
    
    def set_cex(lst):
        """ assumes only one in lst """
        for j in range(len(lst)):
            cx = lst[j]
            if cx == None:
                continue
            else:
                cex_put(cx)
                break

    def generate_srm():
        """generates a speculated reduced model (srm) from the gore file"""
        global f_name, po_map, sec_sw, A_name, B_name, sec_options, n_pos_proved
##        print 'Generating'
        pos = n_pos()
        ab = n_ands()
        abc('w %s_oldsrm.aig'%f_name) #save for later purposes
        if sec_sw:
            run_command('&r %s_gore.aig; &srm2 -%s %s.aig %s.aig; r gsrm.aig; w %s_gsrm.aig'%(f_name,sec_options,A_name,B_name,f_name))
        else:
            abc('&r %s_gore.aig; &srm ; r gsrm.aig; w %s_gsrm.aig'%(f_name,f_name)) #do we still need to write the gsrm file
##        ps()
        po_map = range(n_pos())
        ps()
        n_pos_proved = 0
        return 'OK'
    
    n_pos_before = n_pos()
    n_pos_proved = 0
    n_latches_before = n_latches()    
    set_globals()
##    t = max(1,.5*G_T)#irrelevant
##    r = max(1,int(t))
    t = 1000
    j_last = 0
    J = slps+sims+pdrs+bmcs+intrps
    J = modify_methods(J,1)
    funcs = [eval('(pyabc_split.defer(initial_speculate)())')]
    funcs = create_funcs(J,10000)+funcs #want other functins to run until initial speculate stops
    mtds = sublist(methods,J) + ['initial_speculate'] #important that initial_speculate goes last
    fork_last(funcs,mtds)
##    ps()
    if is_unsat():
        return Unsat
    if is_sat():
        return Sat_true
    if n_pos_before == n_pos():
        print 'No new outputs. Quitting speculate'
        return Undecided_no_reduction # return result is unknown
##    cmd = 'lcorr;&get;&trim -i;&put;w %s_gsrm.aig'%f_name
    #print 'Executing %s'%cmd
    abc('w initial_gsrm.aig')
##    ps()
##    abc(cmd)
    print 'Initial speculation: ',
    ps()
    if n_latches() == 0:
        return check_sat()
    if sec_options == 'l' and sec_sw:
        sec_options = 'ab' #finished with initial speculate with the 'l' option
        print "sec_options set to 'ab'"
    elif sec_options == 'l':
        sec_options = 'f'
        print "sec_options set to 'f'"
    po_map = range(n_pos()) #we need this because the initial_speculate is done in parallel and po_map is not passed back.
    npi = n_pis()
    set_globals()
    if is_sat():
        return Sat_true
    simp_sw = init = True
    print '\nIterating speculation refinement'
    sims_old = sims
    sims = sims[:1] 
    J = slps+sims+pdrs+intrps+bmcs
    J = modify_methods(J)
##    print sublist(methods,J)
    t = max(50,max(1,2*G_T))
    last_verify_time = t
    print 'Verify time set to %d'%last_verify_time
    reg_verify = True
    ref_time = time.time()
    sweep_time = 2
    ifpord1=1
    while True: # refinement loop
        set_globals()
        yy = time.time()
        if not init:
            abc('r %s_gsrm.aig'%f_name) #this is done only to set the size of the previous gsrm.
            abc('w %s_gsrm_before.aig'%f_name)
            set_size()
            result = generate_srm()
            last_srm_po_size = n_pos()
            yy = time.time()
            # if the size of the gsrm did not change after generating a new gsrm
            # and if the cex is valid for the gsrm, then the only way this can happen is if
            # the cex_po is an original one.
            if check_size(): #same size before and after
                if check_cex(): #valid cex failed to refine possibly
                    if 0 <= cex_po() and cex_po() < (n_pos_before - n_pos_proved): #original PO
                        print 'Found cex in original output = %d'%cex_po()
                        print 'Refinement time = %s'%convert(time.time() - ref_time)
                        return Sat_true
                    elif check_same_gsrm(f_name): #if two gsrms are same, then failed to refine
                        print 'CEX failed to refine'
                        return Error
                else:
                    print 'not a valid cex'
                    return Error
            if n_latches() == 0:
                print 'Refinement time = %s'%convert(time.time() - ref_time)
                return check_sat()
        init = False # make it so that next time it is not the first time through
        if not t == last_verify_time: # heuristic that if increased last verify time,
                                      # then try pord_all 
            t = last_verify_time
            if reg_verify:
                t_init = (time.time() - yy)/2 #start poor man's concurrency at last cex fime found
                t_init = min(10,t_init)
##         temporary       reg_verify = False #will cause pord_all to be used next
##                print 'pord_all turned on'
                t = last_verify_time
                print 'Verify time set to %d'%t
        abc('w %s_beforerpm.aig'%f_name)
        rep_change = reparam() #must be paired with reconcile below if cex
        abc('w %s_afterrpm.aig'%f_name)
        if reg_verify:
            result = verify(J,t)
        else:
            result = pord_1_2(t)
        if result == Unsat:
            print 'UNSAT'
            print 'Refinement time = %s'%convert(time.time() - ref_time)
            return Unsat
        if result < Unsat:
            if not reg_verify:
                set_cex(cex_list)
##        if reg_verify: 
            reconcile(rep_change) #end of pairing with reparam()
            assert (npi == n_cex_pis()),'ERROR: #pi = %d, #cex_pi = %d'%(npi,n_cex_pis())
            abc('&r %s_gore.aig;&w %s_gore_before.aig'%(f_name,f_name)) #we are making sure that none of the original POs fail
            if reg_verify:
                PO = set_cex_po(0) #testing the regular space
            else:
                abc('&r %s_gsrm.aig'%f_name)
                PO = set_cex_po(1) # test against the &space.
            print 'cex_PO is %d'%PO
            if (-1 < PO and PO < (n_pos_before-n_pos_proved)):
                print 'Found cex in original output = %d'%cex_po()
                print 'Refinement time = %s'%convert(time.time() - ref_time)
                return Sat_true
            if PO == -1:
                return Error
            refine_with_cex()    #change the number of equivalences
            continue
        elif (is_unsat() or n_pos() == 0):
            print 'UNSAT'
            print 'Refinement time = %s'%convert(time.time() - ref_time)
            return Unsat
        else: #if undecided, record last verification time
            print 'Refinement returned undecided in %d sec.'%t
            last_verify_time = t
            #########################added
            if reg_verify: #try one last time with parallel POs cex detection (find_cex_par) if not already tried
                abc('r %s_beforerpm.aig'%f_name) # to continue refinement, need to restore original
                t_init = min(last_verify_time,(time.time() - yy)/2) #start poor man's concurrency at last cex fime found
                t_init = min(10,t_init)
                reg_verify = False
                t = last_verify_time # = 2*last_verify_time
                abc('w %s_beforerpm.aig'%f_name)
                rep_change = reparam() #must be paired with reconcile()below
                abc('w %s_afterrpm.aig'%f_name)
                result = pord_1_2(t) #main call to verification
                if result == Unsat:
                    print 'UNSAT'
                    print 'Refinement time = %s'%convert(time.time() - ref_time)
                    return Unsat
                if is_sat():
                    assert result == get_status(),'result: %d, status: %d'%(result,get_status())
                    set_cex(cex_list)
                    reconcile(rep_change)
                    abc('&r %s_gsrm.aig'%f_name)
                    PO = set_cex_po(1) #testing the & space
                    if (-1 < PO and PO < (n_pos_before-n_pos_proved)):
                        print 'Found cex in original output = %d'%cex_po()
                        print 'Refinement time = %s'%convert(time.time() - ref_time)
                        return Sat_true
                    if PO == -1:
                        return Error
                    refine_with_cex()    #change the number of equivalences
                    continue
                elif is_unsat():
                    print 'UNSAT'
                    print 'Refinement time = %s'%convert(time.time() - ref_time)
                    return Unsat
                else: #if undecided, record last verification time
                    last_verify_time = t
                    print 'UNDECIDED'
                    break
            ################### added
            else:
                break
    sims = sims_old
    print 'UNDECIDED'
    print 'Refinement time = %s'%convert(time.time() - ref_time)
##    if last_srm_po_size == initial_po_size: #essentially nothing happened. last_srm_po_size will be # POs in last srm.
    if initial_sizes == [n_pis(),n_pos(),n_latches(),n_ands()]:
        return Undecided_no_reduction #thus do not write spec file
    else: #file was changed, so some speculation happened. If we find a cex later, need to know this.
        write_file('spec')
        return Undecided_reduction

def simple_sat(t=10000):
    y = time.time()
    J = [14,2,7,9,30,31,26,5] #5 is pre_simp
    funcs = create_funcs(J,t)
    mtds =sublist(methods,J)
    fork_last(funcs,mtds)
    result = get_status()
    if result > Unsat:
        write_file('smp')
        result = verify(slps+[14,2,3,7,9,30,31,26],t)
    print 'Time for simple_sat = %0.2f'%(time.time()-y)
    return RESULT[result]     

def simple(t=10000):
    y = time.time()
##    J = [14,1,2,7,9,23,30,5] #5 is pre_simp
##    funcs = create_funcs(J,t)
##    mtds =sublist(methods,J)
##    fork_last(funcs,mtds)
##    result = get_status()
##    if result > Unsat:
##        write_file('smp')
##        J = slps+bmcs+pdrs+intrps
##        J = modify_methods(J)
##        result = verify(J,t)
    J = slps+bmcs+pdrs+intrps
    J = modify_methods(J)
    result = verify(J,t)
##    print 'Time for simple = %0.2f'%(time.time()-y)
    return RESULT[result] 


def simple_bip(t=1000):
    y = time.time()
    J = [14,1,2,30,5] #5 is pre_simp
    funcs = create_funcs(J,t)
    mtds =sublist(methods,J)
    fork_last(funcs,mtds)
    result = get_status()
    if result > Unsat:
        write_file('smp')
        result = verify(slps+[14,1,2,30],t)
    print 'Time for simple_bip = %0.2f'%(time.time()-y)
    return RESULT[result] 

def simple_prove(t=1000):
    y = time.time()
    J = [7,9,23,30,5]
    funcs = create_funcs(J,t)
    mtds =sublist(methods,J)
    fork_last(funcs,mtds)
    result = get_status()
    if result > Unsat:
        write_file('smp')
        result = verify(slps+[7,9,23,30],t)
    print 'Time for simple_prove = %0.2f'%(time.time()-y)
    return RESULT[result] 

def check_same_gsrm(f):
##    return False #disable the temporarily until can figure out why this is there
    """checks gsrm miters before and after refinement and if equal there is an error"""
    global f_name
    abc('r %s_gsrm.aig'%f)
##    ps()
    run_command('miter -c %s_gsrm_before.aig'%f)
##    ps()
    abc('&get; ,bmc -timeout=5')
    result = True #if the same
    if is_sat(): #if different
        result = False
    abc('r %s_gsrm.aig'%f)
##    ps()
    return result

def check_cex():
    """ check if the last cex still asserts one of the outputs.
    If it does then we have an error"""
    global f_name
    abc('read_status %s_before.status'%f_name)
    abc('&r %s_gsrm_before.aig'%f_name)
##    abc('&r %s_gsrm.aig'%f_name)
    run_command('testcex')
    print 'cex po = %d'%cex_po()
    return cex_po() >=0

def set_size():
    """Stores  the problem size of the current design.
    Size is defined as (PIs, POs, ANDS, FF)""" 
    global npi, npo, nands, nff, nmd
    npi = n_pis()
    npo = n_pos()
    nands = n_ands()
    nff = n_latches()
    nmd = max_bmc
    #print npi,npo,nands,nff

def check_size():
    """Assumes the problem size has been set by set_size before some operation.
    This checks if the size was changed
    Size is defined as (PIs, POs, ANDS, FF, max_bmc)
    Returns TRUE is size is the same""" 
    global npi, npo, nands, nff, nmd
    #print n_pis(),n_pos(),n_ands(),n_latches()
    result = ((npi == n_pis()) and (npo == n_pos()) and (nands == n_ands()) and (nff == n_latches()) )
    return result

def inferior_size():
    """Assumes the problem size has been set by set_size beore some operation.
    This checks if the new size is inferior (larger) to the old one 
    Size is defined as (PIs, POs, ANDS, FF)""" 
    global npi, npo, nands, nff
    result = ((npi < n_pis()) or (npo < n_pos()) or (nands < n_ands()) )
    return result

def quick_verify(n):
    """Low resource version of final_verify n = 1 means to do an initial
    simplification first. Also more time is allocated if n =1"""
    global last_verify_time
    trim()
    if n == 1:
        simplify()
        if n_latches == 0:
            return check_sat()
        trim()
        if is_sat():
            return Sat_true
    #print 'After trimming: ',
    #ps()
    set_globals()
    last_verify_time = t = max(1,.4*G_T)
    if n == 1:
        last_verify_time = t = max(1,2*G_T)
    print 'Verify time set to %d '%last_verify_time
    J = [18] + intrps+bmcs+pdrs+sims
    status = verify(J,t)
    return status

def process_status(status):
    """ if there are no FF, the problem is combinational and we still have to check if UNSAT"""
    if n_latches() == 0:
        return check_sat()
    return status
    
def get_status():
    """this simply translates the problem status encoding done by ABC
    (-1,0,1)=(undecided,SAT,UNSAT) into the status code used by our
    python code. -1,0,1 => 3,0,2
    """
    if n_latches() == 0:
        return check_sat()
    status = prob_status() #interrogates ABC for the current status of the problem.
    # 0 = SAT i.e. Sat_reg = 0 so does not have to be changed.
    if status == 1:
        status = Unsat
    if status == -1: #undecided
        status = Undecided
    return status

def reparam():
    """eliminates PIs which if used in abstraction or speculation must be restored by
    reconcile and the cex made compatible with file beforerpm"""
##    return
    rep_change = False
    n = n_pis()
##    abc('w t1.aig')
    abc('&get;,reparam -aig=%s_rpm.aig; r %s_rpm.aig'%(f_name,f_name))
##    abc('w t2.aig')
##    abc('testcex')
    if n_pis() == 0:
        print 'Number of PIs reduced to 0. Added a dummy PI'
        abc('addpi')
    nn = n_pis()
    if nn < n:
        print 'Reparam: PIs %d => %d'%(n,nn)
        rep_change = True
    return rep_change

def reconcile(rep_change):
    """used to make current cex compatible with file before reparam() was done.
    However, the cex may have come
    from extracting a single output and verifying this.
    Then the cex_po is 0 but the PO it fails could be anything.
    So testcex rectifies this."""
    global n_pos_before, n_pos_proved
##    print 'rep_change = %s'%rep_change
    if rep_change == False:
        return
    abc('&r %s_beforerpm.aig; &w tt_before.aig'%f_name)
    abc('write_status %s_after.status;write_status tt_after.status'%f_name)
    abc('&r %s_afterrpm.aig;&w tt_after.aig'%f_name)
    POa = set_cex_po(1)   #this should set cex_po() to correct PO. A 1 here means it uses &space to check
    abc('reconcile %s_beforerpm.aig %s_afterrpm.aig'%(f_name,f_name))
    # reconcile modifies cex and restores work AIG to beforerpm
    abc('write_status %s_before.status;write_status tt_before.status'%f_name)
    POb = set_cex_po()
    if POa != POb:
        abc('&r %s_beforerpm.aig; &w tt_before.aig'%f_name)
        abc('&r %s_afterrpm.aig; &w tt_after.aig'%f_name)
        print 'cex PO afterrpm = %d not = cex PO beforerpm = %d'%(POa,POb)
    assert POa > -1, 'cex did not assert any output'

def reconcile_all(lst, rep_change):
    """reconciles the list of cex's"""
    global f_name, n_pos_before, n_pos_proved
    if rep_change == False:
        return lst
    list = []
    for j in range(len(lst)):
        cx = lst[j]
        if cx == None:
            continue
        cex_put(cx)
        reconcile(rep_change)
        list = list + [cex_get()]
    return list
    

def try_rpm():
    """rpm is a cheap way of doing reparameterization and is an abstraction method, so may introduce false cex's.
    It finds a minimum cut between the PIs and the main sequential logic and replaces this cut by free inputs.
    A quick BMC is then done, and if no cex is found, we assume the abstraction is valid. Otherwise we revert back
    to the original problem before rpm was tried."""
    global x_factor
    if n_ands() > 30000:
        return
    set_globals()
    pis_before = n_pis()
    abc('w %s_savetemp.aig'%f_name)
    abc('rpm')
    result = 0
    if n_pis() < .5*pis_before:
        bmc_before = bmc_depth()
        #print 'running quick bmc to see if rpm is OK'
        t = max(1,.1*G_T)
        #abc('bmc3 -C %d, -T %f'%(.1*G_C, t))
        abc('&get;,bmc -vt=%f'%t)
        if is_sat(): #rpm made it sat by bmc test, so undo rpm
            abc('r %s_savetemp.aig'%f_name)
        else:
            trim()
            print 'WARNING: rpm reduced PIs to %d. May make SAT.'%n_pis()
            result = 1
    else:
        abc('r %s_savetemp.aig'%f_name)
    return result
            
