/**CFile**************************************************************** FileName [acecXor.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [CEC for arithmetic circuits.] Synopsis [Detection of XOR trees.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: acecXor.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "acecInt.h" #include "misc/vec/vecWec.h" #include "misc/extra/extra.h" #include "misc/util/utilTruth.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Acec_CheckXors( Gia_Man_t * p, Vec_Int_t * vXors ) { Gia_Obj_t * pFan0, * pFan1; Vec_Int_t * vCount2 = Vec_IntAlloc( Gia_ManObjNum(p) ); int i, Entry, Count = 0; for ( i = 0; 4*i < Vec_IntSize(vXors); i++ ) if ( Vec_IntEntry(vXors, 4*i+3) == 0 ) Vec_IntAddToEntry( vCount2, Vec_IntEntry(vXors, 4*i), 1 ); Vec_IntForEachEntry( vCount2, Entry, i ) if ( Entry > 1 ) printf( "*** Obj %d has %d two-input XOR cuts.\n", i, Entry ), Count++; else if ( Entry == 1 && Gia_ObjRecognizeExor(Gia_ManObj(p, i), &pFan0, &pFan1) ) printf( "*** Obj %d cannot be recognized as XOR.\n", i ); if ( Count == 0 ) printf( "*** There no multiple two-input XOR cuts.\n" ); Vec_IntFree( vCount2 ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Acec_OrderTreeRoots( Gia_Man_t * p, Vec_Int_t * vAdds, Vec_Int_t * vXorRoots, Vec_Int_t * vRanks ) { Vec_Int_t * vOrder = Vec_IntAlloc( Vec_IntSize(vXorRoots) ); Vec_Int_t * vMove = Vec_IntStartFull( Vec_IntSize(vXorRoots) ); int i, k, Entry, This; // iterate through adders and for each try mark the next one for ( i = 0; 6*i < Vec_IntSize(vAdds); i++ ) { int Node = Vec_IntEntry(vAdds, 6*i+4); if ( Vec_IntEntry(vRanks, Node) == -1 ) continue; for ( k = 0; k < 3; k++ ) { int Fanin = Vec_IntEntry(vAdds, 6*i+k); if ( Vec_IntEntry(vRanks, Fanin) == -1 ) continue; //printf( "%4d: %2d -> %2d\n", Node, Vec_IntEntry(vRanks, Node), Vec_IntEntry(vRanks, Fanin) ); Vec_IntWriteEntry( vMove, Vec_IntEntry(vRanks, Node), Vec_IntEntry(vRanks, Fanin) ); } } //Vec_IntPrint( vMove ); // find reodering Vec_IntForEachEntry( vMove, Entry, i ) if ( Entry == -1 && Vec_IntFind(vMove, i) >= 0 ) break; assert( i < Vec_IntSize(vMove) ); while ( 1 ) { Vec_IntPush( vOrder, Vec_IntEntry(vXorRoots, i) ); Entry = i; Vec_IntForEachEntry( vMove, This, i ) if ( This == Entry ) break; if ( i == Vec_IntSize(vMove) ) break; } Vec_IntFree( vMove ); //Vec_IntPrint( vOrder ); return vOrder; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ // marks XOR outputs Vec_Bit_t * Acec_MapXorOuts( Gia_Man_t * p, Vec_Int_t * vXors ) { Vec_Bit_t * vMap = Vec_BitStart( Gia_ManObjNum(p) ); int i; for ( i = 0; 4*i < Vec_IntSize(vXors); i++ ) Vec_BitWriteEntry( vMap, Vec_IntEntry(vXors, 4*i), 1 ); return vMap; } // marks XOR outputs participating in trees Vec_Bit_t * Acec_MapXorOuts2( Gia_Man_t * p, Vec_Int_t * vXors, Vec_Int_t * vRanks ) { Vec_Bit_t * vMap = Vec_BitStart( Gia_ManObjNum(p) ); int i; for ( i = 0; 4*i < Vec_IntSize(vXors); i++ ) if ( Vec_IntEntry(vRanks, Vec_IntEntry(vXors, 4*i)) != -1 ) Vec_BitWriteEntry( vMap, Vec_IntEntry(vXors, 4*i), 1 ); return vMap; } // marks MAJ outputs Vec_Bit_t * Acec_MapMajOuts( Gia_Man_t * p, Vec_Int_t * vAdds ) { Vec_Bit_t * vMap = Vec_BitStart( Gia_ManObjNum(p) ); int i; for ( i = 0; 6*i < Vec_IntSize(vAdds); i++ ) Vec_BitWriteEntry( vMap, Vec_IntEntry(vAdds, 6*i+4), 1 ); return vMap; } // marks MAJ outputs participating in trees Vec_Int_t * Acec_MapMajOuts2( Gia_Man_t * p, Vec_Int_t * vAdds, Vec_Int_t * vRanks ) { Vec_Int_t * vMap = Vec_IntStartFull( Gia_ManObjNum(p) ); int i; for ( i = 0; 6*i < Vec_IntSize(vAdds); i++ ) if ( Vec_IntEntry(vRanks, Vec_IntEntry(vAdds, 6*i+4)) != -1 ) Vec_IntWriteEntry( vMap, Vec_IntEntry(vAdds, 6*i+4), i ); return vMap; } // marks nodes appearing as fanins to XORs Vec_Bit_t * Acec_MapXorIns( Gia_Man_t * p, Vec_Int_t * vXors ) { Vec_Bit_t * vMap = Vec_BitStart( Gia_ManObjNum(p) ); int i; for ( i = 0; 4*i < Vec_IntSize(vXors); i++ ) { Vec_BitWriteEntry( vMap, Vec_IntEntry(vXors, 4*i+1), 1 ); Vec_BitWriteEntry( vMap, Vec_IntEntry(vXors, 4*i+2), 1 ); Vec_BitWriteEntry( vMap, Vec_IntEntry(vXors, 4*i+3), 1 ); } return vMap; } // collects XOR roots (XOR nodes not appearing as fanins of other XORs) Vec_Int_t * Acec_FindXorRoots( Gia_Man_t * p, Vec_Int_t * vXors ) { Vec_Bit_t * vMapXorIns = Acec_MapXorIns( p, vXors ); Vec_Int_t * vXorRoots = Vec_IntAlloc( 100 ); int i; for ( i = 0; 4*i < Vec_IntSize(vXors); i++ ) if ( !Vec_BitEntry(vMapXorIns, Vec_IntEntry(vXors, 4*i)) ) Vec_IntPushUniqueOrder( vXorRoots, Vec_IntEntry(vXors, 4*i) ); Vec_BitFree( vMapXorIns ); return vXorRoots; } // collects XOR trees belonging to each of XOR roots Vec_Int_t * Acec_RankTrees( Gia_Man_t * p, Vec_Int_t * vXors, Vec_Int_t * vXorRoots ) { Vec_Int_t * vDoubles = Vec_IntAlloc( 100 ); int i, k, Entry; // map roots into their ranks Vec_Int_t * vRanks = Vec_IntStartFull( Gia_ManObjNum(p) ); Vec_IntForEachEntry( vXorRoots, Entry, i ) Vec_IntWriteEntry( vRanks, Entry, i ); // map nodes into their ranks for ( i = Vec_IntSize(vXors)/4 - 1; i >= 0; i-- ) { int Root = Vec_IntEntry( vXors, 4*i ); int Rank = Vec_IntEntry( vRanks, Root ); // skip XORs that are not part of any tree if ( Rank == -1 ) continue; // iterate through XOR inputs for ( k = 1; k < 4; k++ ) { int Node = Vec_IntEntry( vXors, 4*i+k ); if ( Node == 0 ) // HA continue; Entry = Vec_IntEntry( vRanks, Node ); if ( Entry == Rank ) // the same tree continue; if ( Entry == -1 ) Vec_IntWriteEntry( vRanks, Node, Rank ); else Vec_IntPush( vDoubles, Node ); if ( Entry != -1 && Gia_ObjIsAnd(Gia_ManObj(p, Node))) printf( "Xor node %d belongs to Tree %d and Tree %d.