diff options
Diffstat (limited to 'src/abc8/kit')
-rw-r--r-- | src/abc8/kit/cloud.c | 987 | ||||
-rw-r--r-- | src/abc8/kit/cloud.h | 269 | ||||
-rw-r--r-- | src/abc8/kit/kit.h | 596 | ||||
-rw-r--r-- | src/abc8/kit/kitAig.c | 121 | ||||
-rw-r--r-- | src/abc8/kit/kitBdd.c | 231 | ||||
-rw-r--r-- | src/abc8/kit/kitCloud.c | 368 | ||||
-rw-r--r-- | src/abc8/kit/kitDsd.c | 2621 | ||||
-rw-r--r-- | src/abc8/kit/kitFactor.c | 339 | ||||
-rw-r--r-- | src/abc8/kit/kitGraph.c | 397 | ||||
-rw-r--r-- | src/abc8/kit/kitHop.c | 144 | ||||
-rw-r--r-- | src/abc8/kit/kitIsop.c | 325 | ||||
-rw-r--r-- | src/abc8/kit/kitSop.c | 572 | ||||
-rw-r--r-- | src/abc8/kit/kitTruth.c | 1721 | ||||
-rw-r--r-- | src/abc8/kit/kit_.c | 48 | ||||
-rw-r--r-- | src/abc8/kit/module.make | 8 |
15 files changed, 8747 insertions, 0 deletions
diff --git a/src/abc8/kit/cloud.c b/src/abc8/kit/cloud.c new file mode 100644 index 00000000..6e6691f0 --- /dev/null +++ b/src/abc8/kit/cloud.c @@ -0,0 +1,987 @@ +/**CFile**************************************************************** + + FileName [cloudCore.c] + + PackageName [Fast application-specific BDD package.] + + Synopsis [The package core.] + + Author [Alan Mishchenko <alanmi@ece.pdx.edu>] + + Affiliation [ECE Department. Portland State University, Portland, Oregon.] + + Date [Ver. 1.0. Started - June 10, 2002.] + + Revision [$Id: cloudCore.c,v 1.0 2002/06/10 03:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "cloud.h" + +// the number of operators using cache +static int CacheOperNum = 4; + +// the ratio of cache size to the unique table size for each operator +static int CacheLogRatioDefault[4] = { + 2, // CLOUD_OPER_AND, + 8, // CLOUD_OPER_XOR, + 8, // CLOUD_OPER_BDIFF, + 8 // CLOUD_OPER_LEQ +}; + +// the ratio of cache size to the unique table size for each operator +static int CacheSize[4] = { + 2, // CLOUD_OPER_AND, + 2, // CLOUD_OPER_XOR, + 2, // CLOUD_OPER_BDIFF, + 2 // CLOUD_OPER_LEQ +}; + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +// static functions +static CloudNode * cloudMakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e ); +static void cloudCacheAllocate( CloudManager * dd, CloudOper oper ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function******************************************************************** + + Synopsis [Starts the cloud manager.] + + Description [The first arguments is the number of elementary variables used. + The second arguments is the number of bits of the unsigned integer used to + represent nodes in the unique table. If the second argument is 0, the package + assumes 23 to represent nodes, which is equivalent to 2^23 = 8,388,608 nodes.] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +CloudManager * Cloud_Init( int nVars, int nBits ) +{ + CloudManager * dd; + int i; + int clk1, clk2; + + assert( nVars <= 100000 ); + assert( nBits < 32 ); + + // assign the defaults + if ( nBits == 0 ) + nBits = CLOUD_NODE_BITS; + + // start the manager + dd = CALLOC( CloudManager, 1 ); + dd->nMemUsed += sizeof(CloudManager); + + // variables + dd->nVars = nVars; // the number of variables allocated + // bits + dd->bitsNode = nBits; // the number of bits used for the node + for ( i = 0; i < CacheOperNum; i++ ) + dd->bitsCache[i] = nBits - CacheLogRatioDefault[i]; + // shifts + dd->shiftUnique = 8*sizeof(unsigned) - (nBits + 1); // gets node index in the hash table + for ( i = 0; i < CacheOperNum; i++ ) + dd->shiftCache[i] = 8*sizeof(unsigned) - dd->bitsCache[i]; + // nodes + dd->nNodesAlloc = (1 << (nBits + 1)); // 2 ^ (nBits + 1) + dd->nNodesLimit = (1 << nBits); // 2 ^ nBits + + // unique table +clk1 = clock(); + dd->tUnique = CALLOC( CloudNode, dd->nNodesAlloc ); + dd->nMemUsed += sizeof(CloudNode) * dd->nNodesAlloc; +clk2 = clock(); +//PRT( "calloc() time", clk2 - clk1 ); + + // set up the constant node (the only node that is not in the hash table) + dd->nSignCur = 1; + dd->tUnique[0].s = dd->nSignCur; + dd->tUnique[0].v = CLOUD_CONST_INDEX; + dd->tUnique[0].e = CLOUD_VOID; + dd->tUnique[0].t = CLOUD_VOID; + dd->one = dd->tUnique; + dd->zero = Cloud_Not(dd->one); + dd->nNodesCur = 1; + + // special nodes + dd->pNodeStart = dd->tUnique + 1; + dd->pNodeEnd = dd->tUnique + dd->nNodesAlloc; + + // set up the elementary variables + dd->vars = ALLOC( CloudNode *, dd->nVars ); + dd->nMemUsed += sizeof(CloudNode *) * dd->nVars; + for ( i = 0; i < dd->nVars; i++ ) + dd->vars[i] = cloudMakeNode( dd, i, dd->one, dd->zero ); + + return dd; +}; + +/**Function******************************************************************** + + Synopsis [Stops the cloud manager.] + + Description [The first arguments tells show many elementary variables are used. + The second arguments tells how many bits of the unsigned integer are used + to represent regular nodes in the unique table.] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +void Cloud_Quit( CloudManager * dd ) +{ + int i; + FREE( dd->ppNodes ); + free( dd->tUnique ); + free( dd->vars ); + for ( i = 0; i < 4; i++ ) + FREE( dd->tCaches[i] ); + free( dd ); +} + +/**Function******************************************************************** + + Synopsis [Prepares the manager for another run.] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +void Cloud_Restart( CloudManager * dd ) +{ + int i; + assert( dd->one->s == dd->nSignCur ); + dd->nSignCur++; + dd->one->s++; + for ( i = 0; i < dd->nVars; i++ ) + dd->vars[i]->s++; + dd->nNodesCur = 1 + dd->nVars; +} + +/**Function******************************************************************** + + Synopsis [This optional function allocates operation cache of the given size.] + + Description [Cache for each operation is allocated independently when the first + operation of the given type is performed. The user can allocate cache of his/her + preferred size by calling Cloud_CacheAllocate before the first operation of the + given type is performed, but this call is optional. Argument "logratio" gives + the binary logarithm of the ratio of the size of the unique table to that of cache. + For example, if "logratio" is equal to 3, and the unique table will be 2^3=8 times + larger than cache; so, if unique table is 2^23 = 8,388,608 nodes, the cache size + will be 2^3=8 times smaller and equal to 2^20 = 1,048,576 entries.] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +void Cloud_CacheAllocate( CloudManager * dd, CloudOper oper, int logratio ) +{ + assert( logratio > 0 ); // cache cannot be larger than the unique table + assert( logratio < dd->bitsNode ); // cache cannot be smaller than 2 entries + + if ( logratio ) + { + dd->bitsCache[oper] = dd->bitsNode - logratio; + dd->shiftCache[oper] = 8*sizeof(unsigned) - dd->bitsCache[oper]; + } + cloudCacheAllocate( dd, oper ); +} + +/**Function******************************************************************** + + Synopsis [Internal cache allocation.] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +void cloudCacheAllocate( CloudManager * dd, CloudOper oper ) +{ + int nCacheEntries = (1 << dd->bitsCache[oper]); + + if ( CacheSize[oper] == 1 ) + { + dd->tCaches[oper] = (CloudCacheEntry2 *)CALLOC( CloudCacheEntry1, nCacheEntries ); + dd->nMemUsed += sizeof(CloudCacheEntry1) * nCacheEntries; + } + else if ( CacheSize[oper] == 2 ) + { + dd->tCaches[oper] = (CloudCacheEntry2 *)CALLOC( CloudCacheEntry2, nCacheEntries ); + dd->nMemUsed += sizeof(CloudCacheEntry2) * nCacheEntries; + } + else if ( CacheSize[oper] == 3 ) + { + dd->tCaches[oper] = (CloudCacheEntry2 *)CALLOC( CloudCacheEntry3, nCacheEntries ); + dd->nMemUsed += sizeof(CloudCacheEntry3) * nCacheEntries; + } +} + + + +/**Function******************************************************************** + + Synopsis [Returns or creates a new node] + + Description [Checks the unique table for the existance of the node. If the node is + present, returns the node. If the node is absent, creates a new node.] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +CloudNode * Cloud_MakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e ) +{ + CloudNode * pRes; + CLOUD_ASSERT(t); + CLOUD_ASSERT(e); + assert( v < Cloud_V(t) && v < Cloud_V(e) ); // variable should be above in the order + if ( Cloud_IsComplement(t) ) + { + pRes = cloudMakeNode( dd, v, Cloud_Not(t), Cloud_Not(e) ); + if ( pRes != CLOUD_VOID ) + pRes = Cloud_Not(pRes); + } + else + pRes = cloudMakeNode( dd, v, t, e ); + return pRes; +} + +/**Function******************************************************************** + + Synopsis [Returns or creates a new node] + + Description [Checks the unique table for the existance of the node. If the node is + present, returns the node. If the node is absent, creates a new node.] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +CloudNode * cloudMakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e ) +{ + CloudNode * entryUnique; + + CLOUD_ASSERT(t); + CLOUD_ASSERT(e); + + assert( ((int)v) >= 0 && ((int)v) < dd->nVars ); // the variable must be in the range + assert( v < Cloud_V(t) && v < Cloud_V(e) ); // variable should be above in the order + assert( !Cloud_IsComplement(t) ); // the THEN edge must not be complemented + + // make sure we are not searching for the constant node + assert( t && e ); + + // get the unique entry + entryUnique = dd->tUnique + cloudHashCudd3(v, t, e, dd->shiftUnique); + while ( entryUnique->s == dd->nSignCur ) + { + // compare the node + if ( entryUnique->v == v && entryUnique->t == t && entryUnique->e == e ) + { // the node is found + dd->nUniqueHits++; + return entryUnique; // returns the node + } + // increment the hash value modulus the hash table size + if ( ++entryUnique - dd->tUnique == dd->nNodesAlloc ) + entryUnique = dd->tUnique + 1; + // increment the number of steps through the table + dd->nUniqueSteps++; + } + dd->nUniqueMisses++; + + // check if the new node can be created + if ( ++dd->nNodesCur == dd->nNodesLimit ) + { // initiate the restart + printf( "Cloud needs restart!\n" ); +// fflush( stdout ); +// exit(1); + return CLOUD_VOID; + } + // create the node + entryUnique->s = dd->nSignCur; + entryUnique->v = v; + entryUnique->t = t; + entryUnique->e = e; + return entryUnique; // returns the node +} + + +/**Function******************************************************************** + + Synopsis [Performs the AND or two BDDs] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +CloudNode * cloudBddAnd( CloudManager * dd, CloudNode * f, CloudNode * g ) +{ + CloudNode * F, * G, * r; + CloudCacheEntry2 * cacheEntry; + CloudNode * fv, * fnv, * gv, * gnv, * t, * e; + CloudVar var; + + assert( f <= g ); + + // terminal cases + F = Cloud_Regular(f); + G = Cloud_Regular(g); + if ( F == G ) + { + if ( f == g ) + return f; + else + return dd->zero; + } + if ( F == dd->one ) + { + if ( f == dd->one ) + return g; + else + return f; + } + + // check cache + cacheEntry = dd->tCaches[CLOUD_OPER_AND] + cloudHashCudd2(f, g, dd->shiftCache[CLOUD_OPER_AND]); +// cacheEntry = dd->tCaches[CLOUD_OPER_AND] + cloudHashBuddy2(f, g, dd->shiftCache[CLOUD_OPER_AND]); + r = cloudCacheLookup2( cacheEntry, dd->nSignCur, f, g ); + if ( r != CLOUD_VOID ) + { + dd->nCacheHits++; + return r; + } + dd->nCacheMisses++; + + + // compute cofactors + if ( cloudV(F) <= cloudV(G) ) + { + var = cloudV(F); + if ( Cloud_IsComplement(f) ) + { + fnv = Cloud_Not(cloudE(F)); + fv = Cloud_Not(cloudT(F)); + } + else + { + fnv = cloudE(F); + fv = cloudT(F); + } + } + else + { + var = cloudV(G); + fv = fnv = f; + } + + if ( cloudV(G) <= cloudV(F) ) + { + if ( Cloud_IsComplement(g) ) + { + gnv = Cloud_Not(cloudE(G)); + gv = Cloud_Not(cloudT(G)); + } + else + { + gnv = cloudE(G); + gv = cloudT(G); + } + } + else + { + gv = gnv = g; + } + + if ( fv <= gv ) + t = cloudBddAnd( dd, fv, gv ); + else + t = cloudBddAnd( dd, gv, fv ); + + if ( t == CLOUD_VOID ) + return CLOUD_VOID; + + if ( fnv <= gnv ) + e = cloudBddAnd( dd, fnv, gnv ); + else + e = cloudBddAnd( dd, gnv, fnv ); + + if ( e == CLOUD_VOID ) + return CLOUD_VOID; + + if ( t == e ) + r = t; + else + { + if ( Cloud_IsComplement(t) ) + { + r = cloudMakeNode( dd, var, Cloud_Not(t), Cloud_Not(e) ); + if ( r == CLOUD_VOID ) + return CLOUD_VOID; + r = Cloud_Not(r); + } + else + { + r = cloudMakeNode( dd, var, t, e ); + if ( r == CLOUD_VOID ) + return CLOUD_VOID; + } + } + cloudCacheInsert2( cacheEntry, dd->nSignCur, f, g, r ); + return r; +} + +/**Function******************************************************************** + + Synopsis [Performs the AND or two BDDs] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +static inline CloudNode * cloudBddAnd_gate( CloudManager * dd, CloudNode * f, CloudNode * g ) +{ + if ( f <= g ) + return cloudBddAnd(dd,f,g); + else + return cloudBddAnd(dd,g,f); +} + +/**Function******************************************************************** + + Synopsis [Performs the AND or two BDDs] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +CloudNode * Cloud_bddAnd( CloudManager * dd, CloudNode * f, CloudNode * g ) +{ + if ( Cloud_Regular(f) == CLOUD_VOID || Cloud_Regular(g) == CLOUD_VOID ) + return CLOUD_VOID; + CLOUD_ASSERT(f); + CLOUD_ASSERT(g); + if ( dd->tCaches[CLOUD_OPER_AND] == NULL ) + cloudCacheAllocate( dd, CLOUD_OPER_AND ); + return cloudBddAnd_gate( dd, f, g ); +} + +/**Function******************************************************************** + + Synopsis [Performs the OR or two BDDs] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +CloudNode * Cloud_bddOr( CloudManager * dd, CloudNode * f, CloudNode * g ) +{ + CloudNode * res; + if ( Cloud_Regular(f) == CLOUD_VOID || Cloud_Regular(g) == CLOUD_VOID ) + return CLOUD_VOID; + CLOUD_ASSERT(f); + CLOUD_ASSERT(g); + if ( dd->tCaches[CLOUD_OPER_AND] == NULL ) + cloudCacheAllocate( dd, CLOUD_OPER_AND ); + res = cloudBddAnd_gate( dd, Cloud_Not(f), Cloud_Not(g) ); + res = Cloud_NotCond( res, res != CLOUD_VOID ); + return res; +} + +/**Function******************************************************************** + + Synopsis [Performs the XOR or two BDDs] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +CloudNode * Cloud_bddXor( CloudManager * dd, CloudNode * f, CloudNode * g ) +{ + CloudNode * t0, * t1, * r; + if ( Cloud_Regular(f) == CLOUD_VOID || Cloud_Regular(g) == CLOUD_VOID ) + return CLOUD_VOID; + CLOUD_ASSERT(f); + CLOUD_ASSERT(g); + if ( dd->tCaches[CLOUD_OPER_AND] == NULL ) + cloudCacheAllocate( dd, CLOUD_OPER_AND ); + t0 = cloudBddAnd_gate( dd, f, Cloud_Not(g) ); + if ( t0 == CLOUD_VOID ) + return CLOUD_VOID; + t1 = cloudBddAnd_gate( dd, Cloud_Not(f), g ); + if ( t1 == CLOUD_VOID ) + return CLOUD_VOID; + r = Cloud_bddOr( dd, t0, t1 ); + return