def verify(J,t):
    """This method is used for finding a cex during refinement, but can also
    be used for proving the property. t is the maximum time to be used by
    each engine J is the list of methods to run in parallel. See FUNCS for list"""
    global x_factor, final_verify_time, last_verify_time, methods
    set_globals()
    t = int(max(1,t))
    J = modify_methods(J)
    mtds = sublist(methods,J)
    print mtds
    #print J,t
    F = create_funcs(J,t)
    (m,result) = fork_break(F,mtds,'US') #FORK here
    assert result == get_status(),'result: %d, status: %d'%(result,get_status())
    return result

def dsat_all(t=100,c=100000):
    print 't=%d,c=%d'%(t,c)
    N = n_pos()
    abc('&get')
    J = range(N)
    ttt = time.time()
    J.reverse()
    abc('w %s_temp.aig'%f_name)
    for j in J:
        tt = time.time()
        abc('r %s_temp.aig'%f_name)
        run_command('cone -O %d; dc2; dsat -C %d'%(j,c))
        if is_unsat():
            print 'Output %d is %s'%(j,RESULT[2]),
        else:
            print 'Output %d is %s'%(j,RESULT[3]),
        T = time.time() -tt
        print 'time = %0.2f'%T
        if time.time() - tt > t:
            break
    print 'Total time = %0.2f'%(time.time() - ttt)
            
def check_sat():
    """This is called if all the FF have disappeared, but there is still some logic left. In this case,
    the remaining logic may be UNSAT, which is usually the case, but this has to be proved. The ABC command 'dsat' is used fro combinational problems"""
    if not n_latches() == 0:
        print 'circuit is not combinational'
        return Undecided
##    print 'Circuit is combinational - checking with dsat'
    abc('&get') #save the current circuit
    abc('orpos;dsat -C %d'%G_C)
    if is_sat():
        abc('&put')
        if n_pos() == 1:
            return Sat_true
        else:
            return Undecided_no_reduction #some POs could be unsat.
    elif is_unsat():
        return Unsat
    else:
        abc('&put') #restore
        return Undecided_no_reduction

def try_era(s):
    """era is explicit state enumeration that ABC has. It only works if the number of PIs is small,
    but there are cases where it works and nothing else does"""
    if n_pis() > 12:
        return
    cmd = '&get;&era -mv -S %d;&put'%s
    print 'Running %s'%cmd
    run_command(cmd)

def try_induction(C):
    """Sometimes proving the property directly using induction works but not very often.
    For 'ind' to work, it must have only 1 output, so all outputs are or'ed together temporarily"""
    return Undecided_reduction
    print '\n***Running induction'
    abc('w %s_temp.aig'%f_name)
    abc('orpos; ind -uv -C %d -F 10'%C)
    abc('r %s_savetemp.aig'%f_name)
    status = prob_status()
    if not status == 1:
        return Undecided_reduction
    print 'Induction succeeded'
    return Unsat

##def final_verify_recur(K):
##    """During prove we make backups as we go. These backups have increasing abstractions done, which can cause
##    non-verification by allowing false counterexamples. If an abstraction fails with a cex, we can back up to
##    the previous design before the last abstraction and try to proceed from there. K is the backup number we
##    start with and this decreases as the backups fails. For each backup, we just try final_verify.
##    If ever we back up to 0, which is the backup just after simplify, we then try speculate on this. This often works
##    well if the problem is a SEC problem where there are a lot of equivalences across the two designs."""
##    global last_verify_time
##    #print 'Proving final_verify_recur(%d)'%K
##    last_verify_time = 2*last_verify_time
##    print 'Verify time increased to %d'%last_verify_time
##    for j in range(K):
##        i = K-(j+1)
##        abc('r %s_backup_%d.aig'%(initial_f_name,i))
##        if ((i == 0) or (i ==2)): #don't try final verify on original last one
##            status = prob_status()
##            break
##        print '\nVerifying backup number %d:'%i,
##        #abc('r %s_backup_%d.aig'%(initial_f_name,i))
##        ps()
##        #J = [18,0,1,2,3,7,14]
##        J = slps+sims+intrps+bmcs+pdrs
##        t = last_verify_time
##        status = verify(J,t)
##        if status >= Unsat:
##            return status
##        if  i > 0:
##            print 'SAT returned, Running less abstract backup'
##            continue
##        break
##    if ((i == 0) and (status > Unsat) and (n_ands() > 0)):
##        print '\n***Running speculate on initial backup number %d:'%i,
##        abc('r %s_backup_%d.aig'%(initial_f_name,i))
##        ps()
##        if n_ands() < 20000:
####            pre_simp()
##            status = speculate()
##            if ((status <= Unsat) or (status == Error)):
##                return status
##        #J = [18,0,1,2,3,7,14]
##        J = slps+sims+intrps+bmcs+pdrs
##        t = 2*last_verify_time
##        print 'Verify time increased to %d'%last_verify_time
##        status = verify(J,t)
##    if status == Unsat:
##        return status
##    else:
##        return Undecided_reduction
        
def smp():
    abc('smp')
    write_file('smp')

def dprove():
    abc('dprove -cbjupr')

def trim():
    global trim_allowed
    if not trim_allowed:
        return
##    abc('trm;addpi')
    reparam()
##    print 'exiting trim'

def prs(x=True):
    global trim_allowed
    """ If x is set to False, no reparameterization will be done in pre_simp"""
    trim_allowed = x
    print 'trim_allowed = ',trim_allowed
    y = time.clock()
    pre_simp()
    print 'Time = %s'%convert(time.clock() - y)
    write_file('smp')

def pre_simp():
    """This uses a set of simplification algorithms which preprocesses a design.
    Includes forward retiming, quick simp, signal correspondence with constraints, trimming away
    PIs, and strong simplify"""
    global trim_allowed, temp_dec
    tt = time.time()
    set_globals()
    abc('&get; &scl; &put')
    if (n_ands() > 200000 or n_latches() > 50000 or n_pis() > 40000):
        print 'Problem too large, simplification skipped'
        return 'Undecided'
    if ((n_ands() > 0) or (n_latches()>0)):
        trim()
##        ps()
    if n_latches() == 0:
        return check_sat()
##    if n_ands()<70000:
##        abs('scorr -C 5000')
    best_fwrd_min([10,11])
    ps()
    status = try_scorr_constr()
    if ((n_ands() > 0) or (n_latches()>0)):
        trim()
    if n_latches() == 0:
        return check_sat()
    status = process_status(status)
    if status <= Unsat:
        return status
    simplify()
    print 'Simplify: ',
    ps()
    if n_latches() == 0:
        return check_sat()
    if trim_allowed:
        t = min(15,.3*G_T)
        if not '_smp' in f_name: #try this only once on a design
            try_temps(15)
            if n_latches() == 0:
                return check_sat()
            try_phase()
            if n_latches() == 0:
                return check_sat()
        if ((n_ands() > 0) or (n_latches()>0)):
            trim()
    status = process_status(status)
    print 'Simplification time = %0.2f'%(time.time()-tt)
    return status

def pre_simp2():
    """This uses a set of simplification algorithms which preprocesses a design.
    Includes forward retiming, quick simp, signal correspondence with constraints, trimming away
    PIs, and strong simplify"""
    global trim_allowed, temp_dec
    tt = time.time()
    set_globals()
    abc('&get; &scl; &put')
    if (n_ands() > 200000 or n_latches() > 50000 or n_pis() > 40000):
        print 'Problem too large, simplification skipped'
        return 'Undecided'
    if ((n_ands() > 0) or (n_latches()>0)):
        trim()
##        ps()
    if n_latches() == 0:
        return check_sat()
    if n_ands()<70000:
        abc('scorr -C 5000')
    best_fwrd_min([10,11])
    ps()
    status = try_scorr_constr()
    if ((n_ands() > 0) or (n_latches()>0)):
        trim()
    if n_latches() == 0:
        return check_sat()
    status = process_status(status)
    if status <= Unsat:
        return status
    simplify()
    print 'Simplify: ',
    ps()
    if n_latches() == 0:
        return check_sat()
    if trim_allowed:
        t = min(15,.3*G_T)
        if not '_smp' in f_name: #try this only once on a design
            try_temps(15)
            if n_latches() == 0:
                return check_sat()
            try_phase()
            if n_latches() == 0:
                return check_sat()
        if ((n_ands() > 0) or (n_latches()>0)):
            trim()
    status = process_status(status)
    print 'Simplification time = %0.2f'%(time.time()-tt)
    return status


def try_scorr_constr():
    set_size()
    abc('w %s_savetemp.aig'%f_name)
    status = scorr_constr()
    if inferior_size():
        abc('r %s_savetemp.aig'%f_name)
    return status

def factors(n):
    l = [1,]
    nn = n
    while n > 1:
        for i in (2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53):
            if not i <nn:
                break
            if n%i == 0:
                l = l + [i,]
                n = n/i
        if not n == 1:
            l = l + [n,]
        break
    return sorted(l)

def select(x,y):
    z = []
    for i in range(len(x)):
        if x[i]:
            z = z + [y[i],]
    return z
    
def ok_phases(n):
    """ only try those where the resulting n_ands does not exceed 60000"""
    f = factors(n)
    sp = subproducts(f)
    s = map(lambda m:m*n_ands()< 90000,sp)
    z = select(s,sp)
    return z

def subproducts(ll):
    ss = (product(ll),)
    #print ll
    n = len(ll)
    if n == 1:
        return ss
    for i in range(n):
        kk = drop(i,ll)
        #print kk
        ss = ss+(product(kk),)
        #print ss
        ss = ss+subproducts(kk)
        #print ss
    result =tuple(set(ss))
    #result.sort()
    return tuple(sorted(result))

def product(ll):
    n = len(ll)
    p = 1
    if n == 1:
        return ll[0]
    for i in range(n):
        p = p*ll[i]
    return p

def drop(i,ll):
    return ll[:i]+ll[i+1:]

def try_phase():
    """Tries phase abstraction. ABC returns the maximum clock phase it found using n_phases.
    Then unnrolling is tried up to that phase and the unrolled model is quickly
    simplified (with retiming to see if there is a significant reduction.
    If not, then revert back to original"""
    global init_simp
    trim()
    n = n_phases()
##    if ((n == 1) or (n_ands() > 45000) or init_simp == 0):
    if ((n == 1) or (n_ands() > 45000)):
        return
##    init_simp = 0
    print 'Trying phase abstraction - Max phase = %d'%n,
    abc('w %s_phase_temp.aig'%f_name)
    na = n_ands()
    nl = n_latches()
    ni = n_pis()
    no = n_pos()
    z = ok_phases(n)
    print z,
    if len(z) == 1:
        return
    #p = choose_phase()
    p = z[1]
    abc('phase -F %d'%p)
    if no == n_pos(): #nothing happened because p is not mod period
        print 'Phase %d is incompatible'%p
        abc('r %s_phase_temp.aig'%f_name)
        if len(z)< 3:
            return
        else:
            p = z[2]
            #print 'Trying phase = %d:  '%p,
            abc('phase -F %d'%p)
            if no == n_pos(): #nothing happened because p is not mod period
                print 'Phase %d is incompatible'%p
                abc('r %s_phase_temp.aig'%f_name)
                return
    print 'Simplifying with %d phases: => '%p,
    simplify()
    trim()
    ps()
    cost = rel_cost([ni,nl,na])
    print 'New relative cost = %f'%(cost)
    if cost <  -.01:
        abc('w %s_phase_temp.aig'%f_name)
        if ((n_latches() == 0) or (n_ands() == 0)):
            return
        if n_phases() == 1: #this bombs out if no latches
            return
        else:
            try_phase()
            return
    elif len(z)>2: #Try the next eligible phase.
        abc('r %s_phase_temp.aig'%f_name)
        if p == z[2]: #already tried this
            return
        p = z[2]
        print 'Trying phase = %d: => '%p,
        abc('phase -F %d'%p)
        if no == n_pos(): #nothing happened because p is not mod period
            print 'Phase = %d is not compatible'%p
            return
        ps()
        print 'Simplify with %d phases: '%p,
        simplify()
        trim()
        ps()
        cost = rel_cost([ni,nl,na])
        print 'New relative cost = %f'%(cost)
        if cost < -.01:
            print 'Phase abstraction with %d phases obtained:'%p,
            print_circuit_stats()
            abc('w %s_phase_temp.aig'%f_name)
            if ((n_latches() == 0) or (n_ands() == 0)):
                return
            if n_phases() == 1: # this bombs out if no latches
                return
            else:
                try_phase()
                return
    abc('r %s_phase_temp.aig'%f_name)
    return

def try_temp(t=15):
    btime = time.clock()
    trim()
    print'Trying temporal decomposition - for max %s sec. '%convert(t),
    abc('w %s_best.aig'%f_name)
    ni = n_pis()
    nl = n_latches()
    na = n_ands()
    best = [ni,nl,na]
    F = create_funcs([18],t) #create a timer function
##    F = F + [eval('(pyabc_split.defer(abc)("tempor -s; trm; scr; trm; tempor; trm; scr; trm"))')]
    F = F + [eval('(pyabc_split.defer(abc)("tempor -s; &get; &trim -o; &put; scr; &get; &trim -o; &put; tempor; &get; &trim -o; &put; scr; &get; &trim -o; &put"))')]    
    for i,res in pyabc_split.abc_split_all(F):
        break
    cost = rel_cost(best)
    print 'cost = %0.2f'%cost
    if cost < .01:
        ps()
        return
    else:
        abc('r %s_best.aig'%f_name)

def try_temps(t=15):
    best = (n_pis(),n_latches(),n_ands())
    while True:
        try_temp(t)
        if ((best == (n_pis(),n_latches(),n_ands())) or n_ands() > .9 * best[2] ):
            break
        elif n_latches() == 0:
            break
        else:
            best = (n_pis(),n_latches(),n_ands())
        

def rel_cost_t(J):
    """ weighted relative costs versus previous stats."""
    if (n_latches() == 0 and J[1]>0):
        return -10
    nli = J[0]+J[1]
    na = J[2]
    if ((nli == 0) or (na == 0)):
        return 100
    nri = n_real_inputs()
    #ri = (float(nri)-float(ni))/float(ni)
    rli = (float(n_latches()+nri)-float(nli))/float(nli)
    ra = (float(n_ands())-float(na))/float(na)
    cost = 10*rli + .5*ra
    return cost    

def rel_cost(J):
    """ weighted relative costs versus previous stats."""
    global f_name
    if (n_latches() == 0 and J[1]>0):
        return -10
    nri = n_real_inputs()
    ni = J[0]
    nl = J[1]
    na = J[2]
    if (ni == 0 or na == 0 or nl == 0):
        return 100
    ri = (float(nri)-float(ni))/float(ni)
    rl = (float(n_latches())-float(nl))/float(nl)
    ra = (float(n_ands())-float(na))/float(na)
    cost = 1*ri + 5*rl + .2*ra
##    print 'Relative cost = %0.2f'%cost
    return cost

def best_fwrd_min(J):
    global f_name, methods
    mtds = sublist(methods,J)
    F = create_funcs(J,0)
    (m,result) = fork_best(F,mtds) #FORK here
    print '%s: '%mtds[m],
    
def try_forward():
    """Attempts most forward retiming, and latch correspondence there. If attempt fails to help simplify, then we revert back to the original design
    This can be effective for equivalence checking problems where synthesis used retiming"""
    abc('w %s_savetemp.aig'%f_name)
    if n_ands() < 30000:
        abc('dr')
        abc('lcorr')
        nl = n_latches()
        na = n_ands()
        abc('w %s_savetemp0.aig'%f_name)
        abc('r %s_savetemp.aig'%f_name) 
        abc('dr -m')
        abc('lcorr')
        abc('dr')
        if ((n_latches() <= nl) and (n_ands() < na)):
            print 'Forward retiming reduced size to: ',
            print_circuit_stats()
            return
        else:
            abc('r %s_savetemp0.aig'%f_name)
            return
    return

def quick_simp():
    """A few quick ways to simplify a problem before more expensive methods are applied.
    Uses & commands if problem is large. These commands use the new circuit based SAT solver"""
    na = n_ands()
    if na < 60000:
        abc('scl -m;lcorr;drw')
    else:
        abc('&get;&scl;&lcorr;&put;drw')
    print 'Using quick simplification',
    status = process_status(get_status())
    if status <= Unsat:
        result = RESULT[status]
    else:
        ps()
##        write_file('smp')
####            K_backup = K = K+1
        result = 'UNDECIDED'
    return result

def scorr_constr():
    """Extracts implicit constraints and uses them in signal correspondence
    Constraints that are found are folded back when done"""
    na = max(1,n_ands())
    n_pos_before = n_pos()
    if ((na > 40000) or n_pos()>1):
        return Undecided_no_reduction
    abc('w %s_savetemp.aig'%f_name)
    na = max(1,n_ands())
##    f = 1
    f = 18000/na  #**** THIS can create a bug 10/15/11
    f = min(f,4)
    f = max(1,f)
    if n_ands() > 18000:
        cmd = 'unfold -s -F 2'
    else:
        cmd = 'unfold -F %d -C 5000'%f
    abc(cmd)
    if n_pos() == n_pos_before:
        print 'No constraints found'
        return Undecided_no_reduction
    if (n_ands() > na): #no constraints found
        abc('r %s_savetemp.aig'%f_name)
        return Undecided_no_reduction
    na = max(1,n_ands())
    f = 1
    print 'Number of constraints = %d'%((n_pos() - n_pos_before))
    abc('scorr -c -F %d'%f)
    abc('fold')
    trim()
    print 'Constrained simplification: ',
    ps()
    return Undecided_no_reduction