\n", Node, Entry, Rank ); } } // remove duplicated entries Vec_IntForEachEntry( vDoubles, Entry, i ) Vec_IntWriteEntry( vRanks, Entry, -1 ); Vec_IntFree( vDoubles ); return vRanks; } // collects leaves of each XOR tree Vec_Wec_t * Acec_FindXorLeaves( Gia_Man_t * p, Vec_Int_t * vXors, Vec_Int_t * vAdds, Vec_Int_t * vXorRoots, Vec_Int_t * vRanks, Vec_Wec_t ** pvAddBoxes ) { Vec_Bit_t * vMapXors = Acec_MapXorOuts2( p, vXors, vRanks ); Vec_Int_t * vMapMajs = Acec_MapMajOuts2( p, vAdds, vRanks ); Vec_Wec_t * vXorLeaves = Vec_WecStart( Vec_IntSize(vXorRoots) ); Vec_Wec_t * vAddBoxes = Vec_WecStart( Vec_IntSize(vXorRoots) ); int i, k; for ( i = 0; 4*i < Vec_IntSize(vXors); i++ ) { int Xor = Vec_IntEntry(vXors, 4*i); int Rank = Vec_IntEntry(vRanks, Xor); if ( Rank == -1 ) continue; for ( k = 1; k < 4; k++ ) { int Fanin = Vec_IntEntry(vXors, 4*i+k); //int RankFanin = Vec_IntEntry(vRanks, Fanin); if ( Fanin == 0 ) continue; if ( Vec_BitEntry(vMapXors, Fanin) ) { assert( Rank == Vec_IntEntry(vRanks, Fanin) ); continue; } // if ( Vec_BitEntry(vMapXors, Fanin) && Rank == RankFanin ) // continue; if ( Vec_IntEntry(vMapMajs, Fanin) == -1 ) // no adder driving this input Vec_WecPush( vXorLeaves, Rank, Fanin ); else if ( Vec_IntEntry(vRanks, Xor) > 0 ) // save adder box Vec_WecPush( vAddBoxes, Rank-1, Vec_IntEntry(vMapMajs, Fanin) ); } } Vec_BitFree( vMapXors ); Vec_IntFree( vMapMajs ); if ( pvAddBoxes ) *pvAddBoxes = vAddBoxes; return vXorLeaves; } void Acec_CheckBoothPPs( Gia_Man_t * p, Vec_Wec_t * vLitLeaves ) { Vec_Bit_t * vMarked = Acec_MultMarkPPs( p ); Vec_Int_t * vLevel; int i, k, iLit; Vec_WecForEachLevel( vLitLeaves, vLevel, i ) { int CountPI = 0, CountB = 0, CountNB = 0; Vec_IntForEachEntry( vLevel, iLit, k ) if ( !Gia_ObjIsAnd(Gia_ManObj(p, Abc_Lit2Var(iLit))) ) CountPI++; else if ( Vec_BitEntry( vMarked, Abc_Lit2Var(iLit) ) ) CountB++; else CountNB++; printf( "Rank %2d : Lits = %5d PI = %d Booth = %5d Non-Booth = %5d\n", i, Vec_IntSize(vLevel), CountPI, CountB, CountNB ); } Vec_BitFree( vMarked ); } Acec_Box_t * Acec_FindBox( Gia_Man_t * p, Vec_Int_t * vAdds, Vec_Wec_t * vAddBoxes, Vec_Wec_t * vXorLeaves, Vec_Int_t * vXorRoots ) { extern Vec_Int_t * Acec_TreeCarryMap( Gia_Man_t * p, Vec_Int_t * vAdds, Vec_Wec_t * vBoxes ); extern void Acec_TreePhases_rec( Gia_Man_t * p, Vec_Int_t * vAdds, Vec_Int_t * vMap, int Node, int fPhase, Vec_Bit_t * vVisit ); extern void Acec_TreeVerifyPhases( Gia_Man_t * p, Vec_Int_t * vAdds, Vec_Wec_t * vBoxes ); extern void Acec_TreeVerifyPhases2( Gia_Man_t * p, Vec_Int_t * vAdds, Vec_Wec_t * vBoxes ); int MaxRank = Vec_WecSize( vAddBoxes ); Vec_Bit_t * vVisit = Vec_BitStart( Vec_IntSize(vAdds)/6 ); Vec_Bit_t * vIsLeaf = Vec_BitStart( Gia_ManObjNum(p) ); Vec_Bit_t * vIsRoot = Vec_BitStart( Gia_ManObjNum(p) ); Vec_Int_t * vLevel, * vLevel2, * vMap; int i, j, k, Box, Node; Acec_Box_t * pBox = ABC_CALLOC( Acec_Box_t, 1 ); pBox->pGia = p; pBox->vAdds = vAddBoxes; // Vec_WecDup( vAddBoxes ); pBox->vLeafLits = Vec_WecStart( MaxRank + 0 ); pBox->vRootLits = Vec_WecStart( MaxRank + 0 ); assert( Vec_WecSize(vAddBoxes) == Vec_WecSize(vXorLeaves) ); assert( Vec_WecSize(vAddBoxes) == Vec_IntSize(vXorRoots) ); // collect boxes; mark inputs/outputs Vec_WecForEachLevel( pBox->vAdds, vLevel, i ) Vec_IntForEachEntry( vLevel, Box, k ) { Vec_BitWriteEntry( vIsLeaf, Vec_IntEntry(vAdds, 6*Box+0), 1 ); Vec_BitWriteEntry( vIsLeaf, Vec_IntEntry(vAdds, 6*Box+1), 1 ); Vec_BitWriteEntry( vIsLeaf, Vec_IntEntry(vAdds, 6*Box+2), 1 ); Vec_BitWriteEntry( vIsRoot, Vec_IntEntry(vAdds, 6*Box+3), 1 ); Vec_BitWriteEntry( vIsRoot, Vec_IntEntry(vAdds, 6*Box+4), 1 ); } // sort each level Vec_WecForEachLevel( pBox->vAdds, vLevel, i ) Vec_IntSort( vLevel, 0 ); // set phases starting from roots vMap = Acec_TreeCarryMap( p, vAdds, pBox->vAdds ); Vec_WecForEachLevelReverse( pBox->vAdds, vLevel, i ) Vec_IntForEachEntry( vLevel, Box, k ) if ( !Vec_BitEntry( vIsLeaf, Vec_IntEntry(vAdds, 6*Box+4) ) ) { //printf( "Pushing phase of output %d of box %d\n", Vec_IntEntry(vAdds, 6*Box+4), Box ); Acec_TreePhases_rec( p, vAdds, vMap, Vec_IntEntry(vAdds, 6*Box+4), Vec_IntEntry(vAdds, 6*Box+2) != 0, vVisit ); } Acec_TreeVerifyPhases( p, vAdds, pBox->vAdds ); Acec_TreeVerifyPhases2( p, vAdds, pBox->vAdds ); Vec_BitFree( vVisit ); Vec_IntFree( vMap ); // collect inputs/outputs Vec_BitWriteEntry( vIsRoot, 0, 1 ); Vec_WecForEachLevel( pBox->vAdds, vLevel, i ) Vec_IntForEachEntry( vLevel, Box, j ) { for ( k = 0; k < 3; k++ ) if ( !Vec_BitEntry( vIsRoot, Vec_IntEntry(vAdds, 6*Box+k) ) ) Vec_WecPush( pBox->vLeafLits, i, Abc_Var2Lit(Vec_IntEntry(vAdds, 6*Box+k), Acec_SignBit2(vAdds, Box, k)) ); for ( k = 3; k < 5; k++ ) if ( !Vec_BitEntry( vIsLeaf, Vec_IntEntry(vAdds, 6*Box+k) ) ) Vec_WecPush( pBox->vRootLits, k == 4 ? i + 1 : i, Abc_Var2Lit(Vec_IntEntry(vAdds, 6*Box+k), Acec_SignBit2(vAdds, Box, k)) ); if ( Vec_IntEntry(vAdds, 6*Box+2) == 0 && Acec_SignBit2(vAdds, Box, 2) ) Vec_WecPush( pBox->vLeafLits, i, 1 ); } Vec_BitFree( vIsLeaf ); Vec_BitFree( vIsRoot ); // collect last bit vLevel = Vec_WecEntry( pBox->vLeafLits, Vec_WecSize(pBox->vLeafLits)-1 ); vLevel2 = Vec_WecEntry( vXorLeaves, Vec_WecSize(vXorLeaves)-1 ); if ( Vec_IntSize(vLevel) == 0 && Vec_IntSize(vLevel2) > 0 ) { Vec_IntForEachEntry( vLevel2, Node, k ) Vec_IntPush( vLevel, Abc_Var2Lit(Node, 0) ); } vLevel = Vec_WecEntry( pBox->vRootLits, Vec_WecSize(pBox->vRootLits)-1 ); Vec_IntFill( vLevel, 1, Abc_Var2Lit(Vec_IntEntryLast(vXorRoots), 0) ); // sort each level Vec_WecForEachLevel( pBox->vLeafLits, vLevel, i ) Vec_IntSort( vLevel, 0 ); Vec_WecForEachLevel( pBox->vRootLits, vLevel, i ) Vec_IntSort( vLevel, 1 ); //Acec_CheckBoothPPs( p, pBox->vLeafLits ); return pBox; } Acec_Box_t * Acec_ProduceBox( Gia_Man_t * p, int fVerbose ) { extern void Acec_TreeVerifyConnections( Gia_Man_t * p, Vec_Int_t * vAdds, Vec_Wec_t * vBoxes ); abctime clk = Abc_Clock(); Acec_Box_t * pBox = NULL; Vec_Int_t * vXors, * vAdds = Ree_ManComputeCuts( p, &vXors, 0 ); Vec_Int_t * vTemp, * vXorRoots = Acec_FindXorRoots( p, vXors ); Vec_Int_t * vRanks = Acec_RankTrees( p, vXors, vXorRoots ); Vec_Wec_t * vXorLeaves, * vAddBoxes = NULL; Gia_ManLevelNum(p); //Acec_CheckXors( p, vXors ); //Ree_ManPrintAdders( vAdds, 1 ); if ( fVerbose ) printf( "Detected %d full-adders and %d half-adders. Found %d XOR-cuts. ", Ree_ManCountFadds(vAdds), Vec_IntSize(vAdds)/6-Ree_ManCountFadds(vAdds), Vec_IntSize(vXors)/4 ); if ( fVerbose ) Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); vXorRoots = Acec_OrderTreeRoots( p, vAdds, vTemp = vXorRoots, vRanks ); Vec_IntFree( vTemp ); Vec_IntFree( vRanks ); vRanks = Acec_RankTrees( p, vXors, vXorRoots ); vXorLeaves = Acec_FindXorLeaves( p, vXors, vAdds, vXorRoots, vRanks, &vAddBoxes ); Vec_IntFree( vRanks ); //printf( "XOR roots after reordering: \n" ); //Vec_IntPrint( vXorRoots ); //printf( "XOR leaves: \n" ); //Vec_WecPrint( vXorLeaves, 0 ); //printf( "Adder boxes: \n" ); //Vec_WecPrint( vAddBoxes, 0 ); Acec_TreeVerifyConnections( p, vAdds, vAddBoxes ); pBox = Acec_FindBox( p, vAdds, vAddBoxes, vXorLeaves, vXorRoots ); //Vec_WecFree( vAddBoxes ); if ( fVerbose ) Acec_TreePrintBox( pBox, vAdds ); Vec_IntFree( vXorRoots ); Vec_WecFree( vXorLeaves ); Vec_IntFree( vXors ); Vec_IntFree( vAdds ); return pBox; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Gia_ManTestXor( Gia_Man_t * p ) { Vec_Wrd_t * vSimsPi = Vec_WrdStartTruthTables( Gia_ManCiNum(p) ); Vec_Wrd_t * vSims = Gia_ManSimPatSimOut( p, vSimsPi, 1 ); int n, i, nWords = Vec_WrdSize(vSimsPi) / Gia_ManCiNum(p); Gia_Obj_t * pObj; Vec_Wrd_t * vSims2; Gia_ManForEachAnd( p, pObj, i ) { Gia_Obj_t Obj = *pObj; for ( n = 0; n < 2; n++ ) { if ( n ) { pObj->iDiff1 = pObj->iDiff0; pObj->fCompl1 = pObj->fCompl0; } else { pObj->iDiff0 = pObj->iDiff1; pObj->fCompl0 = pObj->fCompl1; } vSims2 = Gia_ManSimPatSimOut( p, vSimsPi, 1 ); printf( "%2d %2d : %5d\n", i, n, Abc_TtCountOnesVecXor(Vec_WrdArray(vSims), Vec_WrdArray(vSims2), Vec_WrdSize(vSims2)) ); Vec_WrdFree( vSims2 ); *pObj = Obj; } } Vec_WrdFree( vSimsPi ); Vec_WrdFree( vSims ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END