r; +} + + + +/**Function******************************************************************** + + Synopsis [Performs a DFS from f, clearing the LSB of the next + pointers.] + + Description [] + + SideEffects [None] + + SeeAlso [cloudSupport cloudDagSize] + +******************************************************************************/ +static void cloudClearMark( CloudManager * dd, CloudNode * n ) +{ + if ( !cloudNodeIsMarked(n) ) + return; + // clear visited flag + cloudNodeUnmark(n); + if ( cloudIsConstant(n) ) + return; + cloudClearMark( dd, cloudT(n) ); + cloudClearMark( dd, Cloud_Regular(cloudE(n)) ); +} + +/**Function******************************************************************** + + Synopsis [Performs the recursive step of Cloud_Support.] + + Description [Performs the recursive step of Cloud_Support. Performs a + DFS from f. The support is accumulated in supp as a side effect. Uses + the LSB of the then pointer as visited flag.] + + SideEffects [None] + + SeeAlso [] + +******************************************************************************/ +static void cloudSupport( CloudManager * dd, CloudNode * n, int * support ) +{ + if ( cloudIsConstant(n) || cloudNodeIsMarked(n) ) + return; + // set visited flag + cloudNodeMark(n); + support[cloudV(n)] = 1; + cloudSupport( dd, cloudT(n), support ); + cloudSupport( dd, Cloud_Regular(cloudE(n)), support ); +} + +/**Function******************************************************************** + + Synopsis [Finds the variables on which a DD depends.] + + Description [Finds the variables on which a DD depends. + Returns a BDD consisting of the product of the variables if + successful; NULL otherwise.] + + SideEffects [None] + + SeeAlso [] + +******************************************************************************/ +CloudNode * Cloud_Support( CloudManager * dd, CloudNode * n ) +{ + CloudNode * res; + int * support, i; + + CLOUD_ASSERT(n); + + // allocate and initialize support array for cloudSupport + support = CALLOC( int, dd->nVars ); + + // compute support and clean up markers + cloudSupport( dd, Cloud_Regular(n), support ); + cloudClearMark( dd, Cloud_Regular(n) ); + + // transform support from array to cube + res = dd->one; + for ( i = dd->nVars - 1; i >= 0; i-- ) // for each level bottom-up + if ( support[i] == 1 ) + { + res = Cloud_bddAnd( dd, res, dd->vars[i] ); + if ( res == CLOUD_VOID ) + break; + } + FREE( support ); + return res; +} + +/**Function******************************************************************** + + Synopsis [Counts the variables on which a DD depends.] + + Description [Counts the variables on which a DD depends. + Returns the number of the variables if successful; Cloud_OUT_OF_MEM + otherwise.] + + SideEffects [None] + + SeeAlso [] + +******************************************************************************/ +int Cloud_SupportSize( CloudManager * dd, CloudNode * n ) +{ + int * support, i, count; + + CLOUD_ASSERT(n); + + // allocate and initialize support array for cloudSupport + support = CALLOC( int, dd->nVars ); + + // compute support and clean up markers + cloudSupport( dd, Cloud_Regular(n), support ); + cloudClearMark( dd, Cloud_Regular(n) ); + + // count support variables + count = 0; + for ( i = 0; i < dd->nVars; i++ ) + { + if ( support[i] == 1 ) + count++; + } + + FREE( support ); + return count; +} + + +/**Function******************************************************************** + + Synopsis [Performs the recursive step of Cloud_DagSize.] + + Description [Performs the recursive step of Cloud_DagSize. Returns the + number of nodes in the graph rooted at n.] + + SideEffects [None] + +******************************************************************************/ +static int cloudDagSize( CloudManager * dd, CloudNode * n ) +{ + int tval, eval; + if ( cloudNodeIsMarked(n) ) + return 0; + // set visited flag + cloudNodeMark(n); + if ( cloudIsConstant(n) ) + return 1; + tval = cloudDagSize( dd, cloudT(n) ); + eval = cloudDagSize( dd, Cloud_Regular(cloudE(n)) ); + return tval + eval + 1; + +} + +/**Function******************************************************************** + + Synopsis [Counts the number of nodes in a DD.] + + Description [Counts the number of nodes in a DD. Returns the number + of nodes in the graph rooted at node.] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +int Cloud_DagSize( CloudManager * dd, CloudNode * n ) +{ + int res; + res = cloudDagSize( dd, Cloud_Regular( n ) ); + cloudClearMark( dd, Cloud_Regular( n ) ); + return res; + +} + + +/**Function******************************************************************** + + Synopsis [Performs the recursive step of Cloud_DagSize.] + + Description [Performs the recursive step of Cloud_DagSize. Returns the + number of nodes in the graph rooted at n.] + + SideEffects [None] + +******************************************************************************/ +static int Cloud_DagCollect_rec( CloudManager * dd, CloudNode * n, int * pCounter ) +{ + int tval, eval; + if ( cloudNodeIsMarked(n) ) + return 0; + // set visited flag + cloudNodeMark(n); + if ( cloudIsConstant(n) ) + { + dd->ppNodes[(*pCounter)++] = n; + return 1; + } + tval = Cloud_DagCollect_rec( dd, cloudT(n), pCounter ); + eval = Cloud_DagCollect_rec( dd, Cloud_Regular(cloudE(n)), pCounter ); + dd->ppNodes[(*pCounter)++] = n; + return tval + eval + 1; + +} + +/**Function******************************************************************** + + Synopsis [Counts the number of nodes in a DD.] + + Description [Counts the number of nodes in a DD. Returns the number + of nodes in the graph rooted at node.] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +int Cloud_DagCollect( CloudManager * dd, CloudNode * n ) +{ + int res, Counter = 0; + if ( dd->ppNodes == NULL ) + dd->ppNodes = ALLOC( CloudNode *, dd->nNodesLimit ); + res = Cloud_DagCollect_rec( dd, Cloud_Regular( n ), &Counter ); + cloudClearMark( dd, Cloud_Regular( n ) ); + assert( res == Counter ); + return res; + +} + +/**Function******************************************************************** + + Synopsis [Counts the number of nodes in an array of DDs.] + + Description [Counts the number of nodes in a DD. Returns the number + of nodes in the graph rooted at node.] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +int Cloud_SharingSize( CloudManager * dd, CloudNode ** pn, int nn ) +{ + int res, i; + res = 0; + for ( i = 0; i < nn; i++ ) + res += cloudDagSize( dd, Cloud_Regular( pn[i] ) ); + for ( i = 0; i < nn; i++ ) + cloudClearMark( dd, Cloud_Regular( pn[i] ) ); + return res; +} + + +/**Function******************************************************************** + + Synopsis [Returns one cube contained in the given BDD.] + + Description [] + + SideEffects [] + +******************************************************************************/ +CloudNode * Cloud_GetOneCube( CloudManager * dd, CloudNode * bFunc ) +{ + CloudNode * bFunc0, * bFunc1, * res; + + if ( Cloud_IsConstant(bFunc) ) + return bFunc; + + // cofactor + if ( Cloud_IsComplement(bFunc) ) + { + bFunc0 = Cloud_Not( cloudE(bFunc) ); + bFunc1 = Cloud_Not( cloudT(bFunc) ); + } + else + { + bFunc0 = cloudE(bFunc); + bFunc1 = cloudT(bFunc); + } + + // try to find the cube with the negative literal + res = Cloud_GetOneCube( dd, bFunc0 ); + if ( res == CLOUD_VOID ) + return CLOUD_VOID; + + if ( res != dd->zero ) + { + res = Cloud_bddAnd( dd, res, Cloud_Not(dd->vars[Cloud_V(bFunc)]) ); + } + else + { + // try to find the cube with the positive literal + res = Cloud_GetOneCube( dd, bFunc1 ); + if ( res == CLOUD_VOID ) + return CLOUD_VOID; + assert( res != dd->zero ); + res = Cloud_bddAnd( dd, res, dd->vars[Cloud_V(bFunc)] ); + } + return res; +} + +/**Function******************************************************************** + + Synopsis [Prints the BDD as a set of disjoint cubes to the standard output.] + + Description [] + + SideEffects [] + +******************************************************************************/ +void Cloud_bddPrint( CloudManager * dd, CloudNode * Func ) +{ + CloudNode * Cube; + int fFirst = 1; + + if ( Func == dd->zero ) + printf( "Constant 0." ); + else if ( Func == dd->one ) + printf( "Constant 1." ); + else + { + while ( 1 ) + { + Cube = Cloud_GetOneCube( dd, Func ); + if ( Cube == CLOUD_VOID || Cube == dd->zero ) + break; + if ( fFirst ) fFirst = 0; + else printf( " + " ); + Cloud_bddPrintCube( dd, Cube ); + Func = Cloud_bddAnd( dd, Func, Cloud_Not(Cube) ); + } + } + printf( "\n" ); +} + +/**Function******************************************************************** + + Synopsis [Prints one cube.] + + Description [] + + SideEffects [] + +******************************************************************************/ +void Cloud_bddPrintCube( CloudManager * dd, CloudNode * bCube ) +{ + CloudNode * bCube0, * bCube1; + + assert( !Cloud_IsConstant(bCube) ); + while ( 1 ) + { + // get the node structure + if ( Cloud_IsConstant(bCube) ) + break; + + // cofactor the cube + if ( Cloud_IsComplement(bCube) ) + { + bCube0 = Cloud_Not( cloudE(bCube) ); + bCube1 = Cloud_Not( cloudT(bCube) ); + } + else + { + bCube0 = cloudE(bCube); + bCube1 = cloudT(bCube); + } + + if ( bCube0 != dd->zero ) + { + assert( bCube1 == dd->zero ); + printf( "[%d]'", cloudV(bCube) ); + bCube = bCube0; + } + else + { + assert( bCube1 != dd->zero ); + printf( "[%d]", cloudV(bCube) ); + bCube = bCube1; + } + } +} + + +/**Function******************************************************************** + + Synopsis [Prints info.] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +void Cloud_PrintInfo( CloudManager * dd ) +{ + if ( dd == NULL ) return; + printf( "The number of unique table nodes allocated = %12d.\n", dd->nNodesAlloc ); + printf( "The number of unique table nodes present = %12d.\n", dd->nNodesCur ); + printf( "The number of unique table hits = %12d.\n", dd->nUniqueHits ); + printf( "The number of unique table misses = %12d.\n", dd->nUniqueMisses ); + printf( "The number of unique table steps = %12d.\n", dd->nUniqueSteps ); + printf( "The number of cache hits = %12d.\n", dd->nCacheHits ); + printf( "The number of cache misses = %12d.\n", dd->nCacheMisses ); + printf( "The current signature = %12d.\n", dd->nSignCur ); + printf( "The total memory in use = %12d.\n", dd->nMemUsed ); +} + +/**Function******************************************************************** + + Synopsis [Prints the state of the hash table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +void Cloud_PrintHashTable( CloudManager * dd ) +{ + int i; + + for ( i = 0; i < dd->nNodesAlloc; i++ ) + if ( dd->tUnique[i].v == CLOUD_CONST_INDEX ) + printf( "-" ); + else + printf( "+" ); + printf( "\n" ); +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + diff --git a/src/abc8/kit/cloud.h b/src/abc8/kit/cloud.h new file mode 100644 index 00000000..ac9d45f4 --- /dev/null +++ b/src/abc8/kit/cloud.h @@ -0,0 +1,269 @@ +/**CFile**************************************************************** + + FileName [cloud.h] + + PackageName [Fast application-specific BDD package.] + + Synopsis [Interface of the package.] + + Author [Alan Mishchenko <alanmi@ece.pdx.edu>] + + Affiliation [ECE Department. Portland State University, Portland, Oregon.] + + Date [Ver. 1.0. Started - June 10, 2002.] + + Revision [$Id: cloud.h,v 1.0 2002/06/10 03:00:00 alanmi Exp $] + +***********************************************************************/ + +#ifndef __CLOUD_H__ +#define __CLOUD_H__ + +#ifdef __cplusplus +extern "C" { +#endif + +#include <stdio.h> +#include <stdlib.h> +#include <assert.h> +#include <time.h> + +#ifdef _WIN32 +#define inline __inline // compatible with MS VS 6.0 +#endif + +//////////////////////////////////////////////////////////////////////// +// n | 2^n || n | 2^n || n | 2^n || n | 2^n // +//====================================================================// +// 1 | 2 || 9 | 512 || 17 | 131,072 || 25 | 33,554,432 // +// 2 | 4 || 10 | 1,024 || 18 | 262,144 || 26 | 67,108,864 // +// 3 | 8 || 11 | 2,048 || 19 | 524,288 || 27 | 134,217,728 // +// 4 | 16 || 12 | 4,096 || 20 | 1,048,576 || 28 | 268,435,456 // +// 5 | 32 || 13 | 8,192 || 21 | 2,097,152 || 29 | 536,870,912 // +// 6 | 64 || 14 | 16,384 || 22 | 4,194,304 || 30 | 1,073,741,824 // +// 7 | 128 || 15 | 32,768 || 23 | 8,388,608 || 31 | 2,147,483,648 // +// 8 | 256 || 16 | 65,536 || 24 | 16,777,216 || 32 | 4,294,967,296 // +//////////////////////////////////////////////////////////////////////// + +// data structure typedefs +typedef struct cloudManager CloudManager; +typedef unsigned CloudVar; +typedef unsigned CloudSign; +typedef struct cloudNode CloudNode; +typedef struct cloudCacheEntry1 CloudCacheEntry1; +typedef struct cloudCacheEntry2 CloudCacheEntry2; +typedef struct cloudCacheEntry3 CloudCacheEntry3; + +// operation codes used to set up the cache +typedef enum { + CLOUD_OPER_AND, + CLOUD_OPER_XOR, + CLOUD_OPER_BDIFF, + CLOUD_OPER_LEQ +} CloudOper; + +/* +// the number of operators using cache +static int CacheOperNum = 4; + +// the ratio of cache size to the unique table size for each operator +static int CacheLogRatioDefault[4] = { + 4, // CLOUD_OPER_AND, + 8, // CLOUD_OPER_XOR, + 8, // CLOUD_OPER_BDIFF, + 8 // CLOUD_OPER_LEQ +}; + +// the ratio of cache size to the unique table size for each operator +static int CacheSize[4] = { + 2, // CLOUD_OPER_AND, + 2, // CLOUD_OPER_XOR, + 2, // CLOUD_OPER_BDIFF, + 2 // CLOUD_OPER_LEQ +}; +*/ + +// data structure definitions +struct cloudManager // the fast bdd manager +{ + // variables + int nVars; // the number of variables allocated + // bits + int bitsNode; // the number of bits used for the node + int bitsCache[4]; // default: bitsNode - CacheSizeRatio[i] + // shifts + int shiftUnique; // 8*sizeof(unsigned) - (bitsNode + 1) + int shiftCache[4]; // 8*sizeof(unsigned) - bitsCache[i] + // nodes + int nNodesAlloc; // 2 ^ (bitsNode + 1) + int nNodesLimit; // 2 ^ bitsNode + int nNodesCur; // the current number of nodes (including const1 and vars) + // signature + CloudSign nSignCur; + + // statistics + int nMemUsed; // memory usage in bytes + // cache stats + int nUniqueHits; // hits in the unique table + int nUniqueMisses; // misses in the unique table + int nCacheHits; // hits in the caches + int nCacheMisses; // misses in the caches + // the number of steps through the hash table + int nUniqueSteps; + + // tables + CloudNode * tUnique; // the unique table to store BDD nodes + + // special nodes + CloudNode * pNodeStart; // the pointer to the first node + CloudNode * pNodeEnd; // the pointer to the first node out of the table + + // constants and variables + CloudNode * one; // the one function + CloudNode * zero; // the zero function + CloudNode ** vars; // the elementary variables + + // temporary storage for nodes + CloudNode ** ppNodes; + + // caches + CloudCacheEntry2 * tCaches[20]; // caches +}; + +struct cloudNode // representation of the node in the unique table +{ + CloudSign s; // signature + CloudVar v; // variable + CloudNode * e; // negative cofactor + CloudNode * t; // positive cofactor +}; +struct cloudCacheEntry1 // one-argument cache +{ + CloudSign s; // signature + CloudNode * a; // argument 1 + CloudNode * r; // result +}; +struct cloudCacheEntry2 // the two-argument cache +{ + CloudSign s; // signature + CloudNode * a; + CloudNode * b; + CloudNode * r; +}; +struct cloudCacheEntry3 // the three-argument cache +{ + CloudSign s; // signature + CloudNode * a; + CloudNode * b; + CloudNode * c; + CloudNode * r; +}; + + +// parameters +#define CLOUD_NODE_BITS 23 +#define CLOUD_ONE ((unsigned)0x00000001) +#define CLOUD_NOT_ONE ((unsigned)0xfffffffe) +#define CLOUD_VOID ((unsigned)0x00000000) + +#define CLOUD_CONST_INDEX ((unsigned)0x0fffffff) +#define CLOUD_MARK_ON ((unsigned)0x10000000) +#define CLOUD_MARK_OFF ((unsigned)0xefffffff) + +// hash functions a la Buddy +#define cloudHashBuddy2(x,y,s) ((((x)+(y))*((x)+(y)+1)/2) & ((1<<(32-(s)))-1)) +#define cloudHashBuddy3(x,y,z,s) (cloudHashBuddy2((cloudHashBuddy2((x),(y),(s))),(z),(s)) & ((1<<(32-(s)))-1)) +// hash functions a la Cudd +#define DD_P1 12582917 +#define DD_P2 4256249 +#define DD_P3 741457 +#define DD_P4 1618033999 +#define cloudHashCudd2(f,g,s) ((((unsigned)(f) * DD_P1 + (unsigned)(g)) * DD_P2) >> (s)) +#define cloudHashCudd3(f,g,h,s) (((((unsigned)(f) * DD_P1 + (unsigned)(g)) * DD_P2 + (unsigned)(h)) * DD_P3) >> (s)) + +// node complementation (using node) +#define Cloud_Regular(p) ((CloudNode*)(((unsigned)(p)) & CLOUD_NOT_ONE)) // get the regular node (w/o bubble) +#define Cloud_Not(p) ((CloudNode*)(((unsigned)(p)) ^ CLOUD_ONE)) // complement the node +#define Cloud_NotCond(p,c) (((int)(c))? Cloud_Not(p):(p)) // complement the node conditionally +#define Cloud_IsComplement(p) ((int)(((unsigned)(p)) & CLOUD_ONE)) // check if complemented +// checking constants (using node) +#define Cloud_IsConstant(p) (((Cloud_Regular(p))->v & CLOUD_MARK_OFF) == CLOUD_CONST_INDEX) +#define cloudIsConstant(p) (((p)->v & CLOUD_MARK_OFF) == CLOUD_CONST_INDEX) + +// retrieving values from the node (using node structure) +#define Cloud_V(p) ((Cloud_Regular(p))->v) +#define Cloud_E(p) ((Cloud_Regular(p))->e) +#define Cloud_T(p) ((Cloud_Regular(p))->t) +// retrieving values from the regular node (using node structure) +#define cloudV(p) ((p)->v) +#define cloudE(p) ((p)->e) +#define cloudT(p) ((p)->t) +// marking/unmarking (using node structure) +#define cloudNodeMark(p) ((p)->v |= CLOUD_MARK_ON) +#define cloudNodeUnmark(p) ((p)->v &= CLOUD_MARK_OFF) +#define cloudNodeIsMarked(p) ((int)((p)->v & CLOUD_MARK_ON)) + +// cache lookups and inserts (using node) +#define cloudCacheLookup1(p,sign,f) (((p)->s == (sign) && (p)->a == (f))? ((p)->r): (CLOUD_VOID)) +#define cloudCacheLookup2(p,sign,f,g) (((p)->s == (sign) && (p)->a == (f) && (p)->b == (g))? ((p)->r): (CLOUD_VOID)) +#define cloudCacheLookup3(p,sign,f,g,h) (((p)->s == (sign) && (p)->a == (f) && (p)->b == (g) && (p)->c == (h))? ((p)->r): (CLOUD_VOID)) +// cache inserts +#define cloudCacheInsert1(p,sign,f,r) (((p)->s = (sign)), ((p)->a = (f)), ((p)->r = (r))) +#define cloudCacheInsert2(p,sign,f,g,r) (((p)->s = (sign)), ((p)->a = (f)), ((p)->b = (g)), ((p)->r = (r))) +#define cloudCacheInsert3(p,sign,f,g,h,r) (((p)->s = (sign)), ((p)->a = (f)), ((p)->b = (g)), ((p)->c = (h)), ((p)->r = (r))) + +//#define CLOUD_ASSERT(p) (assert((p) >= (dd->pNodeStart-1) && (p) < dd->pNodeEnd)) +#define CLOUD_ASSERT(p) assert((p) >= dd->tUnique && (p) < dd->tUnique+dd->nNodesAlloc) + +// utility macros +#ifndef ALLOC +#define ALLOC(type, num) ((type *) malloc(sizeof(type) * (num))) +#endif + +#ifndef CALLOC +#define CALLOC(type, num) ((type *) calloc((num), sizeof(type))) +#endif + +#ifndef FREE +#define FREE(obj) ((obj) ? (free((char *) (obj)), (obj) = 0) : 0) +#endif + +#ifndef PRT +#define PRT(a,t) fprintf( stdout, "%s = ", (a)); printf( "%.2f sec\n", (float)(t)/(float)(CLOCKS_PER_SEC) ) +#endif + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// +// starting/stopping +extern CloudManager * Cloud_Init( int nVars, int nBits ); +extern void Cloud_Quit( CloudManager * dd ); +extern void Cloud_Restart( CloudManager * dd ); +extern void Cloud_CacheAllocate( CloudManager * dd, CloudOper oper, int size ); +extern CloudNode * Cloud_MakeNode( CloudManager * dd, CloudVar v, CloudNode * t, CloudNode * e ); +// support and node count +extern CloudNode * Cloud_Support( CloudManager * dd, CloudNode * n ); +extern int Cloud_SupportSize( CloudManager * dd, CloudNode * n ); +extern int Cloud_DagSize( CloudManager * dd, CloudNode * n ); +extern int Cloud_DagCollect( CloudManager * dd, CloudNode * n ); +extern int Cloud_SharingSize( CloudManager * dd, CloudNode * * pn, int nn ); +// cubes +extern CloudNode * Cloud_GetOneCube( CloudManager * dd, CloudNode * n ); +extern void Cloud_bddPrint( CloudManager * dd, CloudNode * Func ); +extern void Cloud_bddPrintCube( CloudManager * dd, CloudNode * Cube ); +// operations +extern CloudNode * Cloud_bddAnd( CloudManager * dd, CloudNode * f, CloudNode * g ); +extern CloudNode * Cloud_bddOr( CloudManager * dd, CloudNode * f, CloudNode * g ); +// stats +extern void Cloud_PrintInfo( CloudManager * dd ); +extern void Cloud_PrintHashTable( CloudManager * dd ); + +#ifdef __cplusplus +} +#endif + +#endif + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// diff --git a/src/abc8/kit/kit.h b/src/abc8/kit/kit.h new file mode 100644 index 00000000..2a19a5ac --- /dev/null +++ b/src/abc8/kit/kit.h @@ -0,0 +1,596 @@ +/**CFile**************************************************************** + + FileName [kit.h] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [External declarations.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kit.h,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#ifndef __KIT_H__ +#define __KIT_H__ + +#ifdef __cplusplus +extern "C" { +#endif + +//////////////////////////////////////////////////////////////////////// +/// INCLUDES /// +//////////////////////////////////////////////////////////////////////// + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <assert.h> +#include <time.h> +#include "vec2.h" +//#include "extra.h" +#include "cloud.h" + +//////////////////////////////////////////////////////////////////////// +/// PARAMETERS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// BASIC TYPES /// +//////////////////////////////////////////////////////////////////////// + +typedef struct Kit_Sop_t_ Kit_Sop_t; +struct Kit_Sop_t_ +{ + int nCubes; // the number of cubes + unsigned * pCubes; // the storage for cubes +}; + +typedef struct Kit_Edge_t_ Kit_Edge_t; +struct Kit_Edge_t_ +{ + unsigned fCompl : 1; // the complemented bit + unsigned Node : 30; // the decomposition node pointed by the edge +}; + +typedef struct Kit_Node_t_ Kit_Node_t; +struct Kit_Node_t_ +{ + Kit_Edge_t eEdge0; // the left child of the node + Kit_Edge_t eEdge1; // the right child of the node + // other info + void * pFunc; // the function of the node (BDD or AIG) + unsigned Level : 14; // the level of this node in the global AIG + // printing info + unsigned fNodeOr : 1; // marks the original OR node + unsigned fCompl0 : 1; // marks the original complemented edge + unsigned fCompl1 : 1; // marks the original complemented edge + // latch info + unsigned nLat0 : 5; // the number of latches on the first edge + unsigned nLat1 : 5; // the number of latches on the second edge + unsigned nLat2 : 5; // the number of latches on the output edge +}; + +typedef struct Kit_Graph_t_ Kit_Graph_t; +struct Kit_Graph_t_ +{ + int fConst; // marks the constant 1 graph + int nLeaves; // the number of leaves + int nSize; // the number of nodes (including the leaves) + int nCap; // the number of allocated nodes + Kit_Node_t * pNodes; // the array of leaves and internal nodes + Kit_Edge_t eRoot; // the pointer to the topmost node +}; + + +// DSD node types +typedef enum { + KIT_DSD_NONE = 0, // 0: unknown + KIT_DSD_CONST1, // 1: constant 1 + KIT_DSD_VAR, // 2: elementary variable + KIT_DSD_AND, // 3: multi-input AND + KIT_DSD_XOR, // 4: multi-input XOR + KIT_DSD_PRIME // 5: arbitrary function of 3+ variables +} Kit_Dsd_t; + +// DSD node +typedef struct Kit_DsdObj_t_ Kit_DsdObj_t; +struct Kit_DsdObj_t_ +{ + unsigned Id : 6; // the number of this node + unsigned Type : 3; // none, const, var, AND, XOR, MUX, PRIME + unsigned fMark : 1; // finished checking output + unsigned Offset : 8; // offset to the truth table + unsigned nRefs : 8; // offset to the truth table + unsigned nFans : 6; // the number of fanins of this node + unsigned char pFans[0]; // the fanin literals +}; + +// DSD network +typedef struct Kit_DsdNtk_t_ Kit_DsdNtk_t; +struct Kit_DsdNtk_t_ +{ + unsigned char nVars; // at most 16 (perhaps 18?) + unsigned char nNodesAlloc; // the number of allocated nodes (at most nVars) + unsigned char nNodes; // the number of nodes + unsigned char Root; // the root of the tree + unsigned * pMem; // memory for the truth tables (memory manager?) + unsigned * pSupps; // supports of the nodes + Kit_DsdObj_t** pNodes; // the nodes +}; + +// DSD manager +typedef struct Kit_DsdMan_t_ Kit_DsdMan_t; +struct Kit_DsdMan_t_ +{ + int nVars; // the maximum number of variables + int nWords; // the number of words in TTs + Vec_Ptr_t * vTtElems; // elementary truth tables + Vec_Ptr_t * vTtNodes; // the node truth tables + // BDD representation + CloudManager * dd; // BDD package + Vec_Ptr_t * vTtBdds; // the node truth tables + Vec_Int_t * vNodes; // temporary array for BDD nodes +}; + +static inline int Kit_DsdVar2Lit( int Var, int fCompl ) { return Var + Var + fCompl; } +static inline int Kit_DsdLit2Var( int Lit ) { return Lit >> 1; } +static inline int Kit_DsdLitIsCompl( int Lit ) { return Lit & 1; } +static inline int Kit_DsdLitNot( int Lit ) { return Lit ^ 1; } +static inline int Kit_DsdLitNotCond( int Lit, int c ) { return Lit ^ (int)(c > 0); } +static inline int Kit_DsdLitRegular( int Lit ) { return Lit & 0xfe; } + +static inline unsigned Kit_DsdObjOffset( int nFans ) { return (nFans >> 2) + ((nFans & 3) > 0); } +static inline unsigned * Kit_DsdObjTruth( Kit_DsdObj_t * pObj ) { return pObj->Type == KIT_DSD_PRIME ? (unsigned *)pObj->pFans + pObj->Offset: NULL; } +static inline int Kit_DsdNtkObjNum( Kit_DsdNtk_t * pNtk ){ return pNtk->nVars + pNtk->nNodes; } +static inline Kit_DsdObj_t * Kit_DsdNtkObj( Kit_DsdNtk_t * pNtk, int Id ) { assert( Id >= 0 && Id < pNtk->nVars + pNtk->nNodes ); return Id < pNtk->nVars ? NULL : pNtk->pNodes[Id - pNtk->nVars]; } +static inline Kit_DsdObj_t * Kit_DsdNtkRoot( Kit_DsdNtk_t * pNtk ) { return Kit_DsdNtkObj( pNtk, Kit_DsdLit2Var(pNtk->Root) ); } +static inline int Kit_DsdLitIsLeaf( Kit_DsdNtk_t * pNtk, int Lit ) { int Id = Kit_DsdLit2Var(Lit); assert( Id >= 0 && Id < pNtk->nVars + pNtk->nNodes ); return Id < pNtk->nVars; } +static inline unsigned Kit_DsdLitSupport( Kit_DsdNtk_t * pNtk, int Lit ) { int Id = Kit_DsdLit2Var(Lit); assert( Id >= 0 && Id < pNtk->nVars + pNtk->nNodes ); return pNtk->pSupps? (Id < pNtk->nVars? (1 << Id) : pNtk->pSupps[Id - pNtk->nVars]) : 0; } + +#define Kit_DsdNtkForEachObj( pNtk, pObj, i ) \ + for ( i = 0; (i < (pNtk)->nNodes) && ((pObj) = (pNtk)->pNodes[i]); i++ ) +#define Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) \ + for ( i = 0; (i < (pObj)->nFans) && ((iLit) = (pObj)->pFans[i], 1); i++ ) + +//////////////////////////////////////////////////////////////////////// +/// MACRO DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +#define KIT_MIN(a,b) (((a) < (b))? (a) : (b)) +#define KIT_MAX(a,b) (((a) > (b))? (a) : (b)) +#define KIT_INFINITY (100000000) + +#ifndef ALLOC +#define ALLOC(type, num) ((type *) malloc(sizeof(type) * (num))) +#endif + +#ifndef FREE +#define FREE(obj) ((obj) ? (free((char *) (obj)), (obj) = 0) : 0) +#endif + +#ifndef REALLOC +#define REALLOC(type, obj, num) \ + ((obj) ? ((type *) realloc((char *)(obj), sizeof(type) * (num))) : \ + ((type *) malloc(sizeof(type) * (num)))) +#endif + +static inline int Kit_CubeHasLit( unsigned uCube, int i ) { return(uCube & (unsigned)(1<<i)) > 0; } +static inline unsigned Kit_CubeSetLit( unsigned uCube, int i ) { return uCube | (unsigned)(1<<i); } +static inline unsigned Kit_CubeXorLit( unsigned uCube, int i ) { return uCube ^ (unsigned)(1<<i); } +static inline unsigned Kit_CubeRemLit( unsigned uCube, int i ) { return uCube & ~(unsigned)(1<<i); } + +static inline int Kit_CubeContains( unsigned uLarge, unsigned uSmall ) { return (uLarge & uSmall) == uSmall; } +static inline unsigned Kit_CubeSharp( unsigned uCube, unsigned uMask ) { return uCube & ~uMask; } +static inline unsigned Kit_CubeMask( int nVar ) { return (~(unsigned)0) >> (32-nVar); } + +static inline int Kit_CubeIsMarked( unsigned uCube ) { return Kit_CubeHasLit( uCube, 31 ); } +static inline unsigned Kit_CubeMark( unsigned uCube ) { return Kit_CubeSetLit( uCube, 31 ); } +static inline unsigned Kit_CubeUnmark( unsigned uCube ) { return Kit_CubeRemLit( uCube, 31 ); } + +static inline int Kit_SopCubeNum( Kit_Sop_t * cSop ) { return cSop->nCubes; } +static inline unsigned Kit_SopCube( Kit_Sop_t * cSop, int i ) { return cSop->pCubes[i]; } +static inline void Kit_SopShrink( Kit_Sop_t * cSop, int nCubesNew ) { cSop->nCubes = nCubesNew; } +static inline void Kit_SopPushCube( Kit_Sop_t * cSop, unsigned uCube ) { cSop->pCubes[cSop->nCubes++] = uCube; } +static inline void Kit_SopWriteCube( Kit_Sop_t * cSop, unsigned uCube, int i ) { cSop->pCubes[i] = uCube; } + +static inline Kit_Edge_t Kit_EdgeCreate( int Node, int fCompl ) { Kit_Edge_t eEdge = { fCompl, Node }; return eEdge; } +static inline unsigned Kit_EdgeToInt( Kit_Edge_t eEdge ) { return (eEdge.Node << 1) | eEdge.fCompl; } +static inline Kit_Edge_t Kit_IntToEdge( unsigned Edge ) { return Kit_EdgeCreate( Edge >> 1, Edge & 1 ); } +static inline unsigned Kit_EdgeToInt_( Kit_Edge_t eEdge ) { return *(unsigned *)&eEdge; } +static inline Kit_Edge_t Kit_IntToEdge_( unsigned Edge ) { return *(Kit_Edge_t *)&Edge; } + +static inline int Kit_GraphIsConst( Kit_Graph_t * pGraph ) { return pGraph->fConst; } +static inline int Kit_GraphIsConst0( Kit_Graph_t * pGraph ) { return pGraph->fConst && pGraph->eRoot.fCompl; } +static inline int Kit_GraphIsConst1( Kit_Graph_t * pGraph ) { return pGraph->fConst && !pGraph->eRoot.fCompl; } +static inline int Kit_GraphIsComplement( Kit_Graph_t * pGraph ) { return pGraph->eRoot.fCompl; } +static inline int Kit_GraphIsVar( Kit_Graph_t * pGraph ) { return pGraph->eRoot.Node < (unsigned)pGraph->nLeaves; } +static inline void Kit_GraphComplement( Kit_Graph_t * pGraph ) { pGraph->eRoot.fCompl ^= 1; } +static inline void Kit_GraphSetRoot( Kit_Graph_t * pGraph, Kit_Edge_t eRoot ) { pGraph->eRoot = eRoot; } +static inline int Kit_GraphLeaveNum( Kit_Graph_t * pGraph ) { return pGraph->nLeaves; } +static inline int Kit_GraphNodeNum( Kit_Graph_t * pGraph ) { return pGraph->nSize - pGraph->nLeaves; } +static inline Kit_Node_t * Kit_GraphNode( Kit_Graph_t * pGraph, int i ) { return pGraph->pNodes + i; } +static inline Kit_Node_t * Kit_GraphNodeLast( Kit_Graph_t * pGraph ) { return pGraph->pNodes + pGraph->nSize - 1; } +static inline int Kit_GraphNodeInt( Kit_Graph_t * pGraph, Kit_Node_t * pNode ) { return pNode - pGraph->pNodes; } +static inline int Kit_GraphNodeIsVar( Kit_Graph_t * pGraph, Kit_Node_t * pNode ) { return Kit_GraphNodeInt(pGraph,pNode) < pGraph->nLeaves; } +static inline Kit_Node_t * Kit_GraphVar( Kit_Graph_t * pGraph ) { assert( Kit_GraphIsVar( pGraph ) ); return Kit_GraphNode( pGraph, pGraph->eRoot.Node ); } +static inline int Kit_GraphVarInt( Kit_Graph_t * pGraph ) { assert( Kit_GraphIsVar( pGraph ) ); return Kit_GraphNodeInt( pGraph, Kit_GraphVar(pGraph) ); } +static inline Kit_Node_t * Kit_GraphNodeFanin0( Kit_Graph_t * pGraph, Kit_Node_t * pNode ){ return Kit_GraphNodeIsVar(pGraph, pNode)? NULL : Kit_GraphNode(pGraph, pNode->eEdge0.Node); } +static inline Kit_Node_t * Kit_GraphNodeFanin1( Kit_Graph_t * pGraph, Kit_Node_t * pNode ){ return Kit_GraphNodeIsVar(pGraph, pNode)? NULL : Kit_GraphNode(pGraph, pNode->eEdge1.Node); } +static inline int Kit_GraphRootLevel( Kit_Graph_t * pGraph ) { return Kit_GraphNode(pGraph, pGraph->eRoot.Node)->Level; } + +static inline int Kit_Float2Int( float Val ) { return *((int *)&Val); } +static inline float Kit_Int2Float( int Num ) { return *((float *)&Num); } +static inline int Kit_BitWordNum( int nBits ) { return nBits/(8*sizeof(unsigned)) + ((nBits%(8*sizeof(unsigned))) > 0); } +static inline int Kit_TruthWordNum( int nVars ) { return nVars <= 5 ? 1 : (1 << (nVars - 5)); } +static inline unsigned Kit_BitMask( int nBits ) { assert( nBits <= 32 ); return ~((~(unsigned)0) << nBits); } + +static inline void Kit_TruthSetBit( unsigned * p, int Bit ) { p[Bit>>5] |= (1<<(Bit & 31)); } +static inline void Kit_TruthXorBit( unsigned * p, int Bit ) { p[Bit>>5] ^= (1<<(Bit & 31)); } +static inline int Kit_TruthHasBit( unsigned * p, int Bit ) { return (p[Bit>>5] & (1<<(Bit & 31))) > 0; } + +static inline int Kit_WordFindFirstBit( unsigned uWord ) +{ + int i; + for ( i = 0; i < 32; i++ ) + if ( uWord & (1 << i) ) + return i; + return -1; +} +static inline int Kit_WordHasOneBit( unsigned uWord ) +{ + return (uWord & (uWord - 1)) == 0; +} +static inline int Kit_WordCountOnes( unsigned uWord ) +{ + uWord = (uWord & 0x55555555) + ((uWord>>1) & 0x55555555); + uWord = (uWord & 0x33333333) + ((uWord>>2) & 0x33333333); + uWord = (uWord & 0x0F0F0F0F) + ((uWord>>4) & 0x0F0F0F0F); + uWord = (uWord & 0x00FF00FF) + ((uWord>>8) & 0x00FF00FF); + return (uWord & 0x0000FFFF) + (uWord>>16); +} +static inline int Kit_TruthCountOnes( unsigned * pIn, int nVars ) +{ + int w, Counter = 0; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + Counter += Kit_WordCountOnes(pIn[w]); + return Counter; +} +static inline int Kit_TruthFindFirstBit( unsigned * pIn, int nVars ) +{ + int w; + for ( w = 0; w < Kit_TruthWordNum(nVars); w++ ) + if ( pIn[w] ) + return 32*w + Kit_WordFindFirstBit(pIn[w]); + return -1; +} +static inline int Kit_TruthFindFirstZero( unsigned * pIn, int nVars ) +{ + int w; + for ( w = 0; w < Kit_TruthWordNum(nVars); w++ ) + if ( ~pIn[w] ) + return 32*w + Kit_WordFindFirstBit(~pIn[w]); + return -1; +} +static inline int Kit_TruthIsEqual( unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn0[w] != pIn1[w] ) + return 0; + return 1; +} +static inline int Kit_TruthIsOpposite( unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn0[w] != ~pIn1[w] ) + return 0; + return 1; +} +static inline int Kit_TruthIsEqualWithPhase( unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + if ( (pIn0[0] & 1) == (pIn1[0] & 1) ) + { + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn0[w] != pIn1[w] ) + return 0; + } + else + { + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn0[w] != ~pIn1[w] ) + return 0; + } + return 1; +} +static inline int Kit_TruthIsConst0( unsigned * pIn, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn[w] ) + return 0; + return 1; +} +static inline int Kit_TruthIsConst1( unsigned * pIn, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn[w] != ~(unsigned)0 ) + return 0; + return 1; +} +static inline int Kit_TruthIsImply( unsigned * pIn1, unsigned * pIn2, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn1[w] & ~pIn2[w] ) + return 0; + return 1; +} +static inline int Kit_TruthIsDisjoint( unsigned * pIn1, unsigned * pIn2, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn1[w] & pIn2[w] ) + return 0; + return 1; +} +static inline int Kit_TruthIsDisjoint3( unsigned * pIn1, unsigned * pIn2, unsigned * pIn3, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn1[w] & pIn2[w] & pIn3[w] ) + return 0; + return 1; +} +static inline void Kit_TruthCopy( unsigned * pOut, unsigned * pIn, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn[w]; +} +static inline void Kit_TruthClear( unsigned * pOut, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = 0; +} +static inline void Kit_TruthFill( unsigned * pOut, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = ~(unsigned)0; +} +static inline void Kit_TruthNot( unsigned * pOut, unsigned * pIn, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = ~pIn[w]; +} +static inline void Kit_TruthAnd( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn0[w] & pIn1[w]; +} +static inline void Kit_TruthOr( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn0[w] | pIn1[w]; +} +static inline void Kit_TruthXor( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn0[w] ^ pIn1[w]; +} +static inline void Kit_TruthSharp( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn0[w] & ~pIn1[w]; +} +static inline void Kit_TruthNand( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = ~(pIn0[w] & pIn1[w]); +} +static inline void Kit_TruthAndPhase( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars, int fCompl0, int fCompl1 ) +{ + int w; + if ( fCompl0 && fCompl1 ) + { + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = ~(pIn0[w] | pIn1[w]); + } + else if ( fCompl0 && !fCompl1 ) + { + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = ~pIn0[w] & pIn1[w]; + } + else if ( !fCompl0 && fCompl1 ) + { + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn0[w] & ~pIn1[w]; + } + else // if ( !fCompl0 && !fCompl1 ) + { + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn0[w] & pIn1[w]; + } +} +static inline void Kit_TruthMux( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, unsigned * pCtrl, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = (pIn0[w] & ~pCtrl[w]) | (pIn1[w] & pCtrl[w]); +} +static inline void Kit_TruthMuxPhase( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, unsigned * pCtrl, int nVars, int fComp0 ) +{ + int w; + if ( fComp0 ) + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = (~pIn0[w] & ~pCtrl[w]) | (pIn1[w] & pCtrl[w]); + else + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = (pIn0[w] & ~pCtrl[w]) | (pIn1[w] & pCtrl[w]); +} +static inline void Kit_TruthIthVar( unsigned * pTruth, int nVars, int iVar ) +{ + unsigned Masks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; + int k, nWords = (nVars <= 5 ? 1 : (1 << (nVars - 5))); + if ( iVar < 5 ) + { + for ( k = 0; k < nWords; k++ ) + pTruth[k] = Masks[iVar]; + } + else + { + for ( k = 0; k < nWords; k++ ) + if ( k & (1 << (iVar-5)) ) + pTruth[k] = ~(unsigned)0; + else + pTruth[k] = 0; + } +} + + +//////////////////////////////////////////////////////////////////////// +/// ITERATORS /// +//////////////////////////////////////////////////////////////////////// + +#define Kit_SopForEachCube( cSop, uCube, i ) \ + for ( i = 0; (i < Kit_SopCubeNum(cSop)) && ((uCube) = Kit_SopCube(cSop, i)); i++ ) +#define Kit_CubeForEachLiteral( uCube, Lit, nLits, i ) \ + for ( i = 0; (i < (nLits)) && ((Lit) = Kit_CubeHasLit(uCube, i)); i++ ) + +#define Kit_GraphForEachLeaf( pGraph, pLeaf, i ) \ + for ( i = 0; (i < (pGraph)->nLeaves) && (((pLeaf) = Kit_GraphNode(pGraph, i)), 1); i++ ) +#define Kit_GraphForEachNode( pGraph, pAnd, i ) \ + for ( i = (pGraph)->nLeaves; (i < (pGraph)->nSize) && (((pAnd) = Kit_GraphNode(pGraph, i)), 1); i++ ) + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +/*=== kitBdd.c ==========================================================*/ +/* +extern DdNode * Kit_SopToBdd( DdManager * dd, Kit_Sop_t * cSop, int nVars ); +extern DdNode * Kit_GraphToBdd( DdManager * dd, Kit_Graph_t * pGraph ); +extern DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars, int fMSBonTop ); +*/ +/*=== kitCloud.c ==========================================================*/ +extern CloudNode * Kit_TruthToCloud( CloudManager * dd, unsigned * pTruth, int nVars ); +extern unsigned * Kit_CloudToTruth( Vec_Int_t * vNodes, int nVars, Vec_Ptr_t * vStore, int fInv ); +extern int Kit_CreateCloud( CloudManager * dd, CloudNode * pFunc, Vec_Int_t * vNodes ); +extern int Kit_CreateCloudFromTruth( CloudManager * dd, unsigned * pTruth, int nVars, Vec_Int_t * vNodes ); +extern unsigned * Kit_TruthCompose( CloudManager * dd, unsigned * pTruth, int nVars, unsigned ** pInputs, int nVarsAll, Vec_Ptr_t * vStore, Vec_Int_t * vNodes ); +extern void Kit_TruthCofSupports( Vec_Int_t * vBddDir, Vec_Int_t * vBddInv, int nVars, Vec_Int_t * vMemory, unsigned * puSupps ); +/*=== kitDsd.c ==========================================================*/ +extern Kit_DsdMan_t * Kit_DsdManAlloc( int nVars, int nNodes ); +extern void Kit_DsdManFree( Kit_DsdMan_t * p ); +extern Kit_DsdNtk_t * Kit_DsdDeriveNtk( unsigned * pTruth, int nVars, int nLutSize ); +extern unsigned * Kit_DsdTruthCompute( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk ); +extern void Kit_DsdTruth( Kit_DsdNtk_t * pNtk, unsigned * pTruthRes ); +extern void Kit_DsdTruthPartial( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned * pTruthRes, unsigned uSupp ); +extern void Kit_DsdTruthPartialTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthCo, unsigned * pTruthDec ); +extern void Kit_DsdPrint( FILE * pFile, Kit_DsdNtk_t * pNtk ); +extern void Kit_DsdPrintExpanded( Kit_DsdNtk_t * pNtk ); +extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars ); +extern Kit_DsdNtk_t * Kit_DsdDecompose( unsigned * pTruth, int nVars ); +extern Kit_DsdNtk_t * Kit_DsdDecomposeExpand( unsigned * pTruth, int nVars ); +extern Kit_DsdNtk_t * Kit_DsdDecomposeMux( unsigned * pTruth, int nVars, int nDecMux ); +extern void Kit_DsdVerify( Kit_DsdNtk_t * pNtk, unsigned * pTruth, int nVars ); +extern void Kit_DsdNtkFree( Kit_DsdNtk_t * pNtk ); +extern int Kit_DsdNonDsdSizeMax( Kit_DsdNtk_t * pNtk ); +extern unsigned Kit_DsdNonDsdSupports( Kit_DsdNtk_t * pNtk ); +extern unsigned Kit_DsdGetSupports( Kit_DsdNtk_t * p ); +extern Kit_DsdNtk_t * Kit_DsdExpand( Kit_DsdNtk_t * p ); +extern Kit_DsdNtk_t * Kit_DsdShrink( Kit_DsdNtk_t * p, int pPrios[] ); +extern void Kit_DsdRotate( Kit_DsdNtk_t * p, int pFreqs[] ); +extern int Kit_DsdCofactoring( unsigned * pTruth, int nVars, int * pCofVars, int nLimit, int fVerbose ); +/*=== kitFactor.c ==========================================================*/ +extern Kit_Graph_t * Kit_SopFactor( Vec_Int_t * vCover, int fCompl, int nVars, Vec_Int_t * vMemory ); +/*=== kitGraph.c ==========================================================*/ +extern Kit_Graph_t * Kit_GraphCreate( int nLeaves ); +extern Kit_Graph_t * Kit_GraphCreateConst0(); +extern Kit_Graph_t * Kit_GraphCreateConst1(); +extern Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl ); +extern void Kit_GraphFree( Kit_Graph_t * pGraph ); +extern Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph ); +extern Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ); +extern Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ); +extern Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type ); +extern Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type ); +extern unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph ); +extern Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory ); +extern int Kit_GraphLeafDepth_rec( Kit_Graph_t * pGraph, Kit_Node_t * pNode, Kit_Node_t * pLeaf ); +/*=== kitHop.c ==========================================================*/ +//extern Hop_Obj_t * Kit_GraphToHop( Hop_Man_t * pMan, Kit_Graph_t * pGraph ); +//extern Hop_Obj_t * Kit_TruthToHop( Hop_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory ); +//extern Hop_Obj_t * Kit_CoverToHop( Hop_Man_t * pMan, Vec_Int_t * vCover, int nVars, Vec_Int_t * vMemory ); +/*=== kitIsop.c ==========================================================*/ +extern int Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth ); +/*=== kitSop.c ==========================================================*/ +extern void Kit_SopCreate( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ); +extern void Kit_SopCreateInverse( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ); +extern void Kit_SopDup( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ); +extern void Kit_SopDivideByLiteralQuo( Kit_Sop_t * cSop, int iLit ); +extern void Kit_SopDivideByCube( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ); +extern void Kit_SopDivideInternal( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ); +extern void Kit_SopMakeCubeFree( Kit_Sop_t * cSop ); +extern int Kit_SopIsCubeFree( Kit_Sop_t * cSop ); +extern void Kit_SopCommonCubeCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ); +extern int Kit_SopAnyLiteral( Kit_Sop_t * cSop, int nLits ); +extern int Kit_SopDivisor( Kit_Sop_t * cResult, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ); +extern void Kit_SopBestLiteralCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vMemory ); +/*=== kitTruth.c ==========================================================*/ +extern void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int Start ); +extern void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn ); +extern void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn ); +extern int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar ); +extern int Kit_TruthSupportSize( unsigned * pTruth, int nVars ); +extern unsigned Kit_TruthSupport( unsigned * pTruth, int nVars ); +extern void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthCofactor0New( unsigned * pOut, unsigned * pIn, int nVars, int iVar ); +extern void Kit_TruthCofactor1New( unsigned * pOut, unsigned * pIn, int nVars, int iVar ); +extern void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthExistNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthExistSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask ); +extern void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthForallNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthForallSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask ); +extern void Kit_TruthUniqueNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthMuxVar( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar ); +extern void Kit_TruthMuxVarPhase( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar, int fCompl0 ); +extern void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar ); +extern int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin ); +extern int Kit_TruthBestCofVar( unsigned * pTruth, int nVars, unsigned * pCof0, unsigned * pCof1 ); +extern void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, short * pStore ); +extern void Kit_TruthCountOnesInCofsSlow( unsigned * pTruth, int nVars, short * pStore, unsigned * pAux ); +extern unsigned Kit_TruthHash( unsigned * pIn, int nWords ); +extern unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm, short * pStore ); +extern char * Kit_TruthDumpToFile( unsigned * pTruth, int nVars, int nFile ); + +#ifdef __cplusplus +} +#endif + +#endif + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + diff --git a/src/abc8/kit/kitAig.c b/src/abc8/kit/kitAig.c new file mode 100644 index 00000000..83012a8c --- /dev/null +++ b/src/abc8/kit/kitAig.c @@ -0,0 +1,121 @@ +/**CFile**************************************************************** + + FileName [kitAig.