def try_scorr_c(f):
    """ Trying multiple frames because current version has a bug."""
    set_globals()
    abc('unfold -F %d'%f)
    abc('scorr -c -F %d'%f)
    abc('fold')
    t = max(1,.1*G_T)
    abc('&get;,bmc3 -vt=%f'%t)
    if is_sat(): 
        return 0
    else:
        trim()
        return 1
    

def input_x_factor():
    """Sets the global x_factor according to user input"""
    global x_factor, xfi
    print 'Type in x_factor:',
    xfi = x_factor = input()
    print 'x_factor set to %f'%x_factor


def prove(a):
    """Proves all the outputs together. If ever an abstraction
        was done then if SAT is returned,
        we make RESULT return "undecided".
        is a == 0 do smp and abs first
        If a == 1 do smp and spec first 
        if a == 2 do quick simplification instead of full simplification, then abs first, spec second"""
    global x_factor,xfi,f_name, last_verify_time,K_backup, t_init, sec_options, spec_found_cex
    spec_first = False
    max_bmc = -1
    abs_found_cex_after_spec = spec_found_cex_after_abs = False
    if not '_smp' in f_name: #if already simplified, then don't do again
        if a == 2 : #do quick simplification
            result = quick_simp() #does not write 'smp' file
##            print result
        else :
            result = prove_part_1() #do full simplification here
        if ((result == 'SAT') or (result == 'UNSAT')):
            return result
    if a == 1:
        spec_first = True
    t_init = 2
    abs_found_cex_before_spec = spec_found_cex_before_abs = False
##    First phase
    if spec_first:
        result = prove_part_3() #speculation done here first
    else:
        result = prove_part_2() #abstraction done here first
    if ((result == 'SAT') or (result == 'UNSAT')):
        return result
##    Second phase
    if spec_first: #did spec already in first phase
        t_init = 2
        result = prove_part_2() #abstraction done here second
        if result == 'SAT':
            abs_found_cex_after_spec = True
    else:
        result = prove_part_3()  #speculation done here second
        if result == 'SAT':
            spec_found_cex_after_abs = True
    if result == 'UNSAT': 
        return result
    status = get_status()
    if result == 'ERROR':
        status = Error
    if ('_abs' in f_name and spec_found_cex_after_abs): #spec file should not have been written in speculate
        f_name = revert(f_name,1) #it should be as if we never did abstraction.
        print 'f_name = %s'%f_name
        abc('r %s.aig'%f_name) #restore previous
        t_init = 2
        if not '_rev' in f_name:
            print 'proving speculation first'
            write_file('rev') #maybe can get by with just changing f_name
            print 'f_name = %s'%f_name
            result = prove(1) #1 here means do smp and then spec 
            if ((result == 'SAT') or (result == 'UNSAT')):
                return result
    elif ('_spec' in f_name and abs_found_cex_after_spec): #abs file should not have been written in abstract
        f_name = revert(f_name,1) #it should be as if we never did speculation.
        abc('r %s.aig'%f_name) #restore previous 
        t_init = 2
        if not '_rev' in f_name:
            print 'proving abstraction first'
            write_file('rev') #maybe can get by with just changing f_name
            result = prove(0)
            if ((result == 'SAT') or (result == 'UNSAT')):
                return result
    else:
        return 'UNDECIDED'

def prove_part_1():
    global x_factor,xfi,f_name, last_verify_time,K_backup
    print 'Initial: ',
    ps()
    x_factor = xfi
    print '\n***Running pre_simp'
    set_globals()
    if n_latches() > 0:
        status = run_par_simplify()
    else:
        status = check_sat()
    if ((status <= Unsat) or (n_latches() == 0)):
        return RESULT[status]
    trim()
    write_file('smp') #need to check that this was not written in pre_simp
    set_globals()
    return RESULT[status]

def run_par_simplify():
    set_globals()
    t = 1000
    funcs = [eval('(pyabc_split.defer(pre_simp)())')]
    J = pdrs+bmcs+intrps
    J = modify_methods(J,1)
    funcs = create_funcs(J,t)+ funcs #important that pre_simp goes last
    mtds =sublist(methods,J) + ['pre_simp']
    fork_last(funcs,mtds)
    status = get_status()
    return status
    
def prove_part_2(ratio=.75):
    """does the abstraction part of prove"""
    global x_factor,xfi,f_name, last_verify_time,K_backup, trim_allowed,ifbip
    print'\n***Running abstract'
##    print 'ifbip = %d'%ifbip
    status = abstract(ifbip) #ABSTRACTION done here
    status = process_status(status)
    print 'abstract done, status is %d'%status
    result = RESULT[status]
    if status < Unsat:
        print 'CEX in frame %d'%cex_frame()
        return result #if we found a cex we do not want to trim.
    trim() 
    return result
    
def prove_part_3():
    """does the speculation part of prove"""
    global x_factor,xfi,f_name, last_verify_time,init_initial_f_name
    global max_bmc, sec_options
    if ((n_ands() > 36000) and sec_options == ''):
        sec_options = 'g'
        print 'sec_options set to "g"'
    print '\n***Running speculate'
    status = speculate() #SPECULATION done here
    status = process_status(status)
    print 'speculate done, status is %d'%status
    result = RESULT[status]
    if status < Unsat:
        print 'CEX in frame %d'%cex_frame()
        return result
    trim() #if cex is found we doo not want to trim.
    return result

def prove_all(dir,t):
    """Prove all aig files in this directory using super_prove and record the results in results.txt
    Not called from any subroutine
    """
##    t = 1000 #This is the timeoout value
    xtime = time.time()
##    dir = main.list_aig('')
    results = []
    f =open('results_%d.txt'%len(dir), 'w')
    for name in dir:
        read_file_quiet(name)
        print '\n         **** %s:'%name,
        ps()
        F = create_funcs([18,6],t) #create timer function as i = 0 Here is the timer
        for i,res in pyabc_split.abc_split_all(F):
            break
        tt = time.time()
        if i == 0:
            res = 'Timeout'
        str = '%s: %s, time = %s'%(name,res,convert(tt-xtime))
        if res == 'SAT':
            str = str + ', cex_frame = %d'%cex_frame()
        str = str +'\n'
        f.write(str)
        f.flush()
        results = results + ['%s: %s, time = %s'%(name,res,convert(tt-xtime))]
        xtime = tt
##    print results
    f.close()
    return results  

def remove_pos(lst):
    """Takes a list of pairs where the first part of a pair is the PO number and
    the second is the result 1 = disproved, 2 = proved, 3 = unresolved. Then removes
    the proved and disproved outputs and returns the aig with the unresolved
    outputs"""
    proved = disproved = unresolved = []
    for j in range(len(lst)):
        jj = lst[j]
        if jj[1] == 2:
            proved = proved + [jj[0]]
        if (jj[1] == 1 or (jj[1] == 0)):
            disproved = disproved +[jj[0]]
        if jj[1] > 2:
            unresolved = unresolved +[jj[0]]
    print '%d outputs proved'%len(proved)
    if not proved == []:
        if ((max(proved)>n_pos()-1) or min(proved)< 0):
            print proved
        remove(proved)
            

#functions for proving multiple outputs in parallel
#__________________________________________________

def prove_only(j):
    """ extract the jth output and try to prove it"""
    global max_bmc, init_initial_f_name, initial_f_name, f_name,x
    #abc('w %s__xsavetemp.aig'%f_name)
    extract(j,j)
    set_globals()
    ps()
    print '\nProving output %d'%(j)
    f_name = f_name + '_%d'%j
    result = prove_1()
    #abc('r %s__xsavetemp.aig'%f_name)
    if result == 'UNSAT':
        print '********  PROVED OUTPUT %d  ******** '%(j)
        return Unsat
    if result == 'SAT':
        print '********  DISPROVED OUTPUT %d  ******** '%(j)
        return Sat
    else:
        print '********  UNDECIDED on OUTPUT %d  ******** '%(j)
        return Undecided

def verify_only(j,t):
    """ extract the jth output and try to prove it"""
    global max_bmc, init_initial_f_name, initial_f_name, f_name,x, reachs, last_cex, last_winner, methods
##    ps()
##    print 'Output = %d'%j
    extract(j,j)
##    ps()
    set_globals()
    if n_latches() == 0:
        result = check_sat()
    else:
        f_name = f_name + '_%d'%j
        # make it so that jabc is not used here
        reachs_old = reachs
        reachs = reachs[1:] #just remove jabc from this.
        res = verify(slps+sims+pdrs+bmcs+intrps,t) #keep the number running at the same time as small as possible.
##        res = verify(sims+pdrs+bmcs+intrps,t) #keep the number running at the same time as small as possible.
        reachs = reachs_old
        result = get_status()
        assert res == result,'result: %d, status: %d'%(res,get_status())
    if result > Unsat:
##        print result
##        print '******* %d is undecided ***********'%j
        return result
    elif result == Unsat:
##        print '******** PROVED OUTPUT %d  ******** '%(j)
        return result
    elif ((result < Unsat) and (not result == None)):
        print '******** %s DISPROVED OUTPUT %d  ******** '%(last_cex,j)
##        print ('writing %d.status'%j), result, get_status()
        abc('write_status %d.status'%j)
        last_winner = last_cex
        return result
    else:
        print '****** %d result is %d'%(j,result) 
        return result

def verify_range(j,k,t):
    """ extract the jth thru kth output and try to prove their OR"""
    global max_bmc, init_initial_f_name, initial_f_name, f_name,x, reachs, last_cex, last_winner, methods
    extract(j,k)
    abc('orpos')
    set_globals()
    if n_latches() == 0:
        result = check_sat()
    else:
        f_name = f_name + '_%d'%j
        # make it so that jabc is not used here
        reachs_old = reachs
        reachs = reachs[1:] #just remove jabc from this.
        res = verify(sims+pdrs+bmcs+intrps,t) #keep the number running at the sme time as small as possible.
        reachs = reachs_old
        result = get_status()
        assert res == result,'result: %d, status: %d'%(res,get_status())
    if result > Unsat:
##        print result
##        print '******* %d is undecided ***********'%j
        return result
    elif result == Unsat:
##        print '******** PROVED OUTPUT %d  ******** '%(j)
        return result
    elif ((result < Unsat) and (not result == None)):
        print '******** %s DISPROVED OUTPUT %d  ******** '%(last_cex,j)
##        print ('writing %d.status'%j), result, get_status()
        abc('write_status %d.status'%j)
        last_winner = last_cex
        return result
    else:
        print '****** %d result is %d'%(j,result) 
        return result

def prove_n_par(n,j):
    """prove n outputs in parallel starting at j"""
    F = []
    for i in range(n):
        F = F + [eval('(pyabc_split.defer(prove_only)(%s))'%(j+i))]
    #print S
    #F = eval(S)
    result = []
    print 'Proving outputs %d thru %d in parallel'%(j,j+n-1)
    for i,res in pyabc_split.abc_split_all(F):
        result = result +[(j+i,res)]
    #print result
    return result

def prove_pos_par(t,BREAK):
    """Prove all outputs in parallel and break on BREAK"""
    return run_parallel([],t,BREAK)

def prove_pos_par0(n):
    """ Group n POs grouped and prove in parallel until all outputs have been proved"""
    f_name = initial_f_name
    abc('w %s__xsavetemp.aig'%f_name)
    result = []
    j = 0
    N = n_pos()
    while j < N-n:
        abc('r %s__xsavetemp.aig'%f_name)
        result = result + prove_n_par(n,j)
        j = j+n
    if N > j:
        result = result + prove_n_par(N-j,j)
    abc('r %s__xsavetemp.aig'%initial_f_name)
    ps()
##    print result
    remove_pos(result)
    write_file('group')
    return

def prop_decomp():
    """decompose a single property into multiple ones (only for initial single output),
    by finding single and double literal primes of the outputs."""
    if n_pos()>1:
        return
    run_command('outdec -v -L 2')
    if n_pos()>1:
        ps()


def distribute(N,div):
    """
    we are going to verify outputs in groups
    """
    n = N/div
    rem = N - (div * (N/div))
    result = []
    for j in range(div):
        if rem >0:
            result = result +[n+1]
            rem = rem -1
        else:
            result = result + [n]
    return result    

####def find_cex_par(tt):
####    """prove n outputs at once and quit at first cex. Otherwise if no cex found return aig
####    with the unproved outputs"""
####    global trim_allowed,last_winner, last_cex, n_pos_before, t_init, j_last, sweep_time
####    b_time = time.time() #Wall clock time
####    n = n_pos()
####    l=remove_const_pos()
####    N = n_pos()
####    full_time = all_proc = False
####    print 'Number of POs: %d => %d'%(n,N)
####    if N == 0:
####        return Unsat
######    inc = 5  #******* increment for grouping for sweep set here *************
######    inc = min(12,max(inc, int(.1*N)))
####    inc = 1+N/100
######    if N <1.5*inc: # if near the increment for grouping try to get it below.
######        prove_all_ind()
######        N = n_pos()
####    if inc == 1:
####        prove_all_ind()
####        N = n_pos()
####    T = int(tt) #this is the total time to be taken in final verification run before quitting speculation
######    if inc == 10:
######        t_init = 10
######    t = max(t_init/2,T/20)
######    if N <= inc:
######        t = T
######    print "inc = %d, Sweep time = %s, j_group = %d"%(inc,convert(t),j_last)
####    t = sweep_time/2 #start sweeping at last time where cex was found.
######    it used to be t = 1 here but it did not make sense although seemed to work.
######    inc = 2
####    while True: #poor man's concurrency
####        N = n_pos()
####        if N == 0:
####            return Unsat
####        #sweep_time controls so that when sweep starts after a cex, it starts at the last sweep time
####        t = max(2,2*t) #double sweep time
####        if t > .75*T:
####            t = T
####            full_time = True
####        if ((N <= inc) or (N < 13)):
####            t = sweep_time = T
####            full_time = True
####            inc = 1
######            sweep_time = 2*sweep_time
####        if not t == T:
####            t= sweep_time = max(t,sweep_time)
######            t = sweep_time
######new heuristic
####        if (all_proc and sweep_time > 8): #stop poor man's concurrency and jump to full time.
####            t = sweep_time = T
####            full_time - True #this might be used to stop speculation when t = T and the last sweep
######                           found no cex and we do not prove Unsat on an output
####        abc('w %s__ysavetemp.aig'%f_name)
####        ps()
####        if N < 50:
####            inc = 1
####        print "inc = %d, Sweep time = %s, j_last = %d"%(inc,convert(t),j_last)
####        F = []
######        G = []
####        #make new lambda functions since after the last pass some of the functions may have been proved and eliminated.
####        for i in range(N):
####            F = F + [eval('(pyabc_split.defer(verify_only)(%d,%s))'%(i,convert(T)))] #make time large and let sleep timer control timeouts
######            G = G + [range(i,i+1)]
####        ######
####        result = []
####        outcome = ''
####        N = len(F)
####        rng = range(1+(N-1)/inc)
####        rng = rng[j_last:]+rng[:j_last] #pick up in range where last found cex.
######        print 'rng = ',
######        print rng
####        k = -1
####        bb_time = time.time()
####        for j in rng:
####            k = k+1 #keeps track of how many groups we have processed.
####            j_last = j
####            J = j*inc
####            JJ = J+inc
####            JJ = min(N,JJ)
####            if J == JJ-1:
####                print 'Function = %d '%J,
####            else:
####                print 'Functions = [%d,%d]'%(J,JJ-1)
####            Fj = create_funcs([18],t+1) #create timer function as i = 0 Here is the timer
####            Fj = Fj + F[J:JJ]
####            count = 0
####            fj_time = time.time()
####            abc('r %s__ysavetemp.aig'%f_name) #important need to restore aig here so the F refers to right thing when doing verify_only.
######                                             # because verify_only changes the aig.
######            ps()
####            for i,res in pyabc_split.abc_split_all(Fj):
####                count = count+1
####                Ji = J+i-1 #gives output number
####                if ((res == 0) or (res == 1)):
####                    abc('read_status %d.status'%Ji)
####                    res = get_status()
####                    outcome = 'CEX: Frame = %d, PO = %d, Time = %s'%(cex_frame(),Ji,convert((time.time() - fj_time)))
####                    break
####                if i == 0: #sleep timer expired
####                    outcome = '*** Time expired in %s sec. Next group = %d to %d ***'%(convert(time.time() - fj_time),JJ,min(N,JJ+inc))
####                    break
####                elif res == None: #this should not happen
####                    print res
####                    print Ji,RESULT[res],
####                else: # output Ji was proved
####                    result = result + [[Ji,res]]
####                    if count >= inc:
####                        outcome = '--- all group processed without cex ---'
####                        all_proc = True
####                        break
####                    continue #this can only happen if inc > 1
####            # end of for i loop
####            if ((res < Unsat) and (not res == None)): 
####                break
####            else:
####                continue # continue j loop
####        #end of for j loop
####        if k < len(rng):      
####            t_init = t/2 #next time start with this time.
####        else:
####            j_last = j_last+1 #this was last j and we did not find cex, so start at next group
####        print outcome + ' => ' ,
####        if ((res < Unsat) and (not res == None)):
####            t_init = t/2
####            abc('read_status %d.status'%Ji) #make sure we got the right status file.
####            #actually if doing abstraction we could remove proved outputs now, but we do not. -**inefficiency**
####            return res
####        else: #This implies that no outputs were disproved. Thus can remove proved outputs.
####            abc('r %s__ysavetemp.aig'%f_name) #restore original aig
####            if not result == []:
####                res = []
####                for j in range(len(result)):
####                    k = result[j]
####                    if k[1] == 2:
####                        res = res + [k[0]]
######                print res
######                result = mapp(res,G)
####                result = res
######                print result
####                remove(result) #remove the outputs that were proved UNSAT.
####                #This is OK for both abstract and speculate
####                print 'Number of POs reduced to %d'%n_pos()
####                if n_pos() == 0:
####                    return Unsat
####            if t>=T:
####                return Undecided
####            else:
####                continue
####    return Undecided

####def remap_pos():
####    """ maintains a map of current outputs to original outputs"""
####    global po_map
####    k = j = 0
####    new = []
####    assert n_pos() == len(po_map), 'length of po_map, %d, and current # POs, %d, don"t agree'%(len(po_map),n_pos())
####    for j in range(len(po_map)):
####        N = n_pos()
####        abc('removepo -N %d'%k) # this removes the output if it is 0 driven
####        if n_pos() == N:
####            new = new + [po_map[j]]
####            k = k+1
####    if len(new) < len(po_map):
######        print 'New map = ',
######        print new
####        po_map = new

####def prove_mapped():
####    """
####    assumes that srm is in workspace and takes the unsolved outputs and proves
####    them by using proved outputs as constraints.
####    """
####    global po_map
######    print po_map
####    po_map.sort() #make sure mapped outputs are in order
####    for j in po_map: #put unsolved outputs first
####        run_command('swappos -N %d'%j)
####        print j
####    N = n_pos()
####    assert N > len(po_map), 'n_pos = %d, len(po_map) = %d'%(N, len(po_map))
####    run_command('constr -N %d'%(N-len(po_map))) #make the other outputs constraints
####    run_command('fold') #fold constraints into remaining outputs.
####    ps()
####    prove_all_mtds(100)
    
####def mapp(R,G):
####    result = []
####    for j in range(len(R)):
####        result = result + G[R[j]]
####    return result
        
#_______________________________________        

    
####def prove_g_pos_split():
####    """like prove_g_pos but quits when any output is undecided"""
####    global f_name, max_bmc,x_factor,x
####    x = time.clock()
####    #input_x_factor()
####    init_f_name = f_name
####    print 'Beginning prove_g_pos_split'
####    prove_all_ind()
####    print 'Number of outputs reduced to %d by fast induction with constraints'%n_pos()
####    reparam()
######    try_rpm()
####    print '********** Proving each output separately ************'  
####    f_name = init_f_name
####    abc('w %s_osavetemp.aig'%f_name)
####    n = n_pos()
####    print 'Number of outputs = %d'%n
####    pos_proved = []
####    J = 0
####    jnext = n-1
####    while jnext >= 0:
####        max_bmc = -1
####        f_name = init_f_name
####        abc('r %s_osavetemp.aig'%f_name)
####        jnext_old = jnext
####        extract(jnext,jnext)
####        jnext = jnext -1
####        print '\nProving output %d'%(jnext_old)
####        f_name = f_name + '_%d'%jnext_old
####        result = prove_1()
####        if result == 'UNSAT':
####            if jnext_old > jnext+1:
####                print '********  PROVED OUTPUTS [%d-%d]  ******** '%(jnext+1,jnext_old)
####            else:
####                print '********  PROVED OUTPUT %d  ******** '%(jnext_old)
####            pos_proved = pos_proved + range(jnext +1,jnext_old+1)
####            continue
####        if result == 'SAT':
####            print 'One of output in (%d to %d) is SAT'%(jnext + 1,jnext_old)
####            return result
####        else:
####            print '********  UNDECIDED on OUTPUTS %d thru %d  ******** '%(jnext+1,jnext_old)
####            print 'Eliminating %d proved outputs'%(len(pos_proved))
####            # remove outputs proved and return
####            f_name = init_f_name
####            abc('r %s_osavetemp.aig'%f_name)
####            remove(pos_proved)
####            trim()
####            write_file('group')            
####            return 'UNDECIDED'
####    f_name = init_f_name
####    abc('r %s_osavetemp.aig'%f_name)
####    if not len(pos_proved) == n:
####        print 'Eliminating %d proved outputs'%(len(pos_proved))
####        remove(pos_proved)
####        trim()
####        write_file('group')
####        result = 'UNDECIDED'
####    else:
####        print 'Proved all outputs. The problem is proved UNSAT'
####        result = 'UNSAT'
####    print 'Total time = %f sec.'%(time.clock() - x)
####    return result

####def group(a,n):
####    """Groups together outputs beginning at output n and any contiguous preceeding output
####    that does not increase the latch support by a or more"""
####    global f_name, max_bmc
####    nlt = n_latches()
####    extract(n,n)
####    nli = n_latches()
####    if n == 0:
####        return n-1
####    for J in range(1,n+1):
####        abc('r %s_osavetemp.aig'%f_name)
####        j = n-J
####        #print 'Running %d to %d'%(j,n)
####        extract(j,n)
####        #print 'n_latches = %d'%n_latches()
####        #if n_latches() >= nli + (nlt - nli)/2:
####        if n_latches() == nli:
####            continue
####        if n_latches() > nli+a:
####            break
####    abc('r %s_osavetemp.aig'%f_name)
######    if j == 1:
######        j = j-1
####    print 'extracting [%d-%d]'%(j,n)
####    extract(j,n)
####    ps()
####    return j-1
        
def extract(n1,n2):
    """Extracts outputs n1 through n2"""
    no = n_pos()
    if n2 > no:
        return 'range exceeds number of POs'
    abc('cone -s -O %d -R %d'%(n1, 1+n2-n1))

def remove_intrps(J):
    global n_proc,ifbip
    npr = n_proc
    if 18 in J:
        npr = npr+1
    if len(J) <= npr:
        return J
    JJ = []
    alli = [23,1,22] # if_no_bip, then this might need to be changed
    l = len(J)-npr
    alli = alli[:l]
    for i in J:
        if i in alli:
            continue
        else:
            JJ = JJ +[i]
    return JJ
        
def remove(lst):
    """Removes outputs in list"""
    global po_map
    n_before = n_pos()
    zero(lst)
    l=remove_const_pos()
    print 'n_before = %d, n_list = %d, n_after = %d'%(n_before, len(lst), n_pos())

def check_pos():
    """ checks if any POs are 0, and removes them with a warning"""
    N = n_pos()
    l=remove_const_pos()
    if not N == n_pos():
        print 'WARNING: some POs are 0 and are rremoved'
        print '%d POs removed'%(N - n_pos())

def zero(list):
    """Zeros out POs in list"""
    for j in list:
        run_command('zeropo -N %d'%j)

def mark_const_pos(ll=[]):
    """ creates an indicator of which PO are const-0 and which are const-1
        does not change number of POs
    """
    L = range(n_pos())
    L.reverse()
    if ll == []:
        ll = [-1]*n_pos()
    ind = ll
    abc('&get') #save original
    for j in L:
        n_before = n_pos()
        abc('removepo -N %d'%j) #removes const-0 output
        if n_pos() < n_before:
            ind[j]=0
##    print sumsize(ind)
##    ps()
    abc('&put')
    for j in L:
        n_before = n_pos()
        abc('removepo -z -N %d'%j) # -z removes const-1 output
        if n_pos() < n_before:
            ind[j]=1
##    ps()
    abc('&put') #put back original
##    remove_const_pos()
    print sumsize(ind)
    return ind

def remove_const_pos():
    global po_map
    """removes the 0 pos, but no pis because we might get cexs and need the correct number of pis
    Should keep tract of if original POs are 0 and are removed.
    Can this happen outside of prove_all_ind or
    pord_all which can set proved outputs to 0???
    WARNING: This can remove constant 1 nodes too???
    """
    run_command('&get; &trim -i; &put; addpi') #adds a pi only if there are none
    po_map = range(n_pos())

def psp():
    quick_simp()
    result = run_parallel([6,21],500,'US') #runs 'run_parallel' and sp() in parallel.
##                                          run_parallel uses JP and TERM to terminate.
    return result

def sp():
    global initial_f_name
    """Alias for super_prove"""
    print 'Executing super_prove'
    result = super_prove(0)
    print '%s is done'%initial_f_name
    return result


def sumsize(L):
    d = count_less(L,0)
    u = count_less(L,1)-d
    s = count_less(L,2) - (d+u)
    return 'SAT = %d, UNSAT = %d, UNDECIDED = %d'%(s,u,d)

def unmap(L,L2,map):
    mx = max(list(map))
    assert mx <= len(L2),'max of map = %d, length of L2 = %d'%(mx,len(L))
    for j in range(len(map)):
        L[j] = L2[map[j]] #expand results of L2 into L
    return L 

def create_map(L,N):
    map = [-1]*N
    for j in range(len(L)):
        lj = L[j]
        for k in range(len(lj)):
            map[lj[k]] = j
    return map

def mp(op='sp'):
    L = multi_prove(op,900)
    return sumsize(L)

def multi_prove(op='sp',tt=900):
    """two phase prove process for multiple output functions"""
    global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time
    global f_name_save,name_save
    x_init = time.time()
    N = n_pos()
    L = [-1]*N
    print 'Mapping for isomorphism: '
    iso() #reduces number of POs
    map = create_map(iso_eq_classes(),N) #creates map into original
    N = n_pos()
    r = pre_simp() #pre_simp
    write_file('smp')
    NP = n_pos()/N #if NP > 1 then NP unrollings were done.
    if n_pos() > N:
        assert NP>=2, 'NP not 2, n_pos = %d, N = %d, NP = %d'%(n_pos(),N,NP)
    print 'pre_simp done. NP = %d\n\n'%NP
    #WARNING: if phase abstraction done, then number of POs changed.
    if r == Unsat:
        L = [0]*N #all outputs are UNSAT
        print sumsize(L)
        return L
    f_name_save = f_name
    name_save = '%s_initial_save.aig'%f_name
    abc('w %s'%name_save)
    L1 = [-1]*n_pos() # L1 has length after pre_simp
##    L1= mark_const_pos(L1) #puts const values in L1 
##    print sumsize(L1)
    #########do second iso here
    N = n_pos()
    print 'Mapping for isomorphism: '
    iso() #second iso - changes number of POs
    map2 = create_map(iso_eq_classes(),N) #creates map into previous
    L2 = [-1]*n_pos()
    L2 = mark_const_pos(L2) #populates L2 with constants
    print sumsize(L2)
    #########second iso done
    abc('r %s'%name_save)
    L2 = mprove(L2,op,10) #populates L2 with results
    print sumsize(L2)
    time_left = tt - (time.time()-x_init)
    print '\n\n\n*********time left = %d ********\n\n\n'%time_left
    N = count_less(L2,0)
    if N > 0:
        t = max(100,time_left/N)
        L2 = mprove(L2,op,t) #populates L2 with more results
    S = sumsize(L2)
    T = '%.2f'%(time.time() - x_init)
    print '%s in time = %s'%(S,T)
    ########undo second iso
    L1 = unmap(L1,L2,map2)
    print 'unmapping for iso: ',
    print sumsize(L1)
    #############
    if NP > 1: #an unrolling was done
        L1 = check_L(NP,L1) #map into reduced size before unrolling was done.
        print 'unmapping for unrolling.',
        print sumsize(L1)
    L = unmap(L,L1,map)
    print 'unmapping for iso',
    print sumsize(L)
    return L

def check_L(NP,L):
    """This happens when an unrolling creates additional POs
    We want to check that L[j] = L[j+N] etc to make sure the PO results agree
    in all phases, i.e. sat, unsat, or undecided
    """
    N = len(L)/NP #original number of POs
    for j in range(N):
        for k in range(NP)[1:]: #k = 1,2,...,NP-1
            if (L[j] == 1):
                break
            elif L[j+k*N] == 1:
                L[j] = 1
                break
            elif L[j] == -1:
                continue #we have to continue to look for a 1
            elif L[j] == 0:
                if L[j+k*N] == -1:
                    L[j] = -1
                    break
            continue #have to make sure that all phases are 0
    return L[:N]


def mprove(L,op='sp',tt=1000):
    """ 0 = unsat, 1 = sat, -1 = undecided"""
    global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time
    global f_name_save,name_save,temp_dec
    N = len(L)
    t = tt #controls the amount of time spent on each cone
    funcs = [eval('(pyabc_split.defer(%s)())'%op)]
    funcs = create_funcs(slps,t)+funcs
    mtds =sublist(methods,slps) + [op]
    res = L
    for j in range(N):
        if L[j] > -1:
            continue #already solved
        abc('r %s'%name_save) #restore original function
        x = time.time()
        name = '%s_cone_%d'%(f_name_save,j)
        abc('cone -s -O %d'%j)
        abc('w %s.aig'%name)
        print '\n********************************************'
        read_file_quiet(name)
        print '________%s(%s)__________'%(op,name)
        temp_dec = False
        fork_last(funcs,mtds)
        T = '%.2f'%(time.time() - x)
        out = get_status()
        if out == Unsat:
            res[j] = 0
        if out < Unsat:
            res[j] = 1
        print '\n%s: %s in time = %s'%(name,RESULT[out],T)
    return res

def sp1(options = ''):
    global sec_options
    sec_options = options
    return super_prove(1)

def super_prove(n=0):
    """Main proof technique now. Does original prove and if after speculation there are multiple output left
    if will try to prove each output separately, in reverse order. It will quit at the first output that fails
    to be proved, or any output that is proved SAT
    n controls call to prove(n)
    is n == 0 do smp and abs first, then spec
    if n == 1 do smp and spec first then abs
    if n == 2 just do quick simplification instead of full simplification, then abs first, spec second
    """
    global max_bmc, init_initial_f_name, initial_f_name,win_list, last_verify_time, f_name
    init_initial_f_name = initial_f_name
    if x_factor > 1:
        print 'x_factor = %f'%x_factor
        input_x_factor()
    max_bmc = -1
    x = time.time()
##    if n == 2:
##        result = prove(2)
##    else:
##        result = prove(0)
    result = prove(n)
    if ((result == 'SAT') or (result == 'UNSAT')):
        print '%s: total clock time taken by super_prove = %f sec.'%(result,(time.time() - x))
        return result
    elif ((result == 'UNDECIDED') and (n_latches() == 0)):
        return result
    print '%s: total clock time taken by super_prove so far = %f sec.'%(result,(time.time() - x))
    y = time.time()
    if n == 2:
        print 'Entering BMC_VER()'
        result = BMC_VER() #n=2 is only called from sp2, a super_prove run in parallel.
        if ((result == 'SAT') and (('_abs' in f_name)or '_spec' in f_name)): #this is because we have done an abstraction and cex is invalid.
            result = 'UNDECIDED'
    else:
        print 'Entering BMC_VER_result'
        result = BMC_VER_result() #this does backing up if cex is found
    print 'Total clock time taken by last gasp verification = %f sec.'%(time.time() - y)
    print 'Total clock time for %s = %f sec.'%(init_initial_f_name,(time.time() - x))
    return result

def reachm(t):
    x = time.clock()
    abc('&get;&reachm -vcs -T %d'%t)
    print 'reachm done in time = %f'%(time.clock() - x)
    return get_status()

def reachp(t):
    x = time.clock()
    abc('&get;&reachp -rv -T %d'%t)
    print 'reachm2 done in time = %f'%(time.clock() - x)
    return get_status()

def scorr():
    run_command('scorr')
    ps()

def select_undecided(L):
    res = []
    for j in range(len(L)):
        l = L[j]
        if l[1] == 'UNDECIDED':
            res = res + [l[0]]
    return res
        
####def execute(L,t):
####    """
####    run the files in the list L using ss, sp, ssm each for max time = t
####    """
####    funcs1 = [eval('(pyabc_split.defer(ss)())')]
####    funcs1 = create_funcs(slps,t)+funcs1
####    mtds1 =sublist(methods,slps) + ['ss']
####    funcs2 = [eval('(pyabc_split.defer(sp)())')]
####    funcs2 = create_funcs(slps,t)+funcs2
####    mtds2 =sublist(methods,slps) + ['sp']
####    funcs3 = [eval('(pyabc_split.defer(ssm)())')]
####    funcs3 = create_funcs(slps,t)+funcs3
####    mtds3 =sublist(methods,slps) + ['ssm']
####    for j in range(len(L)):
####        name = L[j]
####        print '\n\n\n\n________ss__________'
####        read_file_quiet(name)
####        print '****ss****'
####        fork_last(funcs1,mtds1)
####        print '***Done with ss on %s\n'%name
####        print '\n\n******ssm************'
####        read_file_quiet(name)
####        print '****ssm****'
####        fork_last(funcs3,mtds3)
####        print '***Done with ssm on %s \n'%name

def execute_op(op,L,t):
    """
    run the files in the list L using operation "op", each for max time = t
    """
    funcs = [eval('(pyabc_split.defer(%s)())'%op)]
    funcs = create_funcs(slps,t)+funcs
    mtds =sublist(methods,slps) + [op]
    res = []
    for j in range(len(L)):
        x = time.time()
        name = L[j]
        print '\n\n\n\n________%s__________'%op
        read_file_quiet(name)
        m,result = fork_last(funcs,mtds)
        if result == Undecided:
            result = RESULT[result]
        T = '%.2f'%(time.time() - x)
        new_res = [name,result,T]
        res = res + [new_res]
        print '\n%s'%new_res
    return res

def x_ops(ops,L,t):
    """ execute each op in the set of ops on each file in the set of files of L, each for time t"""
    result = []
    for j in range(len(ops)):
        op = ops[j]
        result.append('Result of %s'%op)
        result.append(execute_op(op,L,t))
    return result

def iso(n=0):
    if n == 0:
        run_command('&get;&iso;&put')
    else:
        run_command('&get;&iso;iso;&put')

def check_iso(N):
    ans = get_large_po()
    if ans == -1:
        return 'no output found'
    n_iso = count_iso(N)
    return n_iso

def count_iso(N):
    abc('&get;write_aiger -u file1.aig') #put this cone in & space and write file1
##    print 'PO %d is used'%i
    n_iso = 0 #start count
    for i in range(N):
        abc('permute;write_aiger -u file2.aig')
        n = filecmp.cmp('file1.aig','file2.aig')
        print n,
        n_iso = n_iso+n
    print 'the number of isomorphisms was %d out of %d'%(n_iso,N)
    return n_iso

def get_large_po():
##    remove_const_pos() #get rid of constant POs
    NL = n_latches()
    NO = n_pos()
    abc('&get') #put the in & space
    n_latches_max = 0
    nl = imax = -1
    for i in range(NO): #look for a big enough PO
        abc('&put;cone -s -O %d;scl'%i)
        nl = n_latches()
        if nl >.15*NL:
            imax = i
##            print 'cone %d has %d FF'%(i,nl)
            break
        if nl> n_latches_max:
            n_latches_max = nl
            imax = i
            print i,nl
        if i == NO-1:
            print 'no PO is big enough'
            return -1
    print 'PO_cone = %d, n_latches = %d'%(imax,nl)

def scorro():
    run_command('scorr -o')
    l = remove_const_pos()
    ps()

def drw():
    run_command('drw')
    ps()

def dc2rs():
    abc('dc2rs')
    ps()
    

def reachn(t):
    x = time.clock()
    abc('&get;&reachn -rv -T %d'%t)
    print 'reachm3 done in time = %f'%(time.clock() - x)
    return get_status()
    
def reachx(t):
    x = time.time()
    abc('reachx -t %d'%t)
    print 'reachx  done in time = %f'%(time.time() - x)
    return get_status()

def reachy(t):
    x = time.clock()
    abc('&get;&reachy -v -T %d'%t)
    print 'reachy done in time = %f'%(time.clock() - x)
    return get_status()
    
def create_funcs(J,t):
    """evaluates strings indexed by J in methods given by FUNCS
    Returns a list of lambda functions for the strings in FUNCs
    If J = [], then create provers for all POs"""
    funcs = []
    for j in range(len(J)):
        k=J[j]
        funcs = funcs + [eval(FUNCS[k])]
    return funcs

def check_abs():
    global init_initial_f_name
    abc('w %s_save.aig'%init_initial_f_name)
    ni = n_pis()
    nl = n_latches()
    na = n_ands()
    abc('r %s_smp_abs.aig'%init_initial_f_name)
    if ((ni == n_pis()) and (nl == n_latches()) and (na == n_ands())):
        return True
    else:
        abc('r %s_save.aig'%init_initial_f_name)
        return False

def modify_methods(J,dec=0):
    """ adjusts the engines to reflect number of processors"""
    N = bmc_depth()
    L = n_latches()
    I = n_real_inputs()
    npr = n_proc -dec
    if 18 in J: #if sleep in J add 1 more processor
        npr = npr+1
    if ( ((I+L<350)&(N>100))  or  (I+L<260) or (L<80) ):
        if not 24 in J: #24 is reachs
            J = J+[24] # add all reach methods
            if len(J)>npr:
                J = remove_intrps(J) #removes only if len(J)<n_processes
    if len(J)< npr: #if not using all processors, add in pdrs
        #modify allpdrs to reflect ifbip (see set_engines)
        for j in range(len(allpdrs)):
            if allpdrs[j] in J: #leave it in
                continue
            else: #add it in
                J = J + [allpdrs[j]]
                if len(J) == npr:
                    break            
##        if L < 80:
##            if ((not 4 in J) and len(J) < n_proc):
##                J = J + [4]
    return J

def BMC_VER():
    """ a special version of BMC_VER_result that just works on the current network
    Just runs engines in parallel - no backing up
    """
    global init_initial_f_name, methods, last_verify_time, n_proc
    xt = time.time()
    result = 5
    t = max(2*last_verify_time,10000)  ####
    print 'Verify time set to %d'%t
    J = slps + pdrs + bmcs + intrps
    J = modify_methods(J)
    F = create_funcs(J,t)
    mtds = sublist(methods,J)
    print mtds
    (m,result) = fork_break(F,mtds,'US')
    result = RESULT[result]
    print 'BMC_VER result = %s'%result
    return result

        
def BMC_VER_result():
    global init_initial_f_name, methods, last_verify_time,f_name
    xt = time.time()
    result = 5
    abc('r %s.aig'%f_name)
    print '\n***Running proof on %s :'%f_name,
    ps()
    t = max(2*last_verify_time,10000) #each time a new time-out is set t at least 1000 sec.
    print 'Verify time set to %d'%t
    X = pyabc_split.defer(abc)
    J = slps + pdrs + bmcs + intrps
    last_name = seq_name(f_name).pop()
    if 'smp' == last_name: # then we try harder to prove it.
        J = slps + intrps + allpdrs + [2]
    J = modify_methods(J) #if # processors is enough and problem is small enough then add in reachs
    F = create_funcs(J,t)
    mtds = sublist(methods,J)
    print '%s'%mtds
    (m,result) = fork(F,mtds)
    result = get_status()
    if result == Unsat:
        return 'UNSAT'
    if last_name == 'smp' :   # can't backup so just return result
        if result < Unsat:
            return 'SAT'
        if result > Unsat: #still undefined
            return 'UNDECIDED'
    else:    # (last_name == 'spec' or last_name == 'abs') - the last thing we did was an "abstraction"
        if result < Unsat:
            f_name = revert(f_name,1) # revert the f_name back to previous
            abc('r %s.aig'%f_name)
            return BMC_VER_result() #recursion here.
            
def try_split():
    abc('w %s_savetemp.aig'%f_name)
    na = n_ands()
    split(3)
    if n_ands()> 2*na:
        abc('r %s_savetemp.aig'%f_name)
    
def time_diff():
    global last_time
    new_time = time.clock()
    diff = new_time - last_time
    last_time = new_time
    result = 'Lapsed time = %.2f sec.'%diff
    return result

def prove_all_ind():
    """Tries to prove output k by induction, using other outputs as constraints.
    If ever an output is proved
    it is set to 0 so it can't be used in proving another output to break circularity.
    Finally all zero'ed outputs are removed.
    Prints out unproved outputs Finally removes 0 outputs
    """
    global n_pos_proved, n_pos_before
    print 'n_pos_proved = %d'%n_pos_proved
    n_proved = 0
    N = n_pos()
##    l=remove_const_pos()
##    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    if n_pos() == 1:
        return
    abc('w %s_osavetemp.aig'%f_name)
    lst = range(n_pos())
##    list.reverse()
##    for j in list[1:]:
    for j in lst:
##        abc('zeropo -N 0')
        abc('swappos -N %d'%j)
##        l=remove_const_pos() #may not have to do this if constr works well with 0'ed outputs
        abc('constr -N %d'%(n_pos()-1))
        abc('fold')
        n = max(1,n_ands())
        f = max(1,min(40000/n,16))
        f = int(f)
##        abc('ind -C 10000 -F %d'%f)
        abc('ind -C 1000 -F %d'%f)
##        run_command('print_status')
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name) #have to restore original here
        if status == Unsat:
##            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
            if j < n_pos_before - n_pos_proved:
                n_proved = n_proved + 1 # keeps track of real POs proved.
        elif status < Unsat:
            print '-%d'%j,
        else:
            print '*%d'%j,
    l=remove_const_pos()
    n_pos_proved = n_pos_proved + n_proved 
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    print 'n_pos_proved = %d'%n_pos_proved
    #return status

def remove_iso(L):
    global n_pos_proved, n_pos_before
    lst = []
    for j in range(len(L)):
        ll = L[j][1:]
        if len(ll) == 0:
            continue
        else:
            lst = lst + ll
    zero(lst)
    n_pos_proved = n_pos_proved + count_less(lst,n_pos_before - n_pos_proved)
    print 'The number of POs removed by iso was %d'%len(lst)
    l=remove_const_pos() #can an original PO be zero?

def prove_all_iso():
    """Tries to prove output k by isomorphism. Gets number of iso-eq_classes as an array of lists.
    Updates n_pos_proved
    """
    global n_pos_proved, n_pos_before
    n_proved = 0
    N = n_pos()
    if n_pos() == 1:
        return
    print 'n_pos_proved = %d'%n_pos_proved
##    run_command('&get;&iso;&put')
    abc('&get;&iso')
    L = iso_eq_classes()
##    print L
    remove_iso(L)
##    lim = n_pos_before - n_pos_proved
##    for j in range(len(L)):
##        ll = L[j]
##        if len(ll) == 1:
##            continue
##        if not ll[0] < lim:
##            continue
##        else:
##            n = count_less(ll[1:], lim) #drop the first since it is the representative.
##            print n
##            n_proved = n_proved + n
##            print n, n_proved
##    n_pos_proved = n_pos_proved + n_proved 
    print '\nThe number of POs reduced by iso was from %d to %d'%(N,n_pos())

def count_less(L,n):
    count = 0
    for j in range(len(L)):
        if L[j] < n:
            count = count + 1
    return count

def prove_all_mtds(t):
    """
    Tries to prove output k  with multiple methods in parallel,
    using other outputs as constraints. If ever an output is proved
    it is set to 0 so it can't be used in proving another output to break circularity.
    Finally all zero'ed ooutputs are removed.
    """
    N = n_pos()
##    l=remove_const_pos()
##    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    abc('w %s_osavetemp.aig'%f_name)
    list = range(n_pos())
    for j in list:
        run_command('swappos -N %d'%j)
##        l=remove_const_pos() #may not have to do this if constr works well with 0'ed outputs
        abc('constr -N %d'%(n_pos()-1))
        abc('fold')
##        cmd = '&get;,pdr -vt=%d'%t #put in parallel.
##        abc(cmd)
        verify(pdrs+bmcs+intrps+sims,t)
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Unsat:
            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
        print '%d'%j,
    assert not is_sat(), 'one of the POs is SAT' #we can do better than this
    l=remove_const_pos()
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def prove_all_pdr(t):
    """Tries to prove output k by pdr, using other outputs as constraints. If ever an output is proved
    it is set to 0 so it can't be used in proving another output to break circularity.
    Finally all zero'ed ooutputs are removed. """
    N = n_pos()
##    l=remove_const_pos()
    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    abc('w %s_osavetemp.aig'%f_name)
    list = range(n_pos())
    for j in list:
        abc('swappos -N %d'%j)
##        l=remove_const_pos() #may not have to do this if constr works well with 0'ed outputs
        abc('constr -N %d'%(n_pos()-1))
        abc('fold')
        cmd = '&get;,pdr -vt=%d'%t #put in parallel.
        abc(cmd)
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Unsat:
            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
        print '%d'%j,
    l=remove_const_pos()
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def prove_each_ind():
    """Tries to prove output k by induction,  """
    N = n_pos()
    l=remove_const_pos()
    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    abc('w %s_osavetemp.aig'%f_name)
    list = range(n_pos())
    for j in list:
        abc('cone -s -O %d'%j)
        n = max(1,n_ands())
        f = max(1,min(40000/n,16))
        f = int(f)
        abc('ind -u -C 10000 -F %d'%f)
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Unsat:
            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
        print '%d'%j,
    l=remove_const_pos()
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def prove_each_pdr(t):
    """Tries to prove output k by PDR. If ever an output is proved
    it is set to 0. Finally all zero'ed ooutputs are removed. """
    N = n_pos()
    l=remove_const_pos()
    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    abc('w %s_osavetemp.aig'%f_name)
    list = range(n_pos())
    for j in list:
        abc('cone -O %d -s'%j)
        abc('scl -m')
        abc('&get;,pdr -vt=%d'%t)
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Unsat:
            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
        print '%d'%j,
    l=remove_const_pos()
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def disprove_each_bmc(t):
    """Tries to prove output k by PDR. If ever an output is proved
    it is set to 0. Finally all zero'ed ooutputs are removed. """
    N = n_pos()
    l=remove_const_pos()
    print '0 valued output removal changed POs from %d to %d'%(N,n_pos())
    abc('w %s_osavetemp.aig'%f_name)
    list = range(n_pos())
    for j in list:
        abc('cone -O %d -s'%j)
        abc('scl -m')
        abc('bmc3 -T %d'%t)
        status = get_status()
        abc('r %s_osavetemp.aig'%f_name)
        if status == Sat:
            print '+',
            abc('zeropo -N %d'%j)
            abc('w %s_osavetemp.aig'%f_name) #if changed, store it permanently
        print '%d'%j,
    l=remove_const_pos()
    print '\nThe number of POs reduced from %d to %d'%(N,n_pos())
    #return status

def pord_1_2(t):
    """ two phase pord. First one tries with 10% of the time. If not solved then try with full time"""
    global n_pos_proved, ifpord1, pord_on
    pord_on = True # make sure that we do not reparameterize after abstract in prove_2
    n_pos_proved = 0
    if n_pos()<4:
        return Undecided
    if ifpord1:
        print 'Trying each output for %0.2f sec'%(.1*t)
        result = pord_all(.1*t) #we want to make sure that there is no easy cex.
        if (result <= Unsat):
            return result
    ifpord1 = 0
    print 'Trying each output for %0.2f sec'%t
    #might consider using iso before the second pass of pord_all
    result = pord_all(t+2*G_T) #make sure there is enough time to abstract
    pord_on = False #done with pord
    return result

def pord_all(t):
    """Tries to prove or disprove each output j by PDRM BMC3 or SIM. in time t"""
    global cex_list, n_pos_proved, last_cx, pord_on, ifpord1
    print 'last_cx = %d'%last_cx
    btime = time.time()
    N = n_pos()
    prove_all_ind() ############ change this to keep track of n_pos_proved
    nn = n_pos()
    abc('w %s_osavetemp.aig'%f_name)
    if nn < 4: #Just cut to the chase immediately.
        return Undecided
    lst = range(n_pos())
    proved = disproved = []
    abc('&get') #using this space to save original file.
    ### Be careful that & space is not changed.
##    with redirect.redirect( redirect.null_file, sys.stdout ):
##        with redirect.redirect( redirect.null_file, sys.stderr ):
    cx_list = []
    n_proved = 0
    lcx = last_cx + 1
    lst = lst[lcx:]+lst[:lcx]
    lst.reverse()
    n_und = 0
    for j in lst:
        print '\ncone %s. '%j,
        abc('&put; cone -s -O %d'%j) #puts the &space into reg-space and extracts cone j
        #requires that &space is not changed. &put resets status. Use &put -s to keep status
        abc('scl -m')
        ps()
##        print 'running sp2'
        ###
        result = run_sp2_par(t)
##        J = slps+JV
##        result = verify(J,t)
##        result = RESULT[result]
##        ###
##        print 'run_sp2_par result is %s'%result
        if result == 'UNDECIDED':
            n_und = n_und + 1
            status = Undecided
            if ((n_und > 1) and not ifpord1):
                break
        elif result == 'SAT':
            status = Sat
            disproved = disproved + [j]
            last_cx = j
            cx = cex_get()
            cx_list = cx_list + [cx]
            assert len(cx_list) == len(disproved), cx_list
            if len(cx_list) > 0:
                break
        else: #is unsat here
            status = Unsat
            proved = proved + [j]
            if j < n_pos_before - n_pos_proved:
                n_proved = n_proved +1
##    n_pos_proved = n_pos_proved + n_proved. #this should not be here because we should start fresh
    print '\nProved %d outputs'%len(proved)
    print 'Disproved %d outputs'%len(disproved)
    print 'Time for pord_all was %0.2f'%(time.time() - btime)
    NN = len(proved+disproved)
    cex_list = cx_list
    if len(disproved)>0:
        assert status == Sat, 'status = %d'%status
        n_pos_proved = 0 #we want to reset this because of a bad speculation
        return Sat
    else:
        n_pos_proved = n_pos_proved + n_proved
        abc('r %s_osavetemp.aig'%f_name)
##        abc('&put') # returning original to work spece
        remove(proved)
        print '\nThe number of unproved POs reduced from %d to %d'%(N,n_pos()),
        ps()
        if n_pos() > 0:
            return Undecided
        else:
            return Unsat

