/**CFile**************************************************************** FileName [giaNf.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Scalable AIG package.] Synopsis [Standard-cell mapper.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: giaNf.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include #include "gia.h" #include "misc/st/st.h" #include "map/mio/mio.h" #include "misc/util/utilTruth.h" #include "misc/extra/extra.h" #include "base/main/main.h" #include "misc/vec/vecMem.h" #include "misc/vec/vecWec.h" #include "opt/dau/dau.h" #include "misc/util/utilNam.h" #include "map/scl/sclCon.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define NF_LEAF_MAX 6 #define NF_CUT_MAX 32 #define NF_NO_LEAF 31 #define NF_NO_FUNC 0x3FFFFFF #define NF_EPSILON 0.001 typedef struct Nf_Cut_t_ Nf_Cut_t; struct Nf_Cut_t_ { word Sign; // signature int Delay; // delay float Flow; // flow unsigned iFunc : 26; // function (NF_NO_FUNC) unsigned Useless : 1; // function unsigned nLeaves : 5; // leaf number (NF_NO_LEAF) int pLeaves[NF_LEAF_MAX+1]; // leaves }; typedef struct Nf_Cfg_t_ Nf_Cfg_t; struct Nf_Cfg_t_ { unsigned fCompl : 1; // complemented unsigned Phase : 7; // match phase unsigned Perm : 24; // match permutation }; typedef struct Nf_Mat_t_ Nf_Mat_t; struct Nf_Mat_t_ { unsigned Gate : 20; // gate unsigned CutH : 10; // cut handle unsigned fCompl : 1; // complemented unsigned fBest : 1; // best cut Nf_Cfg_t Cfg; // input literals int D; // delay float F; // area }; typedef struct Nf_Obj_t_ Nf_Obj_t; struct Nf_Obj_t_ { Nf_Mat_t M[2][2]; // del/area (2x) }; typedef struct Nf_Man_t_ Nf_Man_t; struct Nf_Man_t_ { // user data Gia_Man_t * pGia; // derived manager Jf_Par_t * pPars; // parameters // matching Vec_Mem_t * vTtMem; // truth tables Vec_Wec_t * vTt2Match; // matches for truth tables Mio_Cell2_t * pCells; // library gates int nCells; // library gate count // cut data Nf_Obj_t * pNfObjs; // best cuts Vec_Ptr_t vPages; // cut memory Vec_Int_t vCutSets; // cut offsets Vec_Int_t vMapRefs; // mapping refs (2x) Vec_Flt_t vFlowRefs; // flow refs (2x) Vec_Int_t vRequired; // required times (2x) Vec_Flt_t vCutFlows; // temporary cut area Vec_Int_t vCutDelays; // temporary cut delay Vec_Int_t vBackup; // backup literals int iCur; // current position int Iter; // mapping iterations int fUseEla; // use exact area int nInvs; // the inverter count int InvDelayI; // inverter delay word InvAreaW; // inverter delay float InvAreaF; // inverter area // statistics abctime clkStart; // starting time double CutCount[6]; // cut counts int nCutUseAll; // objects with useful cuts }; static inline int Nf_Cfg2Int( Nf_Cfg_t Mat ) { union { int x; Nf_Cfg_t y; } v; v.y = Mat; return v.x; } static inline Nf_Cfg_t Nf_Int2Cfg( int Int ) { union { int x; Nf_Cfg_t y; } v; v.x = Int; return v.y; } static inline Nf_Obj_t * Nf_ManObj( Nf_Man_t * p, int i ) { return p->pNfObjs + i; } static inline Mio_Cell2_t* Nf_ManCell( Nf_Man_t * p, int i ) { return p->pCells + i; } static inline int * Nf_ManCutSet( Nf_Man_t * p, int i ) { return (int *)Vec_PtrEntry(&p->vPages, i >> 16) + (i & 0xFFFF); } static inline int Nf_ObjCutSetId( Nf_Man_t * p, int i ) { return Vec_IntEntry( &p->vCutSets, i ); } static inline int * Nf_ObjCutSet( Nf_Man_t * p, int i ) { return Nf_ManCutSet(p, Nf_ObjCutSetId(p, i)); } static inline int Nf_ObjHasCuts( Nf_Man_t * p, int i ) { return (int)(Vec_IntEntry(&p->vCutSets, i) > 0); } static inline int * Nf_ObjCutBest( Nf_Man_t * p, int i ) { return NULL; } static inline int Nf_ObjCutUseless( Nf_Man_t * p, int TruthId ) { return (int)(TruthId >= Vec_WecSize(p->vTt2Match)); } static inline float Nf_ObjCutFlow( Nf_Man_t * p, int i ) { return Vec_FltEntry(&p->vCutFlows, i); } static inline int Nf_ObjCutDelay( Nf_Man_t * p, int i ) { return Vec_IntEntry(&p->vCutDelays, i); } static inline void Nf_ObjSetCutFlow( Nf_Man_t * p, int i, float a ) { Vec_FltWriteEntry(&p->vCutFlows, i, a); } static inline void Nf_ObjSetCutDelay( Nf_Man_t * p, int i, int d ) { Vec_IntWriteEntry(&p->vCutDelays, i, d); } static inline int Nf_ObjMapRefNum( Nf_Man_t * p, int i, int c ) { return Vec_IntEntry(&p->vMapRefs, Abc_Var2Lit(i,c)); } static inline int Nf_ObjMapRefInc( Nf_Man_t * p, int i, int c ) { return (*Vec_IntEntryP(&p->vMapRefs, Abc_Var2Lit(i,c)))++; } static inline int Nf_ObjMapRefDec( Nf_Man_t * p, int i, int c ) { return --(*Vec_IntEntryP(&p->vMapRefs, Abc_Var2Lit(i,c))); } static inline float Nf_ObjFlowRefs( Nf_Man_t * p, int i, int c ) { return Vec_FltEntry(&p->vFlowRefs, Abc_Var2Lit(i,c)); } static inline int Nf_ObjRequired( Nf_Man_t * p, int i, int c ) { return Vec_IntEntry(&p->vRequired, Abc_Var2Lit(i,c)); } static inline void Nf_ObjSetRequired( Nf_Man_t * p,int i, int c, int f ) { Vec_IntWriteEntry(&p->vRequired, Abc_Var2Lit(i,c), f); } static inline void Nf_ObjUpdateRequired( Nf_Man_t * p,int i, int c, int f ) { if (Nf_ObjRequired(p, i, c) > f) Nf_ObjSetRequired(p, i, c, f); } static inline Nf_Mat_t * Nf_ObjMatchD( Nf_Man_t * p, int i, int c ) { return &Nf_ManObj(p, i)->M[c][0]; } static inline Nf_Mat_t * Nf_ObjMatchA( Nf_Man_t * p, int i, int c ) { return &Nf_ManObj(p, i)->M[c][1]; } static inline int Nf_CutSize( int * pCut ) { return pCut[0] & NF_NO_LEAF; } static inline int Nf_CutFunc( int * pCut ) { return ((unsigned)pCut[0] >> 5); } static inline int * Nf_CutLeaves( int * pCut ) { return pCut + 1; } static inline int Nf_CutSetBoth( int n, int f ) { return n | (f << 5); } static inline int Nf_CutIsTriv( int * pCut, int i ) { return Nf_CutSize(pCut) == 1 && pCut[1] == i; } static inline int Nf_CutHandle( int * pCutSet, int * pCut ) { assert( pCut > pCutSet ); return pCut - pCutSet; } static inline int * Nf_CutFromHandle( int * pCutSet, int h ) { assert( h > 0 ); return pCutSet + h; } static inline int Nf_CfgVar( Nf_Cfg_t Cfg, int i ) { return (Cfg.Perm >> (i<<2)) & 15; } static inline int Nf_CfgCompl( Nf_Cfg_t Cfg, int i ) { return (Cfg.Phase >> i) & 1; } #define Nf_SetForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += Nf_CutSize(pCut) + 1 ) #define Nf_CutForEachVarCompl( pCut, Cfg, iVar, fCompl, i ) for ( i = 0; i < Nf_CutSize(pCut) && (iVar = Nf_CutLeaves(pCut)[Nf_CfgVar(Cfg, i)]) && ((fCompl = Nf_CfgCompl(Cfg, i)), 1); i++ ) #define Nf_CfgForEachVarCompl( Cfg, Size, iVar, fCompl, i ) for ( i = 0; i < Size && ((iVar = Nf_CfgVar(Cfg, i)), 1) && ((fCompl = Nf_CfgCompl(Cfg, i)), 1); i++ ) //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Nf_StoCellIsDominated( Mio_Cell2_t * pCell, int * pFans, int * pProf ) { int k; if ( pCell->AreaF + NF_EPSILON < Abc_Int2Float(pProf[0]) ) return 0; for ( k = 0; k < (int)pCell->nFanins; k++ ) if ( pCell->iDelays[Abc_Lit2Var(pFans[k])] < pProf[k+1] ) return 0; return 1; // pCell is dominated } void Nf_StoCreateGateAdd( Vec_Mem_t * vTtMem, Vec_Wec_t * vTt2Match, Mio_Cell2_t * pCell, word uTruth, int * pFans, int nFans, Vec_Wec_t * vProfs, Vec_Int_t * vStore, int fPinFilter, int fPinPerm, int fPinQuick ) { Vec_Int_t * vArray, * vArrayProfs = NULL; int i, k, GateId, Entry, fCompl = (int)(uTruth & 1); word uFunc = fCompl ? ~uTruth : uTruth; int iFunc = Vec_MemHashInsert( vTtMem, &uFunc ); Nf_Cfg_t Mat = Nf_Int2Cfg(0); // get match array if ( iFunc == Vec_WecSize(vTt2Match) ) Vec_WecPushLevel( vTt2Match ); vArray = Vec_WecEntry( vTt2Match, iFunc ); // create match Mat.fCompl = fCompl; assert( nFans == (int)pCell->nFanins ); for ( i = 0; i < nFans; i++ ) { Mat.Perm |= (unsigned)(i << (Abc_Lit2Var(pFans[i]) << 2)); Mat.Phase |= (unsigned)(Abc_LitIsCompl(pFans[i]) << Abc_Lit2Var(pFans[i])); } // check other profiles if ( fPinFilter ) { // get profile array assert( Vec_WecSize(vTt2Match) == Vec_WecSize(vProfs) ); if ( iFunc == Vec_WecSize(vProfs) ) Vec_WecPushLevel( vProfs ); vArrayProfs = Vec_WecEntry( vProfs, iFunc ); assert( Vec_IntSize(vArray) == 2 * Vec_IntSize(vArrayProfs) ); // skip dominated matches Vec_IntForEachEntryDouble( vArray, GateId, Entry, i ) if ( Nf_Int2Cfg(Entry).Phase == Mat.Phase && Nf_Int2Cfg(Entry).fCompl == Mat.fCompl ) { int Offset = Vec_IntEntry(vArrayProfs, i/2); int * pProf = Vec_IntEntryP(vStore, Offset); if ( Nf_StoCellIsDominated(pCell, pFans, pProf) ) return; } } // check pin permutation if ( !fPinPerm ) // do not use pin-permutation (improves delay when pin-delays differ) { if ( fPinQuick ) // reduce the number of matches agressively { Vec_IntForEachEntryDouble( vArray, GateId, Entry, i ) if ( GateId == (int)pCell->Id && Abc_TtBitCount8[Nf_Int2Cfg(Entry).Phase] == Abc_TtBitCount8[Mat.Phase] ) return; } else // reduce the number of matches less agressively { Vec_IntForEachEntryDouble( vArray, GateId, Entry, i ) if ( GateId == (int)pCell->Id && Nf_Int2Cfg(Entry).Phase == Mat.Phase ) return; } } // save data and profile Vec_IntPush( vArray, pCell->Id ); Vec_IntPush( vArray, Nf_Cfg2Int(Mat) ); // add delay profile if ( fPinFilter ) { Vec_IntPush( vArrayProfs, Vec_IntSize(vStore) ); Vec_IntPush( vStore, Abc_Float2Int(pCell->AreaF) ); for ( k = 0; k < nFans; k++ ) Vec_IntPush( vStore, pCell->iDelays[Abc_Lit2Var(pFans[k])] ); } } void Nf_StoCreateGateMaches( Vec_Mem_t * vTtMem, Vec_Wec_t * vTt2Match, Mio_Cell2_t * pCell, int ** pComp, int ** pPerm, int * pnPerms, Vec_Wec_t * vProfs, Vec_Int_t * vStore, int fPinFilter, int fPinPerm, int fPinQuick ) { int Perm[NF_LEAF_MAX], * Perm1, * Perm2; int nPerms = pnPerms[pCell->nFanins]; int nMints = (1 << pCell->nFanins); word tCur, tTemp1, tTemp2; int i, p, c; assert( pCell->nFanins <= 6 ); for ( i = 0; i < (int)pCell->nFanins; i++ ) Perm[i] = Abc_Var2Lit( i, 0 ); tCur = tTemp1 = pCell->uTruth; for ( p = 0; p < nPerms; p++ ) { tTemp2 = tCur; for ( c = 0; c < nMints; c++ ) { Nf_StoCreateGateAdd( vTtMem, vTt2Match, pCell, tCur, Perm, pCell->nFanins, vProfs, vStore, fPinFilter, fPinPerm, fPinQuick ); // update tCur = Abc_Tt6Flip( tCur, pComp[pCell->nFanins][c] ); Perm1 = Perm + pComp[pCell->nFanins][c]; *Perm1 = Abc_LitNot( *Perm1 ); } assert( tTemp2 == tCur ); if ( nPerms == 1 ) continue; // update tCur = Abc_Tt6SwapAdjacent( tCur, pPerm[pCell->nFanins][p] ); Perm1 = Perm + pPerm[pCell->nFanins][p]; Perm2 = Perm1 + 1; ABC_SWAP( int, *Perm1, *Perm2 ); } assert( tTemp1 == tCur ); } Mio_Cell2_t * Nf_StoDeriveMatches( Vec_Mem_t * vTtMem, Vec_Wec_t * vTt2Match, int * pnCells, int fPinFilter, int fPinPerm, int fPinQuick ) { int fVerbose = 0; //abctime clk = Abc_Clock(); Vec_Wec_t * vProfs = Vec_WecAlloc( 1000 ); Vec_Int_t * vStore = Vec_IntAlloc( 10000 ); int * pComp[7], * pPerm[7], nPerms[7], i; Mio_Cell2_t * pCells; Vec_WecPushLevel( vProfs ); Vec_WecPushLevel( vProfs ); for ( i = 1; i <= 6; i++ ) pComp[i] = Extra_GreyCodeSchedule( i ); for ( i = 1; i <= 6; i++ ) pPerm[i] = Extra_PermSchedule( i ); for ( i = 1; i <= 6; i++ ) nPerms[i] = Extra_Factorial( i ); pCells = Mio_CollectRootsNewDefault2( 6, pnCells, fVerbose ); if ( pCells != NULL ) for ( i = 2; i < *pnCells; i++ ) Nf_StoCreateGateMaches( vTtMem, vTt2Match, pCells+i, pComp, pPerm, nPerms, vProfs, vStore, fPinFilter, fPinPerm, fPinQuick ); for ( i = 1; i <= 6; i++ ) ABC_FREE( pComp[i] ); for ( i = 1; i <= 6; i++ ) ABC_FREE( pPerm[i] ); Vec_WecFree( vProfs ); Vec_IntFree( vStore ); //Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); return pCells; } void Nf_StoPrintOne( Nf_Man_t * p, int Count, int t, int i, int GateId, Nf_Cfg_t Mat ) { Mio_Cell2_t * pC = p->pCells + GateId; word * pTruth = Vec_MemReadEntry(p->vTtMem, t); int k, nSuppSize = Abc_TtSupportSize(pTruth, 6); printf( "%6d : ", Count ); printf( "%6d : ", t ); printf( "%6d : ", i ); printf( "Gate %16s ", pC->pName ); printf( "Area =%8.2f ", pC->AreaF ); printf( "In = %d ", pC->nFanins ); if ( Mat.fCompl ) printf( " compl " ); else printf( " " ); for ( k = 0; k < (int)pC->nFanins; k++ ) { int fComplF = (Mat.Phase >> k) & 1; int iFanin = (Mat.Perm >> (3*k)) & 7; printf( "%c", 'a' + iFanin - fComplF * ('a' - 'A') ); } printf( " " ); Dau_DsdPrintFromTruth( pTruth, nSuppSize ); } void Nf_StoPrint( Nf_Man_t * p, int fVerbose ) { int t, i, GateId, Entry, Count = 0; for ( t = 2; t < Vec_WecSize(p->vTt2Match); t++ ) { Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, t ); Vec_IntForEachEntryDouble( vArr, GateId, Entry, i ) { Count++; if ( !fVerbose ) continue; //if ( t < 10 ) // Nf_StoPrintOne( p, Count, t, i/2, GateId, Pf_Int2Mat(Entry) ); } } printf( "Gates = %d. Truths = %d. Matches = %d.\n", p->nCells, Vec_MemEntryNum(p->vTtMem), Count ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Nf_Man_t * Nf_StoCreate( Gia_Man_t * pGia, Jf_Par_t * pPars ) { extern void Mf_ManSetFlowRefs( Gia_Man_t * p, Vec_Int_t * vRefs ); Vec_Int_t * vFlowRefs; Nf_Man_t * p; int i, Entry; assert( pPars->nCutNum > 1 && pPars->nCutNum <= NF_CUT_MAX ); assert( pPars->nLutSize > 1 && pPars->nLutSize <= NF_LEAF_MAX ); ABC_FREE( pGia->pRefs ); Vec_IntFreeP( &pGia->vCellMapping ); if ( Gia_ManHasChoices(pGia) ) Gia_ManSetPhase(pGia); // create p = ABC_CALLOC( Nf_Man_t, 1 ); p->clkStart = Abc_Clock(); p->pGia = pGia; p->pPars = pPars; p->pNfObjs = ABC_CALLOC( Nf_Obj_t, Gia_ManObjNum(pGia) ); p->iCur = 2; // other Vec_PtrGrow( &p->vPages, 256 ); // cut memory Vec_IntFill( &p->vMapRefs, 2*Gia_ManObjNum(pGia), 0 ); // mapping refs (2x) Vec_FltFill( &p->vFlowRefs, 2*Gia_ManObjNum(pGia), 0 ); // flow refs (2x) Vec_IntFill( &p->vRequired, 2*Gia_ManObjNum(pGia), SCL_INFINITY ); // required times (2x) Vec_IntFill( &p->vCutSets, Gia_ManObjNum(pGia), 0 ); // cut offsets Vec_FltFill( &p->vCutFlows, Gia_ManObjNum(pGia), 0 ); // cut area Vec_IntFill( &p->vCutDelays,Gia_ManObjNum(pGia), 0 ); // cut delay Vec_IntGrow( &p->vBackup, 1000 ); // references vFlowRefs = Vec_IntAlloc(0); Mf_ManSetFlowRefs( pGia, vFlowRefs ); Vec_IntForEachEntry( vFlowRefs, Entry, i ) { Vec_FltWriteEntry( &p->vFlowRefs, 2*i, /*0.5* */Entry ); Vec_FltWriteEntry( &p->vFlowRefs, 2*i+1, /*0.5* */Entry ); } Vec_IntFree(vFlowRefs); // matching Mio_LibraryMatchesFetch( (Mio_Library_t *)Abc_FrameReadLibGen(), &p->vTtMem, &p->vTt2Match, &p->pCells, &p->nCells, p->pPars->fPinFilter, p->pPars->fPinPerm, p->pPars->fPinQuick ); if ( p->pCells == NULL ) return NULL; p->InvDelayI = p->pCells[3].iDelays[0]; p->InvAreaW = p->pCells[3].AreaW; p->InvAreaF = p->pCells[3].AreaF; Nf_ObjMatchD(p, 0, 0)->Gate = 0; Nf_ObjMatchD(p, 0, 1)->Gate = 1; // prepare cuts return p; } void Nf_StoDelete( Nf_Man_t * p ) { Vec_PtrFreeData( &p->vPages ); ABC_FREE( p->vPages.pArray ); ABC_FREE( p->vMapRefs.pArray ); ABC_FREE( p->vFlowRefs.pArray ); ABC_FREE( p->vRequired.pArray ); ABC_FREE( p->vCutSets.pArray ); ABC_FREE( p->vCutFlows.pArray ); ABC_FREE( p->vCutDelays.pArray ); ABC_FREE( p->vBackup.pArray ); ABC_FREE( p->pNfObjs ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Nf_CutComputeTruth6( Nf_Man_t * p, Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, int fCompl0, int fCompl1, Nf_Cut_t * pCutR, int fIsXor ) { // extern int Nf_ManTruthCanonicize( word * t, int nVars ); int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t; word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc)); word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc)); if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0; if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1; t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t = fIsXor ? t0 ^ t1 : t0 & t1; if ( (fCompl = (int)(t & 1)) ) t = ~t; pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves ); assert( (int)(t & 1) == 0 ); truthId = Vec_MemHashInsert(p->vTtMem, &t); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); pCutR->Useless = Nf_ObjCutUseless( p, truthId ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } static inline int Nf_CutComputeTruthMux6( Nf_Man_t * p, Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCutC, int fCompl0, int fCompl1, int fComplC, Nf_Cut_t * pCutR ) { int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t; word t0 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut0->iFunc)); word t1 = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut1->iFunc)); word tC = *Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCutC->iFunc)); if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0; if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1; if ( Abc_LitIsCompl(pCutC->iFunc) ^ fComplC ) tC = ~tC; t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); tC = Abc_Tt6Expand( tC, pCutC->pLeaves, pCutC->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t = (tC & t1) | (~tC & t0); if ( (fCompl = (int)(t & 1)) ) t = ~t; pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves ); assert( (int)(t & 1) == 0 ); truthId = Vec_MemHashInsert(p->vTtMem, &t); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); pCutR->Useless = Nf_ObjCutUseless( p, truthId ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Nf_CutCountBits( word i ) { i = i - ((i >> 1) & 0x5555555555555555); i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333); i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F); return (i*(0x0101010101010101))>>56; } static inline word Nf_CutGetSign( int * pLeaves, int nLeaves ) { word Sign = 0; int i; for ( i = 0; i < nLeaves; i++ ) Sign |= ((word)1) << (pLeaves[i] & 0x3F); return Sign; } static inline int Nf_CutCreateUnit( Nf_Cut_t * p, int i ) { p->Delay = 0; p->Flow = 0; p->iFunc = 2; p->nLeaves = 1; p->pLeaves[0] = i; p->Sign = ((word)1) << (i & 0x3F); return 1; } static inline void Nf_CutPrint( Nf_Man_t * p, Nf_Cut_t * pCut ) { int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia)); printf( "%d {", pCut->nLeaves ); for ( i = 0; i < (int)pCut->nLeaves; i++ ) printf( " %*d", nDigits, pCut->pLeaves[i] ); for ( ; i < (int)p->pPars->nLutSize; i++ ) printf( " %*s", nDigits, " " ); printf( " } Useless = %d. D = %4d A = %9.4f F = %6d ", pCut->Useless, pCut->Delay, pCut->Flow, pCut->iFunc ); if ( p->vTtMem ) Dau_DsdPrintFromTruth( Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)), pCut->nLeaves ); else printf( "\n" ); } static inline int Nf_ManPrepareCuts( Nf_Cut_t * pCuts, Nf_Man_t * p, int iObj, int fAddUnit ) { if ( Nf_ObjHasCuts(p, iObj) ) { Nf_Cut_t * pMfCut = pCuts; int i, * pCut, * pList = Nf_ObjCutSet(p, iObj); Nf_SetForEachCut( pList, pCut, i ) { pMfCut->Delay = 0; pMfCut->Flow = 0; pMfCut->iFunc = Nf_CutFunc( pCut ); pMfCut->nLeaves = Nf_CutSize( pCut ); pMfCut->Sign = Nf_CutGetSign( pCut+1, Nf_CutSize(pCut) ); pMfCut->Useless = Nf_ObjCutUseless( p, Abc_Lit2Var(pMfCut->iFunc) ); memcpy( pMfCut->pLeaves, pCut+1, sizeof(int) * Nf_CutSize(pCut) ); pMfCut++; } if ( fAddUnit && pCuts->nLeaves > 1 ) return pList[0] + Nf_CutCreateUnit( pMfCut, iObj ); return pList[0]; } return Nf_CutCreateUnit( pCuts, iObj ); } static inline int Nf_ManSaveCuts( Nf_Man_t * p, Nf_Cut_t ** pCuts, int nCuts, int fUseful ) { int i, * pPlace, iCur, nInts = 1, nCutsNew = 0; for ( i = 0; i < nCuts; i++ ) if ( !fUseful || !pCuts[i]->Useless ) nInts += pCuts[i]->nLeaves + 1, nCutsNew++; if ( (p->iCur & 0xFFFF) + nInts > 0xFFFF ) p->iCur = ((p->iCur >> 16) + 1) << 16; if ( Vec_PtrSize(&p->vPages) == (p->iCur >> 16) ) Vec_PtrPush( &p->vPages, ABC_ALLOC(int, (1<<16)) ); iCur = p->iCur; p->iCur += nInts; pPlace = Nf_ManCutSet( p, iCur ); *pPlace++ = nCutsNew; for ( i = 0; i < nCuts; i++ ) if ( !fUseful || !pCuts[i]->Useless ) { *pPlace++ = Nf_CutSetBoth( pCuts[i]->nLeaves, pCuts[i]->iFunc ); memcpy( pPlace, pCuts[i]->pLeaves, sizeof(int) * pCuts[i]->nLeaves ); pPlace += pCuts[i]->nLeaves; } return iCur; } static inline int Nf_ManCountUseful( Nf_Cut_t ** pCuts, int nCuts ) { int i, Count = 0; for ( i = 0; i < nCuts; i++ ) Count += !pCuts[i]->Useless; return Count; } static inline int Nf_ManCountMatches( Nf_Man_t * p, Nf_Cut_t ** pCuts, int nCuts ) { int i, Count = 0; for ( i = 0; i < nCuts; i++ ) if ( !pCuts[i]->Useless ) Count += Vec_IntSize(Vec_WecEntry(p->vTt2Match, Abc_Lit2Var(pCuts[i]->iFunc))) / 2; return Count; } /**Function************************************************************* Synopsis [Check correctness of cuts.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Nf_CutCheck( Nf_Cut_t * pBase, Nf_Cut_t * pCut ) // check if pCut is contained in pBase { int nSizeB = pBase->nLeaves; int nSizeC = pCut->nLeaves; int i, * pB = pBase->pLeaves; int k, * pC = pCut->pLeaves; for ( i = 0; i < nSizeC; i++ ) { for ( k = 0; k < nSizeB; k++ ) if ( pC[i] == pB[k] ) break; if ( k == nSizeB ) return 0; } return 1; } static inline int Nf_SetCheckArray( Nf_Cut_t ** ppCuts, int nCuts ) { Nf_Cut_t * pCut0, * pCut1; int i, k, m, n, Value; assert( nCuts > 0 ); for ( i = 0; i < nCuts; i++ ) { pCut0 = ppCuts[i]; assert( pCut0->nLeaves <= NF_LEAF_MAX ); assert( pCut0->Sign == Nf_CutGetSign(pCut0->pLeaves, pCut0->nLeaves) ); // check duplicates for ( m = 0; m < (int)pCut0->nLeaves; m++ ) for ( n = m + 1; n < (int)pCut0->nLeaves; n++ ) assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] ); // check pairs for ( k = 0; k < nCuts; k++ ) { pCut1 = ppCuts[k]; if ( pCut0 == pCut1 ) continue; // check containments Value = Nf_CutCheck( pCut0, pCut1 ); assert( Value == 0 ); } } return 1; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Nf_CutMergeOrder( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCut, int nLutSize ) { int nSize0 = pCut0->nLeaves; int nSize1 = pCut1->nLeaves; int i, * pC0 = pCut0->pLeaves; int k, * pC1 = pCut1->pLeaves; int c, * pC = pCut->pLeaves; // the case of the largest cut sizes if ( nSize0 == nLutSize && nSize1 == nLutSize ) { for ( i = 0; i < nSize0; i++ ) { if ( pC0[i] != pC1[i] ) return 0; pC[i] = pC0[i]; } pCut->nLeaves = nLutSize; pCut->iFunc = NF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } // compare two cuts with different numbers i = k = c = 0; if ( nSize0 == 0 ) goto FlushCut1; if ( nSize1 == 0 ) goto FlushCut0; while ( 1 ) { if ( c == nLutSize ) return 0; if ( pC0[i] < pC1[k] ) { pC[c++] = pC0[i++]; if ( i >= nSize0 ) goto FlushCut1; } else if ( pC0[i] > pC1[k] ) { pC[c++] = pC1[k++]; if ( k >= nSize1 ) goto FlushCut0; } else { pC[c++] = pC0[i++]; k++; if ( i >= nSize0 ) goto FlushCut1; if ( k >= nSize1 ) goto FlushCut0; } } FlushCut0: if ( c + nSize0 > nLutSize + i ) return 0; while ( i < nSize0 ) pC[c++] = pC0[i++]; pCut->nLeaves = c; pCut->iFunc = NF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; FlushCut1: if ( c + nSize1 > nLutSize + k ) return 0; while ( k < nSize1 ) pC[c++] = pC1[k++]; pCut->nLeaves = c; pCut->iFunc = NF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } static inline int Nf_CutMergeOrderMux( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1, Nf_Cut_t * pCut2, Nf_Cut_t * pCut, int nLutSize ) { int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves; int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves; int x2, i2 = 0, nSize2 = pCut2->nLeaves, * pC2 = pCut2->pLeaves; int xMin, c = 0, * pC = pCut->pLeaves; while ( 1 ) { x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0]; x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1]; x2 = (i2 == nSize2) ? ABC_INFINITY : pC2[i2]; xMin = Abc_MinInt( Abc_MinInt(x0, x1), x2 ); if ( xMin == ABC_INFINITY ) break; if ( c == nLutSize ) return 0; pC[c++] = xMin; if (x0 == xMin) i0++; if (x1 == xMin) i1++; if (x2 == xMin) i2++; } pCut->nLeaves = c; pCut->iFunc = NF_NO_FUNC; pCut->Sign = pCut0->Sign | pCut1->Sign | pCut2->Sign; return 1; } static inline int Nf_SetCutIsContainedOrder( Nf_Cut_t * pBase, Nf_Cut_t * pCut ) // check if pCut is contained in pBase { int i, nSizeB = pBase->nLeaves; int k, nSizeC = pCut->nLeaves; if ( nSizeB == nSizeC ) { for ( i = 0; i < nSizeB; i++ ) if ( pBase->pLeaves[i] != pCut->pLeaves[i] ) return 0; return 1; } assert( nSizeB > nSizeC ); if ( nSizeC == 0 ) return 1; for ( i = k = 0; i < nSizeB; i++ ) { if ( pBase->pLeaves[i] > pCut->pLeaves[k] ) return 0; if ( pBase->pLeaves[i] == pCut->pLeaves[k] ) { if ( ++k == nSizeC ) return 1; } } return 0; } static inline int Nf_SetLastCutIsContained( Nf_Cut_t ** pCuts, int nCuts ) { int i; for ( i = 0; i < nCuts; i++ ) if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Nf_SetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) ) return 1; return 0; } static inline int Nf_SetLastCutContainsArea( Nf_Cut_t ** pCuts, int nCuts ) { int i, k, fChanges = 0; for ( i = 0; i < nCuts; i++ ) if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Nf_SetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) ) pCuts[i]->nLeaves = NF_NO_LEAF, fChanges = 1; if ( !fChanges ) return nCuts; for ( i = k = 0; i <= nCuts; i++ ) { if ( pCuts[i]->nLeaves == NF_NO_LEAF ) continue; if ( k < i ) ABC_SWAP( Nf_Cut_t *, pCuts[k], pCuts[i] ); k++; } return k - 1; } static inline int Nf_CutCompareArea( Nf_Cut_t * pCut0, Nf_Cut_t * pCut1 ) { if ( pCut0->Useless < pCut1->Useless ) return -1; if ( pCut0->Useless > pCut1->Useless ) return 1; if ( pCut0->Flow < pCut1->Flow - NF_EPSILON ) return -1; if ( pCut0->Flow > pCut1->Flow + NF_EPSILON ) return 1; if ( pCut0->Delay < pCut1->Delay ) return -1; if ( pCut0->Delay > pCut1->Delay ) return 1; if ( pCut0->nLeaves < pCut1->nLeaves ) return -1; if ( pCut0->nLeaves > pCut1->nLeaves ) return 1; return 0; } static inline void Nf_SetSortByArea( Nf_Cut_t ** pCuts, int nCuts ) { int i; for ( i = nCuts; i > 0; i-- ) { if ( Nf_CutCompareArea(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 ) return; ABC_SWAP( Nf_Cut_t *, pCuts[i - 1], pCuts[i] ); } } static inline int Nf_SetAddCut( Nf_Cut_t ** pCuts, int nCuts, int nCutNum ) { if ( nCuts == 0 ) return 1; nCuts = Nf_SetLastCutContainsArea(pCuts, nCuts); Nf_SetSortByArea( pCuts, nCuts ); return Abc_MinInt( nCuts + 1, nCutNum - 1 ); } static inline int Nf_CutArea( Nf_Man_t * p, int nLeaves ) { if ( nLeaves < 2 ) return 0; return nLeaves + p->pPars->nAreaTuner; } static inline void Nf_CutParams( Nf_Man_t * p, Nf_Cut_t * pCut, float FlowRefs ) { int i, nLeaves = pCut->nLeaves; assert( nLeaves <= p->pPars->nLutSize ); pCut->Delay = 0; pCut->Flow = 0; for ( i = 0; i < nLeaves; i++ ) { pCut->Delay = Abc_MaxInt( pCut->Delay, Nf_ObjCutDelay(p, pCut->pLeaves[i]) ); pCut->Flow += Nf_ObjCutFlow(p, pCut->pLeaves[i]); } pCut->Delay += (int)(nLeaves > 1); pCut->Flow = (pCut->Flow + Nf_CutArea(p, nLeaves)) / FlowRefs; } void Nf_ObjMergeOrder( Nf_Man_t * p, int iObj ) { Nf_Cut_t pCuts0[NF_CUT_MAX], pCuts1[NF_CUT_MAX], pCuts[NF_CUT_MAX], * pCutsR[NF_CUT_MAX]; Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj); //Nf_Obj_t * pBest = Nf_ManObj(p, iObj); float dFlowRefs = Nf_ObjFlowRefs(p, iObj, 0) + Nf_ObjFlowRefs(p, iObj, 1); int nLutSize = p->pPars->nLutSize; int nCutNum = p->pPars->nCutNum; int nCuts0 = Nf_ManPrepareCuts(pCuts0, p, Gia_ObjFaninId0(pObj, iObj), 1); int nCuts1 = Nf_ManPrepareCuts(pCuts1, p, Gia_ObjFaninId1(pObj, iObj), 1); int fComp0 = Gia_ObjFaninC0(pObj); int fComp1 = Gia_ObjFaninC1(pObj); int iSibl = Gia_ObjSibl(p->pGia, iObj); Nf_Cut_t * pCut0, * pCut1, * pCut0Lim = pCuts0 + nCuts0, * pCut1Lim = pCuts1 + nCuts1; int i, nCutsUse, nCutsR = 0; assert( !Gia_ObjIsBuf(pObj) ); for ( i = 0; i < nCutNum; i++ ) pCutsR[i] = pCuts + i; if ( iSibl ) { Nf_Cut_t pCuts2[NF_CUT_MAX]; Gia_Obj_t * pObjE = Gia_ObjSiblObj(p->pGia, iObj); int fCompE = Gia_ObjPhase(pObj) ^ Gia_ObjPhase(pObjE); int nCuts2 = Nf_ManPrepareCuts(pCuts2, p, iSibl, 0); Nf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2; for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ ) { *pCutsR[nCutsR] = *pCut2; pCutsR[nCutsR]->iFunc = Abc_LitNotCond( pCutsR[nCutsR]->iFunc, fCompE ); Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs ); nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum ); } } if ( Gia_ObjIsMuxId(p->pGia, iObj) ) { Nf_Cut_t pCuts2[NF_CUT_MAX]; int nCuts2 = Nf_ManPrepareCuts(pCuts2, p, Gia_ObjFaninId2(p->pGia, iObj), 1); int fComp2 = Gia_ObjFaninC2(p->pGia, pObj); Nf_Cut_t * pCut2, * pCut2Lim = pCuts2 + nCuts2; p->CutCount[0] += nCuts0 * nCuts1 * nCuts2; for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ ) for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ ) for ( pCut2 = pCuts2; pCut2 < pCut2Lim; pCut2++ ) { if ( Nf_CutCountBits(pCut0->Sign | pCut1->Sign | pCut2->Sign) > nLutSize ) continue; p->CutCount[1]++; if ( !Nf_CutMergeOrderMux(pCut0, pCut1, pCut2, pCutsR[nCutsR], nLutSize) ) continue; if ( Nf_SetLastCutIsContained(pCutsR, nCutsR) ) continue; p->CutCount[2]++; if ( Nf_CutComputeTruthMux6(p, pCut0, pCut1, pCut2, fComp0, fComp1, fComp2, pCutsR[nCutsR]) ) pCutsR[nCutsR]->Sign = Nf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves); Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs ); nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum ); } } else { int fIsXor = Gia_ObjIsXor(pObj); p->CutCount[0] += nCuts0 * nCuts1; for ( pCut0 = pCuts0; pCut0 < pCut0Lim; pCut0++ ) for ( pCut1 = pCuts1; pCut1 < pCut1Lim; pCut1++ ) { if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nLutSize && Nf_CutCountBits(pCut0->Sign | pCut1->Sign) > nLutSize ) continue; p->CutCount[1]++; if ( !Nf_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nLutSize) ) continue; if ( Nf_SetLastCutIsContained(pCutsR, nCutsR) ) continue; p->CutCount[2]++; if ( Nf_CutComputeTruth6(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) ) pCutsR[nCutsR]->Sign = Nf_CutGetSign(pCutsR[nCutsR]->pLeaves, pCutsR[nCutsR]->nLeaves); Nf_CutParams( p, pCutsR[nCutsR], dFlowRefs ); nCutsR = Nf_SetAddCut( pCutsR, nCutsR, nCutNum ); } } // debug printout if ( 0 ) // if ( iObj % 10000 == 0 ) // if ( iObj == 1090 ) { printf( "*** Obj = %d Useful = %d\n", iObj, Nf_ManCountUseful(pCutsR, nCutsR) ); for ( i = 0; i < nCutsR; i++ ) Nf_CutPrint( p, pCutsR[i] ); printf( "\n" ); } // verify assert( nCutsR > 0 && nCutsR < nCutNum ); // assert( Nf_SetCheckArray(pCutsR, nCutsR) ); // store the cutset Nf_ObjSetCutFlow( p, iObj, pCutsR[0]->Flow ); Nf_ObjSetCutDelay( p, iObj, pCutsR[0]->Delay ); *Vec_IntEntryP(&p->vCutSets, iObj) = Nf_ManSaveCuts(p, pCutsR, nCutsR, 0); p->CutCount[3] += nCutsR; nCutsUse = Nf_ManCountUseful(pCutsR, nCutsR); p->CutCount[4] += nCutsUse; p->nCutUseAll += nCutsUse == nCutsR; p->CutCount[5] += Nf_ManCountMatches(p, pCutsR, nCutsR); } void Nf_ManComputeCuts( Nf_Man_t * p ) { Gia_Obj_t * pObj; int i, iFanin; Gia_ManForEachAnd( p->pGia, pObj, i ) if ( Gia_ObjIsBuf(pObj) ) { iFanin = Gia_ObjFaninId0(pObj, i); Nf_ObjSetCutFlow( p, i, Nf_ObjCutFlow(p, iFanin) ); Nf_ObjSetCutDelay( p, i, Nf_ObjCutDelay(p, iFanin) ); } else Nf_ObjMergeOrder( p, i ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Nf_ManPrintStats( Nf_Man_t * p, char * pTitle ) { if ( !p->pPars->fVerbose ) return; printf( "%s : ", pTitle ); printf( "Delay =%8.2f ", Scl_Int2Flt(p->pPars->MapDelay) ); printf( "Area =%12.2f ", p->pPars->MapAreaF ); printf( "Gate =%6d ", (int)p->pPars->Area ); printf( "Inv =%6d ", (int)p->nInvs ); printf( "Edge =%7d ", (int)p->pPars->Edge ); Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart ); fflush( stdout ); } void Nf_ManPrintInit( Nf_Man_t * p ) { int nChoices; if ( !p->pPars->fVerbose ) return; printf( "LutSize = %d ", p->pPars->nLutSize ); printf( "CutNum = %d ", p->pPars->nCutNum ); printf( "Iter = %d ", p->pPars->nRounds );//+ p->pPars->nRoundsEla ); printf( "Coarse = %d ", p->pPars->fCoarsen ); printf( "Cells = %d ", p->nCells ); printf( "Funcs = %d ", Vec_MemEntryNum(p->vTtMem) ); printf( "Matches = %d ", Vec_WecSizeSize(p->vTt2Match)/2 ); printf( "And = %d ", Gia_ManAndNum(p->pGia) ); nChoices = Gia_ManChoiceNum( p->pGia ); if ( nChoices ) printf( "Choices = %d ", nChoices ); printf( "\n" ); printf( "Computing cuts...\r" ); fflush( stdout ); } void Nf_ManPrintQuit( Nf_Man_t * p ) { float MemGia = Gia_ManMemory(p->pGia) / (1<<20); float MemMan =(1.0 * sizeof(Nf_Obj_t) + 8.0 * sizeof(int)) * Gia_ManObjNum(p->pGia) / (1<<20); float MemCuts = 1.0 * sizeof(int) * (1 << 16) * Vec_PtrSize(&p->vPages) / (1<<20); float MemTt = p->vTtMem ? Vec_MemMemory(p->vTtMem) / (1<<20) : 0; if ( p->CutCount[0] == 0 ) p->CutCount[0] = 1; if ( !p->pPars->fVerbose ) return; printf( "CutPair = %.0f ", p->CutCount[0] ); printf( "Merge = %.0f (%.1f) ", p->CutCount[1], 1.0*p->CutCount[1]/Gia_ManAndNum(p->pGia) ); printf( "Eval = %.0f (%.1f) ", p->CutCount[2], 1.0*p->CutCount[2]/Gia_ManAndNum(p->pGia) ); printf( "Cut = %.0f (%.1f) ", p->CutCount[3], 1.0*p->CutCount[3]/Gia_ManAndNum(p->pGia) ); printf( "Use = %.0f (%.1f) ", p->CutCount[4], 1.0*p->CutCount[4]/Gia_ManAndNum(p->pGia) ); printf( "Mat = %.0f (%.1f) ", p->CutCount[5], 1.0*p->CutCount[5]/Gia_ManAndNum(p->pGia) ); // printf( "Equ = %d (%.2f %%) ", p->nCutUseAll, 100.0*p->nCutUseAll /p->CutCount[0] ); printf( "\n" ); printf( "Gia = %.2f MB ", MemGia ); printf( "Man = %.2f MB ", MemMan ); printf( "Cut = %.2f MB ", MemCuts ); printf( "TT = %.2f MB ", MemTt ); printf( "Total = %.2f MB ", MemGia + MemMan + MemCuts + MemTt ); // printf( "\n" ); Abc_PrintTime( 1, "Time", Abc_Clock() - p->clkStart ); fflush( stdout ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Nf_ManCutMatchPrint( Nf_Man_t * p, int iObj, char * pStr, Nf_Mat_t * pM ) { Mio_Cell2_t * pCell; int i, * pCut; printf( "%5d %s : ", iObj, pStr ); if ( pM->CutH == 0 ) { printf( "Unassigned\n" ); return; } pCell = Nf_ManCell( p, pM->Gate ); pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, iObj), pM->CutH ); printf( "D =%6.2f ", Scl_Int2Flt(pM->D) ); printf( "A =%6.2f ", pM->F ); printf( "C = %d ", pM->fCompl ); // printf( "B = %d ", pM->fBest ); printf( " " ); printf( "Cut = {" ); for ( i = 0; i < (int)pCell->nFanins; i++ ) printf( "%4d ", Nf_CutLeaves(pCut)[i] ); for ( ; i < 6; i++ ) printf( " " ); printf( "} " ); printf( "%10s ", pCell->pName ); printf( "%d ", pCell->nFanins ); printf( "{" ); for ( i = 0; i < (int)pCell->nFanins; i++ ) printf( "%6.2f ", Scl_Int2Flt(pCell->iDelays[i]) ); for ( ; i < 6; i++ ) printf( " " ); printf( " } " ); for ( i = 0; i < (int)pCell->nFanins; i++ ) printf( "%s%d ", Nf_CfgCompl(pM->Cfg, i) ? "!":" ", Nf_CfgVar(pM->Cfg, i) ); for ( ; i < 6; i++ ) printf( " " ); Dau_DsdPrintFromTruth( &pCell->uTruth, pCell->nFanins ); } void Nf_ManCutMatchOne( Nf_Man_t * p, int iObj, int * pCut, int * pCutSet ) { Nf_Obj_t * pBest = Nf_ManObj(p, iObj); int * pFans = Nf_CutLeaves(pCut); int nFans = Nf_CutSize(pCut); int iFuncLit = Nf_CutFunc(pCut); int fComplExt = Abc_LitIsCompl(iFuncLit); Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, Abc_Lit2Var(iFuncLit) ); int i, k, c, Info, Offset, iFanin, fComplF; int ArrivalD, ArrivalA; Nf_Mat_t * pD, * pA; // assign fanins matches Nf_Obj_t * pBestF[NF_LEAF_MAX]; for ( i = 0; i < nFans; i++ ) pBestF[i] = Nf_ManObj( p, pFans[i] ); // special cases if ( nFans == 0 ) { int Const = (iFuncLit == 1); assert( iFuncLit == 0 || iFuncLit == 1 ); for ( c = 0; c < 2; c++ ) { pD = Nf_ObjMatchD( p, iObj, c ); pA = Nf_ObjMatchA( p, iObj, c ); pD->D = pA->D = 0; pD->F = pA->F = p->pCells[c ^ Const].AreaF; pD->CutH = pA->CutH = Nf_CutHandle(pCutSet, pCut); pD->Gate = pA->Gate = c ^ Const; // pD->Conf = pA->Conf = 0; pD->Cfg = pA->Cfg = Nf_Int2Cfg(0); } return; } // consider matches of this function Vec_IntForEachEntryDouble( vArr, Info, Offset, i ) { Nf_Cfg_t Cfg = Nf_Int2Cfg(Offset); Mio_Cell2_t*pC = Nf_ManCell( p, Info ); int fCompl = Cfg.fCompl ^ fComplExt; int Required = Nf_ObjRequired( p, iObj, fCompl ), Delay = 0; Nf_Mat_t * pD = &pBest->M[fCompl][0]; Nf_Mat_t * pA = &pBest->M[fCompl][1]; float AreaF = pC->AreaF; assert( nFans == (int)pC->nFanins ); Nf_CfgForEachVarCompl( Cfg, nFans, iFanin, fComplF, k ) { ArrivalD = pBestF[iFanin]->M[fComplF][0].D; ArrivalA = pBestF[iFanin]->M[fComplF][1].D; if ( ArrivalA + pC->iDelays[k] <= Required && Required != SCL_INFINITY ) { Delay = Abc_MaxInt( Delay, ArrivalA + pC->iDelays[k] ); AreaF += pBestF[iFanin]->M[fComplF][1].F; } else { if ( pD->D < SCL_INFINITY && pA->D < SCL_INFINITY && ArrivalD + pC->iDelays[k] > Required ) break; Delay = Abc_MaxInt( Delay, ArrivalD + pC->iDelays[k] ); //AreaF += pBestF[iFanin]->M[fComplF][0].F; if ( AreaF >= (float)1e32 || pBestF[iFanin]->M[fComplF][0].F >= (float)1e32 ) AreaF = (float)1e32; else AreaF += pBestF[iFanin]->M[fComplF][0].F; } } if ( k < nFans ) continue; // select best Cfgch if ( pD->D > Delay ) { pD->D = Delay; pD->F = AreaF; pD->CutH = Nf_CutHandle(pCutSet, pCut); pD->Gate = pC->Id; pD->Cfg = Cfg; pD->Cfg.fCompl = 0; } if ( pA->F > AreaF + NF_EPSILON ) { pA->D = Delay; pA->F = AreaF; pA->CutH = Nf_CutHandle(pCutSet, pCut); pA->Gate = pC->Id; pA->Cfg = Cfg; pA->Cfg.fCompl = 0; } } } static inline void Nf_ObjPrepareCi( Nf_Man_t * p, int iObj, int Time ) { Nf_Mat_t * pD0 = Nf_ObjMatchD( p, iObj, 0 ); Nf_Mat_t * pA0 = Nf_ObjMatchA( p, iObj, 0 ); Nf_Mat_t * pD = Nf_ObjMatchD( p, iObj, 1 ); Nf_Mat_t * pA = Nf_ObjMatchA( p, iObj, 1 ); pD0->D = pA0->D = pD->D = pA->D = Time; pD->fCompl = 1; pD->D += p->InvDelayI; pD->F = p->InvAreaF; pA->fCompl = 1; pA->D += p->InvDelayI; pA->F = p->InvAreaF; Nf_ObjMatchD( p, iObj, 0 )->fBest = 1; Nf_ObjMatchD( p, iObj, 1 )->fBest = 1; } static inline void Nf_ObjPrepareBuf( Nf_Man_t * p, Gia_Obj_t * pObj ) { // get fanin info int iObj = Gia_ObjId( p->pGia, pObj ); int iFanin = Gia_ObjFaninId0( pObj, iObj ); Nf_Mat_t * pDf = Nf_ObjMatchD( p, iFanin, Gia_ObjFaninC0(pObj) ); //Nf_Mat_t * pAf = Nf_ObjMatchA( p, iFanin, Gia_ObjFaninC0(pObj) ); // set the direct phase Nf_Mat_t * pDp = Nf_ObjMatchD( p, iObj, 0 ); Nf_Mat_t * pAp = Nf_ObjMatchA( p, iObj, 0 ); Nf_Mat_t * pDn = Nf_ObjMatchD( p, iObj, 1 ); Nf_Mat_t * pAn = Nf_ObjMatchA( p, iObj, 1 ); assert( Gia_ObjIsBuf(pObj) ); memset( Nf_ManObj(p, iObj), 0, sizeof(Nf_Obj_t) ); // set the direct phase pDp->D = pAp->D = pDf->D; pDp->F = pAp->F = pDf->F; // do not pass flow??? pDp->fBest = 1; // set the inverted phase pDn->D = pAn->D = pDf->D + p->InvDelayI; pDn->F = pAn->F = pDf->F + p->InvAreaF; pDn->fCompl = pAn->fCompl = 1; pDn->fBest = 1; } static inline int Nf_CutRequired( Nf_Man_t * p, Nf_Mat_t * pM, int * pCutSet ) { Mio_Cell2_t * pCell = Nf_ManCell( p, pM->Gate ); int * pCut = Nf_CutFromHandle( pCutSet, pM->CutH ); int i, iVar, fCompl; int Arr, Req, Arrival = 0, Required = 0; Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, i ) { Arr = Nf_ManObj(p, iVar)->M[fCompl][0].D + pCell->iDelays[i]; Req = Nf_ObjRequired(p, iVar, fCompl); Arrival = Abc_MaxInt( Arrival, Arr ); if ( Req < SCL_INFINITY ) Required = Abc_MaxInt( Required, Req + pCell->iDelays[i] ); } return Abc_MaxInt( Required + p->pPars->nReqTimeFlex*p->InvDelayI, Arrival ); } static inline void Nf_ObjComputeRequired( Nf_Man_t * p, int iObj ) { Nf_Obj_t * pBest = Nf_ManObj(p, iObj); int c, * pCutSet = Nf_ObjCutSet( p, iObj ); for ( c = 0; c < 2; c++ ) if ( Nf_ObjRequired(p, iObj, c) == SCL_INFINITY ) Nf_ObjSetRequired( p, iObj, c, Nf_CutRequired(p, &pBest->M[c][0], pCutSet) ); } void Nf_ManCutMatch( Nf_Man_t * p, int iObj ) { Nf_Obj_t * pBest = Nf_ManObj(p, iObj); Nf_Mat_t * pDp = &pBest->M[0][0]; Nf_Mat_t * pDn = &pBest->M[1][0]; Nf_Mat_t * pAp = &pBest->M[0][1]; Nf_Mat_t * pAn = &pBest->M[1][1]; float FlowRefPf = Nf_ObjFlowRefs(p, iObj, 0); float FlowRefNf = Nf_ObjFlowRefs(p, iObj, 1); int i, * pCut, * pCutSet = Nf_ObjCutSet( p, iObj ); int Required[2] = {0}; if ( p->Iter ) { Nf_ObjComputeRequired( p, iObj ); Required[0] = Nf_ObjRequired( p, iObj, 0 ); Required[1] = Nf_ObjRequired( p, iObj, 1 ); } memset( pBest, 0, sizeof(Nf_Obj_t) ); pDp->D = SCL_INFINITY; pDp->F = FLT_MAX; pDn->D = SCL_INFINITY; pDn->F = FLT_MAX; pAp->D = SCL_INFINITY; pAp->F = FLT_MAX; pAn->D = SCL_INFINITY; pAn->F = FLT_MAX; Nf_SetForEachCut( pCutSet, pCut, i ) { if ( Abc_Lit2Var(Nf_CutFunc(pCut)) >= Vec_WecSize(p->vTt2Match) ) continue; assert( !Nf_CutIsTriv(pCut, iObj) ); assert( Nf_CutSize(pCut) <= p->pPars->nLutSize ); assert( Abc_Lit2Var(Nf_CutFunc(pCut)) < Vec_WecSize(p->vTt2Match) ); Nf_ManCutMatchOne( p, iObj, pCut, pCutSet ); } /* if ( 461 == iObj && p->Iter == 0 ) { printf( "\nObj %6d (%.2f %.2f):\n", iObj, Scl_Int2Flt(Required[0]), Scl_Int2Flt(Required[1]) ); Nf_ManCutMatchPrint( p, iObj, "Dp", &pBest->M[0][0] ); Nf_ManCutMatchPrint( p, iObj, "Dn", &pBest->M[1][0] ); Nf_ManCutMatchPrint( p, iObj, "Ap", &pBest->M[0][1] ); Nf_ManCutMatchPrint( p, iObj, "An", &pBest->M[1][1] ); printf( "\n" ); } */ // divide by ref count pDp->F = pDp->F / FlowRefPf; pAp->F = pAp->F / FlowRefPf; pDn->F = pDn->F / FlowRefNf; pAn->F = pAn->F / FlowRefNf; // add the inverters assert( pDp->D < SCL_INFINITY || pDn->D < SCL_INFINITY ); if ( pDp->D > pDn->D + p->InvDelayI ) { *pDp = *pDn; pDp->D += p->InvDelayI; pDp->F += p->InvAreaF; pDp->fCompl = 1; if ( pAp->D == SCL_INFINITY ) *pAp = *pDp; //printf( "Using inverter to improve delay at node %d in phase %d.\n", iObj, 1 ); } else if ( pDn->D > pDp->D + p->InvDelayI ) { *pDn = *pDp; pDn->D += p->InvDelayI; pDn->F += p->InvAreaF; pDn->fCompl = 1; if ( pAn->D == SCL_INFINITY ) *pAn = *pDn; //printf( "Using inverter to improve delay at node %d in phase %d.\n", iObj, 0 ); } //assert( pAp->F < FLT_MAX || pAn->F < FLT_MAX ); // try replacing pos with neg if ( pAp->D == SCL_INFINITY || (pAp->F > pAn->F + p->InvAreaF + NF_EPSILON && pAn->D + p->InvDelayI <= Required[0]) ) { assert( p->Iter > 0 ); *pAp = *pAn; pAp->D += p->InvDelayI; pAp->F += p->InvAreaF; pAp->fCompl = 1; if ( pDp->D == SCL_INFINITY ) *pDp = *pAp; //printf( "Using inverter to improve area at node %d in phase %d.\n", iObj, 1 ); } // try replacing neg with pos else if ( pAn->D == SCL_INFINITY || (pAn->F > pAp->F + p->InvAreaF + NF_EPSILON && pAp->D + p->InvDelayI <= Required[1]) ) { assert( p->Iter > 0 ); *pAn = *pAp; pAn->D += p->InvDelayI; pAn->F += p->InvAreaF; pAn->fCompl = 1; if ( pDn->D == SCL_INFINITY ) *pDn = *pAn; //printf( "Using inverter to improve area at node %d in phase %d.\n", iObj, 0 ); } if ( pDp->D == SCL_INFINITY ) printf( "Object %d has pDp unassigned.\n", iObj ); if ( pDn->D == SCL_INFINITY ) printf( "Object %d has pDn unassigned.\n", iObj ); if ( pAp->D == SCL_INFINITY ) printf( "Object %d has pAp unassigned.\n", iObj ); if ( pAn->D == SCL_INFINITY ) printf( "Object %d has pAn unassigned.\n", iObj ); /* pDp->F = Abc_MinFloat( pDp->F, FLT_MAX/SCL_NUM ); pDn->F = Abc_MinFloat( pDn->F, FLT_MAX/SCL_NUM ); pAp->F = Abc_MinFloat( pAp->F, FLT_MAX/SCL_NUM ); pAn->F = Abc_MinFloat( pAn->F, FLT_MAX/SCL_NUM ); */ assert( pDp->D < SCL_INFINITY ); assert( pDn->D < SCL_INFINITY ); assert( pAp->D < SCL_INFINITY ); assert( pAn->D < SCL_INFINITY ); assert( pDp->F < FLT_MAX ); assert( pDn->F < FLT_MAX ); assert( pAp->F < FLT_MAX ); assert( pAn->F < FLT_MAX ); /* if ( p->Iter && (pDp->D > Required[0] || pDn->D > Required[1]) ) { printf( "%5d : ", iObj ); printf( "Dp = %6.2f ", Scl_Int2Flt(pDp->D) ); printf( "Dn = %6.2f ", Scl_Int2Flt(pDn->D) ); printf( " " ); printf( "Ap = %6.2f ", Scl_Int2Flt(pAp->D) ); printf( "An = %6.2f ", Scl_Int2Flt(pAn->D) ); printf( " " ); printf( "Rp = %6.2f ", Scl_Int2Flt(Required[0]) ); printf( "Rn = %6.2f ", Scl_Int2Flt(Required[1]) ); printf( "\n" ); } */ } void Nf_ManComputeMapping( Nf_Man_t * p ) { Gia_Obj_t * pObj; int i; Gia_ManForEachAnd( p->pGia, pObj, i ) if ( Gia_ObjIsBuf(pObj) ) Nf_ObjPrepareBuf( p, pObj ); else Nf_ManCutMatch( p, i ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline Nf_Mat_t * Nf_ObjMatchBest( Nf_Man_t * p, int i, int c ) { Nf_Mat_t * pD = Nf_ObjMatchD(p, i, c); Nf_Mat_t * pA = Nf_ObjMatchA(p, i, c); assert( pD->fBest != pA->fBest ); //assert( Nf_ObjMapRefNum(p, i, c) > 0 ); if ( pA->fBest ) return pA; if ( pD->fBest ) return pD; return NULL; } void Nf_ManSetOutputRequireds( Nf_Man_t * p, int fPropCompl ) { Gia_Obj_t * pObj; int Required = 0, MapDelayOld = p->pPars->MapDelay; int fUseConMan = Scl_ConIsRunning() && Scl_ConHasOutReqs(); int i, iObj, fCompl, nLits = 2*Gia_ManObjNum(p->pGia); Vec_IntFill( &p->vRequired, nLits, SCL_INFINITY ); // compute delay p->pPars->MapDelay = 0; Gia_ManForEachCo( p->pGia, pObj, i ) { Required = Nf_ObjMatchD( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj) )->D; p->pPars->MapDelay = Abc_MaxInt( p->pPars->MapDelay, Required ); } if ( p->Iter && MapDelayOld < p->pPars->MapDelay && p->pGia->vOutReqs == NULL ) printf( "******** Critical delay violation %.2f -> %.2f ********\n", Scl_Int2Flt(MapDelayOld), Scl_Int2Flt(p->pPars->MapDelay) ); p->pPars->MapDelay = Abc_MaxInt( p->pPars->MapDelay, MapDelayOld ); // check delay target if ( p->pPars->MapDelayTarget == 0 && p->pPars->nRelaxRatio ) p->pPars->MapDelayTarget = p->pPars->MapDelay * (100 + p->pPars->nRelaxRatio) / 100; if ( p->pPars->MapDelayTarget > 0 ) { if ( p->pPars->MapDelay < p->pPars->MapDelayTarget ) p->pPars->MapDelay = p->pPars->MapDelayTarget; else if ( p->pPars->nRelaxRatio == 0 ) Abc_Print( 0, "Relaxing user-specified delay target from %.2f to %.2f.