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Procedures involving AIGs.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitAig.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" +#include "aig.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Transforms the decomposition graph into the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Aig_Obj_t * Kit_GraphToAigInternal( Aig_Man_t * pMan, Kit_Graph_t * pGraph ) +{ + Kit_Node_t * pNode = NULL; + Aig_Obj_t * pAnd0, * pAnd1; + int i; + // check for constant function + if ( Kit_GraphIsConst(pGraph) ) + return Aig_NotCond( Aig_ManConst1(pMan), Kit_GraphIsComplement(pGraph) ); + // check for a literal + if ( Kit_GraphIsVar(pGraph) ) + return Aig_NotCond( Kit_GraphVar(pGraph)->pFunc, Kit_GraphIsComplement(pGraph) ); + // build the AIG nodes corresponding to the AND gates of the graph + Kit_GraphForEachNode( pGraph, pNode, i ) + { + pAnd0 = Aig_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); + pAnd1 = Aig_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); + pNode->pFunc = Aig_And( pMan, pAnd0, pAnd1 ); + } + // complement the result if necessary + return Aig_NotCond( pNode->pFunc, Kit_GraphIsComplement(pGraph) ); +} + +/**Function************************************************************* + + Synopsis [Strashes one logic node using its SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Aig_Obj_t * Kit_GraphToAig( Aig_Man_t * pMan, Aig_Obj_t ** pFanins, Kit_Graph_t * pGraph ) +{ + Kit_Node_t * pNode = NULL; + int i; + // collect the fanins + Kit_GraphForEachLeaf( pGraph, pNode, i ) + pNode->pFunc = pFanins[i]; + // perform strashing + return Kit_GraphToAigInternal( pMan, pGraph ); +} + +/**Function************************************************************* + + Synopsis [Strashed onen logic nodes using its truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Aig_Obj_t * Kit_TruthToAig( Aig_Man_t * pMan, Aig_Obj_t ** pFanins, unsigned * pTruth, int nVars, Vec_Int_t * vMemory ) +{ + Aig_Obj_t * pObj; + Kit_Graph_t * pGraph; + // transform truth table into the decomposition tree + if ( vMemory == NULL ) + { + vMemory = Vec_IntAlloc( 0 ); + pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory ); + Vec_IntFree( vMemory ); + } + else + pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory ); + // derive the AIG for the decomposition tree + pObj = Kit_GraphToAig( pMan, pFanins, pGraph ); + Kit_GraphFree( pGraph ); + return pObj; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/abc8/kit/kitBdd.c b/src/abc8/kit/kitBdd.c new file mode 100644 index 00000000..9c8d4f7a --- /dev/null +++ b/src/abc8/kit/kitBdd.c @@ -0,0 +1,231 @@ +/**CFile**************************************************************** + + FileName [kitBdd.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Procedures involving BDDs.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitBdd.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" +#include "extra.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Derives the BDD for the given SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +DdNode * Kit_SopToBdd( DdManager * dd, Kit_Sop_t * cSop, int nVars ) +{ + DdNode * bSum, * bCube, * bTemp, * bVar; + unsigned uCube; + int Value, i, v; + assert( nVars < 16 ); + // start the cover + bSum = Cudd_ReadLogicZero(dd); Cudd_Ref( bSum ); + // check the logic function of the node + Kit_SopForEachCube( cSop, uCube, i ) + { + bCube = Cudd_ReadOne(dd); Cudd_Ref( bCube ); + for ( v = 0; v < nVars; v++ ) + { + Value = ((uCube >> 2*v) & 3); + if ( Value == 1 ) + bVar = Cudd_Not( Cudd_bddIthVar( dd, v ) ); + else if ( Value == 2 ) + bVar = Cudd_bddIthVar( dd, v ); + else + continue; + bCube = Cudd_bddAnd( dd, bTemp = bCube, bVar ); Cudd_Ref( bCube ); + Cudd_RecursiveDeref( dd, bTemp ); + } + bSum = Cudd_bddOr( dd, bTemp = bSum, bCube ); + Cudd_Ref( bSum ); + Cudd_RecursiveDeref( dd, bTemp ); + Cudd_RecursiveDeref( dd, bCube ); + } + // complement the result if necessary + Cudd_Deref( bSum ); + return bSum; +} + +/**Function************************************************************* + + Synopsis [Converts graph to BDD.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +DdNode * Kit_GraphToBdd( DdManager * dd, Kit_Graph_t * pGraph ) +{ + DdNode * bFunc, * bFunc0, * bFunc1; + Kit_Node_t * pNode; + int i; + + // sanity checks + assert( Kit_GraphLeaveNum(pGraph) >= 0 ); + assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize ); + + // check for constant function + if ( Kit_GraphIsConst(pGraph) ) + return Cudd_NotCond( b1, Kit_GraphIsComplement(pGraph) ); + // check for a literal + if ( Kit_GraphIsVar(pGraph) ) + return Cudd_NotCond( Cudd_bddIthVar(dd, Kit_GraphVarInt(pGraph)), Kit_GraphIsComplement(pGraph) ); + + // assign the elementary variables + Kit_GraphForEachLeaf( pGraph, pNode, i ) + pNode->pFunc = Cudd_bddIthVar( dd, i ); + + // compute the function for each internal node + Kit_GraphForEachNode( pGraph, pNode, i ) + { + bFunc0 = Cudd_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); + bFunc1 = Cudd_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); + pNode->pFunc = Cudd_bddAnd( dd, bFunc0, bFunc1 ); Cudd_Ref( pNode->pFunc ); + } + + // deref the intermediate results + bFunc = pNode->pFunc; Cudd_Ref( bFunc ); + Kit_GraphForEachNode( pGraph, pNode, i ) + Cudd_RecursiveDeref( dd, pNode->pFunc ); + Cudd_Deref( bFunc ); + + // complement the result if necessary + return Cudd_NotCond( bFunc, Kit_GraphIsComplement(pGraph) ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +DdNode * Kit_TruthToBdd_rec( DdManager * dd, unsigned * pTruth, int iBit, int nVars, int nVarsTotal, int fMSBonTop ) +{ + DdNode * bF0, * bF1, * bF; + int Var; + if ( nVars <= 5 ) + { + unsigned uTruth, uMask; + uMask = ((~(unsigned)0) >> (32 - (1<<nVars))); + uTruth = (pTruth[iBit>>5] >> (iBit&31)) & uMask; + if ( uTruth == 0 ) + return b0; + if ( uTruth == uMask ) + return b1; + } + // find the variable to use + Var = fMSBonTop? nVarsTotal-nVars : nVars-1; + // other special cases can be added + bF0 = Kit_TruthToBdd_rec( dd, pTruth, iBit, nVars-1, nVarsTotal, fMSBonTop ); Cudd_Ref( bF0 ); + bF1 = Kit_TruthToBdd_rec( dd, pTruth, iBit+(1<<(nVars-1)), nVars-1, nVarsTotal, fMSBonTop ); Cudd_Ref( bF1 ); + bF = Cudd_bddIte( dd, dd->vars[Var], bF1, bF0 ); Cudd_Ref( bF ); + Cudd_RecursiveDeref( dd, bF0 ); + Cudd_RecursiveDeref( dd, bF1 ); + Cudd_Deref( bF ); + return bF; +} + +/**Function************************************************************* + + Synopsis [Compute BDD corresponding to the truth table.] + + Description [If truth table has N vars, the BDD depends on N topmost + variables of the BDD manager. The most significant variable of the table + is encoded by the topmost variable of the manager. BDD construction is + efficient in this case because BDD is constructed one node at a time, + by simply adding BDD nodes on top of existent BDD nodes.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars, int fMSBonTop ) +{ + return Kit_TruthToBdd_rec( dd, pTruth, 0, nVars, nVars, fMSBonTop ); +} + +/**Function************************************************************* + + Synopsis [Verifies that the factoring is correct.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopFactorVerify( Vec_Int_t * vCover, Kit_Graph_t * pFForm, int nVars ) +{ + static DdManager * dd = NULL; + Kit_Sop_t Sop, * cSop = &Sop; + DdNode * bFunc1, * bFunc2; + Vec_Int_t * vMemory; + int RetValue; + // get the manager + if ( dd == NULL ) + dd = Cudd_Init( 16, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); + // derive SOP + vMemory = Vec_IntAlloc( Vec_IntSize(vCover) ); + Kit_SopCreate( cSop, vCover, nVars, vMemory ); + // get the functions + bFunc1 = Kit_SopToBdd( dd, cSop, nVars ); Cudd_Ref( bFunc1 ); + bFunc2 = Kit_GraphToBdd( dd, pFForm ); Cudd_Ref( bFunc2 ); +//Extra_bddPrint( dd, bFunc1 ); printf("\n"); +//Extra_bddPrint( dd, bFunc2 ); printf("\n"); + RetValue = (bFunc1 == bFunc2); + if ( bFunc1 != bFunc2 ) + { + int s; + Extra_bddPrint( dd, bFunc1 ); printf("\n"); + Extra_bddPrint( dd, bFunc2 ); printf("\n"); + s = 0; + } + Cudd_RecursiveDeref( dd, bFunc1 ); + Cudd_RecursiveDeref( dd, bFunc2 ); + Vec_IntFree( vMemory ); + return RetValue; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/abc8/kit/kitCloud.c b/src/abc8/kit/kitCloud.c new file mode 100644 index 00000000..7b160fea --- /dev/null +++ b/src/abc8/kit/kitCloud.c @@ -0,0 +1,368 @@ +/**CFile**************************************************************** + + FileName [kitCloud.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Procedures using BDD package CLOUD.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitCloud.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +// internal representation of the function to be decomposed +typedef struct Kit_Mux_t_ Kit_Mux_t; +struct Kit_Mux_t_ +{ + unsigned v : 5; // variable + unsigned t : 12; // then edge + unsigned e : 12; // else edge + unsigned c : 1; // complemented attr of else edge + unsigned i : 1; // complemented attr of top node +}; + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Derive BDD from the truth table for 5 variable functions.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +CloudNode * Kit_TruthToCloud5_rec( CloudManager * dd, unsigned uTruth, int nVars, int nVarsAll ) +{ + static unsigned uVars[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; + CloudNode * pCof0, * pCof1; + unsigned uCof0, uCof1; + assert( nVars <= 5 ); + if ( uTruth == 0 ) + return dd->zero; + if ( uTruth == ~0 ) + return dd->one; + if ( nVars == 1 ) + { + if ( uTruth == uVars[0] ) + return dd->vars[nVarsAll-1]; + if ( uTruth == ~uVars[0] ) + return Cloud_Not(dd->vars[nVarsAll-1]); + assert( 0 ); + } +// Count++; + assert( nVars > 1 ); + uCof0 = uTruth & ~uVars[nVars-1]; + uCof1 = uTruth & uVars[nVars-1]; + uCof0 |= uCof0 << (1<<(nVars-1)); + uCof1 |= uCof1 >> (1<<(nVars-1)); + if ( uCof0 == uCof1 ) + return Kit_TruthToCloud5_rec( dd, uCof0, nVars - 1, nVarsAll ); + if ( uCof0 == ~uCof1 ) + { + pCof0 = Kit_TruthToCloud5_rec( dd, uCof0, nVars - 1, nVarsAll ); + pCof1 = Cloud_Not( pCof0 ); + } + else + { + pCof0 = Kit_TruthToCloud5_rec( dd, uCof0, nVars - 1, nVarsAll ); + pCof1 = Kit_TruthToCloud5_rec( dd, uCof1, nVars - 1, nVarsAll ); + } + return Cloud_MakeNode( dd, nVarsAll - nVars, pCof1, pCof0 ); +} + +/**Function******************************************************************** + + Synopsis [Compute BDD for the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +CloudNode * Kit_TruthToCloud_rec( CloudManager * dd, unsigned * pTruth, int nVars, int nVarsAll ) +{ + CloudNode * pCof0, * pCof1; + unsigned * pTruth0, * pTruth1; + if ( nVars <= 5 ) + return Kit_TruthToCloud5_rec( dd, pTruth[0], nVars, nVarsAll ); + if ( Kit_TruthIsConst0(pTruth, nVars) ) + return dd->zero; + if ( Kit_TruthIsConst1(pTruth, nVars) ) + return dd->one; +// Count++; + pTruth0 = pTruth; + pTruth1 = pTruth + Kit_TruthWordNum(nVars-1); + if ( Kit_TruthIsEqual( pTruth0, pTruth1, nVars - 1 ) ) + return Kit_TruthToCloud_rec( dd, pTruth0, nVars - 1, nVarsAll ); + if ( Kit_TruthIsOpposite( pTruth0, pTruth1, nVars - 1 ) ) + { + pCof0 = Kit_TruthToCloud_rec( dd, pTruth0, nVars - 1, nVarsAll ); + pCof1 = Cloud_Not( pCof0 ); + } + else + { + pCof0 = Kit_TruthToCloud_rec( dd, pTruth0, nVars - 1, nVarsAll ); + pCof1 = Kit_TruthToCloud_rec( dd, pTruth1, nVars - 1, nVarsAll ); + } + return Cloud_MakeNode( dd, nVarsAll - nVars, pCof1, pCof0 ); +} + +/**Function******************************************************************** + + Synopsis [Compute BDD for the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +CloudNode * Kit_TruthToCloud( CloudManager * dd, unsigned * pTruth, int nVars ) +{ + CloudNode * pRes; + pRes = Kit_TruthToCloud_rec( dd, pTruth, nVars, nVars ); +// printf( "%d/%d ", Count, Cloud_DagSize(dd, pRes) ); + return pRes; +} + +/**Function******************************************************************** + + Synopsis [Transforms the array of BDDs into the integer array.] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +int Kit_CreateCloud( CloudManager * dd, CloudNode * pFunc, Vec_Int_t * vNodes ) +{ + Kit_Mux_t Mux; + int nNodes, i; + // collect BDD nodes + nNodes = Cloud_DagCollect( dd, pFunc ); + if ( nNodes >= (1<<12) ) // because in Kit_Mux_t edge is 12 bit + return 0; + assert( nNodes == Cloud_DagSize( dd, pFunc ) ); + assert( nNodes < dd->nNodesLimit ); + Vec_IntClear( vNodes ); + Vec_IntPush( vNodes, 0 ); // const1 node + dd->ppNodes[0]->s = 0; + for ( i = 1; i < nNodes; i++ ) + { + dd->ppNodes[i]->s = i; + Mux.v = dd->ppNodes[i]->v; + Mux.t = dd->ppNodes[i]->t->s; + Mux.e = Cloud_Regular(dd->ppNodes[i]->e)->s; + Mux.c = Cloud_IsComplement(dd->ppNodes[i]->e); + Mux.i = (i == nNodes - 1)? Cloud_IsComplement(pFunc) : 0; + // put the MUX into the array + Vec_IntPush( vNodes, *((int *)&Mux) ); + } + assert( Vec_IntSize(vNodes) == nNodes ); + // reset signatures + for ( i = 0; i < nNodes; i++ ) + dd->ppNodes[i]->s = dd->nSignCur; + return 1; +} + +/**Function******************************************************************** + + Synopsis [Transforms the array of BDDs into the integer array.] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +int Kit_CreateCloudFromTruth( CloudManager * dd, unsigned * pTruth, int nVars, Vec_Int_t * vNodes ) +{ + CloudNode * pFunc; + Cloud_Restart( dd ); + pFunc = Kit_TruthToCloud( dd, pTruth, nVars ); + Vec_IntClear( vNodes ); + return Kit_CreateCloud( dd, pFunc, vNodes ); +} + +/**Function************************************************************* + + Synopsis [Computes composition of truth tables.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Kit_CloudToTruth( Vec_Int_t * vNodes, int nVars, Vec_Ptr_t * vStore, int fInv ) +{ + unsigned * pThis, * pFan0, * pFan1; + Kit_Mux_t Mux; + int i, Entry; + assert( Vec_IntSize(vNodes) <= Vec_PtrSize(vStore) ); + pThis = Vec_PtrEntry( vStore, 0 ); + Kit_TruthFill( pThis, nVars ); + Vec_IntForEachEntryStart( vNodes, Entry, i, 1 ) + { + Mux = *((Kit_Mux_t *)&Entry); + assert( (int)Mux.e < i && (int)Mux.t < i && (int)Mux.v < nVars ); + pFan0 = Vec_PtrEntry( vStore, Mux.e ); + pFan1 = Vec_PtrEntry( vStore, Mux.t ); + pThis = Vec_PtrEntry( vStore, i ); + Kit_TruthMuxVarPhase( pThis, pFan0, pFan1, nVars, fInv? Mux.v : nVars-1-Mux.v, Mux.c ); + } + // complement the result + if ( Mux.i ) + Kit_TruthNot( pThis, pThis, nVars ); + return pThis; +} + +/**Function************************************************************* + + Synopsis [Computes composition of truth tables.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Kit_TruthCompose( CloudManager * dd, unsigned * pTruth, int nVars, + unsigned ** pInputs, int nVarsAll, Vec_Ptr_t * vStore, Vec_Int_t * vNodes ) +{ + CloudNode * pFunc; + unsigned * pThis, * pFan0, * pFan1; + Kit_Mux_t Mux; + int i, Entry, RetValue; + // derive BDD from truth table + Cloud_Restart( dd ); + pFunc = Kit_TruthToCloud( dd, pTruth, nVars ); + // convert it into nodes + RetValue = Kit_CreateCloud( dd, pFunc, vNodes ); + if ( RetValue == 0 ) + printf( "Kit_TruthCompose(): Internal failure!!!\n" ); + // verify the result +// pFan0 = Kit_CloudToTruth( vNodes, nVars, vStore, 0 ); +// if ( !Kit_TruthIsEqual( pTruth, pFan0, nVars ) ) +// printf( "Failed!\n" ); + // compute truth table from the BDD + assert( Vec_IntSize(vNodes) <= Vec_PtrSize(vStore) ); + pThis = Vec_PtrEntry( vStore, 0 ); + Kit_TruthFill( pThis, nVarsAll ); + Vec_IntForEachEntryStart( vNodes, Entry, i, 1 ) + { + Mux = *((Kit_Mux_t *)&Entry); + pFan0 = Vec_PtrEntry( vStore, Mux.e ); + pFan1 = Vec_PtrEntry( vStore, Mux.t ); + pThis = Vec_PtrEntry( vStore, i ); + Kit_TruthMuxPhase( pThis, pFan0, pFan1, pInputs[nVars-1-Mux.v], nVarsAll, Mux.c ); + } + // complement the result + if ( Mux.i ) + Kit_TruthNot( pThis, pThis, nVarsAll ); + return pThis; +} + +/**Function******************************************************************** + + Synopsis [Compute BDD for the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +void Kit_TruthCofSupports( Vec_Int_t * vBddDir, Vec_Int_t * vBddInv, int nVars, Vec_Int_t * vMemory, unsigned * puSupps ) +{ + Kit_Mux_t Mux; + unsigned * puSuppAll, * pThis, * pFan0, * pFan1; + int i, v, Var, Entry, nSupps; + nSupps = 2 * nVars; + + // extend storage + if ( Vec_IntSize( vMemory ) < nSupps * Vec_IntSize(vBddDir) ) + Vec_IntGrow( vMemory, nSupps * Vec_IntSize(vBddDir) ); + puSuppAll = Vec_IntArray( vMemory ); + // clear storage for the const node + memset( puSuppAll, 0, sizeof(unsigned) * nSupps ); + // compute supports from nodes + Vec_IntForEachEntryStart( vBddDir, Entry, i, 1 ) + { + Mux = *((Kit_Mux_t *)&Entry); + Var = nVars - 1 - Mux.v; + pFan0 = puSuppAll + nSupps * Mux.e; + pFan1 = puSuppAll + nSupps * Mux.t; + pThis = puSuppAll + nSupps * i; + for ( v = 0; v < nSupps; v++ ) + pThis[v] = pFan0[v] | pFan1[v] | (1<<Var); + assert( pFan0[2*Var + 0] == pFan0[2*Var + 1] ); + assert( pFan1[2*Var + 0] == pFan1[2*Var + 1] ); + pThis[2*Var + 0] = pFan0[2*Var + 0];// | pFan0[2*Var + 1]; + pThis[2*Var + 1] = pFan1[2*Var + 0];// | pFan1[2*Var + 1]; + } + // copy the result + memcpy( puSupps, pThis, sizeof(unsigned) * nSupps ); + // compute the inverse + + // extend storage + if ( Vec_IntSize( vMemory ) < nSupps * Vec_IntSize(vBddInv) ) + Vec_IntGrow( vMemory, nSupps * Vec_IntSize(vBddInv) ); + puSuppAll = Vec_IntArray( vMemory ); + // clear storage for the const node + memset( puSuppAll, 0, sizeof(unsigned) * nSupps ); + // compute supports from nodes + Vec_IntForEachEntryStart( vBddInv, Entry, i, 1 ) + { + Mux = *((Kit_Mux_t *)&Entry); +// Var = nVars - 1 - Mux.v; + Var = Mux.v; + pFan0 = puSuppAll + nSupps * Mux.e; + pFan1 = puSuppAll + nSupps * Mux.t; + pThis = puSuppAll + nSupps * i; + for ( v = 0; v < nSupps; v++ ) + pThis[v] = pFan0[v] | pFan1[v] | (1<<Var); + assert( pFan0[2*Var + 0] == pFan0[2*Var + 1] ); + assert( pFan1[2*Var + 0] == pFan1[2*Var + 1] ); + pThis[2*Var + 0] = pFan0[2*Var + 0];// | pFan0[2*Var + 1]; + pThis[2*Var + 1] = pFan1[2*Var + 0];// | pFan1[2*Var + 1]; + } + + // merge supports + for ( Var = 0; Var < nSupps; Var++ ) + puSupps[Var] = (puSupps[Var] & Kit_BitMask(Var/2)) | (pThis[Var] & ~Kit_BitMask(Var/2)); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/abc8/kit/kitDsd.c b/src/abc8/kit/kitDsd.c new file mode 100644 index 00000000..e24a9964 --- /dev/null +++ b/src/abc8/kit/kitDsd.c @@ -0,0 +1,2621 @@ +/**CFile**************************************************************** + + FileName [kitDsd.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Performs disjoint-support decomposition based on truth tables.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitDsd.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Allocates the DSD manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_DsdMan_t * Kit_DsdManAlloc( int nVars, int nNodes ) +{ + Kit_DsdMan_t * p; + p = ALLOC( Kit_DsdMan_t, 1 ); + memset( p, 0, sizeof(Kit_DsdMan_t) ); + p->nVars = nVars; + p->nWords = Kit_TruthWordNum( p->nVars ); + p->vTtElems = Vec_PtrAllocTruthTables( p->nVars ); + p->vTtNodes = Vec_PtrAllocSimInfo( nNodes, p->nWords ); + p->dd = Cloud_Init( 16, 14 ); + p->vTtBdds = Vec_PtrAllocSimInfo( (1<<12), p->nWords ); + p->vNodes = Vec_IntAlloc( 512 ); + return p; +} + +/**Function************************************************************* + + Synopsis [Deallocates the DSD manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdManFree( Kit_DsdMan_t * p ) +{ + Cloud_Quit( p->dd ); + Vec_IntFree( p->vNodes ); + Vec_PtrFree( p->vTtBdds ); + Vec_PtrFree( p->vTtElems ); + Vec_PtrFree( p->vTtNodes ); + free( p ); +} + +/**Function************************************************************* + + Synopsis [Allocates the DSD node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_DsdObj_t * Kit_DsdObjAlloc( Kit_DsdNtk_t * pNtk, Kit_Dsd_t Type, int nFans ) +{ + Kit_DsdObj_t * pObj; + int nSize = sizeof(Kit_DsdObj_t) + sizeof(unsigned) * (Kit_DsdObjOffset(nFans) + (Type == KIT_DSD_PRIME) * Kit_TruthWordNum(nFans)); + pObj = (Kit_DsdObj_t *)ALLOC( char, nSize ); + memset( pObj, 0, nSize ); + pObj->Id = pNtk->nVars + pNtk->nNodes; + pObj->Type = Type; + pObj->nFans = nFans; + pObj->Offset = Kit_DsdObjOffset( nFans ); + // add the object + if ( pNtk->nNodes == pNtk->nNodesAlloc ) + { + pNtk->nNodesAlloc *= 2; + pNtk->pNodes = REALLOC( Kit_DsdObj_t *, pNtk->pNodes, pNtk->nNodesAlloc ); + } + assert( pNtk->nNodes < pNtk->nNodesAlloc ); + pNtk->pNodes[pNtk->nNodes++] = pObj; + return pObj; +} + +/**Function************************************************************* + + Synopsis [Deallocates the DSD node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdObjFree( Kit_DsdNtk_t * p, Kit_DsdObj_t * pObj ) +{ + free( pObj ); +} + +/**Function************************************************************* + + Synopsis [Allocates the DSD network.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_DsdNtk_t * Kit_DsdNtkAlloc( int nVars ) +{ + Kit_DsdNtk_t * pNtk; + pNtk = ALLOC( Kit_DsdNtk_t, 1 ); + memset( pNtk, 0, sizeof(Kit_DsdNtk_t) ); + pNtk->pNodes = ALLOC( Kit_DsdObj_t *, nVars ); + pNtk->nVars = nVars; + pNtk->nNodesAlloc = nVars; + pNtk->pMem = ALLOC( unsigned, 6 * Kit_TruthWordNum(nVars) ); + return pNtk; +} + +/**Function************************************************************* + + Synopsis [Deallocate the DSD network.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdNtkFree( Kit_DsdNtk_t * pNtk ) +{ + Kit_DsdObj_t * pObj; + unsigned i; + Kit_DsdNtkForEachObj( pNtk, pObj, i ) + free( pObj ); + FREE( pNtk->pSupps ); + free( pNtk->pNodes ); + free( pNtk->pMem ); + free( pNtk ); +} + +/**Function************************************************************* + + Synopsis [Prints the hex unsigned into a file.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdPrintHex( FILE * pFile, unsigned * pTruth, int nFans ) +{ + int nDigits, Digit, k; + nDigits = (1 << nFans) / 4; + for ( k = nDigits - 1; k >= 0; k-- ) + { + Digit = ((pTruth[k/8] >> ((k%8) * 4)) & 15); + if ( Digit < 10 ) + fprintf( pFile, "%d", Digit ); + else + fprintf( pFile, "%c", 'A' + Digit-10 ); + } +} + +/**Function************************************************************* + + Synopsis [Recursively print the DSD formula.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdPrint_rec( FILE * pFile, Kit_DsdNtk_t * pNtk, int Id ) +{ + Kit_DsdObj_t * pObj; + unsigned iLit, i; + char Symbol; + + pObj = Kit_DsdNtkObj( pNtk, Id ); + if ( pObj == NULL ) + { + assert( Id < pNtk->nVars ); + fprintf( pFile, "%c", 'a' + Id ); + return; + } + + if ( pObj->Type == KIT_DSD_CONST1 ) + { + assert( pObj->nFans == 0 ); + fprintf( pFile, "Const1" ); + return; + } + + if ( pObj->Type == KIT_DSD_VAR ) + assert( pObj->nFans == 1 ); + + if ( pObj->Type == KIT_DSD_AND ) + Symbol = '*'; + else if ( pObj->Type == KIT_DSD_XOR ) + Symbol = '+'; + else + Symbol = ','; + + if ( pObj->Type == KIT_DSD_PRIME ) + Kit_DsdPrintHex( stdout, Kit_DsdObjTruth(pObj), pObj->nFans ); + + fprintf( pFile, "(" ); + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + { + if ( Kit_DsdLitIsCompl(iLit) ) + fprintf( pFile, "!" ); + Kit_DsdPrint_rec( pFile, pNtk, Kit_DsdLit2Var(iLit) ); + if ( i < pObj->nFans - 1 ) + fprintf( pFile, "%c", Symbol ); + } + fprintf( pFile, ")" ); +} + +/**Function************************************************************* + + Synopsis [Print the DSD formula.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdPrint( FILE * pFile, Kit_DsdNtk_t * pNtk ) +{ + fprintf( pFile, "F = " ); + if ( Kit_DsdLitIsCompl(pNtk->Root) ) + fprintf( pFile, "!" ); + Kit_DsdPrint_rec( pFile, pNtk, Kit_DsdLit2Var(pNtk->Root) ); + fprintf( pFile, "\n" ); +} + +/**Function************************************************************* + + Synopsis [Print the DSD formula.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdPrintExpanded( Kit_DsdNtk_t * pNtk ) +{ + Kit_DsdNtk_t * pTemp; + pTemp = Kit_DsdExpand( pNtk ); + Kit_DsdPrint( stdout, pTemp ); + Kit_DsdNtkFree( pTemp ); +} + +/**Function************************************************************* + + Synopsis [Print the DSD formula.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars ) +{ + Kit_DsdNtk_t * pTemp; + pTemp = Kit_DsdDecomposeMux( pTruth, nVars, 5 ); + Kit_DsdVerify( pTemp, pTruth, nVars ); + Kit_DsdPrintExpanded( pTemp ); + Kit_DsdNtkFree( pTemp ); +} + +/**Function************************************************************* + + Synopsis [Derives the truth table of the DSD node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Kit_DsdTruthComputeNode_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id ) +{ + Kit_DsdObj_t * pObj; + unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp; + unsigned i, iLit, fCompl; +// unsigned m, nMints, * pTruthPrime, * pTruthMint; + + // get the node with this ID + pObj = Kit_DsdNtkObj( pNtk, Id ); + pTruthRes = Vec_PtrEntry( p->vTtNodes, Id ); + + // special case: literal of an internal node + if ( pObj == NULL ) + { + assert( Id < pNtk->nVars ); + return pTruthRes; + } + + // constant node + if ( pObj->Type == KIT_DSD_CONST1 ) + { + assert( pObj->nFans == 0 ); + Kit_TruthFill( pTruthRes, pNtk->nVars ); + return pTruthRes; + } + + // elementary variable node + if ( pObj->Type == KIT_DSD_VAR ) + { + assert( pObj->nFans == 1 ); + iLit = pObj->pFans[0]; + pTruthFans[0] = Kit_DsdTruthComputeNode_rec( p, pNtk, Kit_DsdLit2Var(iLit) ); + if ( Kit_DsdLitIsCompl(iLit) ) + Kit_TruthNot( pTruthRes, pTruthFans[0], pNtk->nVars ); + else + Kit_TruthCopy( pTruthRes, pTruthFans[0], pNtk->nVars ); + return pTruthRes; + } + + // collect the truth tables of the fanins + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + pTruthFans[i] = Kit_DsdTruthComputeNode_rec( p, pNtk, Kit_DsdLit2Var(iLit) ); + // create the truth table + + // simple gates + if ( pObj->Type == KIT_DSD_AND ) + { + Kit_TruthFill( pTruthRes, pNtk->nVars ); + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Kit_DsdLitIsCompl(iLit) ); + return pTruthRes; + } + if ( pObj->Type == KIT_DSD_XOR ) + { + Kit_TruthClear( pTruthRes, pNtk->nVars ); + fCompl = 0; + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + { + Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars ); + fCompl ^= Kit_DsdLitIsCompl(iLit); + } + if ( fCompl ) + Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); + return pTruthRes; + } + assert( pObj->Type == KIT_DSD_PRIME ); +/* + // get the truth table of the prime node + pTruthPrime = Kit_DsdObjTruth( pObj ); + // get storage for the temporary minterm + pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes); + + // go through the minterms + nMints = (1 << pObj->nFans); + Kit_TruthClear( pTruthRes, pNtk->nVars ); + for ( m = 0; m < nMints; m++ ) + { + if ( !Kit_TruthHasBit(pTruthPrime, m) ) + continue; + Kit_TruthFill( pTruthMint, pNtk->nVars ); + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Kit_DsdLitIsCompl(iLit) ); + Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars ); + } +*/ + pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes ); + Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars ); + return pTruthRes; +} + +/**Function************************************************************* + + Synopsis [Derives the truth table of the DSD network.