def bmc_ss(t):
    """
    finds a set cexs in t seconds starting at 2*N where N is depth of bmc -T 1
    The cexs are put in the global cex_list
    """
    global cex_list
    x = time.time()
    tt = min(10,max(1,.05*t))
    abc('bmc3 -T %0.2f'%tt)
    N = n_bmc_frames()
    if N <= max_bmc:
        return Undecided
##    print bmc_depth()
##    abc('bmc3 -C 1000000 -T %f -S %d'%(t,int(1.5*max(3,max_bmc))))
    run_command('bmc3 -vs -C 1000000 -T %f -S %d'%(t,2*N))
    if is_sat():
        cex_list = cex_get_vector() #does this get returned from a concurrent process?
        n = count_non_None(cex_list)
        print '%d cexs found in %0.2f sec at frame %d'%(n,(time.time()-x),cex_frame())
    return get_status()

def list_non_None(lst):
    """ return [i for i,s in enumerate(cex_list) if not s == None]"""
    L = []
    for i in range(len(lst)):
        if not lst[i] == None:
            L = L + [i]
    return L

def count_non_None(lst):
    #return len([i for i,s in enumerate(cex_list) if not s == None]
    count = 0
    for i in range(len(lst)):
        if not lst[i] == None:
            count = count + 1
    return count

def remove_disproved_pos(lst):
    for i in range(len(lst)):
        if not lst[i] == None:
            abc('zeropo -N %d'%i)
    l=remove_const_pos()
        
def bmc_j(t):
    """ finds a cex in t seconds starting at 2*N where N is depth of bmc -T 1"""
    x = time.time()
    tt = min(5,max(1,.05*t))
    abc('bmc3 -T %0.2f'%tt)
    if is_sat():
        print 'cex found in %0.2f sec at frame %d'%((time.time()-x),cex_frame())
        return get_status()
##    abc('bmc3 -T 1')
    N = n_bmc_frames()
    N = max(1,N)
##    print bmc_depth()
##    abc('bmc3 -C 1000000 -T %f -S %d'%(t,int(1.5*max(3,max_bmc))))
    cmd = 'bmc3 -J 2 -D 4000 -C 1000000 -T %f -S %d'%(t,2*N)
##    print cmd
    abc(cmd)
    if is_sat():
        print 'cex found in %0.2f sec at frame %d'%((time.time()-x),cex_frame())
    return get_status()

def pdrseed(t):
    """uses the abstracted version now"""
##    abc('&get;,treb -rlim=60 -coi=3 -te=1 -vt=%f -seed=521'%t)
    abc('&get;,treb -rlim=100 -vt=%f -seed=521'%t)


def pdrold(t):
    abc('&get; ,pdr -vt=%f'%t)

def pdr(t):
    abc('&get; ,treb -vt=%f'%t)
    return RESULT[get_status()]

def pdra(t):
##    abc('&get; ,treb -rlim=100 -ssize -pre-cubes=3 -vt=%f'%t)
    abc('&get; ,treb -abs -rlim=100 -gen-cex -vt=%f'%t)
    return RESULT[get_status()]

def pdrm(t):
    abc('pdr -C 0 -T %f'%t)
    return RESULT[get_status()]

def pdrmm(t):
    abc('pdr -C 0 -M 298 -T %f'%t)
    return RESULT[get_status()]

def split(n):
    abc('orpos;&get')
    abc('&posplit -v -N %d;&put;dc2'%n)
    trim()

def keep_splitting():
    for j in range(5):
        split(5+j)
        no = n_pos()
        status = prove_g_pos_split()
        if status <= Unsat:
            return status
        if no == n_pos():
            return Undecided

def drill(n):
    run_command('&get; &reachm -vcs -H 5 -S %d -T 50 -C 40'%n)

def prove_1(ratio=.75):
    """
    A version of prove called from prove_pos, prove_g_pos, prove_only, prove_g_pos_split when we
    have speculated and produced multiple outputs. 
    Proves all the outputs together. If ever an abstraction was done then
    if SAT is returned,we make RESULT return "undecided".
    """
    global x_factor,xfi,f_name,x, initial_f_name
    x = time.time()
    max_bmc = -1
    print 'Initial: ',
    ps()
    x_factor = xfi
    initial_f_name_save = initial_f_name #needed because we are making local backups here.
    initial_f_name = '%s_temp'%initial_f_name
    set_globals()
    print'\n***Running abstract'
    status = abstract(ifbip)
    trim()
    status = process_status(status)
    if ((status <= Unsat)  or  status == Error):
        if  status < Unsat:
            print 'CEX in frame %d'%cex_frame(),
            print 'abstract found a cex in initial circuit'
            print 'Time for proof = %f sec.'%(time.time() - x)
            initial_f_name = initial_f_name_save
            return RESULT[status]
        print 'Time for proof = %f sec.'%(time.time() - x)
        initial_f_name = initial_f_name_save
        return RESULT[status]
    #undecided here
    print 'Entering direct verificationb'
####    status = final_verify_recur(2)
    status = BMC_VER()
    return status
    
    trim()
####    write_file('final')
    print 'Time for proof = %f sec.'%(time.time() - x)
    initial_f_name = initial_f_name_save
    return RESULT[status]
    
def pre_reduce():
    x = time.clock()
    pre_simp()
    write_file('smp')
    abstract(ifbip)
####    write_file('abs')
    print 'Time = %f'%(time.clock() - x)

def sublist(L,I):
    # return [s for i,s in enumerate(L) if i in I]
    z = []
    for i in range(len(I)):
        s = L[I[i]],
        s = list(s)
        z = z + s
    return z

#PARALLEL FUNCTIONS
"""  funcs should look like
funcs = [pyabc_split.defer(abc)('&get;,bmc -vt=50;&put'),pyabc_split.defer(super_prove)()]
After this is executed funcs becomes a special list of lambda functions
which are given to abc_split_all to be executed as in below.
It has been set up so that each of the functions works on the current aig and
possibly transforms it. The new aig and status is always read into the master when done
"""


def tf():
    result = top_fork()
    return result

def top_fork(J,t):
    global x_factor, final_verify_time, last_verify_time, methods
    set_globals()
    mtds = sublist(methods,J)
    F = create_funcs(J,t)
    print 'Running %s in parallel for max %d sec.'%(mtds,t)
    (m,result) = fork_last(F,mtds) #FORK here
    return get_status()

def run_sp2_par(t):
    """ Runs the single method simple, timed for t seconds."""
    global cex_list,methods
    J = slps+[6]
    print sublist(methods,J)
    funcs = create_funcs(J,t) 
    y = time.time()
    for i,res in pyabc_split.abc_split_all(funcs):
##        print 'i,res = %d,%s'%(i,res)
        t = time.time()-y
        if i == 0:
            print 'sleep timer expired in %0.2f'%t
            return 'UNDECIDED'
        else:
##            print i,res
            if res == 'UNSAT':
                print 'Simple_prove proved UNSAT in %0.2f sec.'%t
                return 'UNSAT'
            elif res == 'UNDECIDED':
                print 'Simple_prove proved UNDECIDED in %0.2f sec.'%t
                return 'UNDECIDED'
            else:
                print 'Simple_prove found cex in %0.2f sec.'%t
                return 'SAT'
            

def run_parallel(J,t,BREAK):
    """ Runs the listed methods J, each for time = t, in parallel and
    breaks according to BREAK = subset of '?USLB'"""
    global cex_list,  methods
    mtds = sublist(methods,J)
    F = create_funcs(J,t) #if J = [] we are going to create functions that process each output separately.
                            #if 18, then these are run in parallel with sleep
    if ((J == []) ):
        result = fork_break(F,mtds,BREAK)
##        #redirect here to suppress printouts.
##        with redirect.redirect( redirect.null_file, sys.stdout ):
##            with redirect.redirect( redirect.null_file, sys.stderr ):
##                result = fork_break(F,mtds,BREAK)
    elif 'L' in BREAK:
        result = fork_last(F,mtds)
    elif 'B' in BREAK:
        result = fork_best(F,mtds)
    else:
        result = fork_break(F,mtds,BREAK)
    return result

def fork_all(funcs,mtds):
    """Runs funcs in parallel and continue running until all are done"""
    global methods
    y = time.time()
    for i,res in pyabc_split.abc_split_all(funcs):
        status = prob_status()
        t = time.time()-y
        if not status == -1: #solved here
            if status == 1: #unsat
                print '%s proved UNSAT in %f sec.'%(mtds[i],t)
            else:
                print '%s found cex in %f sec. - '%(mtds[i],t),
                if not mtds[i] == 'REACHM':
                    print 'cex depth at %d'%cex_frame()
                else:
                    print ' '
            continue
        else:
            print '%s was undecided in %f sec. '%(mtds[i],t)
    return i,res

def fork_break(funcs,mtds,BREAK):
    """
    Runs funcs in parallel and breaks according to BREAK <= '?US'
    If mtds = 'sleep' or [], we are proving outputs in parallel
    Saves cex's found in cex_list in case we are proving POs.
    """
    global methods,last_verify_time,seed,cex_list,last_winner,last_cex
    seed = seed + 3 # since parallel processes do not chenge the seed in the prime process, we need to change it here
    cex_list = lst = []
    y = time.time() #use wall clock time because parent fork process does not use up compute time.
    for i,res in pyabc_split.abc_split_all(funcs):
        status = get_status()
        t = time.time()-y
        lm = len(mtds)
        if ((lm < 2) and not i == 0): # the only single mtds case is where it is 'sleep'
            M = 'Output %d'%(i-lm)
        else:
            M = mtds[i]
            last_winner = M
        if M == 'sleep':
            print 'sleep: time expired in %s sec.'%convert(t)
            assert status >= Unsat,'status = %d'%status
            break
        if ((status > Unsat) and '?' in BREAK): #undecided
                break
        elif status == Unsat: #unsat
            print '%s: UNSAT in %s sec.'%(M,convert(t))
            if 'U' in BREAK:
                break
        elif status < Unsat: #status == 0 - cex found
            if M in methods:                
                if methods.index(M) in exbmcs+allreachs+allpdrs+[1]: #set the known best depth so far. [1] is interp
                    set_max_bmc(n_bmc_frames())
            last_cex = M
            print '%s: -- cex in %0.2f sec. at depth %d => '%(M,t,cex_frame()),
            cex_list = cex_list+[cex_get()] #accumulates multiple cex's and puts them on list.
            if len(cex_list)>1:
                print 'len(cex_list): %d'%len(cex_list)
            if 'S' in BREAK:
                break
        else:
            continue
    return i,status

def fork_best(funcs,mts):
    """ fork the functions, If not solved, take the best result in terms of AIG size"""
    global f_name
    n = len(mts)-1
    y = time.time()
    m_best = -1
    best_size = [n_pis(),n_latches(),n_ands()]
##    print best_size
    abc('w %s_best_aig.aig'%f_name)
    for i,res in pyabc_split.abc_split_all(funcs):
        status = prob_status()
##        print i,
##        ps()
##        print i,res,
        #ps()
        if not status == -1: #solved here
            m = i
            t = time.time()-y
            if status == 1: #unsat
                print '%s proved UNSAT in %f sec.'%(mtds[i],t)
            else:
                print '%s found cex in %f sec. - '%(mtds[i],t),
            break
        else:
            cost = rel_cost(best_size)
##            print i,cost
            if cost < 0:
                best_size = [n_pis(),n_latches(),n_ands()]
##                print best_size
                m_best = i
##                print m_best
                abc('w %s_best_aig.aig'%f_name)
    abc('r %s_best_aig.aig'%f_name)
    return m_best,res

def take_best(funcs,mts):
    """ fork the functions, If not solved, take the best result in terms of AIG size"""
    global f_name
    n = len(mts)-1
    y = time.time()
    m_best = -1
    best_size = 1000000
    abc('w %s_best_aig.aig'%f_name)
    for i,res in pyabc_split.abc_split_all(funcs):
        if n_ands() < best_size:
            best_size = n_ands()
            m_best = i
            abc('w %s_best_aig.aig'%f_name)
    abc('r %s_best_aig.aig'%f_name)
    return m_best,res


def fork_last(funcs,mtds):
    """ fork the functions, and take first definitive answer, but
    if last method ends first, then kill others"""
    n = len(mtds)-1
    m = -1
    y = time.time()
    lst = ''
    print mtds
    #print 'starting fork_last'
    for i,res in pyabc_split.abc_split_all(funcs):
        #print i,res
        status = prob_status()
        if not status == -1: #solved here
            m = i
            t = int(time.time()-y)
            if status == 1: #unsat
                print '%s proved UNSAT in %d sec.'%(mtds[i],t)
            else:
                print '%s found cex in %s sec. - '%(mtds[i],convert(t)),
            break
        elif i == n:
            t = int(time.time()-y)
            m = i
            print '%s: %d sec.'%(mtds[i],t)
            ps()
            break
        elif mtds[i] == 'sleep':
            res = Undecided
            t = time.time()-y
            print 'sleep timer expired in %0.2f'%t
            break
        lst = lst + ', '+mtds[i]
    return m,res

def fork(funcs,mtds):
    """ runs funcs in parallel This keeps track of the verify time
    when a cex was found, and if the time to find
    the cex was > 1/2 allowed time, then last_verify_time is increased by 2"""
    global win_list, methods, last_verify_time,seed
    beg_time = time.time()
    i,res = fork_break(funcs,mtds,'US') #break on Unsat of Sat.
    t = time.time()-beg_time        #wall clock time because fork does not take any compute time.
    if t > .4*last_verify_time:
##    if t > .15*last_verify_time: ##### temp
        t = last_verify_time = last_verify_time + .1*t
        #print 'verify time increased to %s'%convert(t)
    assert res == get_status(),'res: %d, status: %d'%(res,get_status())
    return i,res


def save_time(M,t):
    global win_list,methods
    j = methods.index(M)
    win_list = win_list + [(j,t)]
    #print win_list

def summarize(lst):
    result = [0]*10
    for j in range(len(lst)):
        k = lst[j]
        result[k[0]]=result[k[0]]+k[1]
    return result

def top_n(lst,n):
    result = []
    ll = list(lst) #makes a copy
    m = min(n,len(ll))
    for i in range(m):
        mx_index = ll.index(max(ll))
        result = result + [mx_index]
        ll[mx_index] = -1
    return result

def super_pre_simp():
    while True:
        nff = n_latches()
        print 'Calling pre_simp'
        pre_simp()
        if n_latches() == nff:
            break