\n", Scl_Int2Flt(p->pPars->MapDelayTarget), Scl_Int2Flt(p->pPars->MapDelay) ); } //assert( p->pPars->MapDelayTarget == 0 ); // set required times Gia_ManForEachCo( p->pGia, pObj, i ) { iObj = Gia_ObjFaninId0p(p->pGia, pObj); fCompl = Gia_ObjFaninC0(pObj); Required = Nf_ObjMatchD(p, iObj, fCompl)->D; Required = p->pPars->fDoAverage ? Required * (100 + p->pPars->nRelaxRatio) / 100 : p->pPars->MapDelay; // if external required time can be achieved, use it if ( fUseConMan ) { if ( Scl_ConGetOutReq(i) > 0 && Required <= Scl_ConGetOutReq(i) ) Required = Scl_ConGetOutReq(i); } else if ( p->pGia->vOutReqs ) { int NewRequired = Scl_Flt2Int(Vec_FltEntry(p->pGia->vOutReqs, i)); if ( NewRequired > 0 && Required <= NewRequired ) Required = Abc_MinInt( 2*Required, NewRequired ); } // if external required cannot be achieved, set the earliest possible arrival time // else if ( p->pGia->vOutReqs && Vec_FltEntry(p->pGia->vOutReqs, i) > 0 && Required > Vec_FltEntry(p->pGia->vOutReqs, i) ) // ptTime->Rise = ptTime->Fall = ptTime->Worst = Required; // otherwise, set the global required time Nf_ObjUpdateRequired( p, iObj, fCompl, Required ); if ( fPropCompl && iObj > 0 && Nf_ObjMatchBest(p, iObj, fCompl)->fCompl ) Nf_ObjUpdateRequired( p, iObj, !fCompl, Required - p->InvDelayI ); //Nf_ObjMapRefInc( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj)); } } void Nf_ManSetMapRefsGate( Nf_Man_t * p, int iObj, int Required, Nf_Mat_t * pM ) { int k, iVar, fCompl; Mio_Cell2_t * pCell = Nf_ManCell( p, pM->Gate ); int * pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, iObj), pM->CutH ); Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, k ) { Nf_ObjMapRefInc( p, iVar, fCompl ); Nf_ObjUpdateRequired( p, iVar, fCompl, Required - pCell->iDelays[k] ); } assert( Nf_CutSize(pCut) == (int)pCell->nFanins ); // update global stats p->pPars->MapAreaF += pCell->AreaF; p->pPars->Edge += Nf_CutSize(pCut); p->pPars->Area++; // update status of the gate assert( pM->fBest == 0 ); pM->fBest = 1; } void Nf_ManPrintMatches( Nf_Man_t * p ) { Gia_Obj_t * pObj; int i; Gia_ManForEachAnd( p->pGia, pObj, i ) { Nf_Mat_t * pDp = Nf_ObjMatchD( p, i, 0 ); Nf_Mat_t * pAp = Nf_ObjMatchA( p, i, 0 ); Nf_Mat_t * pDn = Nf_ObjMatchD( p, i, 1 ); Nf_Mat_t * pAn = Nf_ObjMatchA( p, i, 1 ); printf( "%5d : ", i ); printf( "Dp = %6.2f ", Scl_Int2Flt(pDp->D) ); printf( "Dn = %6.2f ", Scl_Int2Flt(pDn->D) ); printf( " " ); printf( "Ap = %6.2f ", Scl_Int2Flt(pAp->D) ); printf( "An = %6.2f ", Scl_Int2Flt(pAn->D) ); printf( " " ); printf( "Dp = %8s ", Nf_ManCell(p, pDp->Gate)->pName ); printf( "Dn = %8s ", Nf_ManCell(p, pDn->Gate)->pName ); printf( "Ap = %8s ", Nf_ManCell(p, pAp->Gate)->pName ); printf( "An = %8s ", Nf_ManCell(p, pAn->Gate)->pName ); printf( "\n" ); } } int Nf_ManSetMapRefs( Nf_Man_t * p ) { float Coef = 1.0 / (1.0 + (p->Iter + 1) * (p->Iter + 1)); float * pFlowRefs = Vec_FltArray( &p->vFlowRefs ); int * pMapRefs = Vec_IntArray( &p->vMapRefs ); int nLits = 2*Gia_ManObjNum(p->pGia); int i, c, Id, nRefs[2]; Gia_Obj_t * pObj; Nf_Mat_t * pD, * pA, * pM; Nf_Mat_t * pDs[2], * pAs[2], * pMs[2]; int Required = 0, Requireds[2]; assert( !p->fUseEla ); // if ( p->Iter == 0 ) // Nf_ManPrintMatches( p ); Nf_ManSetOutputRequireds( p, 0 ); // set output references memset( pMapRefs, 0, sizeof(int) * nLits ); Gia_ManForEachCo( p->pGia, pObj, i ) Nf_ObjMapRefInc( p, Gia_ObjFaninId0p(p->pGia, pObj), Gia_ObjFaninC0(pObj)); // compute area and edges p->nInvs = 0; p->pPars->MapAreaF = 0; p->pPars->Area = p->pPars->Edge = 0; Gia_ManForEachAndReverse( p->pGia, pObj, i ) { if ( Gia_ObjIsBuf(pObj) ) { if ( Nf_ObjMapRefNum(p, i, 1) ) { Nf_ObjMapRefInc( p, i, 0 ); Nf_ObjUpdateRequired( p, i, 0, Nf_ObjRequired(p, i, 1) - p->InvDelayI ); p->pPars->MapAreaF += p->InvAreaF; p->pPars->Edge++; p->pPars->Area++; p->nInvs++; } Nf_ObjUpdateRequired( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj), Nf_ObjRequired(p, i, 0) ); Nf_ObjMapRefInc( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj)); continue; } // skip if this node is not used for ( c = 0; c < 2; c++ ) nRefs[c] = Nf_ObjMapRefNum(p, i, c); if ( !nRefs[0] && !nRefs[1] ) continue; // consider two cases if ( nRefs[0] && nRefs[1] ) { // find best matches for both phases for ( c = 0; c < 2; c++ ) { Requireds[c] = Nf_ObjRequired( p, i, c ); //assert( Requireds[c] < SCL_INFINITY ); pDs[c] = Nf_ObjMatchD( p, i, c ); pAs[c] = Nf_ObjMatchA( p, i, c ); pMs[c] = (pAs[c]->D <= Requireds[c]) ? pAs[c] : pDs[c]; } // swap complemented matches if ( pMs[0]->fCompl && pMs[1]->fCompl ) { // pMs[0]->fCompl = pMs[1]->fCompl = 0; // ABC_SWAP( Nf_Mat_t *, pMs[0], pMs[1] ); // find best matches for both phases pMs[0] = Nf_ObjMatchD( p, i, 0 ); pMs[1] = Nf_ObjMatchD( p, i, 1 ); assert( !pMs[0]->fCompl || !pMs[1]->fCompl ); } // check if intervers are involved if ( !pMs[0]->fCompl && !pMs[1]->fCompl ) // no inverters { for ( c = 0; c < 2; c++ ) Nf_ManSetMapRefsGate( p, i, Requireds[c], pMs[c] ); } else { // one interver assert( !pMs[0]->fCompl || !pMs[1]->fCompl ); c = pMs[1]->fCompl; assert( pMs[c]->fCompl && !pMs[!c]->fCompl ); //printf( "Using inverter at node %d in phase %d\n", i, c ); // update this phase pM = pMs[c]; pM->fBest = 1; Required = Requireds[c]; // update opposite phase Nf_ObjMapRefInc( p, i, !c ); Nf_ObjUpdateRequired( p, i, !c, Required - p->InvDelayI ); // select opposite phase Required = Nf_ObjRequired( p, i, !c ); //assert( Required < SCL_INFINITY ); pD = Nf_ObjMatchD( p, i, !c ); pA = Nf_ObjMatchA( p, i, !c ); pM = (pA->D <= Required) ? pA : pD; assert( !pM->fCompl ); // create gate Nf_ManSetMapRefsGate( p, i, Required, pM ); // account for the inverter p->pPars->MapAreaF += p->InvAreaF; p->pPars->Edge++; p->pPars->Area++; p->nInvs++; } } else { c = (int)(nRefs[1] > 0); assert( nRefs[c] && !nRefs[!c] ); // consider this phase Required = Nf_ObjRequired( p, i, c ); //assert( Required < SCL_INFINITY ); pD = Nf_ObjMatchD( p, i, c ); pA = Nf_ObjMatchA( p, i, c ); pM = (pA->D <= Required) ? pA : pD; if ( pM->fCompl ) // use inverter { p->nInvs++; //printf( "Using inverter at node %d in phase %d\n", i, c ); pM->fBest = 1; // update opposite phase Nf_ObjMapRefInc( p, i, !c ); Nf_ObjUpdateRequired( p, i, !c, Required - p->InvDelayI ); // select opposite phase Required = Nf_ObjRequired( p, i, !c ); //assert( Required < SCL_INFINITY ); pD = Nf_ObjMatchD( p, i, !c ); pA = Nf_ObjMatchA( p, i, !c ); pM = (pA->D <= Required) ? pA : pD; assert( !pM->fCompl ); // account for the inverter p->pPars->MapAreaF += p->InvAreaF; p->pPars->Edge++; p->pPars->Area++; } // create gate Nf_ManSetMapRefsGate( p, i, Required, pM ); } // the result of this: // - only one phase can be implemented as inverter of the other phase // - required times are propagated correctly // - references are set correctly } Gia_ManForEachCiId( p->pGia, Id, i ) if ( Nf_ObjMapRefNum(p, Id, 1) ) { Nf_ObjMapRefInc( p, Id, 0 ); Nf_ObjUpdateRequired( p, Id, 0, Required - p->InvDelayI ); p->pPars->MapAreaF += p->InvAreaF; p->pPars->Edge++; p->pPars->Area++; p->nInvs++; } // blend references for ( i = 0; i < nLits; i++ ) pFlowRefs[i] = Abc_MaxFloat(1.0, Coef * pFlowRefs[i] + (1.0 - Coef) * Abc_MaxFloat(1, pMapRefs[i])); // pFlowRefs[i] = 0.2 * pFlowRefs[i] + 0.8 * Abc_MaxFloat(1, pMapRefs[i]); return p->pPars->Area; } /**Function************************************************************* Synopsis [Area recovery.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ word Nf_MatchDeref_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM ) { word Area = 0; int k, iVar, fCompl, * pCut; assert( pM->fBest ); if ( pM->fCompl ) { assert( Nf_ObjMapRefNum(p, i, !c) > 0 ); if ( !Nf_ObjMapRefDec(p, i, !c) ) Area += Nf_MatchDeref_rec( p, i, !c, Nf_ObjMatchD(p, i, !c) ); return Area + p->InvAreaW; } if ( Nf_ObjCutSetId(p, i) == 0 ) return 0; pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH ); Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, k ) { assert( Nf_ObjMapRefNum(p, iVar, fCompl) > 0 ); if ( !Nf_ObjMapRefDec(p, iVar, fCompl) ) Area += Nf_MatchDeref_rec( p, iVar, fCompl, Nf_ObjMatchD(p, iVar, fCompl) ); } return Area + Nf_ManCell(p, pM->Gate)->AreaW; } word Nf_MatchRef_rec( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM, int Required, Vec_Int_t * vBackup ) { word Area = 0; int ReqFanin; int k, iVar, fCompl, * pCut; assert( pM->fBest ); assert( pM->D <= Required ); if ( pM->fCompl ) { ReqFanin = Required - p->InvDelayI; if ( vBackup ) Vec_IntPush( vBackup, Abc_Var2Lit(i, !c) ); assert( Nf_ObjMapRefNum(p, i, !c) >= 0 ); if ( !Nf_ObjMapRefInc(p, i, !c) ) Area += Nf_MatchRef_rec( p, i, !c, Nf_ObjMatchD(p, i, !c), ReqFanin, vBackup ); return Area + p->InvAreaW; } if ( Nf_ObjCutSetId(p, i) == 0 ) return 0; pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH ); Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, k ) { ReqFanin = Required - Nf_ManCell(p, pM->Gate)->iDelays[k]; if ( vBackup ) Vec_IntPush( vBackup, Abc_Var2Lit(iVar, fCompl) ); assert( Nf_ObjMapRefNum(p, iVar, fCompl) >= 0 ); if ( !Nf_ObjMapRefInc(p, iVar, fCompl) ) Area += Nf_MatchRef_rec( p, iVar, fCompl, Nf_ObjMatchD(p, iVar, fCompl), ReqFanin, vBackup ); } return Area + Nf_ManCell(p, pM->Gate)->AreaW; } word Nf_MatchRefArea( Nf_Man_t * p, int i, int c, Nf_Mat_t * pM, int Required ) { word Area; int iLit, k; Vec_IntClear( &p->vBackup ); Area = Nf_MatchRef_rec( p, i, c, pM, Required, &p->vBackup ); Vec_IntForEachEntry( &p->vBackup, iLit, k ) { assert( Nf_ObjMapRefNum(p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit)) > 0 ); Nf_ObjMapRefDec( p, Abc_Lit2Var(iLit), Abc_LitIsCompl(iLit) ); } return Area; } void Nf_ManElaBestMatchOne( Nf_Man_t * p, int iObj, int c, int * pCut, int * pCutSet, Nf_Mat_t * pRes, int Required ) { Nf_Mat_t Mb,*pMb = &Mb, * pMd; int * pFans = Nf_CutLeaves(pCut); int nFans = Nf_CutSize(pCut); int iFuncLit = Nf_CutFunc(pCut); int fComplExt = Abc_LitIsCompl(iFuncLit); Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, Abc_Lit2Var(iFuncLit) ); int i, k, Info, Offset, iFanin, fComplF; // assign fanins matches Nf_Obj_t * pBestF[NF_LEAF_MAX]; for ( i = 0; i < nFans; i++ ) pBestF[i] = Nf_ManObj( p, pFans[i] ); // consider matches of this function memset( pMb, 0, sizeof(Nf_Mat_t) ); pMb->D = SCL_INFINITY; pMb->F = FLT_MAX; // special cases if ( nFans == 0 ) { int Const = (iFuncLit == 1); //printf( "Node %d(%d) is const\n", iObj, c ); assert( iFuncLit == 0 || iFuncLit == 1 ); pMb->D = 0; pMb->F = p->pCells[c ^ Const].AreaF; pMb->CutH = Nf_CutHandle(pCutSet, pCut); pMb->Gate = c ^ Const; // pMb->Conf = 0; pMb->Cfg = Nf_Int2Cfg(0); pMb->fBest = 1; // compare if ( pRes->F > pMb->F + NF_EPSILON || (pRes->F > pMb->F - NF_EPSILON && pRes->D > pMb->D) ) *pRes = *pMb; return; } // consider matches of this function Vec_IntForEachEntryDouble( vArr, Info, Offset, i ) { Nf_Cfg_t Cfg = Nf_Int2Cfg(Offset); Mio_Cell2_t*pC = Nf_ManCell( p, Info ); int fCompl = Cfg.fCompl ^ fComplExt; int Delay = 0; assert( nFans == (int)pC->nFanins ); if ( fCompl != c ) continue; Nf_CfgForEachVarCompl( Cfg, nFans, iFanin, fComplF, k ) { pMd = &pBestF[iFanin]->M[fComplF][0]; assert( pMd->fBest ); Delay = Abc_MaxInt( Delay, pMd->D + pC->iDelays[k] ); if ( Delay > Required ) break; } if ( k < nFans ) continue; // create match pMb->D = Delay; pMb->F = FLT_MAX; pMb->fBest = 1; pMb->fCompl = 0; pMb->CutH = Nf_CutHandle(pCutSet, pCut); pMb->Gate = pC->Id; pMb->Cfg = Cfg; pMb->Cfg.fCompl = 0; // compute area pMb->F = Scl_Int2Flt((int)Nf_MatchRefArea(p, iObj, c, pMb, Required)); // compare if ( pRes->F > pMb->F + NF_EPSILON || (pRes->F > pMb->F - NF_EPSILON && pRes->D > pMb->D) ) *pRes = *pMb; } } void Nf_ManElaBestMatch( Nf_Man_t * p, int iObj, int c, Nf_Mat_t * pRes, int Required ) { int k, * pCut, * pCutSet = Nf_ObjCutSet( p, iObj ); memset( pRes, 0, sizeof(Nf_Mat_t) ); pRes->D = SCL_INFINITY; pRes->F = FLT_MAX; Nf_SetForEachCut( pCutSet, pCut, k ) { if ( Abc_Lit2Var(Nf_CutFunc(pCut)) >= Vec_WecSize(p->vTt2Match) ) continue; Nf_ManElaBestMatchOne( p, iObj, c, pCut, pCutSet, pRes, Required ); } } int Nf_ManComputeArrival( Nf_Man_t * p, Nf_Mat_t * pM, int * pCutSet ) { int Delay = 0; Nf_Mat_t * pMfan; int iVar, fCompl, k; Mio_Cell2_t * pCell = Nf_ManCell( p, pM->Gate ); int * pCut = Nf_CutFromHandle( pCutSet, pM->CutH ); assert( !pM->fCompl ); Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, k ) { pMfan = Nf_ObjMatchBest( p, iVar, fCompl ); Delay = Abc_MaxInt( Delay, pMfan->D + pCell->iDelays[k] ); } //if ( pM->fCompl ) Delay += p->InvDelayI; return Delay; } void Nf_ManResetMatches( Nf_Man_t * p, int Round ) { Gia_Obj_t * pObj; Nf_Mat_t * pDc, * pAc, * pMfan, * pM[2]; int i, c, Arrival; // go through matches in the topo order Gia_ManForEachAnd( p->pGia, pObj, i ) { if ( Gia_ObjIsBuf(pObj) ) { pMfan = Nf_ObjMatchBest( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj) ); for ( c = 0; c < 2; c++ ) { pDc = Nf_ObjMatchD( p, i, c ); pAc = Nf_ObjMatchA( p, i, c ); pDc->F = pAc->F = 0; pDc->D = pMfan->D + (c ? p->InvDelayI : 0); assert( pDc->fBest ); assert( !pAc->fBest ); assert( c==0 || pDc->fCompl ); } continue; } // select the best match for each phase for ( c = 0; c < 2; c++ ) { pDc = Nf_ObjMatchD( p, i, c ); pAc = Nf_ObjMatchA( p, i, c ); pDc->F = pAc->F = 0; if ( Nf_ObjMapRefNum(p, i, c) ) { assert( pDc->fBest != pAc->fBest ); if ( pAc->fBest ) ABC_SWAP( Nf_Mat_t, *pDc, *pAc ); assert( pDc->fBest ); assert( !pAc->fBest ); } else { assert( Round > 0 || (!pDc->fBest && !pAc->fBest) ); // if ( (p->pPars->fAreaOnly || (Round & 1)) && !pAc->fCompl ) if ( (Round & 1) && !pAc->fCompl ) ABC_SWAP( Nf_Mat_t, *pDc, *pAc ); pDc->fBest = 1; pAc->fBest = 0; } } // consider best matches of both phases pM[0] = Nf_ObjMatchD( p, i, 0 ); pM[1] = Nf_ObjMatchD( p, i, 1 ); assert( pM[0]->fBest && pM[1]->fBest ); // swap complemented matches if ( pM[0]->fCompl && pM[1]->fCompl ) { // pM[0]->fCompl = pM[1]->fCompl = 0; // ABC_SWAP( Nf_Mat_t *, pM[0], pM[1] ); assert( 0 ); } if ( !pM[0]->fCompl && !pM[1]->fCompl ) { for ( c = 0; c < 2; c++ ) { Arrival = Nf_ManComputeArrival( p, pM[c], Nf_ObjCutSet(p, i) ); //if ( Nf_ObjMapRefNum(p, i, c) ) // assert( Round || Arrival <= pM[c]->D ); pM[c]->D = Arrival; } } else { // consider non-complemented match c = !pM[1]->fCompl; assert( !pM[c]->fCompl ); assert( pM[!c]->fCompl ); Arrival = Nf_ManComputeArrival( p, pM[c], Nf_ObjCutSet(p, i) ); //if ( Nf_ObjMapRefNum(p, i, c) ) // assert( Round || Arrival <= pM[c]->D ); pM[c]->D = Arrival; // consider complemented match Arrival = pM[!c]->D; *pM[!c] = *pM[c]; pM[!c]->D += p->InvDelayI; pM[!c]->fCompl = 1; //if ( Nf_ObjMapRefNum(p, i, !c) ) // assert( Round || pM[!c]->D <= Arrival ); } } } void Nf_ManComputeMappingEla( Nf_Man_t * p ) { int fVerbose = 0; Gia_Obj_t * pObj; Mio_Cell2_t * pCell; Nf_Mat_t Mb, * pMb = &Mb, * pM; word AreaBef, AreaAft, Gain = 0; int i, c, iVar, Id, fCompl, k, * pCut; int Required; Nf_ManSetOutputRequireds( p, 1 ); Nf_ManResetMatches( p, p->Iter - p->pPars->nRounds ); Gia_ManForEachAndReverse( p->pGia, pObj, i ) { if ( Gia_ObjIsBuf(pObj) ) { if ( Nf_ObjMapRefNum(p, i, 1) ) Nf_ObjUpdateRequired( p, i, 0, Nf_ObjRequired(p, i, 1) - p->InvDelayI ); Nf_ObjUpdateRequired( p, Gia_ObjFaninId0(pObj, i), Gia_ObjFaninC0(pObj), Nf_ObjRequired(p, i, 0) ); continue; } for ( c = 0; c < 2; c++ ) if ( Nf_ObjMapRefNum(p, i, c) ) { pM = Nf_ObjMatchBest( p, i, c ); Required = Nf_ObjRequired( p, i, c ); assert( pM->D <= Required ); if ( pM->fCompl ) continue; // search for a better match assert( !pM->fCompl ); AreaBef = Nf_MatchDeref_rec( p, i, c, pM ); assert( pM->fBest ); Nf_ManElaBestMatch( p, i, c, pMb, Required ); AreaAft = Nf_MatchRef_rec( p, i, c, pMb, Required, NULL ); Gain += AreaBef - AreaAft; // print area recover progress if ( fVerbose && Nf_ManCell(p, pM->Gate)->pName != Nf_ManCell(p, pMb->Gate)->pName ) { printf( "%4d (%d) ", i, c ); printf( "%8s ->%8s ", Nf_ManCell(p, pM->Gate)->pName, Nf_ManCell(p, pMb->Gate)->pName ); printf( "%d -> %d ", Nf_ManCell(p, pM->Gate)->nFanins, Nf_ManCell(p, pMb->Gate)->nFanins ); printf( "D: %7.2f -> %7.2f ", Scl_Int2Flt(pM->D), Scl_Int2Flt(pMb->D) ); printf( "R: %7.2f ", Required == SCL_INFINITY ? 9999.99 : Scl_Int2Flt(Required) ); printf( "A: %7.2f -> %7.2f ", Scl_Int2Flt((int)AreaBef), Scl_Int2Flt((int)AreaAft) ); printf( "G: %7.2f (%7.2f) ", Scl_Int2Flt((int)AreaBef - (int)AreaAft), Scl_Int2Flt((int)Gain) ); printf( "\n" ); } // set best match assert( pMb->fBest ); assert( pMb->D <= Required ); //assert( Scl_Flt2Int(pMb->F) == (int)AreaAft ); //assert( AreaBef >= AreaAft ); *pM = *pMb; // update timing pCell = Nf_ManCell( p, pMb->Gate ); pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pMb->CutH ); Nf_CutForEachVarCompl( pCut, pMb->Cfg, iVar, fCompl, k ) { pM = Nf_ObjMatchBest( p, iVar, fCompl ); assert( pM->D <= Required - pCell->iDelays[k] ); Nf_ObjUpdateRequired( p, iVar, fCompl, Required - pCell->iDelays[k] ); if ( pM->fCompl ) { pM = Nf_ObjMatchBest( p, iVar, !fCompl ); assert( pM->D <= Required - pCell->iDelays[k] - p->InvDelayI ); Nf_ObjUpdateRequired( p, iVar, !fCompl, Required - pCell->iDelays[k] - p->InvDelayI ); } } } } Gia_ManForEachCiId( p->pGia, Id, i ) if ( Nf_ObjMapRefNum(p, Id, 1) ) { Required = Nf_ObjRequired( p, i, 1 ); Nf_ObjUpdateRequired( p, Id, 0, Required - p->InvDelayI ); } } void Nf_ManFixPoDrivers( Nf_Man_t * p ) { Gia_Obj_t * pObj; Nf_Mat_t * pM, * pMc; int i, iDriver, Count = 0; Gia_ManForEachCo( p->pGia, pObj, i ) { iDriver = Gia_ObjFaninId0p(p->pGia, pObj); if ( !Gia_ObjIsAnd(Gia_ManObj(p->pGia, iDriver)) ) continue; // skip unless both are used if ( !Nf_ObjMapRefNum(p, iDriver, 0) || !Nf_ObjMapRefNum(p, iDriver, 1) ) continue; pM = Nf_ObjMatchD( p, iDriver, Gia_ObjFaninC0(pObj) ); pMc = Nf_ObjMatchD( p, iDriver, !Gia_ObjFaninC0(pObj) ); // skip unless both are non-complemented if ( pM->fCompl || pMc->fCompl ) continue; // skip if arrival time exceeds the required time if ( pMc->D + p->InvDelayI > p->pPars->MapDelay ) continue; // update references Nf_MatchDeref_rec( p, iDriver, Gia_ObjFaninC0(pObj), pM ); Nf_ObjMapRefInc( p, iDriver, !Gia_ObjFaninC0(pObj) ); // add inverter *pM = *pMc; pM->D += p->InvDelayI; pM->fCompl = 1; pM->fBest = 1; pMc->fBest = 1; Count++; } //printf( "Fixed %d PO drivers.\n", Count ); } /**Function************************************************************* Synopsis [Deriving mapping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Gia_Man_t * Nf_ManDeriveMapping( Nf_Man_t * p ) { Vec_Int_t * vMapping; Nf_Mat_t * pM; int i, k, c, Id, iVar, fCompl, * pCut; assert( p->pGia->vCellMapping == NULL ); vMapping = Vec_IntAlloc( 2*Gia_ManObjNum(p->pGia) + (int)p->pPars->Edge + (int)p->pPars->Area * 2 ); Vec_IntFill( vMapping, 2*Gia_ManObjNum(p->pGia), 0 ); // create CI inverters Gia_ManForEachCiId( p->pGia, Id, i ) if ( Nf_ObjMapRefNum(p, Id, 1) ) Vec_IntWriteEntry( vMapping, Abc_Var2Lit(Id, 1), -1 ); // create internal nodes Gia_ManForEachAndId( p->pGia, i ) { Gia_Obj_t * pObj = Gia_ManObj(p->pGia, i); if ( Gia_ObjIsBuf(pObj) ) { if ( Nf_ObjMapRefNum(p, i, 1) ) Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 1), -1 ); Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, 0), -2 ); continue; } for ( c = 0; c < 2; c++ ) if ( Nf_ObjMapRefNum(p, i, c) ) { pM = Nf_ObjMatchBest( p, i, c ); // remember inverter if ( pM->fCompl ) { Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), -1 ); continue; } // Nf_ManCutMatchPrint( p, i, c, pM ); pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH ); Vec_IntWriteEntry( vMapping, Abc_Var2Lit(i, c), Vec_IntSize(vMapping) ); Vec_IntPush( vMapping, Nf_CutSize(pCut) ); Nf_CutForEachVarCompl( pCut, pM->Cfg, iVar, fCompl, k ) Vec_IntPush( vMapping, Abc_Var2Lit(iVar, fCompl) ); Vec_IntPush( vMapping, pM->Gate ); } } // assert( Vec_IntCap(vMapping) == 16 || Vec_IntSize(vMapping) == Vec_IntCap(vMapping) ); p->pGia->vCellMapping = vMapping; return p->pGia; } void Nf_ManUpdateStats( Nf_Man_t * p ) { Nf_Mat_t * pM; Gia_Obj_t * pObj; Mio_Cell2_t * pCell; int i, c, Id, * pCut; p->pPars->MapAreaF = 0; p->nInvs = 0; p->pPars->Area = p->pPars->Edge = 0; Gia_ManForEachAndReverse( p->pGia, pObj, i ) { if ( Gia_ObjIsBuf(pObj) ) { if ( Nf_ObjMapRefNum(p, i, 1) ) { p->pPars->MapAreaF += p->InvAreaF; p->pPars->Edge++; p->pPars->Area++; p->nInvs++; } continue; } for ( c = 0; c < 2; c++ ) if ( Nf_ObjMapRefNum(p, i, c) ) { pM = Nf_ObjMatchBest( p, i, c ); if ( pM->fCompl ) { p->pPars->MapAreaF += p->InvAreaF; p->pPars->Edge++; p->pPars->Area++; p->nInvs++; continue; } pCut = Nf_CutFromHandle( Nf_ObjCutSet(p, i), pM->CutH ); pCell = Nf_ManCell( p, pM->Gate ); assert( Nf_CutSize(pCut) == (int)pCell->nFanins ); p->pPars->MapAreaF += pCell->AreaF; p->pPars->Edge += Nf_CutSize(pCut); p->pPars->Area++; //printf( "%5d (%d) : Gate = %7s \n", i, c, pCell->pName ); } } Gia_ManForEachCiId( p->pGia, Id, i ) if ( Nf_ObjMapRefNum(p, Id, 1) ) { p->pPars->MapAreaF += p->InvAreaF; p->pPars->Edge++; p->pPars->Area++; p->nInvs++; } } /**Function************************************************************* Synopsis [Extract window.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ /* int nInputs; // the number of inputs int nObjs; // number of all objects Vec_Int_t * vRoots; // output drivers to be mapped (root -> obj lit) Vec_Wec_t * vCuts; // cuts (cut -> obj lit + fanin lits) Vec_Wec_t * vObjCuts; // cuts (obj lit -> obj lit + cut lits) Vec_Int_t * vSolCuts; // current solution (index -> cut) Vec_Int_t * vCutGates; // gates (cut -> gate) */ int Nf_ManExtractWindow( void * pMan, Vec_Int_t * vRoots, Vec_Wec_t * vCuts, Vec_Wec_t * vObjCuts, Vec_Int_t * vSolCuts, Vec_Int_t * vCutGates, Vec_Wrd_t * vCutAreas, word * pInvArea, int StartVar, int nVars ) { Nf_Man_t * p = (Nf_Man_t *)pMan; int nInputs = Gia_ManCiNum(p->pGia); int LitShift = 2*nInputs+2; Gia_Obj_t * pObj; int c, iObj; if ( 2*Gia_ManAndNum(p->pGia) + Gia_ManCiNum(p->pGia) > nVars ) { printf( "The number of variables is too large: 2*%d + %d = %d > %d.\n", Gia_ManAndNum(p->pGia), Gia_ManCiNum(p->pGia), 2*Gia_ManAndNum(p->pGia) + Gia_ManCiNum(p->pGia), nVars ); return 0; } *pInvArea = p->InvAreaW; // save roots Vec_IntClear( vRoots ); Gia_ManForEachCo( p->pGia, pObj, c ) { assert( !Gia_ObjIsCi(Gia_ObjFanin0(pObj)) ); Vec_IntPush( vRoots, Gia_ObjFaninLit0p(p->pGia, pObj)-LitShift ); } // prepare Vec_WecClear( vCuts ); Vec_WecClear( vObjCuts ); Vec_IntClear( vSolCuts ); Vec_IntClear( vCutGates ); Vec_WrdClear( vCutAreas ); // collect cuts for each node Gia_ManForEachAndId( p->pGia, iObj ) { Vec_Int_t * vObj[2], * vCutOne; int iCut, * pCut, * pCutSet; int iCutInv[2] = {-1, -1}; // get matches Nf_Mat_t * pM[2] = {NULL, NULL}; for ( c = 0; c < 2; c++ ) { if ( Nf_ObjMapRefNum(p, iObj, c) == 0 ) continue; if ( Nf_ObjMatchBest(p, iObj, c)->fCompl ) { assert( iCutInv[c] == -1 ); iCutInv[c] = Vec_IntSize(vSolCuts); Vec_IntPush( vSolCuts, -1 ); continue; } pM[c] = Nf_ObjMatchBest(p, iObj, c); } // start collecting cuts of pos-obj and neg-obj assert( Vec_WecSize(vObjCuts) == 2*iObj-LitShift ); for ( c = 0; c < 2; c++ ) { vObj[c] = Vec_WecPushLevel( vObjCuts ); Vec_IntPush( vObj[c], Abc_Var2Lit(Abc_Var2Lit(iObj, c)-LitShift, 1) ); } // enumerate cuts pCutSet = Nf_ObjCutSet( p, iObj ); Nf_SetForEachCut( pCutSet, pCut, iCut ) { assert( !Nf_CutIsTriv(pCut, iObj) ); assert( Nf_CutSize(pCut) <= p->pPars->nLutSize ); if ( Abc_Lit2Var(Nf_CutFunc(pCut)) < Vec_WecSize(p->vTt2Match) ) { int * pFans = Nf_CutLeaves(pCut); int nFans = Nf_CutSize(pCut); int iFuncLit = Nf_CutFunc(pCut); int fComplExt = Abc_LitIsCompl(iFuncLit); Vec_Int_t * vArr = Vec_WecEntry( p->vTt2Match, Abc_Lit2Var(iFuncLit) ); int i, k, c, Info, Offset, iFanin, fComplF, iCutLit; Vec_IntForEachEntryDouble( vArr, Info, Offset, i ) { Nf_Cfg_t Cfg = Nf_Int2Cfg(Offset); int fCompl = Cfg.fCompl ^ fComplExt; Mio_Cell2_t*pC = Nf_ManCell( p, Info ); assert( nFans == (int)pC->nFanins ); Vec_IntPush( vCutGates, Info ); Vec_WrdPush( vCutAreas, pC->AreaW ); // to make comparison possible Cfg.fCompl = 0; // add solution cut for ( c = 0; c < 2; c++ ) { if ( pM[c] == NULL ) continue; if ( (int)pM[c]->CutH == Nf_CutHandle(pCutSet, pCut) && (int)pM[c]->Gate == Info && Nf_Cfg2Int(pM[c]->Cfg) == Nf_Cfg2Int(Cfg) ) { Vec_IntPush( vSolCuts, Vec_WecSize(vCuts) ); //printf( "adding solution for %d\n", Abc_Var2Lit(iObj, c)-LitShift ); } } // add new cut iCutLit = Abc_Var2Lit( StartVar + Vec_WecSize(vCuts), 0 ); vCutOne = Vec_WecPushLevel( vCuts ); // add literals Vec_IntPush( vCutOne, Abc_Var2Lit(iObj, fCompl) ); Vec_IntPush( vObj[fCompl], iCutLit ); Nf_CfgForEachVarCompl( Cfg, nFans, iFanin, fComplF, k ) if ( pFans[iFanin] >= nInputs + 1 ) // internal node { Vec_IntPush( vCutOne, Abc_Var2Lit(pFans[iFanin], fComplF) ); //Vec_IntPush( Vec_WecEntry(vObjCuts, Abc_Var2Lit(pFans[iFanin], fComplF)-LitShift), iCutLit ); } else if ( fComplF ) // complemented primary input Vec_IntPush( vCutOne, Abc_Var2Lit(pFans[iFanin], 1) ); } } } assert( iCutInv[0] == -1 || iCutInv[1] == -1 ); // add inverter cut for ( c = 0; c < 2; c++ ) { if ( iCutInv[c] != -1 ) Vec_IntWriteEntry( vSolCuts, iCutInv[c], Vec_WecSize(vCuts) ); // the obj-lit implies its cut Vec_IntPush( Vec_WecEntry(vObjCuts, Abc_Var2Lit(iObj, c)-LitShift), Abc_Var2Lit(StartVar + Vec_WecSize(vCuts), 0) ); // the cut includes both literals vCutOne = Vec_WecPushLevel( vCuts ); Vec_IntPush( vCutOne, Abc_Var2Lit(iObj, c) ); Vec_IntPush( vCutOne, Abc_Var2Lit(iObj, !c) ); Vec_IntPush( vCutGates, 3 ); Vec_WrdPush( vCutAreas, p->InvAreaW ); } } // for ( c = 0; c < p->nCells; c++ ) // printf( "%d=%s ", c, p->pCells[c].pName ); // printf( "\n" ); // add complemented inputs Gia_ManForEachCiId( p->pGia, iObj, c ) if ( Nf_ObjMapRefNum(p, iObj, 1) ) Vec_IntPush( vSolCuts, -(2*Gia_ManAndNum(p->pGia)+c) ); assert( Vec_WecSize(vCuts) == Vec_IntSize(vCutGates) ); assert( Vec_WecSize(vCuts) == Vec_WrdSize(vCutAreas) ); assert( Vec_WecSize(vObjCuts) == 2*Gia_ManAndNum(p->pGia) ); return nInputs; } /**Function************************************************************* Synopsis [Technology mappping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Nf_ManSetDefaultPars( Jf_Par_t * pPars ) { memset( pPars, 0, sizeof(Jf_Par_t) ); pPars->nLutSize = 6; pPars->nCutNum = 16; pPars->nProcNum = 0; pPars->nRounds = 4; pPars->nRoundsEla = 2; pPars->nRelaxRatio = 0; pPars->nCoarseLimit = 3; pPars->nAreaTuner = 0; pPars->nReqTimeFlex = 0; pPars->nVerbLimit = 5; pPars->DelayTarget = -1; pPars->fAreaOnly = 0; pPars->fPinPerm = 0; pPars->fPinQuick = 0; pPars->fPinFilter = 0; pPars->fOptEdge = 1; pPars->fCoarsen = 0; pPars->fCutMin = 1; pPars->fGenCnf = 0; pPars->fPureAig = 0; pPars->fVerbose = 0; pPars->fVeryVerbose = 0; pPars->nLutSizeMax = NF_LEAF_MAX; pPars->nCutNumMax = NF_CUT_MAX; pPars->MapDelayTarget = 0; } Gia_Man_t * Nf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars ) { Gia_Man_t * pNew = NULL, * pCls; Nf_Man_t * p; int i, Id; if ( Gia_ManHasChoices(pGia) ) pPars->fCoarsen = 0; pCls = pPars->fCoarsen ? Gia_ManDupMuxes(pGia, pPars->nCoarseLimit) : pGia; p = Nf_StoCreate( pCls, pPars ); if ( p == NULL ) return NULL; // if ( pPars->fVeryVerbose ) // Nf_StoPrint( p, pPars->fVeryVerbose ); if ( pPars->fVerbose && pPars->fCoarsen ) { printf( "Initial " ); Gia_ManPrintMuxStats( pGia ); printf( "\n" ); printf( "Derived " ); Gia_ManPrintMuxStats( pCls ); printf( "\n" ); } Nf_ManPrintInit( p ); Nf_ManComputeCuts( p ); Nf_ManPrintQuit( p ); if ( Scl_ConIsRunning() ) { Gia_ManForEachCiId( p->pGia, Id, i ) Nf_ObjPrepareCi( p, Id, Scl_ConGetInArr(i) ); } else { Gia_ManForEachCiId( p->pGia, Id, i ) // Nf_ObjPrepareCi( p, Id, Scl_Flt2Int(p->pGia->vInArrs ? Abc_MaxFloat(0.0, Vec_FltEntry(p->pGia->vInArrs, i)) : 0.0) ); Nf_ObjPrepareCi( p, Id, Scl_Flt2Int(p->pGia->vInArrs ? Vec_FltEntry(p->pGia->vInArrs, i) : 0.0) ); } for ( p->Iter = 0; p->Iter < p->pPars->nRounds; p->Iter++ ) { Nf_ManComputeMapping( p ); Nf_ManSetMapRefs( p ); Nf_ManPrintStats( p, (char *)(p->Iter ? "Area " : "Delay") ); } p->fUseEla = 1; for ( ; p->Iter < p->pPars->nRounds + pPars->nRoundsEla; p->Iter++ ) { Nf_ManComputeMappingEla( p ); Nf_ManUpdateStats( p ); Nf_ManPrintStats( p, "Ela " ); } Nf_ManFixPoDrivers( p ); pNew = Nf_ManDeriveMapping( p ); /* if ( pPars->fAreaOnly ) { int Sbm_ManTestSat( void * pMan ); Sbm_ManTestSat( p ); } */ Nf_StoDelete( p ); return pNew; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END