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Kit_DsdTruthCompute( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk ) +{ + unsigned * pTruthRes; + int i; + // assign elementary truth ables + assert( pNtk->nVars <= p->nVars ); + for ( i = 0; i < (int)pNtk->nVars; i++ ) + Kit_TruthCopy( Vec_PtrEntry(p->vTtNodes, i), Vec_PtrEntry(p->vTtElems, i), p->nVars ); + // compute truth table for each node + pTruthRes = Kit_DsdTruthComputeNode_rec( p, pNtk, Kit_DsdLit2Var(pNtk->Root) ); + // complement the truth table if needed + if ( Kit_DsdLitIsCompl(pNtk->Root) ) + Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); + return pTruthRes; +} + +/**Function************************************************************* + + Synopsis [Derives the truth table of the DSD node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Kit_DsdTruthComputeNodeOne_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id, unsigned uSupp ) +{ + Kit_DsdObj_t * pObj; + unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp; + unsigned i, iLit, fCompl, nPartial = 0; +// unsigned m, nMints, * pTruthPrime, * pTruthMint; + + // get the node with this ID + pObj = Kit_DsdNtkObj( pNtk, Id ); + pTruthRes = Vec_PtrEntry( p->vTtNodes, Id ); + + // special case: literal of an internal node + if ( pObj == NULL ) + { + assert( Id < pNtk->nVars ); + assert( !uSupp || uSupp != (uSupp & ~(1<<Id)) ); + return pTruthRes; + } + + // constant node + if ( pObj->Type == KIT_DSD_CONST1 ) + { + assert( pObj->nFans == 0 ); + Kit_TruthFill( pTruthRes, pNtk->nVars ); + return pTruthRes; + } + + // elementary variable node + if ( pObj->Type == KIT_DSD_VAR ) + { + assert( pObj->nFans == 1 ); + iLit = pObj->pFans[0]; + assert( Kit_DsdLitIsLeaf( pNtk, iLit ) ); + pTruthFans[0] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(iLit), uSupp ); + if ( Kit_DsdLitIsCompl(iLit) ) + Kit_TruthNot( pTruthRes, pTruthFans[0], pNtk->nVars ); + else + Kit_TruthCopy( pTruthRes, pTruthFans[0], pNtk->nVars ); + return pTruthRes; + } + + // collect the truth tables of the fanins + if ( uSupp ) + { + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + if ( uSupp != (uSupp & ~Kit_DsdLitSupport(pNtk, iLit)) ) + pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(iLit), uSupp ); + else + { + pTruthFans[i] = NULL; + nPartial = 1; + } + } + else + { + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(iLit), uSupp ); + } + // create the truth table + + // simple gates + if ( pObj->Type == KIT_DSD_AND ) + { + Kit_TruthFill( pTruthRes, pNtk->nVars ); + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + if ( pTruthFans[i] ) + Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Kit_DsdLitIsCompl(iLit) ); + return pTruthRes; + } + if ( pObj->Type == KIT_DSD_XOR ) + { + Kit_TruthClear( pTruthRes, pNtk->nVars ); + fCompl = 0; + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + { + if ( pTruthFans[i] ) + { + Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars ); + fCompl ^= Kit_DsdLitIsCompl(iLit); + } + } + if ( fCompl ) + Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); + return pTruthRes; + } + assert( pObj->Type == KIT_DSD_PRIME ); + + if ( uSupp && nPartial ) + { + // find the only non-empty component + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + if ( pTruthFans[i] ) + break; + assert( i < pObj->nFans ); + return pTruthFans[i]; + } +/* + // get the truth table of the prime node + pTruthPrime = Kit_DsdObjTruth( pObj ); + // get storage for the temporary minterm + pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes); + + // go through the minterms + nMints = (1 << pObj->nFans); + Kit_TruthClear( pTruthRes, pNtk->nVars ); + for ( m = 0; m < nMints; m++ ) + { + if ( !Kit_TruthHasBit(pTruthPrime, m) ) + continue; + Kit_TruthFill( pTruthMint, pNtk->nVars ); + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Kit_DsdLitIsCompl(iLit) ); + Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars ); + } +*/ + pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes ); + Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars ); + return pTruthRes; +} + +/**Function************************************************************* + + Synopsis [Derives the truth table of the DSD network.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Kit_DsdTruthComputeOne( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp ) +{ + unsigned * pTruthRes; + int i; + // if support is specified, request that supports are available + if ( uSupp ) + Kit_DsdGetSupports( pNtk ); + // assign elementary truth tables + assert( pNtk->nVars <= p->nVars ); + for ( i = 0; i < (int)pNtk->nVars; i++ ) + Kit_TruthCopy( Vec_PtrEntry(p->vTtNodes, i), Vec_PtrEntry(p->vTtElems, i), p->nVars ); + // compute truth table for each node + pTruthRes = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(pNtk->Root), uSupp ); + // complement the truth table if needed + if ( Kit_DsdLitIsCompl(pNtk->Root) ) + Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); + return pTruthRes; +} + +/**Function************************************************************* + + Synopsis [Derives the truth table of the DSD node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Kit_DsdTruthComputeNodeTwo_rec( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, int Id, unsigned uSupp, int iVar, unsigned * pTruthDec ) +{ + Kit_DsdObj_t * pObj; + int pfBoundSet[16]; + unsigned * pTruthRes, * pTruthFans[16], * pTruthTemp; + unsigned i, iLit, fCompl, nPartial, uSuppFan, uSuppCur; +// unsigned m, nMints, * pTruthPrime, * pTruthMint; + assert( uSupp > 0 ); + + // get the node with this ID + pObj = Kit_DsdNtkObj( pNtk, Id ); + pTruthRes = Vec_PtrEntry( p->vTtNodes, Id ); + if ( pObj == NULL ) + { + assert( Id < pNtk->nVars ); + return pTruthRes; + } + assert( pObj->Type != KIT_DSD_CONST1 ); + assert( pObj->Type != KIT_DSD_VAR ); + + // count the number of intersecting fanins + // collect the total support of the intersecting fanins + nPartial = 0; + uSuppFan = 0; + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + { + uSuppCur = Kit_DsdLitSupport(pNtk, iLit); + if ( uSupp & uSuppCur ) + { + nPartial++; + uSuppFan |= uSuppCur; + } + } + + // if there is no intersection, or full intersection, use simple procedure + if ( nPartial == 0 || nPartial == pObj->nFans ) + return Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Id, 0 ); + + // if support of the component includes some other variables + // we need to continue constructing it as usual by the two-function procedure + if ( uSuppFan != (uSuppFan & uSupp) ) + { + assert( nPartial == 1 ); +// return Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Id, uSupp, iVar, pTruthDec ); + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + { + if ( uSupp & Kit_DsdLitSupport(pNtk, iLit) ) + pTruthFans[i] = Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Kit_DsdLit2Var(iLit), uSupp, iVar, pTruthDec ); + else + pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(iLit), 0 ); + } + + // create composition/decomposition functions + if ( pObj->Type == KIT_DSD_AND ) + { + Kit_TruthFill( pTruthRes, pNtk->nVars ); + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Kit_DsdLitIsCompl(iLit) ); + return pTruthRes; + } + if ( pObj->Type == KIT_DSD_XOR ) + { + Kit_TruthClear( pTruthRes, pNtk->nVars ); + fCompl = 0; + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + { + fCompl ^= Kit_DsdLitIsCompl(iLit); + Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars ); + } + if ( fCompl ) + Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); + return pTruthRes; + } + assert( pObj->Type == KIT_DSD_PRIME ); + } + else + { + assert( uSuppFan == (uSuppFan & uSupp) ); + assert( nPartial < pObj->nFans ); + // the support of the insecting component(s) is contained in the bound-set + // and yet there are components that are not contained in the bound set + + // solve the fanins and collect info, which components belong to the bound set + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + { + pTruthFans[i] = Kit_DsdTruthComputeNodeOne_rec( p, pNtk, Kit_DsdLit2Var(iLit), 0 ); + pfBoundSet[i] = (int)((uSupp & Kit_DsdLitSupport(pNtk, iLit)) > 0); + } + + // create composition/decomposition functions + if ( pObj->Type == KIT_DSD_AND ) + { + Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar ); + Kit_TruthFill( pTruthDec, pNtk->nVars ); + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + if ( pfBoundSet[i] ) + Kit_TruthAndPhase( pTruthDec, pTruthDec, pTruthFans[i], pNtk->nVars, 0, Kit_DsdLitIsCompl(iLit) ); + else + Kit_TruthAndPhase( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars, 0, Kit_DsdLitIsCompl(iLit) ); + return pTruthRes; + } + if ( pObj->Type == KIT_DSD_XOR ) + { + Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar ); + Kit_TruthClear( pTruthDec, pNtk->nVars ); + fCompl = 0; + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + { + fCompl ^= Kit_DsdLitIsCompl(iLit); + if ( pfBoundSet[i] ) + Kit_TruthXor( pTruthDec, pTruthDec, pTruthFans[i], pNtk->nVars ); + else + Kit_TruthXor( pTruthRes, pTruthRes, pTruthFans[i], pNtk->nVars ); + } + if ( fCompl ) + Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); + return pTruthRes; + } + assert( pObj->Type == KIT_DSD_PRIME ); + assert( nPartial == 1 ); + + // find the only non-empty component + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + if ( pfBoundSet[i] ) + break; + assert( i < pObj->nFans ); + + // save this component as the decomposed function + Kit_TruthCopy( pTruthDec, pTruthFans[i], pNtk->nVars ); + // set the corresponding component to be the new variable + Kit_TruthIthVar( pTruthFans[i], pNtk->nVars, iVar ); + } +/* + // get the truth table of the prime node + pTruthPrime = Kit_DsdObjTruth( pObj ); + // get storage for the temporary minterm + pTruthMint = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes); + + // go through the minterms + nMints = (1 << pObj->nFans); + Kit_TruthClear( pTruthRes, pNtk->nVars ); + for ( m = 0; m < nMints; m++ ) + { + if ( !Kit_TruthHasBit(pTruthPrime, m) ) + continue; + Kit_TruthFill( pTruthMint, pNtk->nVars ); + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + Kit_TruthAndPhase( pTruthMint, pTruthMint, pTruthFans[i], pNtk->nVars, 0, ((m & (1<<i)) == 0) ^ Kit_DsdLitIsCompl(iLit) ); + Kit_TruthOr( pTruthRes, pTruthRes, pTruthMint, pNtk->nVars ); + } +*/ + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + assert( !Kit_DsdLitIsCompl(iLit) ); + pTruthTemp = Kit_TruthCompose( p->dd, Kit_DsdObjTruth(pObj), pObj->nFans, pTruthFans, pNtk->nVars, p->vTtBdds, p->vNodes ); + Kit_TruthCopy( pTruthRes, pTruthTemp, pNtk->nVars ); + return pTruthRes; +} + +/**Function************************************************************* + + Synopsis [Derives the truth table of the DSD network.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Kit_DsdTruthComputeTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthDec ) +{ + unsigned * pTruthRes, uSuppAll; + int i; + assert( uSupp > 0 ); + assert( pNtk->nVars <= p->nVars ); + // compute support of all nodes + uSuppAll = Kit_DsdGetSupports( pNtk ); + // consider special case - there is no overlap + if ( (uSupp & uSuppAll) == 0 ) + { + Kit_TruthClear( pTruthDec, pNtk->nVars ); + return Kit_DsdTruthCompute( p, pNtk ); + } + // consider special case - support is fully contained + if ( (uSupp & uSuppAll) == uSuppAll ) + { + pTruthRes = Kit_DsdTruthCompute( p, pNtk ); + Kit_TruthCopy( pTruthDec, pTruthRes, pNtk->nVars ); + Kit_TruthIthVar( pTruthRes, pNtk->nVars, iVar ); + return pTruthRes; + } + // assign elementary truth tables + for ( i = 0; i < (int)pNtk->nVars; i++ ) + Kit_TruthCopy( Vec_PtrEntry(p->vTtNodes, i), Vec_PtrEntry(p->vTtElems, i), p->nVars ); + // compute truth table for each node + pTruthRes = Kit_DsdTruthComputeNodeTwo_rec( p, pNtk, Kit_DsdLit2Var(pNtk->Root), uSupp, iVar, pTruthDec ); + // complement the truth table if needed + if ( Kit_DsdLitIsCompl(pNtk->Root) ) + Kit_TruthNot( pTruthRes, pTruthRes, pNtk->nVars ); + return pTruthRes; +} + +/**Function************************************************************* + + Synopsis [Derives the truth table of the DSD network.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdTruth( Kit_DsdNtk_t * pNtk, unsigned * pTruthRes ) +{ + Kit_DsdMan_t * p; + unsigned * pTruth; + p = Kit_DsdManAlloc( pNtk->nVars, Kit_DsdNtkObjNum(pNtk) ); + pTruth = Kit_DsdTruthCompute( p, pNtk ); + Kit_TruthCopy( pTruthRes, pTruth, pNtk->nVars ); + Kit_DsdManFree( p ); +} + +/**Function************************************************************* + + Synopsis [Derives the truth table of the DSD network.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdTruthPartialTwo( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned uSupp, int iVar, unsigned * pTruthCo, unsigned * pTruthDec ) +{ + unsigned * pTruth = Kit_DsdTruthComputeTwo( p, pNtk, uSupp, iVar, pTruthDec ); + if ( pTruthCo ) + Kit_TruthCopy( pTruthCo, pTruth, pNtk->nVars ); +} + +/**Function************************************************************* + + Synopsis [Derives the truth table of the DSD network.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdTruthPartial( Kit_DsdMan_t * p, Kit_DsdNtk_t * pNtk, unsigned * pTruthRes, unsigned uSupp ) +{ + unsigned * pTruth = Kit_DsdTruthComputeOne( p, pNtk, uSupp ); + Kit_TruthCopy( pTruthRes, pTruth, pNtk->nVars ); +/* + // verification + { + // compute the same function using different procedure + unsigned * pTruthTemp = Vec_PtrEntry(p->vTtNodes, pNtk->nVars + pNtk->nNodes + 1); + pNtk->pSupps = NULL; + Kit_DsdTruthComputeTwo( p, pNtk, uSupp, -1, pTruthTemp ); +// if ( !Kit_TruthIsEqual( pTruthTemp, pTruthRes, pNtk->nVars ) ) + if ( !Kit_TruthIsEqualWithPhase( pTruthTemp, pTruthRes, pNtk->nVars ) ) + { + printf( "Verification FAILED!\n" ); + Kit_DsdPrint( stdout, pNtk ); + Kit_DsdPrintFromTruth( pTruthRes, pNtk->nVars ); + Kit_DsdPrintFromTruth( pTruthTemp, pNtk->nVars ); + } +// else +// printf( "Verification successful.