#______________________________
#new synthesis command

####def synculate(t):
####    """
####    Finds candidate sequential equivalences and refines them by simulation, BMC, or reachability
####    using any cex found. If any are proved, then they are used to reduce the circuit. The final aig
####    is a new synthesized circuit where all the proved equivalences are merged.
####    If we put this in a loop with increasing verify times, then each time we work with a simpler model
####    and new equivalences. Should approach srm. If in a loop, we can remember the cex_list so that we don't
####    have to deal with disproved equivalences. Then use refine_with_cexs to trim the initial equivalences.
####    If used in synthesis, need to distinguish between
####    original outputs and new ones. Things to take care of: 1. a PO should not go away until it has been processes by merged_proved_equivalences
####    2. Note that &resim does not use the -m option where as in speculation - m is used. It means that if
####    an original PO isfound to be SAT, the computation quits becasue one of the output
####    miters has been disproved.
####    """    
####    global G_C,G_T,n_pos_before, x_factor, n_latches_before, last_verify_time, f_name,cex_list, max_verify_time
####    
####    
####    def refine_with_cexs():
####        """Refines the gores file to reflect equivalences that go away because of cexs in cex_list"""
####        global f_name
####        abc('&r %s_gores.aig'%f_name)
####        for j in range(len(cex_list)):
####            cex_put(cex_list[j])
####            run_command('&resim') #put the jth cex into the cex space and use it to refine the equivs
####        abc('&w %s_gores.aig'%f_name)
####        return
####    
####    def generate_srms():
####        """generates a synthesized reduced model (srms) from the gores file"""
####        global f_name, po_map
####        abc('&r %s_gores.aig; &srm -sf; r gsrms.aig; w %s_gsrms.aig'%(f_name,f_name))
####        print 'New srms = ',ps()
####        po_map = range(n_pos())
####        return 'OK'
####
####    def merge_proved_equivalences():
####        #this only changes the gores file.
####        run_command('&r %s_gores.aig; &equiv_mark -vf %s_gsrms.aig; &reduce -v; &w %s_gores.aig'%(f_name,f_name,f_name))
####        return
####
####    def generate_equivalences():
####        set_globals()
####        t = max(1,.5*G_T)
####        r = max(1,int(t))
####        cmd = "&get; &equiv2 -C %d -F 200 -T %f -S 1 -R %d"%((G_C),t,r)
####        abc(cmd)
####        #run_command('&ps')
####        eq_simulate(.5*t)
####        #run_command('&ps')
####        cmd = '&semi -W 63 -S 5 -C 500 -F 20 -T %d'%(.5*t)
####        abc(cmd)
####        #run_command('&ps')
####        run_command('&w %s_gores.aig'%f_name)
####
####    l=remove_const_pos() #makes sure no 0 pos to start
####    cex_list = []
####    n_pos_before = n_pos()
####    n_latches_before = n_latches()
######    print 'Generating equivalences'
####    generate_equivalences()
######    print 'Generating srms file'
####    generate_srms() #this should not create new 0 pos
######    if n_pos()>100:
######        removed
####    l=remove_const_pos()
####    n_pos_last = n_pos()
####    if n_pos_before == n_pos():
####        print 'No equivalences found. Quitting synculate'
####        return Undecided_no_reduction
####    print 'Initial synculation: ',ps()
######    ps()
####    set_globals()
####    simp_sw = init = True
####    simp_sw = False #temporary
####    print '\nIterating synculation refinement'
####    abc('w initial_sync.aig')
####    max_verify_time = t
####    print 'max_verify_time = %d'%max_verify_time
####    """
####        in the following loop we increase max_verify_time by twice time spent to find last cexs or Unsat's
####        We iterate only when we have proved cex + unsat > 1/2 n_pos. Then we update srms and repeat.        
####    """
####    while True:                 # refinement loop
####        t = max_verify_time     #this may have been increased since the last loop
######        print 'max_verify_time = %d'%max_verify_time
####        set_globals()
####        if not init:
####            generate_srms()     #generates a new gsrms file and leaves it in workspace
######            print 'generate_srms done'
####            if n_pos() == n_pos_before:
####                break
####            if n_pos() == n_pos_last:   #if nothing new, then quit if max_verification time is reached.
####                if t > max_verify_time:
####                    break
####            if simp_sw:                     #Warning: If this holds then simplify could create some 0 pos
####                na = n_ands()
####                simplify()
####                while True:
####                    npo = n_pos()
######                    print 'npos = %d'%npo
####                    merge_proved_equivalences() #So we need to merge them here. Can merging create more???
####                    generate_srms()
####                    if npo == n_pos():
####                        break
####                if n_ands() > .7*na:            #if not significant reduction, stop simplification
####                    simp_sw = False             #simplify only once.
####            if n_latches() == 0:
####                return check_sat()
####        n_pos_last = n_pos()
####        init = False                        # make it so that next time it is not the first time through
####        syn_par(t)
####        if (len(cex_list)+len(result)) == 0: #nothing happened aand ran out of time.
####            break
####        abc('w %s_gsrms.aig'%f_name)
####        #print 'No. of cexs after syn_parallel = %d'%len(cex_list)
####        merge_proved_equivalences()         #changes the underlying gores file by merging fanouts of proved eqs
####        #print 'merge done'
####        refine_with_cexs()                  #changes the gores file by refining the equivalences in it using cex_list.
####        #print 'refine_with_cexs done'
####        continue
####    extract(0,n_pos_before) #get rid of unproved outputs
####    return
####
####def syn_par(t):
####    """prove n outputs at once and quit at first cex. Otherwise if no cex found return aig
####    with the unproved outputs"""
####    global trim_allowed,max_verify_time, n_pos_before
####    global cex_list, result
####    b_time = time.time()
####    n = n_pos()
####    if n == n_pos_before:
####        return
####    mx = n_pos()
####    if n_pos() - n_pos_before > 50:
####        mx = n_pos_before + 50
####    r = range(n_pos_before, mx)     
####    N = max(1,(mx-n_pos_before)/2)
####    abc('w %s__ysavetemp.aig'%f_name) 
####    F = [eval(FUNCS[18])] #create a timer function
####    #print r
####    for i in r:
####        F = F + [eval('(pyabc_split.defer(verify_only)(%d,%d))'%(i,t))]
####    cex_list = result = []
####    outcome = ''
####    #redirect printout here
######    with redirect.redirect( redirect.null_file, sys.stdout ):
######        with redirect.redirect( redirect.null_file, sys.stderr ):
####    for i,res in pyabc_split.abc_split_all(F):
####        status = get_status()
######        print i
####        if i == 0:          #timed out
####            outcome = 'time expired after = %d'%(time.time() - b_time)
####            break
####        if status < Unsat:
####            cex_list = cex_list + [cex_get()]                    
####        if status == Unsat:
####            result = result + [r[i-1]]
####        if (len(result)+len(cex_list))>= N:
####            T = time.time() - b_time
####            if T > max_verify_time/2:
####                max_verify_time = 2*T
####            break
####        continue
####    if not outcome == '':
####        print outcome
######    print 'cex_list,prove_list = ',cex_list,result
####    abc('r %s__ysavetemp.aig'%f_name) #restore initial aig so that pos can be 0'ed out
####    if not result == []: # found some unsat's
######        min_r = min(result)
######        max_r = max(result)
######        no = n_pos()
######        assert (0 <= min_r and max_r < no), 'min_r, max_r, length = %d, %d, %d'%(min_r,max_r,len(result))
####        zero(result)
####    return
####    #print "Number PO's proved = %d"%len(result)
####
####def absec(n):
####    #abc('w t.aig')
####    for j in range(n):
####        print '\nFrame %d'%(j+1)
####        run_command('absec -F %d'%(j+1))
####        if is_unsat():
####            print 'UNSAT'
####            break
####    
####
####"""
####    we might be proving some original pos as we go, and on the other hand we might have some equivalences that we
####    can't prove. There are two uses, in verification
####    verification - we want to remove the proved pos whether they are original or not. But if a cex for an original, then need to
####                    remember this.
####    synthesis - the original outputs need to be kept and ignored in terms of cex's - supposedly they can't be proved.
####"""
####
####""" Experimental"""
####
####def csec():
####    global f_name
####    if os.path.exists('%s_part0.aig'%f_name):
####        os.remove('%s_part0.aig'%f_name)
####    run_command('demiter')
####    if not os.path.exists('%s_part0.aig'%f_name):
####        return
####    run_command('r %s_part0.aig'%f_name)
####    ps()
####    run_command('comb')
####    ps()
####    abc('w %s_part0comb.aig'%f_name)
####    run_command('r %s_part1.aig'%f_name)
####    ps()
####    run_command('comb')
####    ps()
####    abc('w %s_part1comb.aig'%f_name)
####    run_command('&get; &cec %s_part0comb.aig'%(f_name))
####    if is_sat():
####        return 'SAT'
####    if is_unsat():
####        return 'UNSAT'
####    else:
####        return 'UNDECIDED'

    ###########################
####        we will verify outputs ORed in groups of g[i]
####        here we take div = N so no ORing
##        div = max(1,N/1)
##        g = distribute(N,div)
##        if len(g) <= 1:
##            t = tt
##        g.reverse()
####        print g
##        x = 0
##        G = []
##        for i in range(div):
##            y = x+g[i]
##            F = F + [eval('(pyabc_split.defer(verify_range)(%d,%d,%s))'%(x,y,convert(t)))]
##            G = G + [range(x,y)]
##            x = y
####        print G
###########################


""" These commands map into luts and leave the result in mapped format. To return to aig format, you
have to do 'st'
"""
def sop_balance(k=4):
    '''minimizes LUT logic levels '''
##    kmax = k
    kmax=min(k+2,15)
    abc('st; if -K %d;ps'%kmax)
    print nl(),
##    for i in range(1):
##        abc('st; if -K %d;ps'%kmax)
##        run_command('ps')
    kmax=min(k+2,15)
    abc('st; if  -g -C %d -K %d -F 2;ps'%(10,kmax)) #balance
    print nl(),
    for i in range(1):
        abc('st;dch; if -C %d -K %d;ps'%(10,kmax))
        print nl(),

def speedup(k=4):
    run_command('speedup;if -K %d'%k)
    print nl()

def speed_tradeoff(k=4):
    print nl(),
    best = n_nodes()
    abc('write_blif %s_bestsp.blif'%f_name)
    L_init = n_levels()
    while True:
        L_old = n_levels()
        L = L_old -1
        abc('speedup;if -D %d -F 2 -K %d -C 11'%(L,k))
        if n_nodes() < best:
            best = n_nodes()
            abc('write_blif %s_bestsp.blif'%f_name)
        if n_levels() == L_old:
            break
        print nl(),
        continue
    abc('r %s_bestsp.blif'%f_name)
    return

def map_lut_dch(k=4):
    '''minimizes area '''
    abc('st; dch; if -a  -F 2 -K %d -C 11; mfs -a -L 50 ; lutpack -L 50'%k)
    
def map_lut_dch_iter(k=8):
##    print 'entering map_lut_dch_iter with k = %d'%k
    best = n_nodes()
    abc('write_blif %s_best.blif'%f_name)
##    abc('st;dch;if -a -K %d -F 2 -C 11; mfs -a -L 1000; lutpack -L 1000'%k)
##    if n_nodes() < best:
##        abc('write_blif %s_best.blif'%f_name)
##        best = n_nodes()
##        print nl(),
##    else:
##        abc('r %s_best.blif'%f_name)
##    best = n_nodes()
##    abc('write_blif %s_best.blif'%f_name)
##    print 'best = %d'%best
    n=0
    while True:
        map_lut_dch(k)
        if n_nodes()< best:
            best = n_nodes()
##            print 'best=%d'%best
            n = 0
            abc('write_blif %s_best.blif'%f_name)
            print nl(),
            continue
        else:
            n = n+1
            if n>2:
                break    
    abc('r %s_best.blif'%f_name)

def dmitri_iter(k=8):
    best = 100000
    n=0
    while True:
        dmitri(k)
        if n_nodes()< best:
            best = n_nodes()
##            print '\nbest=%d'%best
            n = 0
            abc('write_blif %s_best.blif'%f_name)
            continue
        else:
            n = n+1
        if n>2:
            break
    abc('r %s_best.blif'%f_name)
##    run_command('cec -n %s.aig'%f_name)
    print nl()


def map_lut(k=4):
    '''minimizes edge count'''
    for i in range(5):
        abc('st; if -e -K %d; ps;  mfs ;ps; lutpack -L 50; ps'%(k))
        print nl(),

def extractax(o=''):
    abc('extract -%s'%o)

def nl():
    return [n_nodes(),n_levels()]

def dc2_iter(th=.999):
    abc('st')
    while True:
        na=n_ands()
        abc('dc2')
        print n_ands(),
##        print nl(),
        if n_ands() > th*na:
            break
##    print n_ands()

def adc2_iter(th=.999):
    abc('st;&get')
    while True:  
        na=n_ands()
        abc('&dc2;&put')
##        print n_ands(),
        if n_ands() > th*na:
            break
    print n_ands()
        
def try_extract():
##    abc('dc2;dc2')
    print 'Initial: ',
    ps()
    na = n_ands()
##    abc('w %s_savetemp.aig'%f_name)
    #no need to save initial aig since fork_best will return initial if best.
    J = [32,33]
    mtds = sublist(methods,J)
    F = create_funcs(J,0)
    (m,result) = take_best(F,mtds) #FORK here
    if not m == -1:
        print 'Best extract is %s: '%mtds[m],
        ps()
##    if (n_ands() < na):
##        return
##    else:
##        abc('r %s_savetemp.aig'%f_name)

def speedup_iter(k=8):
    abc('st;if -K %d'%k)
    run_command('ps')
    abc('write_blif %s_bests.blif'%f_name)
    run_command('ps')
    best = n_levels()
    print 'n_levels before speedup = %d'%n_levels()
    n=0
    while True:
        nl()
        abc('speedup;if -K %d'%k)
        if n_levels() < best:
            best = n_levels()
            abc('write_blif %s_bests.blif'%f_name)
            n=0
        else:
            n = n+1
        if n>2:
            break
    abc('r %s_bests.blif'%f_name)
    print 'n_levels = %d'%n_levels()

def jog(n=16):
    """ applies to a mapped blif file"""
    run_command('eliminate -N %d;fx'%n)
    run_command('if -K %d'%(n/2))
    run_command('fx')

def perturb_f(k=4):
    abc('st;dch;if -g -K %d'%(k))
##    snap()
    abc('speedup;if -K %d -C 10'%(k))
    jog(5*k)
##    snap()
##    abc('if -a -K %d -C 11 -F 2;mfs -a -L 50;lutpack -L 50'%k

def perturb(k=4):
    abc('st;dch;if -g -K %d'%k)
##    snap()
    abc('speedup;if -K %d -C 10'%(k))
    
def preprocess(k=4):
    n_initial = n_nodes()
    abc('write_blif %s_temp_initial.blif'%f_name)
##    abc('st;dc2')
    abc('w %s_temp_initial.aig'%f_name)
    ni = n_pis() + n_latches()
    res = 1
    if ni >= 101:
        abc('st;if -a -F 2 -K %d'%k)
        return res
##    dc2_iter()
    abc('st;if -a -K %d'%k) # to get plain direct map
    if n_nodes() > n_initial:
        abc('r %s_temp_initial.blif'%f_name)
        res = 1
    #plain
    n_plain = n_nodes()
##    print nl()
    abc('write_blif %s_temp_plain.blif'%f_name)
    #clp
    abc('st;clp; if -a -K %d'%k)
##    print nl()
    abc('write_blif %s_temp_clp.blif'%f_name)
    n_clp = n_nodes()
    #clp_lutmin
    abc('r %s_temp_initial.blif'%f_name)
    abc('st;clp;lutmin -K %d;'%k)
    abc('write_blif %s_temp_clp_lut.blif'%f_name)
    n_clp_lut = n_nodes()
##    print nl()
    if n_plain <= min(n_clp,n_clp_lut):
        abc('r %s_temp_plain.blif'%f_name)
        res = 1
    elif n_clp < n_clp_lut:
        abc('r %s_temp_clp.blif'%f_name)
        res = 1
    else:
        abc('r %s_temp_clp_lut.blif'%f_name)
        res = 1
##    print nl()
    return res

def snap():
##    abc('fraig;fraig_store')
    abc('fraig_store')

def snap_bestk(k):
    abc('write_blif %s_temp.blif'%f_name)
    unsave_bestk(k)
    snap()
    abc('r %s_temp.blif'%f_name)

def cec_it():
    """ done because &r changes the names. Can't use -n because rfraig_store reorders pis and pos."""
    abc('write_blif %s_temp.blif'%f_name)
    abc('&r %s.aig;&put'%f_name)
    run_command('cec %s_temp.blif'%f_name)
    abc('r %s_temp.blif'%f_name)

def save_bestk(b,k):
##    if os.access('%s_best%d.blif'%(f_name,k),os.R_OK):
##        res = get_bestk(k)
##    else:
    """ saves the best, returns bestk and if not best, leaves blif unchanged""" 
    res = b
    if n_nodes() < res:
        res = n_nodes()
        abc('write_blif %s_best%d.blif'%(f_name,k))
        print 'best%d = %d'%(k,res)
    return res
##    unsave_bestk(k)

def unsave_bestk(k):
    abc('r %s_best%d.blif'%(f_name,k))
        
def unsnap(k=4):
##    snap()
    abc('fraig_restore')
    map_lut_dch(k)
##    abc('fraig_restore;if -a -F 2 -C 11 -K %d'%k)

def map_until_conv(k=4):
    kk = 2*k
    # make sure that no residual results are left over.
    if os.access('%s_best%d.blif'%(f_name,k),os.R_OK):
        os.remove('%s_best%d.blif'%(f_name,k))
    if os.access('%s_best%d.blif'%(f_name,kk),os.R_OK):
        os.remove('%s_best%d.blif'%(f_name,kk))
    tt = time.time()
    #get initial map and save
    map_lut_dch(k)
    bestk = save_bestk(100000,k)
    print nl()
##    snap()
    res = preprocess() #get best of initial, clp, and lutmin versions
    print nl()
##    map_lut_dch(k)
##    ###
##    bestk = save_bestk(bestk,k)
##    map_iter(k)
##    bestk = save_bestk(bestk,k)
##    ###
    map_lut_dch_iter(kk) #initialize with mapping with 2k input LUTs
    bestkk = save_bestk(100000,kk)
    snap()
    unsnap(k) #have to do snap first if want current result snapped in.
        # unsnap fraigs snapshots and does map_lut_dch at end
    print nl()
    bestk = save_bestk(bestk,k)
    abc('r %s_bestk%d.blif'%(f_name,k))
    map_iter(k) #1
    bestk = save_bestk(bestk,k)
    while True:
        print 'Perturbing with %d-Lut'%kk
##        snap()
        map_lut_dch_iter(kk)
##        snap()
        bestkk_old = bestkk
        bestkk = save_bestk(bestkk,kk)
        if bestkk >= bestkk_old:
            break
##        snap()
##        jog(kk)
##        perturb_f(k)
##        snap()
##        perturb_f(k)
##        snap()
##        unsave_bestk(k)
##        map_lut_dch(k+1)
##        snap()
##        snap_bestk(k)
        snap()
        unsnap(k) #fraig restore and map
##        bestk = save_bestk(bestk,k)
##        snap()
        bestk_old = bestk
        map_iter(k)
        bestk = save_bestk(bestk,k)
        if bestk >= bestk_old:
            break
        continue
    abc('fraig_restore') #dump what is left in fraig_store
    unsave_bestk(k)
    print '\nFinal size = ',
    print nl()
    print 'time for %s = %.02f'%(f_name,(time.time()-tt))
##    cec_it()

def get_bestk(k=4):
    abc('write_blif %s_temp.blif'%f_name)
    unsave_bestk(k)
    res = n_nodes()
    abc('r %s_temp.blif'%f_name)
    return res

def map_iter(k=4):
    tt = time.time()
    bestk = get_bestk(k)
##    bestk = n_nodes()
##    bestk = save_bestk(bestk,k)
##    abc('st;dch;if -a -F 2 -K %d -C 11; mfs -a -L 1000; lutpack -L 1000'%k)#should be same as Initial
##    map_lut_dch_iter(k) ####
    map_lut_dch(k)
    bestk = save_bestk(bestk,k)
    n=0
    unsave_bestk(k)
    while True:
##        snap()
        perturb(k) #
##        snap()
        perturb(k)
##        snap_bestk(k)
##        unsnap(k)
##        bestk = save_bestk(bestk,k)
##        snap()
##        map_lut_dch(k+1)
##        abc('if -K %d'%(k+1))
##        snap()
##        unsnap(k)
        old_bestk = bestk
##        print old_bestk
        map_lut_dch_iter(k)
        bestk = save_bestk(bestk,k)
        print bestk
        if bestk < old_bestk:
            n=0 # keep it up
            continue
        elif n == 2: #perturb 
            break
        else:
            n = n+1
            print '%d-perturb'%n
##            snap()
##            unsave_bestk(k)
    unsave_bestk(k)

def map_star(k=4):
    tt = time.time()
    map_until_conv(k)
    abc('write_blif %s_best_star.blif'%f_name)
    best = n_nodes()
    while True:
        jog(2*k)
        map_until_conv(k)
        if n_nodes() >= best:
            break
        else:
            best = n_nodes()
            abc('write_blif %s_best_star.blif'%f_name)
    abc('r %s_best_star.blif'%f_name)
    print 'SIZE = %d, TIME = %.2f for %s'%(n_nodes(),(time.time() - tt),f_name)

def decomp_444():
    abc('st; dch; if -K 10 -S 444')
    abc('write_blif -S 444 %s_temp.blif; r %s_temp.blif'%(f_name,f_name)) 

def dmitri(k=8):
##    abc('w t.aig')
##    dc2_iter()
##    print 'first iter done:  %d'%n_ands()
##    abc('dc2rs')
####    dc2_iter()
##    print 'second iter done:  %d'%n_ands()
##    sop_balance(k)
##    abc('w t_before.aig')
##    run_command('cec -n t.aig')
##    speedup_iter(k)
##    print 'n_levels after speedup = %d'%n_levels()
##    abc('write_blif %s_save.blif'%f_name)
##    nn=n_levels()
    abc('st;dch; if -g -K %d'%(k))
##    print 'n_levels after sop balance = %d'%n_levels()
##    if n_levels() > nn:
##        run_command('r %s_save.blif'%f_name)
##        print 'n_levels = %d'%n_levels()
##    print 'final n_levels = %d'%n_levels()
##    print 'sop_balance done:  ',
##    print nl()
##    run_command('st;w t_after.aig')
##    run_command('cec -n t.aig')
    abc('if -G %d '%k)
##    print 'after if -G %d:  '%k,
##    print nl()
##    run_command('cec -n t.aig')
    abc('cubes')
##    print 'after cubes:  ',
##    print nl()
##    run_command('cec -n t.aig')
    abc('addbuffs -v')
##    print 'after addbuffs:  ',
    print nl(),
##    run_command('cec -n t.aig')

def lut():
    dc2_iter()
    abc('extract -a')
    print nl()
    dc2_iter()
##    ps()
    sop_balance(6)
    map_lut_dch()
    map_lut()
    print nl()
##    run_command('ps')

################################## gate level abstraction
    """
    Code for using
    for abstraction
    """

def bip_abs(t=100):
    """ t is ignored here"""
    set_globals()
    time = max(1,.1*G_T)
    abc('&get;,bmc -vt=%f'%time)
    set_max_bmc(bmc_depth())
    c = 2*G_C
    f = max(2*max_bmc,20)
    b = min(max(10,max_bmc),200)
    t1 = x_factor*max(1,2*G_T)
    t = max(t1,t)
    s = min(max(3,c/30000),10) # stability between 3 and 10 
##    cmd = '&get;,abs -bob=%d -stable=%d -timeout=%d -vt=%d -depth=%d -dwr=vabs'%(b,s,t,t,f)
    cmd = '&get;,abs -timeout=%d -vt=%d -dwr=%s_vabs'%(t,t,f_name)
    print 'Running %s'%cmd
##    abc(cmd)
    run_command(cmd)
    bmc_depth()
    abc('&w %s_greg.aig'%f_name)
    return max_bmc

def check_frames():
    abc('read_status vta.status')
    return n_bmc_frames()

def gate_abs(t):
    """ Do gate-level abstraction for F frames """
    r = 100 *(1 - abs_ratio)
    run_command('orpos; &get;&vta -dv -A %s_vabs.aig -P 2 -T %d -R %d; &vta_gla;&gla_derive; &put'%(f_name,t,r))
##    write_file('abs')

def gla_abs(t):
    """ Do gate-level abstraction for F frames """
    r = 100 *(1 - abs_ratio)
    run_command('orpos; &get;&gla_cba -C 0 -T %d -F 0 -R %d;  &gla_derive; &put'%(t,r))

def sizeof():
    return [n_pis(),n_pos(),n_latches(),n_ands()]

def abstract(ifb=2):
    global abs_ratio
##    print 'ifb = %d'%ifb
    if ifb == 0: #new way using gate_abs and no bip
        return abstracta(False)
    elif ifb == 1: #old way using ,abs
        assert ifb == ifbip, 'call to abstract has ifb not = global ifbip'
        return abstractb()
    else:
        #new way using ,abs -dwr -- (bip_abs)
        return abstracta(True)

def abstracta(if_bip=True):
    """
    if_bip = 0 it uses a new abstraction based on &vta (gate level abstraction) and no bip operations
    Right now, if we do not prove it with abstraction in the time allowed,
    we abandon abstraction and go on with speculation
    if_bip = 1, we use ,abs -dwr
    """
    global G_C, G_T, latches_before_abs, x_factor, last_verify_time, x, win_list, j_last, sims
    global latches_before_abs, ands_before_abs, pis_before_abs, abs_ratio
##    n_vabs = 0
    latches_before_abs = n_latches()
    ands_before_abs = n_ands()
    pis_before_abs = n_real_inputs()
    tt = time.time()
    print 'using abstracta, ',
##    print 'if_bip = %d'%if_bip
##    latch_ratio = abs_ratio
##    t = 100
    t = 1000 #temporary
    t = abs_time
    if if_bip == 0:
        t = 1000 #timeout on vta
        t = abs_time
    tt = time.time()
    if n_pos() > 1 and if_bip == 0:
        abc('orpos')
        print 'POs ORed together, ',
    initial_size = sizeof()
    abc('w %s_before_abs.aig'%f_name)
    # 25 below means that it will quit if #FF+#ANDS > 75% of original
##    funcs = [eval("(pyabc_split.defer(abc)('orpos;&get;&vta -d -R 25'))")] #right now we need orpos
    if if_bip:
        print 'using bip_abs'
        mtds = ['bip_abs']
        funcs = [eval('(pyabc_split.defer(bip_abs)(t))')]
    else:
        print 'using gate_abs'
        mtds = ['gate_abs']
        funcs = [eval('(pyabc_split.defer(gate_abs)(t))')]
    funcs = funcs + [eval('(pyabc_split.defer(monitor_and_prove)())')]
    J = [34,30]
    if n_ands()> 500000: #if greater than this, bmc_j may take too much memory.
        J = [34]
##    J=[]
    funcs = funcs + create_funcs(J,1000)
    mtds = mtds + ['monitor_and_prove'] + sublist(methods,J)
    print 'methods = ',
    print mtds
    vta_term_by_time=0
    for i,res in pyabc_split.abc_split_all(funcs):
##        print i,res
        if i == 0: #vta ended first
            print 'time taken = %0.2f'%(time.time() - tt)
            if is_sat():
                print 'vta abstraction found cex in frame %d'%cex_frame()
                return Sat
            if is_unsat():
                print 'vta abstraction proved UNSAT'
                return Unsat
            else: #undecided
                if time.time() - tt < .95*t:
                    print 'abstraction terminated but not by timeout'
                    vta_term_by_time = 0
                    break
                else:
                    print 'abstraction terminated by a timeout of %d'%t
##                    print 'final abstraction: ',
##                    ps()
                    vta_term_by_time=1
                    break
        if i == 1: #monitor and prove ended first (sleep timed out)
##            print i,res
            if res > Unsat: #we abandon abstraction
##                print 'final abstraction: ',
##                ps()
##                print 'Trying to verify final abstraction'
##                result = verify([7,9,19,23,24,30],100) #do this if if_bip==0
##                if result == Unsat:
##                    print 'Abstraction proved valid'
##                    return result
##                else:
##                    print 'Abstract time wasted = %0.2f'%(time.time()-tt)
##                    abc('r %s_before_abs.aig'%f_name)
##                    result = Undecided_no_reduction
##                    return result
##            elif res == Undecided_no_reduction:
                print 'monitor and prove timed out or little reduction'
                abc('r %s_before_abs.aig'%f_name)
                return Undecided_no_reduction
            else: 
                if not initial_size == sizeof(): #monitor and prove should not return SAT in this case'
                    assert not is_sat(), 'monitor_and_prove returned SAT on abstraction!' 
                print 'time taken = %0.2f'%(time.time() - tt)
                if is_unsat():
                    return Unsat
                elif is_sat():
                    return Sat
                else:
                    abc('r %s_before_abs.aig'%f_name)
                    return Undecided_no_reduction
        else: #one of the engines got an answer
            print 'time taken = %0.2f'%(time.time() - tt)
            if is_unsat():
                print 'Initial %s proved UNSAT'%mtds[i]
                return Unsat
            if is_sat():
                print 'Initial %s proved SAT'%mtds[i]
                return Sat
            else: # an engine failed here
                print 'Initial %s terminated without result'%mtds[i]
##                return Undecided
                continue
    if  vta_term_by_time == 0 and if_bip == 0: #vta timed out itself
        print 'Trying to verify final abstraction',
        ps()
        result = verify([7,9,19,23,24,30],100)
        if result == Unsat:
            print 'Abstraction proved valid'
            return result
    # should do abstraction refinement here if if_bip==1
    if if_bip == 0:
        print 'abstraction no good - restoring initial simplified AIG'
        abc('r %s_before_abs.aig'%f_name)
        return Undecided_no_reduction
    else:
        if is_sat():
            print 'Found true counterexample in frame %d'%cex_frame()
            return Sat_true
        if is_unsat():
            return Unsat
    ##    set_max_bmc(NBF)
        NBF = bmc_depth()
        print 'Abstraction good to %d frames'%max_bmc
        #note when things are done in parallel, the &aig is not restored!!!
        abc('&r %s_greg.aig; &w initial_greg.aig; &abs_derive; &put; w initial_gabs.aig; w %s_gabs.aig'%(f_name,f_name))
        set_max_bmc(NBF)
        print 'Initial abstraction: ',
        ps()
        abc('w %s_init_abs.aig'%f_name)
        latches_after = n_latches()
    ##    if latches_after >= .90*latches_before_abs: #the following should match similar statement
    ##    if ((rel_cost_t([pis_before_abs, latches_before_abs, ands_before_abs])> -.1) or
    ##        (latches_after >= .75*latches_before_abs)):
        if small_abs(abs_ratio):
            abc('r %s_before_abs.aig'%f_name)
            print "Little reduction!"
            print 'Abstract time wasted = %0.2f'%(time.time()-tt)
            return Undecided_no_reduction
        sims_old = sims
        sims=sims[:1] #make it so that rarity sim is not used since it can't find a cex
        result = abstraction_refinement(latches_before_abs, NBF,abs_ratio)
        sims = sims_old
        if result <= Unsat:
            return result
    ##    if n_latches() >= .90*latches_before_abs:
    ##    if ((rel_cost_t([pis_before_abs, latches_before_abs, ands_before_abs])> -.1) or (latches_after >= .90*latches_before_abs)):
    ##    if rel_cost_t([pis_before_abs,latches_before_abs, ands_before_abs])> -.1:
        if small_abs(abs_ratio): #r is ratio of final to initial latches in absstraction. If greater then True
            abc('r %s_before_abs.aig'%f_name) #restore original file before abstract.
            print "Little reduction!  ",
            print 'Abstract time wasted = %0.2f'%(time.time()-tt)
            result = Undecided_no_reduction
            return result
        #new
        else:
            write_file('abs') #this is only written if it was not solved and some change happened.
        print 'Abstract time = %0.2f'%(time.time()-tt)
    return result

        
def monitor_and_prove():
    """
    monitor and prove. whenever a new vabs is found, try to verify it
    """
    global ifbip
    #write the current aig as vabs.aig so it will be regularly verified at the beginning.
##    print 'Entering monitora_and_prove'
    print ifbip
    run_command('w %s_vabs.aig'%f_name)
    if ifbip == 0:
        run_command('w vabs.aig')
    initial_size = sizeof()
    print 'initial size = ',
    print initial_size
    funcs = [eval('(pyabc_split.defer(read_and_sleep)())')]
    t = 1000 # do not want to timeout verification engines.
    t = abs_time
    J = [9,19,23,24,34] #engines BMC3,PDRMsd,INTRPm,REACHY - engines for first time through when no abstraction
    funcs = funcs + create_funcs(J,t)
    mtds = ['read_and_sleep'] + sublist(methods,J)
    print 'methods = %s'%mtds
    #a return of Undecided means that abstraction might be good and calling routine will check this
    while True:
        time_done = abs_bad = 0
        for i,res in pyabc_split.abc_split_all(funcs):
##            print i,res
            if i == 0: # read and sleep terminated
                if res == False: #found new abstraction
                    abs_bad = 0 #new abs starts out good.
                    if not initial_size == sizeof() and n_latches() > abs_ratio * initial_size[2]:
                        return Undecided_no_reduction
                    else:
                        break
                elif res == True: # read and sleep timed out
                    time_done = 1
##                    print 'read_and_sleep timed out'
                    if abs_bad:
                        return Undecided_no_reduction
                    else: #abs is still good. Let other engines continue
                        return Undecided #calling routine handles >Unsat all the same right now.
                else:
                    assert False, 'something wrong. read and sleep did not return right thing'
            if i > 0: #got result from one of the verify engines
##                print 'method %s found SAT in frame %d'%(mtds[i],cex_frame())
                if is_unsat():
                    print 'Parallel method %s proved UNSAT on current abstraction'%mtds[i]
                    return Unsat
                if is_sat(): #abstraction is not good yet.
                    print 'Parallel method %s found SAT on current abstraction in frame %d'%(mtds[i],cex_frame())
##                    print 'n_vabs = %d'%n_vabs
                    if initial_size == sizeof():# the first time we were working on an aig before abstraction
                        return Sat
##                    print 'current abstraction invalid'
                    abs_bad = 1 
                    break #this kills off other verification engines working on bad abstraction
                else: #one of the engines undecided for some reason - failed?
                    print 'Parallel %s terminated without result on current abstraction'%mtds[i]
                    continue
        if abs_bad and not time_done: #here we wait until have a new vabs.
            print 'current abstraction bad, waiting for new one'
##            print 'waiting for new abstraction'
            abc('r %s_abs.aig'%f_name) #read in the abstraction to destroy is_sat.
            res = read_and_sleep(5) #this will check every 5 sec, until abs_time sec has passed without new abs
            if res == False: #found new vabs. Now continue if vabs small enough
##                print 'n_vabs = %d'%n_vabs
                if (not initial_size == sizeof()) and n_latches() > abs_ratio * initial_size[2]:
                    return Undecided_no_reduction
                else:
                    continue
            elif res ==True: #read_and_sleep timed out
##                print 'read_and_sleep timed out'
                return Undecided_no_reduction
            else:
                break #this should not happen
        elif abs_bad and time_done:
            print 'current abstraction bad, time has run out'
            return Undecided_no_reduction
        elif time_done: #abs is good here
            print 'current abstraction still good, time has run out'
            return Undecided #this will cause calling routine to try to verify the final abstraction
                            #right now handles the same as Undecided_no_reduction-if time runs out we quit abstraction
        else: #abs good and time not done
            print 'current abstraction still good, time has not run out'
            #we want to continue but after first time, we use expanded set of engines.
            funcs = [eval('(pyabc_split.defer(read_and_sleep)())')]
            funcs = funcs + create_funcs(J,t) #use old J first time
            mtds = ['read_and_sleep'] + sublist(methods,J)
            if initial_size == sizeof():
                print 'methods = %s'%mtds
            J = [7,9,19,23,24,30] #first time reflects that 7 and 30 are already being done
            continue #will try with new vabs

def read_and_sleep(t=5):
    """
    keep looking for a new vabs every 5 seconds. This is usually run in parallel with
    &vta -d
    """
    #t is not used at present
    tt = time.time()
    T = 1000 #if after the last abstraction, no answer, then terminate
    T = abs_time
    set_size()
    name = '%s_vabs.aig'%f_name
##    if ifbip > 0:
##        name = '%s_vabs.aig'%f_name
####    print 'name = %s'%name
    while True:
        if time.time() - tt > T: #too much time between abstractions
            print 'read_and_sleep timed out in %d sec.'%T
            return True
        if os.access('%s'%name,os.R_OK):
            abc('r %s'%name)
            abc('w %s_vabs_old.aig'%f_name)
            os.remove('%s'%name)
            if not check_size():
                print '\nNew abstraction: ',
                ps()
                set_size()
                abc('w %s_abs.aig'%f_name)
                return False
            #if same size, keep going.
        print '.',
        sleep(5)
####################################################