/**CFile**************************************************************** FileName [giaCut.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Scalable AIG package.] Synopsis [Stand-alone cut computation.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: giaCut.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "gia.h" #include "misc/util/utilTruth.h" #include "misc/vec/vecHsh.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define GIA_MAX_CUTSIZE 8 #define GIA_MAX_CUTNUM 65 #define GIA_MAX_TT_WORDS ((GIA_MAX_CUTSIZE > 6) ? 1 << (GIA_MAX_CUTSIZE-6) : 1) #define GIA_CUT_NO_LEAF 0xF typedef struct Gia_Cut_t_ Gia_Cut_t; struct Gia_Cut_t_ { word Sign; // signature int iFunc; // functionality int Cost; // cut cost int CostLev; // cut cost unsigned nTreeLeaves : 28; // tree leaves unsigned nLeaves : 4; // leaf count int pLeaves[GIA_MAX_CUTSIZE]; // leaves }; typedef struct Gia_Sto_t_ Gia_Sto_t; struct Gia_Sto_t_ { int nCutSize; int nCutNum; int fCutMin; int fTruthMin; int fVerbose; Gia_Man_t * pGia; // user's AIG manager (will be modified by adding nodes) Vec_Int_t * vRefs; // refs for each node Vec_Wec_t * vCuts; // cuts for each node Vec_Mem_t * vTtMem; // truth tables Gia_Cut_t pCuts[3][GIA_MAX_CUTNUM]; // temporary cuts Gia_Cut_t * ppCuts[GIA_MAX_CUTNUM]; // temporary cut pointers int nCutsR; // the number of cuts int Pivot; // current object int iCutBest; // best-delay cut int nCutsOver; // overflow cuts double CutCount[4]; // cut counters abctime clkStart; // starting time }; static inline word * Gia_CutTruth( Gia_Sto_t * p, Gia_Cut_t * pCut ) { return Vec_MemReadEntry(p->vTtMem, Abc_Lit2Var(pCut->iFunc)); } #define Sdb_ForEachCut( pList, pCut, i ) for ( i = 0, pCut = pList + 1; i < pList[0]; i++, pCut += pCut[0] + 2 ) //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Check correctness of cuts.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline word Gia_CutGetSign( Gia_Cut_t * pCut ) { word Sign = 0; int i; for ( i = 0; i < (int)pCut->nLeaves; i++ ) Sign |= ((word)1) << (pCut->pLeaves[i] & 0x3F); return Sign; } static inline int Gia_CutCheck( Gia_Cut_t * pBase, Gia_Cut_t * pCut ) // check if pCut is contained in pBase { int nSizeB = pBase->nLeaves; int nSizeC = pCut->nLeaves; int i, * pB = pBase->pLeaves; int k, * pC = pCut->pLeaves; for ( i = 0; i < nSizeC; i++ ) { for ( k = 0; k < nSizeB; k++ ) if ( pC[i] == pB[k] ) break; if ( k == nSizeB ) return 0; } return 1; } static inline int Gia_CutSetCheckArray( Gia_Cut_t ** ppCuts, int nCuts ) { Gia_Cut_t * pCut0, * pCut1; int i, k, m, n, Value; assert( nCuts > 0 ); for ( i = 0; i < nCuts; i++ ) { pCut0 = ppCuts[i]; assert( pCut0->nLeaves <= GIA_MAX_CUTSIZE ); assert( pCut0->Sign == Gia_CutGetSign(pCut0) ); // check duplicates for ( m = 0; m < (int)pCut0->nLeaves; m++ ) for ( n = m + 1; n < (int)pCut0->nLeaves; n++ ) assert( pCut0->pLeaves[m] < pCut0->pLeaves[n] ); // check pairs for ( k = 0; k < nCuts; k++ ) { pCut1 = ppCuts[k]; if ( pCut0 == pCut1 ) continue; // check containments Value = Gia_CutCheck( pCut0, pCut1 ); assert( Value == 0 ); } } return 1; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Gia_CutMergeOrder( Gia_Cut_t * pCut0, Gia_Cut_t * pCut1, Gia_Cut_t * pCut, int nCutSize ) { int nSize0 = pCut0->nLeaves; int nSize1 = pCut1->nLeaves; int i, * pC0 = pCut0->pLeaves; int k, * pC1 = pCut1->pLeaves; int c, * pC = pCut->pLeaves; // the case of the largest cut sizes if ( nSize0 == nCutSize && nSize1 == nCutSize ) { for ( i = 0; i < nSize0; i++ ) { if ( pC0[i] != pC1[i] ) return 