\n" ); + } +*/ +} + +/**Function************************************************************* + + Synopsis [Counts the number of blocks of the given number of inputs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdCountLuts_rec( Kit_DsdNtk_t * pNtk, int nLutSize, int Id, int * pCounter ) +{ + Kit_DsdObj_t * pObj; + unsigned iLit, i, Res0, Res1; + pObj = Kit_DsdNtkObj( pNtk, Id ); + if ( pObj == NULL ) + return 0; + if ( pObj->Type == KIT_DSD_AND || pObj->Type == KIT_DSD_XOR ) + { + assert( pObj->nFans == 2 ); + Res0 = Kit_DsdCountLuts_rec( pNtk, nLutSize, Kit_DsdLit2Var(pObj->pFans[0]), pCounter ); + Res1 = Kit_DsdCountLuts_rec( pNtk, nLutSize, Kit_DsdLit2Var(pObj->pFans[1]), pCounter ); + if ( Res0 == 0 && Res1 > 0 ) + return Res1 - 1; + if ( Res0 > 0 && Res1 == 0 ) + return Res0 - 1; + (*pCounter)++; + return nLutSize - 2; + } + assert( pObj->Type == KIT_DSD_PRIME ); + if ( (int)pObj->nFans > nLutSize ) //+ 1 ) + { + *pCounter = 1000; + return 0; + } + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + Kit_DsdCountLuts_rec( pNtk, nLutSize, Kit_DsdLit2Var(iLit), pCounter ); + (*pCounter)++; +// if ( (int)pObj->nFans == nLutSize + 1 ) +// (*pCounter)++; + return nLutSize - pObj->nFans; +} + +/**Function************************************************************* + + Synopsis [Counts the number of blocks of the given number of inputs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdCountLuts( Kit_DsdNtk_t * pNtk, int nLutSize ) +{ + int Counter = 0; + if ( Kit_DsdNtkRoot(pNtk)->Type == KIT_DSD_CONST1 ) + return 0; + if ( Kit_DsdNtkRoot(pNtk)->Type == KIT_DSD_VAR ) + return 0; + Kit_DsdCountLuts_rec( pNtk, nLutSize, Kit_DsdLit2Var(pNtk->Root), &Counter ); + if ( Counter >= 1000 ) + return -1; + return Counter; +} + +/**Function************************************************************* + + Synopsis [Counts the number of blocks of the given number of inputs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdNonDsdSizeMax( Kit_DsdNtk_t * pNtk ) +{ + Kit_DsdObj_t * pObj; + unsigned i, nSizeMax = 0; + Kit_DsdNtkForEachObj( pNtk, pObj, i ) + { + if ( pObj->Type != KIT_DSD_PRIME ) + continue; + if ( nSizeMax < pObj->nFans ) + nSizeMax = pObj->nFans; + } + return nSizeMax; +} + +/**Function************************************************************* + + Synopsis [Finds the union of supports of the non-DSD blocks.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_DsdNonDsdSupports( Kit_DsdNtk_t * pNtk ) +{ + Kit_DsdObj_t * pObj; + unsigned i, uSupport = 0; +// FREE( pNtk->pSupps ); + Kit_DsdGetSupports( pNtk ); + Kit_DsdNtkForEachObj( pNtk, pObj, i ) + { + if ( pObj->Type != KIT_DSD_PRIME ) + continue; + uSupport |= Kit_DsdLitSupport( pNtk, Kit_DsdVar2Lit(pObj->Id,0) ); + } + return uSupport; +} + + +/**Function************************************************************* + + Synopsis [Expands the node.] + + Description [Returns the new literal.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdExpandCollectAnd_rec( Kit_DsdNtk_t * p, int iLit, int * piLitsNew, int * nLitsNew ) +{ + Kit_DsdObj_t * pObj; + unsigned i, iLitFanin; + // check the end of the supergate + pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); + if ( Kit_DsdLitIsCompl(iLit) || Kit_DsdLit2Var(iLit) < p->nVars || pObj->Type != KIT_DSD_AND ) + { + piLitsNew[(*nLitsNew)++] = iLit; + return; + } + // iterate through the fanins + Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i ) + Kit_DsdExpandCollectAnd_rec( p, iLitFanin, piLitsNew, nLitsNew ); +} + +/**Function************************************************************* + + Synopsis [Expands the node.] + + Description [Returns the new literal.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdExpandCollectXor_rec( Kit_DsdNtk_t * p, int iLit, int * piLitsNew, int * nLitsNew ) +{ + Kit_DsdObj_t * pObj; + unsigned i, iLitFanin; + // check the end of the supergate + pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); + if ( Kit_DsdLit2Var(iLit) < p->nVars || pObj->Type != KIT_DSD_XOR ) + { + piLitsNew[(*nLitsNew)++] = iLit; + return; + } + // iterate through the fanins + pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); + Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i ) + Kit_DsdExpandCollectXor_rec( p, iLitFanin, piLitsNew, nLitsNew ); + // if the literal was complemented, pass the complemented attribute somewhere + if ( Kit_DsdLitIsCompl(iLit) ) + piLitsNew[0] = Kit_DsdLitNot( piLitsNew[0] ); +} + +/**Function************************************************************* + + Synopsis [Expands the node.] + + Description [Returns the new literal.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdExpandNode_rec( Kit_DsdNtk_t * pNew, Kit_DsdNtk_t * p, int iLit ) +{ + unsigned * pTruth, * pTruthNew; + unsigned i, iLitFanin, piLitsNew[16], nLitsNew = 0; + Kit_DsdObj_t * pObj, * pObjNew; + + // consider the case of simple gate + pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); + if ( pObj == NULL ) + return iLit; + if ( pObj->Type == KIT_DSD_AND ) + { + Kit_DsdExpandCollectAnd_rec( p, Kit_DsdLitRegular(iLit), piLitsNew, &nLitsNew ); + pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_AND, nLitsNew ); + for ( i = 0; i < pObjNew->nFans; i++ ) + pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, piLitsNew[i] ); + return Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(iLit) ); + } + if ( pObj->Type == KIT_DSD_XOR ) + { + int fCompl = Kit_DsdLitIsCompl(iLit); + Kit_DsdExpandCollectXor_rec( p, Kit_DsdLitRegular(iLit), piLitsNew, &nLitsNew ); + pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_XOR, nLitsNew ); + for ( i = 0; i < pObjNew->nFans; i++ ) + { + pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, Kit_DsdLitRegular(piLitsNew[i]) ); + fCompl ^= Kit_DsdLitIsCompl(piLitsNew[i]); + } + return Kit_DsdVar2Lit( pObjNew->Id, fCompl ); + } + assert( pObj->Type == KIT_DSD_PRIME ); + + // create new PRIME node + pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_PRIME, pObj->nFans ); + // copy the truth table + pTruth = Kit_DsdObjTruth( pObj ); + pTruthNew = Kit_DsdObjTruth( pObjNew ); + Kit_TruthCopy( pTruthNew, pTruth, pObj->nFans ); + // create fanins + Kit_DsdObjForEachFanin( pNtk, pObj, iLitFanin, i ) + { + pObjNew->pFans[i] = Kit_DsdExpandNode_rec( pNew, p, iLitFanin ); + // complement the corresponding inputs of the truth table + if ( Kit_DsdLitIsCompl(pObjNew->pFans[i]) ) + { + pObjNew->pFans[i] = Kit_DsdLitRegular(pObjNew->pFans[i]); + Kit_TruthChangePhase( pTruthNew, pObjNew->nFans, i ); + } + } + // if the incoming phase is complemented, absorb it into the prime node + if ( Kit_DsdLitIsCompl(iLit) ) + Kit_TruthNot( pTruthNew, pTruthNew, pObj->nFans ); + return Kit_DsdVar2Lit( pObjNew->Id, 0 ); +} + +/**Function************************************************************* + + Synopsis [Expands the network.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_DsdNtk_t * Kit_DsdExpand( Kit_DsdNtk_t * p ) +{ + Kit_DsdNtk_t * pNew; + Kit_DsdObj_t * pObjNew; + assert( p->nVars <= 16 ); + // create a new network + pNew = Kit_DsdNtkAlloc( p->nVars ); + // consider simple special cases + if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_CONST1 ) + { + pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_CONST1, 0 ); + pNew->Root = Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(p->Root) ); + return pNew; + } + if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_VAR ) + { + pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_VAR, 1 ); + pObjNew->pFans[0] = Kit_DsdNtkRoot(p)->pFans[0]; + pNew->Root = Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(p->Root) ); + return pNew; + } + // convert the root node + pNew->Root = Kit_DsdExpandNode_rec( pNew, p, p->Root ); + return pNew; +} + +/**Function************************************************************* + + Synopsis [Sorts the literals by their support.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdCompSort( int pPrios[], unsigned uSupps[], unsigned char * piLits, int nVars, int piLitsRes[] ) +{ + int nSuppSizes[16], Priority[16], pOrder[16]; + int i, k, iVarBest, SuppMax, PrioMax; + // compute support sizes and priorities of the components + for ( i = 0; i < nVars; i++ ) + { + assert( uSupps[i] ); + pOrder[i] = i; + Priority[i] = KIT_INFINITY; + for ( k = 0; k < 16; k++ ) + if ( uSupps[i] & (1 << k) ) + Priority[i] = KIT_MIN( Priority[i], pPrios[k] ); + assert( Priority[i] != 16 ); + nSuppSizes[i] = Kit_WordCountOnes(uSupps[i]); + } + // sort the components by pririty + Extra_BubbleSort( pOrder, Priority, nVars, 0 ); + // find the component by with largest size and lowest priority + iVarBest = -1; + SuppMax = 0; + PrioMax = 0; + for ( i = 0; i < nVars; i++ ) + { + if ( SuppMax < nSuppSizes[i] || (SuppMax == nSuppSizes[i] && PrioMax < Priority[i]) ) + { + SuppMax = nSuppSizes[i]; + PrioMax = Priority[i]; + iVarBest = i; + } + } + assert( iVarBest != -1 ); + // copy the resulting literals + k = 0; + piLitsRes[k++] = piLits[iVarBest]; + for ( i = 0; i < nVars; i++ ) + { + if ( pOrder[i] == iVarBest ) + continue; + piLitsRes[k++] = piLits[pOrder[i]]; + } + assert( k == nVars ); +} + +/**Function************************************************************* + + Synopsis [Shrinks multi-input nodes.] + + Description [Takes the array of variable priorities pPrios.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdShrink_rec( Kit_DsdNtk_t * pNew, Kit_DsdNtk_t * p, int iLit, int pPrios[] ) +{ + Kit_DsdObj_t * pObj, * pObjNew; + unsigned * pTruth, * pTruthNew; + unsigned i, piLitsNew[16], uSupps[16]; + int iLitFanin, iLitNew; + + // consider the case of simple gate + pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); + if ( pObj == NULL ) + return iLit; + if ( pObj->Type == KIT_DSD_AND ) + { + // get the supports + Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i ) + uSupps[i] = Kit_DsdLitSupport( p, iLitFanin ); + // put the largest component last + // sort other components in the decreasing order of priority of their vars + Kit_DsdCompSort( pPrios, uSupps, pObj->pFans, pObj->nFans, piLitsNew ); + // construct the two-input node network + iLitNew = Kit_DsdShrink_rec( pNew, p, piLitsNew[0], pPrios ); + for ( i = 1; i < pObj->nFans; i++ ) + { + pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_AND, 2 ); + pObjNew->pFans[0] = Kit_DsdShrink_rec( pNew, p, piLitsNew[i], pPrios ); + pObjNew->pFans[1] = iLitNew; + iLitNew = Kit_DsdVar2Lit( pObjNew->Id, 0 ); + } + return Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(iLit) ); + } + if ( pObj->Type == KIT_DSD_XOR ) + { + // get the supports + Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i ) + { + assert( !Kit_DsdLitIsCompl(iLitFanin) ); + uSupps[i] = Kit_DsdLitSupport( p, iLitFanin ); + } + // put the largest component last + // sort other components in the decreasing order of priority of their vars + Kit_DsdCompSort( pPrios, uSupps, pObj->pFans, pObj->nFans, piLitsNew ); + // construct the two-input node network + iLitNew = Kit_DsdShrink_rec( pNew, p, piLitsNew[0], pPrios ); + for ( i = 1; i < pObj->nFans; i++ ) + { + pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_XOR, 2 ); + pObjNew->pFans[0] = Kit_DsdShrink_rec( pNew, p, piLitsNew[i], pPrios ); + pObjNew->pFans[1] = iLitNew; + iLitNew = Kit_DsdVar2Lit( pObjNew->Id, 0 ); + } + return Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(iLit) ); + } + assert( pObj->Type == KIT_DSD_PRIME ); + + // create new PRIME node + pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_PRIME, pObj->nFans ); + // copy the truth table + pTruth = Kit_DsdObjTruth( pObj ); + pTruthNew = Kit_DsdObjTruth( pObjNew ); + Kit_TruthCopy( pTruthNew, pTruth, pObj->nFans ); + // create fanins + Kit_DsdObjForEachFanin( pNtk, pObj, iLitFanin, i ) + { + pObjNew->pFans[i] = Kit_DsdShrink_rec( pNew, p, iLitFanin, pPrios ); + // complement the corresponding inputs of the truth table + if ( Kit_DsdLitIsCompl(pObjNew->pFans[i]) ) + { + pObjNew->pFans[i] = Kit_DsdLitRegular(pObjNew->pFans[i]); + Kit_TruthChangePhase( pTruthNew, pObjNew->nFans, i ); + } + } + // if the incoming phase is complemented, absorb it into the prime node + if ( Kit_DsdLitIsCompl(iLit) ) + Kit_TruthNot( pTruthNew, pTruthNew, pObj->nFans ); + return Kit_DsdVar2Lit( pObjNew->Id, 0 ); +} + +/**Function************************************************************* + + Synopsis [Shrinks the network.] + + Description [Transforms the network to have two-input nodes so that the + higher-ordered nodes were decomposed out first.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_DsdNtk_t * Kit_DsdShrink( Kit_DsdNtk_t * p, int pPrios[] ) +{ + Kit_DsdNtk_t * pNew; + Kit_DsdObj_t * pObjNew; + assert( p->nVars <= 16 ); + // create a new network + pNew = Kit_DsdNtkAlloc( p->nVars ); + // consider simple special cases + if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_CONST1 ) + { + pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_CONST1, 0 ); + pNew->Root = Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(p->Root) ); + return pNew; + } + if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_VAR ) + { + pObjNew = Kit_DsdObjAlloc( pNew, KIT_DSD_VAR, 1 ); + pObjNew->pFans[0] = Kit_DsdNtkRoot(p)->pFans[0]; + pNew->Root = Kit_DsdVar2Lit( pObjNew->Id, Kit_DsdLitIsCompl(p->Root) ); + return pNew; + } + // convert the root node + pNew->Root = Kit_DsdShrink_rec( pNew, p, p->Root, pPrios ); + return pNew; +} + +/**Function************************************************************* + + Synopsis [Rotates the network.] + + Description [Transforms prime nodes to have the fanin with the + highest frequency of supports go first.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdRotate( Kit_DsdNtk_t * p, int pFreqs[] ) +{ + Kit_DsdObj_t * pObj; + unsigned * pIn, * pOut, * pTemp, k; + int i, v, Temp, uSuppFanin, iFaninLit, WeightMax, FaninMax, nSwaps; + int Weights[16]; + // go through the prime nodes + Kit_DsdNtkForEachObj( p, pObj, i ) + { + if ( pObj->Type != KIT_DSD_PRIME ) + continue; + // count the fanin frequencies + Kit_DsdObjForEachFanin( p, pObj, iFaninLit, k ) + { + uSuppFanin = Kit_DsdLitSupport( p, iFaninLit ); + Weights[k] = 0; + for ( v = 0; v < 16; v++ ) + if ( uSuppFanin & (1 << v) ) + Weights[k] += pFreqs[v] - 1; + } + // find the most frequent fanin + WeightMax = 0; + FaninMax = -1; + for ( k = 0; k < pObj->nFans; k++ ) + if ( WeightMax < Weights[k] ) + { + WeightMax = Weights[k]; + FaninMax = k; + } + // no need to reorder if there are no frequent fanins + if ( FaninMax == -1 ) + continue; + // move the fanins number k to the first place + nSwaps = 0; + pIn = Kit_DsdObjTruth(pObj); + pOut = p->pMem; +// for ( v = FaninMax; v < ((int)pObj->nFans)-1; v++ ) + for ( v = FaninMax-1; v >= 0; v-- ) + { + // swap the fanins + Temp = pObj->pFans[v]; + pObj->pFans[v] = pObj->pFans[v+1]; + pObj->pFans[v+1] = Temp; + // swap the truth table variables + Kit_TruthSwapAdjacentVars( pOut, pIn, pObj->nFans, v ); + pTemp = pIn; pIn = pOut; pOut = pTemp; + nSwaps++; + } + if ( nSwaps & 1 ) + Kit_TruthCopy( pOut, pIn, pObj->nFans ); + } +} + +/**Function************************************************************* + + Synopsis [Compute the support.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_DsdGetSupports_rec( