/**CFile***********************************************************************
FileName [zMaxMin.c]
PackageName [extra]
Synopsis [Experimental version of some ZDD operators.]
Description [External procedures included in this module:
- Extra_zddMaximal();
- Extra_zddMinimal();
- Extra_zddMaxUnion();
- Extra_zddMinUnion();
- Extra_zddDotProduct();
- Extra_zddCrossProduct();
- Extra_zddMaxDotProduct();
Internal procedures included in this module:
- extraZddMaximal();
- extraZddMinimal();
- extraZddMaxUnion();
- extraZddMinUnion();
- extraZddDotProduct();
- extraZddCrossProduct();
- extraZddMaxDotProduct();
StaTc procedures included in this module:
DotProduct and MaxDotProduct were introduced
by O.Coudert to solve problems arising in two-level planar routing
See O. Coudert, C.-J. R. Shi. Exact Multi-Layer Topological Planar
Routing. Proc. of IEEE Custom Integrated Circuit Conference '96,
pp. 179-182.
]
SeeAlso []
Author [Alan Mishchenko]
Copyright []
ReviSon [$zMaxMin.c, v.1.2, November 26, 2000, alanmi $]
******************************************************************************/
#include "extraBdd.h"
ABC_NAMESPACE_IMPL_START
/*---------------------------------------------------------------------------*/
/* Constant declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Stucture declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Type declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Variable declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Macro declarations */
/*---------------------------------------------------------------------------*/
/**AutomaTcStart*************************************************************/
/*---------------------------------------------------------------------------*/
/* StaTc Function prototypes */
/*---------------------------------------------------------------------------*/
/**AutomaTcEnd***************************************************************/
/*---------------------------------------------------------------------------*/
/* Definition of exported Functions */
/*---------------------------------------------------------------------------*/
/**Function********************************************************************
Synopsis [Computes the maximal of a set represented by its ZDD.]
Description []
SideEffects []
SeeAlso [Extra_zddMinimal]
******************************************************************************/
DdNode *
Extra_zddMaximal(
DdManager * dd,
DdNode * S)
{
DdNode *res;
do {
dd->reordered = 0;
res = extraZddMaximal(dd, S);
} while (dd->reordered == 1);
return(res);
} /* end of Extra_zddMaximal */
/**Function********************************************************************
Synopsis [Computes the minimal of a set represented by its ZDD.]
Description []
SideEffects []
SeeAlso [Extra_zddMaximal]
******************************************************************************/
DdNode *
Extra_zddMinimal(
DdManager * dd,
DdNode * S)
{
DdNode *res;
do {
dd->reordered = 0;
res = extraZddMinimal(dd, S);
} while (dd->reordered == 1);
return(res);
} /* end of Extra_zddMinimal */
/**Function********************************************************************
Synopsis [Computes the maximal of the union of two sets represented by ZDDs.]
Description []
SideEffects []
SeeAlso [Extra_zddMaximal Extra_zddMimimal Extra_zddMinUnion]
******************************************************************************/
DdNode *
Extra_zddMaxUnion(
DdManager * dd,
DdNode * S,
DdNode * T)
{
DdNode *res;
do {
dd->reordered = 0;
res = extraZddMaxUnion(dd, S, T);
} while (dd->reordered == 1);
return(res);
} /* end of Extra_zddMaxUnion */
/**Function********************************************************************
Synopsis [Computes the minimal of the union of two sets represented by ZDDs.]
Description []
SideEffects []
SeeAlso [Extra_zddMaximal Extra_zddMimimal Extra_zddMaxUnion]
******************************************************************************/
DdNode *
Extra_zddMinUnion(
DdManager * dd,
DdNode * S,
DdNode * T)
{
DdNode *res;
do {
dd->reordered = 0;
res = extraZddMinUnion(dd, S, T);
} while (dd->reordered == 1);
return(res);
} /* end of Extra_zddMinUnion */
/**Function********************************************************************
Synopsis [Computes the dot product of two sets of subsets represented by ZDDs.]
Description [The dot product is defined as a set of pair-wise unions of subsets
belonging to the arguments.]