0; pC[i] = pC0[i]; } pCut->nLeaves = nCutSize; pCut->iFunc = -1; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } // compare two cuts with different numbers i = k = c = 0; if ( nSize0 == 0 ) goto FlushCut1; if ( nSize1 == 0 ) goto FlushCut0; while ( 1 ) { if ( c == nCutSize ) return 0; if ( pC0[i] < pC1[k] ) { pC[c++] = pC0[i++]; if ( i >= nSize0 ) goto FlushCut1; } else if ( pC0[i] > pC1[k] ) { pC[c++] = pC1[k++]; if ( k >= nSize1 ) goto FlushCut0; } else { pC[c++] = pC0[i++]; k++; if ( i >= nSize0 ) goto FlushCut1; if ( k >= nSize1 ) goto FlushCut0; } } FlushCut0: if ( c + nSize0 > nCutSize + i ) return 0; while ( i < nSize0 ) pC[c++] = pC0[i++]; pCut->nLeaves = c; pCut->iFunc = -1; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; FlushCut1: if ( c + nSize1 > nCutSize + k ) return 0; while ( k < nSize1 ) pC[c++] = pC1[k++]; pCut->nLeaves = c; pCut->iFunc = -1; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } static inline int Gia_CutMergeOrder2( Gia_Cut_t * pCut0, Gia_Cut_t * pCut1, Gia_Cut_t * pCut, int nCutSize ) { int x0, i0 = 0, nSize0 = pCut0->nLeaves, * pC0 = pCut0->pLeaves; int x1, i1 = 0, nSize1 = pCut1->nLeaves, * pC1 = pCut1->pLeaves; int xMin, c = 0, * pC = pCut->pLeaves; while ( 1 ) { x0 = (i0 == nSize0) ? ABC_INFINITY : pC0[i0]; x1 = (i1 == nSize1) ? ABC_INFINITY : pC1[i1]; xMin = Abc_MinInt(x0, x1); if ( xMin == ABC_INFINITY ) break; if ( c == nCutSize ) return 0; pC[c++] = xMin; if (x0 == xMin) i0++; if (x1 == xMin) i1++; } pCut->nLeaves = c; pCut->iFunc = -1; pCut->Sign = pCut0->Sign | pCut1->Sign; return 1; } static inline int Gia_CutSetCutIsContainedOrder( Gia_Cut_t * pBase, Gia_Cut_t * pCut ) // check if pCut is contained in pBase { int i, nSizeB = pBase->nLeaves; int k, nSizeC = pCut->nLeaves; if ( nSizeB == nSizeC ) { for ( i = 0; i < nSizeB; i++ ) if ( pBase->pLeaves[i] != pCut->pLeaves[i] ) return 0; return 1; } assert( nSizeB > nSizeC ); if ( nSizeC == 0 ) return 1; for ( i = k = 0; i < nSizeB; i++ ) { if ( pBase->pLeaves[i] > pCut->pLeaves[k] ) return 0; if ( pBase->pLeaves[i] == pCut->pLeaves[k] ) { if ( ++k == nSizeC ) return 1; } } return 0; } static inline int Gia_CutSetLastCutIsContained( Gia_Cut_t ** pCuts, int nCuts ) { int i; for ( i = 0; i < nCuts; i++ ) if ( pCuts[i]->nLeaves <= pCuts[nCuts]->nLeaves && (pCuts[i]->Sign & pCuts[nCuts]->Sign) == pCuts[i]->Sign && Gia_CutSetCutIsContainedOrder(pCuts[nCuts], pCuts[i]) ) return 1; return 0; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Gia_CutCompare( Gia_Cut_t * pCut0, Gia_Cut_t * pCut1 ) { if ( pCut0->nTreeLeaves < pCut1->nTreeLeaves ) return -1; if ( pCut0->nTreeLeaves > pCut1->nTreeLeaves ) return 1; if ( pCut0->nLeaves < pCut1->nLeaves ) return -1; if ( pCut0->nLeaves > pCut1->nLeaves ) return 1; return 0; } static inline int Gia_CutSetLastCutContains( Gia_Cut_t ** pCuts, int nCuts ) { int i, k, fChanges = 0; for ( i = 0; i < nCuts; i++ ) if ( pCuts[nCuts]->nLeaves < pCuts[i]->nLeaves && (pCuts[nCuts]->Sign & pCuts[i]->Sign) == pCuts[nCuts]->Sign && Gia_CutSetCutIsContainedOrder(pCuts[i], pCuts[nCuts]) ) pCuts[i]->nLeaves = GIA_CUT_NO_LEAF, fChanges = 1; if ( !fChanges ) return nCuts; for ( i = k = 0; i <= nCuts; i++ ) { if ( pCuts[i]->nLeaves == GIA_CUT_NO_LEAF ) continue; if ( k < i ) ABC_SWAP( Gia_Cut_t *, pCuts[k], pCuts[i] ); k++; } return k - 1; } static inline void Gia_CutSetSortByCost( Gia_Cut_t ** pCuts, int nCuts ) { int i; for ( i = nCuts; i > 0; i-- ) { if ( Gia_CutCompare(pCuts[i - 1], pCuts[i]) < 0 )//!= 1 ) return; ABC_SWAP( Gia_Cut_t *, pCuts[i - 1], pCuts[i] ); } } static inline int Gia_CutSetAddCut( Gia_Cut_t ** pCuts, int nCuts, int nCutNum ) { if ( nCuts == 0 ) return 1; nCuts = Gia_CutSetLastCutContains(pCuts, nCuts); assert( nCuts >= 0 ); Gia_CutSetSortByCost( pCuts, nCuts ); // add new cut if there is room return Abc_MinInt( nCuts + 1, nCutNum - 1 ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Gia_CutComputeTruth6( Gia_Sto_t * p, Gia_Cut_t * pCut0, Gia_Cut_t * pCut1, int fCompl0, int fCompl1, Gia_Cut_t * pCutR, int fIsXor ) { int nOldSupp = pCutR->nLeaves, truthId, fCompl; word t; word t0 = *Gia_CutTruth(p, pCut0); word t1 = *Gia_CutTruth(p, pCut1); if ( Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ) t0 = ~t0; if ( Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ) t1 = ~t1; t0 = Abc_Tt6Expand( t0, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t1 = Abc_Tt6Expand( t1, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); t = fIsXor ? t0 ^ t1 : t0 & t1; if ( (fCompl = (int)(t & 1)) ) t = ~t; if ( p->fTruthMin ) pCutR->nLeaves = Abc_Tt6MinBase( &t, pCutR->pLeaves, pCutR->nLeaves ); assert( (int)(t & 1) == 0 ); truthId = Vec_MemHashInsert(p->vTtMem, &t); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } static inline int Gia_CutComputeTruth( Gia_Sto_t * p, Gia_Cut_t * pCut0, Gia_Cut_t * pCut1, int fCompl0, int fCompl1, Gia_Cut_t * pCutR, int fIsXor ) { if ( p->nCutSize <= 6 ) return Gia_CutComputeTruth6( p, pCut0, pCut1, fCompl0, fCompl1, pCutR, fIsXor ); { word uTruth[GIA_MAX_TT_WORDS], uTruth0[GIA_MAX_TT_WORDS], uTruth1[GIA_MAX_TT_WORDS]; int nOldSupp = pCutR->nLeaves, truthId; int nCutSize = p->nCutSize, fCompl; int nWords = Abc_Truth6WordNum(nCutSize); word * pTruth0 = Gia_CutTruth(p, pCut0); word * pTruth1 = Gia_CutTruth(p, pCut1); Abc_TtCopy( uTruth0, pTruth0, nWords, Abc_LitIsCompl(pCut0->iFunc) ^ fCompl0 ); Abc_TtCopy( uTruth1, pTruth1, nWords, Abc_LitIsCompl(pCut1->iFunc) ^ fCompl1 ); Abc_TtExpand( uTruth0, nCutSize, pCut0->pLeaves, pCut0->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); Abc_TtExpand( uTruth1, nCutSize, pCut1->pLeaves, pCut1->nLeaves, pCutR->pLeaves, pCutR->nLeaves ); if ( fIsXor ) Abc_TtXor( uTruth, uTruth0, uTruth1, nWords, (fCompl = (int)((uTruth0[0] ^ uTruth1[0]) & 1)) ); else Abc_TtAnd( uTruth, uTruth0, uTruth1, nWords, (fCompl = (int)((uTruth0[0] & uTruth1[0]) & 1)) ); if ( p->fTruthMin ) pCutR->nLeaves = Abc_TtMinBase( uTruth, pCutR->pLeaves, pCutR->nLeaves, nCutSize ); assert( (uTruth[0] & 1) == 0 ); //Kit_DsdPrintFromTruth( uTruth, pCutR->nLeaves ), printf("\n" ), printf("\n" ); truthId = Vec_MemHashInsert(p->vTtMem, uTruth); pCutR->iFunc = Abc_Var2Lit( truthId, fCompl ); assert( (int)pCutR->nLeaves <= nOldSupp ); return (int)pCutR->nLeaves < nOldSupp; } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Gia_CutCountBits( word i ) { i = i - ((i >> 1) & 0x5555555555555555); i = (i & 0x3333333333333333) + ((i >> 2) & 0x3333333333333333); i = ((i + (i >> 4)) & 0x0F0F0F0F0F0F0F0F); return (i*(0x0101010101010101))>>56; } static inline void Gia_CutAddUnit( Gia_Sto_t * p, int iObj ) { Vec_Int_t * vThis = Vec_WecEntry( p->vCuts, iObj ); if ( Vec_IntSize(vThis) == 0 ) Vec_IntPush( vThis, 1 ); else Vec_IntAddToEntry( vThis, 0, 1 ); Vec_IntPush( vThis, 1 ); Vec_IntPush( vThis, iObj ); Vec_IntPush( vThis, 2 ); } static inline void Gia_CutAddZero( Gia_Sto_t * p, int iObj ) { Vec_Int_t * vThis = Vec_WecEntry( p->vCuts, iObj ); assert( Vec_IntSize(vThis) == 0 ); Vec_IntPush( vThis, 1 ); Vec_IntPush( vThis, 0 ); Vec_IntPush( vThis, 0 ); } static inline int Gia_CutTreeLeaves( Gia_Sto_t * p, Gia_Cut_t * pCut ) { int i, Cost = 0; for ( i = 0; i < (int)pCut->nLeaves; i++ ) Cost += Vec_IntEntry( p->vRefs, pCut->pLeaves[i] ) == 1; return Cost; } static inline int Gia_StoPrepareSet( Gia_Sto_t * p, int iObj, int Index ) { Vec_Int_t * vThis = Vec_WecEntry( p->vCuts, iObj ); int i, v, * pCut, * pList = Vec_IntArray( vThis ); Sdb_ForEachCut( pList, pCut, i ) { Gia_Cut_t * pCutTemp = &p->pCuts[Index][i]; pCutTemp->nLeaves = pCut[0]; for ( v = 1; v <= pCut[0]; v++ ) pCutTemp->pLeaves[v-1] = pCut[v]; pCutTemp->iFunc = pCut[pCut[0]+1]; pCutTemp->Sign = Gia_CutGetSign( pCutTemp ); pCutTemp->nTreeLeaves = Gia_CutTreeLeaves( p, pCutTemp ); } return pList[0]; } static inline void Gia_StoInitResult( Gia_Sto_t * p ) { int i; for ( i = 0; i < GIA_MAX_CUTNUM; i++ ) p->ppCuts[i] = &p->pCuts[2][i]; } static inline void Gia_StoStoreResult( Gia_Sto_t * p, int iObj, Gia_Cut_t ** pCuts, int nCuts ) { int i, v; Vec_Int_t * vList = Vec_WecEntry( p->vCuts, iObj ); Vec_IntPush( vList, nCuts ); for ( i = 0; i < nCuts; i++ ) { Vec_IntPush( vList, pCuts[i]->nLeaves ); for ( v = 0; v < (int)pCuts[i]->nLeaves; v++ ) Vec_IntPush( vList, pCuts[i]->pLeaves[v] ); Vec_IntPush( vList, pCuts[i]->iFunc ); } } static inline void Gia_CutPrint( Gia_Sto_t * p, int iObj, Gia_Cut_t * pCut ) { int i, nDigits = Abc_Base10Log(Gia_ManObjNum(p->pGia)); if ( pCut == NULL ) { printf( "No cut.\n" ); return; } printf( "%d {", pCut->nLeaves ); for ( i = 0; i < (int)pCut->nLeaves; i++ ) printf( " %*d", nDigits, pCut->pLeaves[i] ); for ( ; i < (int)p->nCutSize; i++ ) printf( " %*s", nDigits, " " ); printf( " } Cost = %3d CostL = %3d Tree = %d ", pCut->Cost, pCut->CostLev, pCut->nTreeLeaves ); printf( "\n" ); } void Gia_StoMergeCuts( Gia_Sto_t * p, int iObj ) { Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj); int fIsXor = Gia_ObjIsXor(pObj); int nCutSize = p->nCutSize; int nCutNum = p->nCutNum; int fComp0 = Gia_ObjFaninC0(pObj); int fComp1 = Gia_ObjFaninC1(pObj); int Fan0 = Gia_ObjFaninId0(pObj, iObj); int Fan1 = Gia_ObjFaninId1(pObj, iObj); int nCuts0 = Gia_StoPrepareSet( p, Fan0, 0 ); int nCuts1 = Gia_StoPrepareSet( p, Fan1, 1 ); int i, k, nCutsR = 0; Gia_Cut_t * pCut0, * pCut1, ** pCutsR = p->ppCuts; assert( !Gia_ObjIsBuf(pObj) ); assert( !Gia_ObjIsMux(p->pGia, pObj) ); Gia_StoInitResult( p ); p->CutCount[0] += nCuts0 * nCuts1; for ( i = 0, pCut0 = p->pCuts[0]; i < nCuts0; i++, pCut0++ ) for ( k = 0, pCut1 = p->pCuts[1]; k < nCuts1; k++, pCut1++ ) { if ( (int)(pCut0->nLeaves + pCut1->nLeaves) > nCutSize && Gia_CutCountBits(pCut0->Sign | pCut1->Sign) > nCutSize ) continue; p->CutCount[1]++; if ( !Gia_CutMergeOrder(pCut0, pCut1, pCutsR[nCutsR], nCutSize) ) continue; if ( Gia_CutSetLastCutIsContained(pCutsR, nCutsR) ) continue; p->CutCount[2]++; if ( p->fCutMin && Gia_CutComputeTruth(p, pCut0, pCut1, fComp0, fComp1, pCutsR[nCutsR], fIsXor) ) pCutsR[nCutsR]->Sign = Gia_CutGetSign(pCutsR[nCutsR]); pCutsR[nCutsR]->nTreeLeaves = Gia_CutTreeLeaves( p, pCutsR[nCutsR] ); nCutsR = Gia_CutSetAddCut( pCutsR, nCutsR, nCutNum ); } p->CutCount[3] += nCutsR; p->nCutsOver += nCutsR == nCutNum-1; p->nCutsR = nCutsR; p->Pivot = iObj; // debug printout if ( 0 ) { printf( "*** Obj = %4d NumCuts = %4d\n", iObj, nCutsR ); for ( i = 0; i < nCutsR; i++ ) Gia_CutPrint( p, iObj, pCutsR[i] ); printf( "\n" ); } // verify assert( nCutsR > 0 && nCutsR < nCutNum ); assert( Gia_CutSetCheckArray(pCutsR, nCutsR) ); // store the cutset Gia_StoStoreResult( p, iObj, pCutsR, nCutsR ); if ( nCutsR > 1 || pCutsR[0]->nLeaves > 1 ) Gia_CutAddUnit( p, iObj ); } /**Function************************************************************* Synopsis [Incremental cut computation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Gia_Sto_t * Gia_StoAlloc( Gia_Man_t * pGia, int nCutSize, int nCutNum, int fCutMin, int fTruthMin, int fVerbose ) { Gia_Sto_t * p; assert( nCutSize < GIA_CUT_NO_LEAF ); assert( nCutSize > 1 && nCutSize <= GIA_MAX_CUTSIZE ); assert( nCutNum > 1 && nCutNum < GIA_MAX_CUTNUM ); p = ABC_CALLOC( Gia_Sto_t, 1 ); p->clkStart = Abc_Clock(); p->nCutSize = nCutSize; p->nCutNum = nCutNum; p->fCutMin = fCutMin; p->fTruthMin = fTruthMin; p->fVerbose = fVerbose; p->pGia = pGia; p->vRefs = Vec_IntAlloc( Gia_ManObjNum(pGia) ); p->vCuts = Vec_WecStart( Gia_ManObjNum(pGia) ); p->vTtMem = fCutMin ? Vec_MemAllocForTT( nCutSize, 0 ) : NULL; return p; } void Gia_StoFree( Gia_Sto_t * p ) { Vec_IntFree( p->vRefs ); Vec_WecFree( p->vCuts ); if ( p->fCutMin ) Vec_MemHashFree( p->vTtMem ); if ( p->fCutMin ) Vec_MemFree( p->vTtMem ); ABC_FREE( p ); } void Gia_StoComputeCutsConst0( Gia_Sto_t * p, int iObj ) { Gia_CutAddZero( p, iObj ); } void Gia_StoComputeCutsCi( Gia_Sto_t * p, int iObj ) { Gia_CutAddUnit( p, iObj ); } void Gia_StoComputeCutsNode( Gia_Sto_t * p, int iObj ) { Gia_StoMergeCuts( p, iObj ); } void Gia_StoRefObj( Gia_Sto_t * p, int iObj ) { Gia_Obj_t * pObj = Gia_ManObj(p->pGia, iObj); assert( iObj == Vec_IntSize(p->vRefs) ); Vec_IntPush( p->vRefs, 0 ); if ( Gia_ObjIsAnd(pObj) ) { Vec_IntAddToEntry( p->vRefs, Gia_ObjFaninId0(pObj, iObj), 1 ); Vec_IntAddToEntry( p->vRefs, Gia_ObjFaninId1(pObj, iObj), 1 ); } else if ( Gia_ObjIsCo(pObj) ) Vec_IntAddToEntry( p->vRefs, Gia_ObjFaninId0(pObj, iObj), 1 ); } void Gia_StoComputeCuts( Gia_Man_t * pGia ) { int nCutSize = 8; int nCutNum = 6; int fCutMin = 0; int fTruthMin = 0; int fVerbose = 1; Gia_Sto_t * p = Gia_StoAlloc( pGia, nCutSize, nCutNum, fCutMin, fTruthMin, fVerbose ); Gia_Obj_t * pObj; int i, iObj; assert( nCutSize <= GIA_MAX_CUTSIZE ); assert( nCutNum < GIA_MAX_CUTNUM ); // prepare references Gia_ManForEachObj( p->pGia, pObj, iObj ) Gia_StoRefObj( p, iObj ); // compute cuts Gia_StoComputeCutsConst0( p, 0 ); Gia_ManForEachCiId( p->pGia, iObj, i ) Gia_StoComputeCutsCi( p, iObj ); Gia_ManForEachAnd( p->pGia, pObj, iObj ) Gia_StoComputeCutsNode( p, iObj ); if ( p->fVerbose ) { printf( "Running cut computation with CutSize = %d CutNum = %d CutMin = %s TruthMin = %s\n", p->nCutSize, p->nCutNum, p->fCutMin ? "yes":"no", p->fTruthMin ? "yes":"no" ); printf( "CutPair = %.0f ", p->CutCount[0] ); printf( "Merge = %.0f (%.2f %%) ", p->CutCount[1], 100.0*p->CutCount[1]/p->CutCount[0] ); printf( "Eval = %.0f (%.2f %%) ", p->CutCount[2], 100.0*p->CutCount[2]/p->CutCount[0] ); printf( "Cut = %.0f (%.2f %%) ", p->CutCount[3], 100.0*p->CutCount[3]/p->CutCount[0] ); printf( "Cut/Node = %.2f ", p->CutCount[3] / Gia_ManAndNum(p->pGia) ); printf( "\n" ); printf( "The number of nodes with cut count over the limit (%d cuts) = %d nodes (out of %d). ", p->nCutNum, p->nCutsOver, Gia_ManAndNum(pGia) ); Abc_PrintTime( 0, "Time", Abc_Clock() - p->clkStart ); } Gia_StoFree( p ); } /**Function************************************************************* Synopsis [Extract a given number of cuts.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Gia_StoSelectOneCut( Vec_Wec_t * vCuts, int iObj, Vec_Int_t * vCut, int nCutSizeMin ) { Vec_Int_t * vThis = Vec_WecEntry( vCuts, iObj ); int i, v, * pCut, * pList = Vec_IntArray( vThis ); if ( pList == NULL ) return 0; Vec_IntClear( vCut ); Sdb_ForEachCut( pList, pCut, i ) { if ( pCut[0] < nCutSizeMin ) continue; for ( v = 0; v <= pCut[0]; v++ ) Vec_IntPush( vCut, pCut[v] ); return 1; } return 0; } Vec_Wec_t * Gia_ManSelectCuts( Vec_Wec_t * vCuts, int nCuts, int nCutSizeMin ) { Vec_Wec_t * vCutsSel = Vec_WecStart( nCuts ); int i; srand( time(NULL) ); for ( i = 0; i < nCuts; i++ ) while ( !Gia_StoSelectOneCut(vCuts, (rand() | (rand() << 15)) % Vec_WecSize(vCuts), Vec_WecEntry(vCutsSel, i), nCutSizeMin) ); return vCutsSel; } Vec_Wec_t * Gia_ManExtractCuts( Gia_Man_t * pGia, int nCutSize0, int nCuts0, int fVerbose0 ) { int nCutSize = nCutSize0; int nCutNum = 6; int fCutMin = 0; int fTruthMin = 0; int fVerbose = fVerbose0; Vec_Wec_t * vCutsSel; Gia_Sto_t * p = Gia_StoAlloc( pGia, nCutSize, nCutNum, fCutMin, fTruthMin, fVerbose ); Gia_Obj_t * pObj; int i, iObj; assert( nCutSize <= GIA_MAX_CUTSIZE ); assert( nCutNum < GIA_MAX_CUTNUM ); // prepare references Gia_ManForEachObj( p->pGia, pObj, iObj ) Gia_StoRefObj( p, iObj ); // compute cuts Gia_StoComputeCutsConst0( p, 0 ); Gia_ManForEachCiId( p->pGia, iObj, i ) Gia_StoComputeCutsCi( p, iObj ); Gia_ManForEachAnd( p->pGia, pObj, iObj ) Gia_StoComputeCutsNode( p, iObj ); if ( p->fVerbose ) { printf( "Running cut computation with CutSize = %d CutNum = %d CutMin = %s TruthMin = %s\n", p->nCutSize, p->nCutNum, p->fCutMin ? "yes":"no", p->fTruthMin ? "yes":"no" ); printf( "CutPair = %.0f ", p->CutCount[0] ); printf( "Merge = %.0f (%.2f %%) ", p->CutCount[1], 100.0*p->CutCount[1]/p->CutCount[0] ); printf( "Eval = %.0f (%.2f %%) ", p->CutCount[2], 100.0*p->CutCount[2]/p->CutCount[0] ); printf( "Cut = %.0f (%.2f %%) ", p->CutCount[3], 100.0*p->CutCount[3]/p->CutCount[0] ); printf( "Cut/Node = %.2f ", p->CutCount[3] / Gia_ManAndNum(p->pGia) ); printf( "\n" ); printf( "The number of nodes with cut count over the limit (%d cuts) = %d nodes (out of %d). ", p->nCutNum, p->nCutsOver, Gia_ManAndNum(pGia) ); Abc_PrintTime( 0, "Time", Abc_Clock() - p->clkStart ); } vCutsSel = Gia_ManSelectCuts( p->vCuts, nCuts0, nCutSize0-1 ); Gia_StoFree( p ); return vCutsSel; } void Gia_ManCreateWins( Gia_Man_t * pGia, Vec_Wec_t * vCuts ) { Gia_Obj_t * pObj; Vec_Wec_t * vWins = Vec_WecStart( Gia_ManObjNum(pGia) ); Vec_Int_t * vTemp = Vec_IntAlloc( 100 ); Vec_Int_t * vCut; int i, k, Obj, Cut; Vec_WecForEachLevel( vCuts, vCut, i ) Vec_IntForEachEntryStart( vCut, Obj, k, 1 ) Vec_IntPush( Vec_WecEntry(vWins, Obj), i ); Gia_ManForEachAnd( pGia, pObj, Obj ) { Vec_Int_t * vWin = Vec_WecEntry(vWins, Obj); Vec_Int_t * vWin0 = Vec_WecEntry(vWins, Gia_ObjFaninId0(pObj, Obj)); Vec_Int_t * vWin1 = Vec_WecEntry(vWins, Gia_ObjFaninId1(pObj, Obj)); Vec_IntTwoFindCommon( vWin0, vWin1, vTemp ); Vec_IntForEachEntry( vTemp, Cut, k ) { Vec_IntPushUniqueOrder( vWin, Cut ); Vec_IntPush( Vec_WecEntry(vCuts, Cut), Obj ); } } Vec_WecFree( vWins ); Vec_IntFree( vTemp ); } void Gia_ManPrintWins( Vec_Wec_t * vCuts ) { Vec_Int_t * vCut; int i, k, Obj; Vec_WecForEachLevel( vCuts, vCut, i ) { int nInputs = Vec_IntEntry(vCut, 0); printf( "Cut %5d : ", i ); printf( "Supp = %d ", nInputs ); printf( "Nodes = %d ", Vec_IntSize(vCut) - 1 - nInputs ); Vec_IntForEachEntryStartStop( vCut, Obj, k, 1, nInputs+1 ) printf( "%d ", Obj ); printf( " " ); Vec_IntForEachEntryStart( vCut, Obj, k, nInputs+1 ) printf( "%d ", Obj ); printf( "\n" ); } } void Gia_ManPrintWinStats( Vec_Wec_t * vCuts ) { Vec_Int_t * vCut; int i, nInputs = 0, nNodes = 0; Vec_WecForEachLevel( vCuts, vCut, i ) { nInputs += Vec_IntEntry(vCut, 0); nNodes += Vec_IntSize(vCut) - 1 - Vec_IntEntry(vCut, 0); } printf( "Computed %d windows with average support %.3f and average volume %.3f.\n", Vec_WecSize(vCuts), 1.0*nInputs/Vec_WecSize(vCuts), 1.0*nNodes/Vec_WecSize(vCuts) ); } void Gia_ManExtractTest( Gia_Man_t * pGia ) { extern Vec_Wec_t * Gia_ManExtractCuts2( Gia_Man_t * p, int nCutSize, int nCuts, int fVerbose ); Vec_Wec_t * vCutsSel = Gia_ManExtractCuts2( pGia, 8, 10000, 1 ); //Vec_Wec_t * vCutsSel = Gia_ManExtractCuts( pGia, 8, 10000, 1 ); abctime clk = Abc_Clock(); Gia_ManCreateWins( pGia, vCutsSel ); //Gia_ManPrintWins( vCutsSel ); Gia_ManPrintWinStats( vCutsSel ); Vec_WecFree( vCutsSel ); Abc_PrintTime( 0, "Creating windows", Abc_Clock() - clk ); } /**Function************************************************************* Synopsis [Extract a given number of cuts.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Gia_StoCutPrint( int * pCut ) { int v; printf( "{" ); for ( v = 1; v <= pCut[0]; v++ ) printf( " %d", pCut[v] ); printf( " }\n" ); } void Gia_StoPrintCuts( Vec_Int_t * vThis, int iObj, int nCutSize ) { int i, * pCut; printf( "Cuts of node %d (size = %d):\n", iObj, nCutSize ); Sdb_ForEachCut( Vec_IntArray(vThis), pCut, i ) if ( !nCutSize || pCut[0] == nCutSize ) Gia_StoCutPrint( pCut ); } Vec_Wec_t * Gia_ManFilterCuts( Gia_Man_t * pGia, Vec_Wec_t * vStore, int nCutSize, int nCuts ) { abctime clkStart = Abc_Clock(); Vec_Wec_t * vCutsSel = Vec_WecAlloc( nCuts ); Vec_Int_t * vLevel, * vCut = Vec_IntAlloc( 10 ); Vec_Wec_t * vCuts = Vec_WecAlloc( 1000 ); Hsh_VecMan_t * p = Hsh_VecManStart( 1000 ); int i, s; Vec_WecForEachLevel( vStore, vLevel, i ) if ( Vec_IntSize(vLevel) ) { int v, k, * pCut, Value; Sdb_ForEachCut( Vec_IntArray(vLevel), pCut, k ) { if ( pCut[0] < 2 ) continue; for ( v = 1; v <= pCut[0]; v++ ) if ( pCut[v] < 9 ) break; if ( v <= pCut[0] ) continue; Vec_IntClear( vCut ); Vec_IntPushArray( vCut, pCut+1, pCut[0] ); Value = Hsh_VecManAdd( p, vCut ); if ( Value == Vec_WecSize(vCuts) ) { Vec_Int_t * vTemp = Vec_WecPushLevel(vCuts); Vec_IntPush( vTemp, 0 ); Vec_IntAppend( vTemp, vCut ); } Vec_IntAddToEntry( Vec_WecEntry(vCuts, Value), 0, 1 ); } } printf( "Collected cuts = %d.\n", Vec_WecSize(vCuts) ); for ( s = 3; s <= nCutSize; s++ ) Vec_WecForEachLevel( vCuts, vLevel, i ) if ( Vec_IntSize(vLevel) - 1 == s ) { int * pCut = Vec_IntEntryP(vLevel, 1); int u, v, Value; for ( u = 0; u < s; u++ ) { Vec_IntClear( vCut ); for ( v = 0; v < s; v++ ) if ( v != u ) Vec_IntPush( vCut, pCut[v] ); assert( Vec_IntSize(vCut) == s-1 ); Value = Hsh_VecManAdd( p, vCut ); if ( Value < Vec_WecSize(vCuts) ) Vec_IntAddToEntry( vLevel, 0, Vec_IntEntry(Vec_WecEntry(vCuts, Value), 0) ); } } Hsh_VecManStop( p ); Vec_IntFree( vCut ); // collect Vec_WecSortByFirstInt( vCuts, 1 ); Vec_WecForEachLevelStop( vCuts, vLevel, i, Abc_MinInt(Vec_WecSize(vCuts), nCuts) ) Vec_IntAppend( Vec_WecPushLevel(vCutsSel), vLevel ); Abc_PrintTime( 0, "Cut filtering time", Abc_Clock() - clkStart ); return vCutsSel; } int Gia_ManCountRefs( Gia_Man_t * pGia, Vec_Int_t * vLevel ) { int i, iObj, nRefs = 0; Vec_IntForEachEntry( vLevel, iObj, i ) nRefs += Gia_ObjRefNumId(pGia, iObj); return nRefs; } Vec_Wrd_t * Gia_ManGenSims( Gia_Man_t * pGia ) { Vec_Wrd_t * vSims; Vec_WrdFreeP( &pGia->vSimsPi ); pGia->vSimsPi = Vec_WrdStartTruthTables( Gia_ManCiNum(pGia) ); vSims = Gia_ManSimPatSim( pGia ); return vSims; } int Gia_ManFindSatDcs( Gia_Man_t * pGia, Vec_Wrd_t * vSims, Vec_Int_t * vLevel ) { int nWords = Vec_WrdSize(pGia->vSimsPi) / Gia_ManCiNum(pGia); int i, w, iObj, Res = 0, Pres[256] = {0}, nMints = 1 << Vec_IntSize(vLevel); for ( w = 0; w < 64*nWords; w++ ) { int iInMint = 0; Vec_IntForEachEntry( vLevel, iObj, i ) if ( Abc_TtGetBit( Vec_WrdEntryP(vSims, iObj*nWords), w ) ) iInMint |= 1 << i; Pres[iInMint]++; } for ( i = 0; i < nMints; i++ ) Res += Pres[i] == 0; return Res; } int Gia_ManCollectCutDivs( Gia_Man_t * p, Vec_Int_t * vIns ) { Gia_Obj_t * pObj; int i, Res = 0; Vec_Int_t * vRes = Vec_IntAlloc( 100 ); Vec_IntSort( vIns, 0 ); Vec_IntPush( vRes, 0 ); Vec_IntAppend( vRes, vIns ); Gia_ManIncrementTravId( p ); Gia_ManIncrementTravId( p ); Gia_ManForEachObjVec( vIns, p, pObj, i ) Gia_ObjSetTravIdCurrent( p, pObj ); Gia_ManForEachAnd( p, pObj, i ) if ( Gia_ObjIsTravIdCurrent(p, pObj) ) continue; else if ( Gia_ObjIsTravIdCurrent(p, Gia_ObjFanin0(pObj)) && Gia_ObjIsTravIdCurrent(p, Gia_ObjFanin1(pObj)) ) { if ( !Gia_ObjIsTravIdPrevious(p, pObj) ) Vec_IntPush( vRes, i ); Gia_ObjSetTravIdCurrent( p, pObj ); } // printf( "Divisors: " ); // Vec_IntPrint( vRes ); Res = Vec_IntSize(vRes); Vec_IntFree( vRes ); return Res; } void Gia_ManConsiderCuts( Gia_Man_t * pGia, Vec_Wec_t * vCuts ) { Vec_Wrd_t * vSims = Gia_ManGenSims( pGia ); Vec_Int_t * vLevel; int i; Gia_ManCreateRefs( pGia ); Vec_WecForEachLevel( vCuts, vLevel, i ) { printf( "Cut %3d ", i ); printf( "Ref = %3d : ", Vec_IntEntry(vLevel, 0) ); Vec_IntShift( vLevel, 1 ); printf( "Ref = %3d : ", Gia_ManCountRefs(pGia, vLevel) ); printf( "SDC = %3d : ", Gia_ManFindSatDcs(pGia, vSims, vLevel) ); printf( "Div = %3d : ", Gia_ManCollectCutDivs(pGia, vLevel) ); Vec_IntPrint( vLevel ); Vec_IntShift( vLevel, -1 ); } Vec_WrdFree( vSims ); } Vec_Wec_t * Gia_ManExploreCuts( Gia_Man_t * pGia, int nCutSize0, int nCuts0, int fVerbose0 ) { int nCutSize = nCutSize0; int nCutNum = 64; int fCutMin = 0; int fTruthMin = 0; int fVerbose = fVerbose0; Vec_Wec_t * vCutsSel; Gia_Sto_t * p = Gia_StoAlloc( pGia, nCutSize, nCutNum, fCutMin, fTruthMin, fVerbose ); Gia_Obj_t * pObj; int i, iObj; assert( nCutSize <= GIA_MAX_CUTSIZE ); assert( nCutNum < GIA_MAX_CUTNUM ); // prepare references Gia_ManForEachObj( p->pGia, pObj, iObj ) Gia_StoRefObj( p, iObj ); // compute cuts Gia_StoComputeCutsConst0( p, 0 ); Gia_ManForEachCiId( p->pGia, iObj, i ) Gia_StoComputeCutsCi( p, iObj ); Gia_ManForEachAnd( p->pGia, pObj, iObj ) Gia_StoComputeCutsNode( p, iObj ); if ( p->fVerbose ) { printf( "Running cut computation with CutSize = %d CutNum = %d CutMin = %s TruthMin = %s\n", p->nCutSize, p->nCutNum, p->fCutMin ? "yes":"no", p->fTruthMin ? "yes":"no" ); printf( "CutPair = %.0f ", p->CutCount[0] ); printf( "Merge = %.0f (%.2f %%) ", p->CutCount[1], 100.0*p->CutCount[1]/p->CutCount[0] ); printf( "Eval = %.0f (%.2f %%) ", p->CutCount[2], 100.0*p->CutCount[2]/p->CutCount[0] ); printf( "Cut = %.0f (%.2f %%) ", p->CutCount[3], 100.0*p->CutCount[3]/p->CutCount[0] ); printf( "Cut/Node = %.2f ", p->CutCount[3] / Gia_ManAndNum(p->pGia) ); printf( "\n" ); printf( "The number of nodes with cut count over the limit (%d cuts) = %d nodes (out of %d). ", p->nCutNum, p->nCutsOver, Gia_ManAndNum(pGia) ); Abc_PrintTime( 0, "Time", Abc_Clock() - p->clkStart ); } vCutsSel = Gia_ManFilterCuts( pGia, p->vCuts, nCutSize0, nCuts0 ); Gia_ManConsiderCuts( pGia, vCutsSel ); Gia_StoFree( p ); return vCutsSel; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END