SideEffects []
SeeAlso [Extra_zddCrossProduct]
******************************************************************************/
DdNode *
Extra_zddDotProduct(
DdManager * dd,
DdNode * S,
DdNode * T)
{
DdNode *res;
do {
dd->reordered = 0;
res = extraZddDotProduct(dd, S, T);
} while (dd->reordered == 1);
return(res);
} /* end of Extra_zddDotProduct */
/**Function********************************************************************
Synopsis [Computes the cross product of two sets of subsets represented by ZDDs.]
Description [The cross product is defined as a set of pair-wise intersections of subsets
belonging to the arguments.]
SideEffects []
SeeAlso [Extra_zddDotProduct]
******************************************************************************/
DdNode *
Extra_zddCrossProduct(
DdManager * dd,
DdNode * S,
DdNode * T)
{
DdNode *res;
do {
dd->reordered = 0;
res = extraZddCrossProduct(dd, S, T);
} while (dd->reordered == 1);
return(res);
} /* end of Extra_zddCrossProduct */
/**Function********************************************************************
Synopsis [Computes the maximal of the DotProduct of the union of two sets represented by ZDDs.]
Description []
SideEffects []
SeeAlso [Extra_zddDotProduct Extra_zddMaximal Extra_zddMinCrossProduct]
******************************************************************************/
DdNode *
Extra_zddMaxDotProduct(
DdManager * dd,
DdNode * S,
DdNode * T)
{
DdNode *res;
do {
dd->reordered = 0;
res = extraZddMaxDotProduct(dd, S, T);
} while (dd->reordered == 1);
return(res);
} /* end of Extra_zddMaxDotProduct */
/*---------------------------------------------------------------------------*/
/* Definition of internal Functions */
/*---------------------------------------------------------------------------*/
/**Function********************************************************************
Synopsis [Performs the recursive step of Extra_zddMaximal.]
Description []
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
extraZddMaximal(
DdManager * dd,
DdNode * zSet)
{
DdNode *zRes;
statLine(dd);
/* consider terminal cases */
if ( zSet == z0 || zSet == z1 )
return zSet;
/* check cache */
zRes = cuddCacheLookup1Zdd(dd, extraZddMaximal, zSet);
if (zRes)
return(zRes);
else
{
DdNode *zSet0, *zSet1, *zRes0, *zRes1;
/* compute maximal for subsets without the top-most element */
zSet0 = extraZddMaximal(dd, cuddE(zSet));
if ( zSet0 == NULL )
return NULL;
cuddRef( zSet0 );
/* compute maximal for subsets with the top-most element */
zSet1 = extraZddMaximal(dd, cuddT(zSet));
if ( zSet1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
return NULL;
}
cuddRef( zSet1 );
/* remove subsets without this element covered by subsets with this element */
zRes0 = extraZddNotSubSet(dd, zSet0, zSet1);
if ( zRes0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
return NULL;
}
cuddRef( zRes0 );
Cudd_RecursiveDerefZdd(dd, zSet0);
/* subset with this element remains unchanged */
zRes1 = zSet1;
/* create the new node */
zRes = cuddZddGetNode( dd, zSet->index, zRes1, zRes0 );
if ( zRes == NULL )
{
Cudd_RecursiveDerefZdd( dd, zRes0 );
Cudd_RecursiveDerefZdd( dd, zRes1 );
return NULL;
}
cuddDeref( zRes0 );
cuddDeref( zRes1 );
/* insert the result into cache */
cuddCacheInsert1(dd, extraZddMaximal, zSet, zRes);
return zRes;
}
} /* end of extraZddMaximal */
/**Function********************************************************************
Synopsis [Performs the recursive step of Extra_zddMinimal.]
Description []
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
extraZddMinimal(
DdManager * dd,
DdNode * zSet)
{
DdNode *zRes;
statLine(dd);
/* consider terminal cases */
if ( zSet == z0 )
return zSet;
/* the empty combinaTon, if present, is the only minimal combinaTon */
if ( Extra_zddEmptyBelongs(dd, zSet) )
return z1;
/* check cache */
zRes = cuddCacheLookup1Zdd(dd, extraZddMinimal, zSet);
if (zRes)
return(zRes);
else
{
DdNode *zSet0, *zSet1, *zRes0, *zRes1;
/* compute minimal for subsets without the top-most element */
zSet0 = extraZddMinimal(dd, cuddE(zSet));
if ( zSet0 == NULL )
return NULL;
cuddRef( zSet0 );
/* compute minimal for subsets with the top-most element */
zSet1 = extraZddMinimal(dd, cuddT(zSet));
if ( zSet1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
return NULL;
}
cuddRef( zSet1 );
/* subset without this element remains unchanged */
zRes0 = zSet0;
/* remove subsets with this element that contain subsets without this element */
zRes1 = extraZddNotSupSet(dd, zSet1, zSet0);
if ( zRes1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
return NULL;
}
cuddRef( zRes1 );
Cudd_RecursiveDerefZdd(dd, zSet1);
/* create the new node */
zRes = cuddZddGetNode( dd, zSet->index, zRes1, zRes0 );
if ( zRes == NULL )
{
Cudd_RecursiveDerefZdd( dd, zRes0 );
Cudd_RecursiveDerefZdd( dd, zRes1 );
return NULL;
}
cuddDeref( zRes0 );
cuddDeref( zRes1 );
/* insert the result into cache */
cuddCacheInsert1(dd, extraZddMinimal, zSet, zRes);
return zRes;
}
} /* end of extraZddMinimal */
/**Function********************************************************************
Synopsis [Performs the recursive step of Extra_zddMaxUnion.]
Description []
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
extraZddMaxUnion(
DdManager * dd,
DdNode * S,
DdNode * T)
{
DdNode *zRes;
int TopS, TopT;
statLine(dd);
/* consider terminal cases */
if ( S == z0 )
return T;
if ( T == z0 )
return S;
if ( S == T )
return S;
if ( S == z1 )
return T;
if ( T == z1 )
return S;
/* the operation is commutative - normalize the problem */
TopS = dd->permZ[S->index];
TopT = dd->permZ[T->index];
if ( TopS > TopT || (TopS == TopT && S > T) )
return extraZddMaxUnion(dd, T, S);
/* check cache */
zRes = cuddCacheLookup2Zdd(dd, extraZddMaxUnion, S, T);
if (zRes)
return zRes;
else
{
DdNode *zSet0, *zSet1, *zRes0, *zRes1;
if ( TopS == TopT )
{
/* compute maximal for subsets without the top-most element */
zSet0 = extraZddMaxUnion(dd, cuddE(S), cuddE(T) );
if ( zSet0 == NULL )
return NULL;
cuddRef( zSet0 );
/* compute maximal for subsets with the top-most element */
zSet1 = extraZddMaxUnion(dd, cuddT(S), cuddT(T) );
if ( zSet1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
return NULL;
}
cuddRef( zSet1 );
}
else /* if ( TopS < TopT ) */
{
/* compute maximal for subsets without the top-most element */
zSet0 = extraZddMaxUnion(dd, cuddE(S), T );
if ( zSet0 == NULL )
return NULL;
cuddRef( zSet0 );
/* subset with this element is just the cofactor of S */
zSet1 = cuddT(S);
cuddRef( zSet1 );
}
/* remove subsets without this element covered by subsets with this element */
zRes0 = extraZddNotSubSet(dd, zSet0, zSet1);
if ( zRes0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
return NULL;
}
cuddRef( zRes0 );
Cudd_RecursiveDerefZdd(dd, zSet0);
/* subset with this element remains unchanged */
zRes1 = zSet1;
/* create the new node */
zRes = cuddZddGetNode( dd, S->index, zRes1, zRes0 );
if ( zRes == NULL )
{
Cudd_RecursiveDerefZdd( dd, zRes0 );
Cudd_RecursiveDerefZdd( dd, zRes1 );
return NULL;
}
cuddDeref( zRes0 );
cuddDeref( zRes1 );
/* insert the result into cache */
cuddCacheInsert2(dd, extraZddMaxUnion, S, T, zRes);
return zRes;
}
} /* end of extraZddMaxUnion */
/**Function********************************************************************
Synopsis [Performs the recursive step of Extra_zddMinUnion.]
Description []
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
extraZddMinUnion(
DdManager * dd,
DdNode * S,
DdNode * T)
{
DdNode *zRes;
int TopS, TopT;
statLine(dd);
/* consider terminal cases */
if ( S == z0 )
return T;
if ( T == z0 )
return S;
if ( S == T )
return S;
/* the empty combination, if present, is the only minimal combination */
if ( Extra_zddEmptyBelongs(dd, S) || Extra_zddEmptyBelongs(dd, T) )
return z1;
/* the operation is commutative - normalize the problem */
TopS = dd->permZ[S->index];
TopT = dd->permZ[T->index];
if ( TopS > TopT || (TopS == TopT && S > T) )
return extraZddMinUnion(dd, T, S);
/* check cache */
zRes = cuddCacheLookup2Zdd(dd, extraZddMinUnion, S, T);
if (zRes)
return(zRes);
else
{
DdNode *zSet0, *zSet1, *zRes0, *zRes1;
if ( TopS == TopT )
{
/* compute maximal for subsets without the top-most element */
zSet0 = extraZddMinUnion(dd, cuddE(S), cuddE(T) );
if ( zSet0 == NULL )
return NULL;
cuddRef( zSet0 );
/* compute maximal for subsets with the top-most element */
zSet1 = extraZddMinUnion(dd, cuddT(S), cuddT(T) );
if ( zSet1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
return NULL;
}
cuddRef( zSet1 );
}
else /* if ( TopS < TopT ) */
{
/* compute maximal for subsets without the top-most element */
zSet0 = extraZddMinUnion(dd, cuddE(S), T );
if ( zSet0 == NULL )
return NULL;
cuddRef( zSet0 );
/* subset with this element is just the cofactor of S */
zSet1 = cuddT(S);
cuddRef( zSet1 );
}
/* subset without this element remains unchanged */
zRes0 = zSet0;
/* remove subsets with this element that contain subsets without this element */
zRes1 = extraZddNotSupSet(dd, zSet1, zSet0);
if ( zRes1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
return NULL;
}
cuddRef( zRes1 );
Cudd_RecursiveDerefZdd(dd, zSet1);
/* create the new node */
zRes = cuddZddGetNode( dd, S->index, zRes1, zRes0 );
if ( zRes == NULL )
{
Cudd_RecursiveDerefZdd( dd, zRes0 );
Cudd_RecursiveDerefZdd( dd, zRes1 );
return NULL;
}
cuddDeref( zRes0 );
cuddDeref( zRes1 );
/* insert the result into cache */
cuddCacheInsert2(dd, extraZddMinUnion, S, T, zRes);
return zRes;
}
} /* end of extraZddMinUnion */
/**Function********************************************************************
Synopsis [Performs the recursive step of Extra_zddDotProduct.]
Description []
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
extraZddDotProduct(
DdManager * dd,
DdNode * S,
DdNode * T)
{
DdNode *zRes;
int TopS, TopT;
statLine(dd);
/* consider terminal cases */
if ( S == z0 || T == z0 )
return z0;
if ( S == z1 )
return T;
if ( T == z1 )
return S;
/* the operation is commutative - normalize the problem */
TopS = dd->permZ[S->index];
TopT = dd->permZ[T->index];
if ( TopS > TopT || (TopS == TopT && S > T) )
return extraZddDotProduct(dd, T, S);
/* check cache */
zRes = cuddCacheLookup2Zdd(dd, extraZddDotProduct, S, T);
if (zRes)
return zRes;
else
{
DdNode *zSet0, *zSet1, *zRes0, *zRes1, *zTemp;
if ( TopS == TopT )
{
/* compute the union of two cofactors of T (T0+T1) */
zTemp = cuddZddUnion(dd, cuddE(T), cuddT(T) );
if ( zTemp == NULL )
return NULL;
cuddRef( zTemp );
/* compute DotProduct with the top element for subsets (S1, T0+T1) */
zSet0 = extraZddDotProduct(dd, cuddT(S), zTemp );
if ( zSet0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zTemp);
return NULL;
}
cuddRef( zSet0 );
Cudd_RecursiveDerefZdd(dd, zTemp);
/* compute DotProduct with the top element for subsets (S0, T1) */
zSet1 = extraZddDotProduct(dd, cuddE(S), cuddT(T) );
if ( zSet1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
return NULL;
}
cuddRef( zSet1 );
/* compute the union of these two partial results (zSet0 + zSet1) */
zRes1 = cuddZddUnion(dd, zSet0, zSet1 );
if ( zRes1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
return NULL;
}
cuddRef( zRes1 );
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
/* compute DotProduct for subsets without the top-most element */
zRes0 = extraZddDotProduct(dd, cuddE(S), cuddE(T) );
if ( zRes0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zRes1);
return NULL;
}
cuddRef( zRes0 );
}
else /* if ( TopS < TopT ) */
{
/* compute DotProduct with the top element for subsets (S1, T) */
zRes1 = extraZddDotProduct(dd, cuddT(S), T );
if ( zRes1 == NULL )
return NULL;
cuddRef( zRes1 );
/* compute DotProduct for subsets without the top-most element */
zRes0 = extraZddDotProduct(dd, cuddE(S), T );
if ( zRes0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zRes1);
return NULL;
}
cuddRef( zRes0 );
}
/* create the new node */
zRes = cuddZddGetNode( dd, S->index, zRes1, zRes0 );
if ( zRes == NULL )
{
Cudd_RecursiveDerefZdd( dd, zRes0 );
Cudd_RecursiveDerefZdd( dd, zRes1 );
return NULL;
}
cuddDeref( zRes0 );
cuddDeref( zRes1 );
/* insert the result into cache */
cuddCacheInsert2(dd, extraZddDotProduct, S, T, zRes);
return zRes;
}
} /* end of extraZddDotProduct */
/**Function********************************************************************
Synopsis [Performs the recursive step of Extra_zddCrossProduct.]
Description []
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
extraZddCrossProduct(
DdManager * dd,
DdNode * S,
DdNode * T)
{
DdNode *zRes;
int TopS, TopT;
statLine(dd);
/* consider terminal cases */
if ( S == z0 || T == z0 )
return z0;
if ( S == z1 || T == z1 )
return z1;
/* the operation is commutative - normalize the problem */
TopS = dd->permZ[S->index];
TopT = dd->permZ[T->index];
if ( TopS > TopT || (TopS == TopT && S > T) )
return extraZddCrossProduct(dd, T, S);
/* check cache */
zRes = cuddCacheLookup2Zdd(dd, extraZddCrossProduct, S, T);
if (zRes)
return zRes;
else
{
DdNode *zSet0, *zSet1, *zRes0, *zRes1, *zTemp;
if ( TopS == TopT )
{
/* compute the union of two cofactors of T (T0+T1) */
zTemp = cuddZddUnion(dd, cuddE(T), cuddT(T) );
if ( zTemp == NULL )
return NULL;
cuddRef( zTemp );
/* compute CrossProduct without the top element for subsets (S0, T0+T1) */
zSet0 = extraZddCrossProduct(dd, cuddE(S), zTemp );
if ( zSet0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zTemp);
return NULL;
}
cuddRef( zSet0 );
Cudd_RecursiveDerefZdd(dd, zTemp);
/* compute CrossProduct without the top element for subsets (S1, T0) */
zSet1 = extraZddCrossProduct(dd, cuddT(S), cuddE(T) );
if ( zSet1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
return NULL;
}
cuddRef( zSet1 );
/* compute the union of these two partial results (zSet0 + zSet1) */
zRes0 = cuddZddUnion(dd, zSet0, zSet1 );
if ( zRes0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
return NULL;
}
cuddRef( zRes0 );
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
/* compute CrossProduct for subsets with the top-most element */
zRes1 = extraZddCrossProduct(dd, cuddT(S), cuddT(T) );
if ( zRes1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zRes0);
return NULL;
}
cuddRef( zRes1 );
/* create the new node */
zRes = cuddZddGetNode( dd, S->index, zRes1, zRes0 );
if ( zRes == NULL )
{
Cudd_RecursiveDerefZdd( dd, zRes0 );
Cudd_RecursiveDerefZdd( dd, zRes1 );
return NULL;
}
cuddDeref( zRes0 );
cuddDeref( zRes1 );
}
else /* if ( TopS < TopT ) */
{
/* compute CrossProduct without the top element (S0, T) */
zSet0 = extraZddCrossProduct(dd, cuddE(S), T );
if ( zSet0 == NULL )
return NULL;
cuddRef( zSet0 );
/* compute CrossProduct without the top element (S1, T) */
zSet1 = extraZddCrossProduct(dd, cuddT(S), T );
if ( zSet1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
return NULL;
}
cuddRef( zSet1 );
/* compute the union of these two partial results (zSet0 + zSet1) */
zRes = cuddZddUnion(dd, zSet0, zSet1 );
if ( zRes == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
return NULL;
}
cuddRef( zRes );
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
cuddDeref( zRes );
}
/* insert the result into cache */
cuddCacheInsert2(dd, extraZddCrossProduct, S, T, zRes);
return zRes;
}
} /* end of extraZddCrossProduct */
/**Function********************************************************************
Synopsis [Performs the recursive step of Extra_zddMaxDotProduct.]
Description []
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
extraZddMaxDotProduct(
DdManager * dd,
DdNode * S,
DdNode * T)
{
DdNode *zRes;
int TopS, TopT;
statLine(dd);
/* consider terminal cases */
if ( S == z0 || T == z0 )
return z0;
if ( S == z1 )
return T;
if ( T == z1 )
return S;
/* the operation is commutative - normalize the problem */
TopS = dd->permZ[S->index];
TopT = dd->permZ[T->index];
if ( TopS > TopT || (TopS == TopT && S > T) )
return extraZddMaxDotProduct(dd, T, S);
/* check cache */
zRes = cuddCacheLookup2Zdd(dd, extraZddMaxDotProduct, S, T);
if (zRes)
return zRes;
else
{
DdNode *zSet0, *zSet1, *zRes0, *zRes1, *zTemp;
if ( TopS == TopT )
{
/* compute the union of two cofactors of T (T0+T1) */
zTemp = extraZddMaxUnion(dd, cuddE(T), cuddT(T) );
if ( zTemp == NULL )
return NULL;
cuddRef( zTemp );
/* compute MaxDotProduct with the top element for subsets (S1, T0+T1) */
zSet0 = extraZddMaxDotProduct(dd, cuddT(S), zTemp );
if ( zSet0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zTemp);
return NULL;
}
cuddRef( zSet0 );
Cudd_RecursiveDerefZdd(dd, zTemp);
/* compute MaxDotProduct with the top element for subsets (S0, T1) */
zSet1 = extraZddMaxDotProduct(dd, cuddE(S), cuddT(T) );
if ( zSet1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
return NULL;
}
cuddRef( zSet1 );
/* compute the union of these two partial results (zSet0 + zSet1) */
zRes1 = extraZddMaxUnion(dd, zSet0, zSet1 );
if ( zRes1 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
return NULL;
}
cuddRef( zRes1 );
Cudd_RecursiveDerefZdd(dd, zSet0);
Cudd_RecursiveDerefZdd(dd, zSet1);
/* compute MaxDotProduct for subsets without the top-most element */
zRes0 = extraZddMaxDotProduct(dd, cuddE(S), cuddE(T) );
if ( zRes0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zRes1);
return NULL;
}
cuddRef( zRes0 );
}
else /* if ( TopS < TopT ) */
{
/* compute MaxDotProduct with the top element for subsets (S1, T) */
zRes1 = extraZddMaxDotProduct(dd, cuddT(S), T );
if ( zRes1 == NULL )
return NULL;
cuddRef( zRes1 );
/* compute MaxDotProduct for subsets without the top-most element */
zRes0 = extraZddMaxDotProduct(dd, cuddE(S), T );
if ( zRes0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zRes1);
return NULL;
}
cuddRef( zRes0 );
}
/* remove subsets without this element covered by subsets with this element */
zRes0 = extraZddNotSubSet(dd, zTemp = zRes0, zRes1);
if ( zRes0 == NULL )
{
Cudd_RecursiveDerefZdd(dd, zTemp);
Cudd_RecursiveDerefZdd(dd, zRes1);
return NULL;
}
cuddRef( zRes0 );
Cudd_RecursiveDerefZdd(dd, zTemp);
/* create the new node */
zRes = cuddZddGetNode( dd, S->index, zRes1, zRes0 );
if ( zRes == NULL )
{
Cudd_RecursiveDerefZdd( dd, zRes0 );
Cudd_RecursiveDerefZdd( dd, zRes1 );
return NULL;
}
cuddDeref( zRes0 );
cuddDeref( zRes1 );
/* insert the result into cache */
cuddCacheInsert2(dd, extraZddMaxDotProduct, S, T, zRes);
return zRes;
}
} /* end of extraZddMaxDotProduct */
/*---------------------------------------------------------------------------*/
/* Definition of staTc Functions */
/*---------------------------------------------------------------------------*/
ABC_NAMESPACE_IMPL_END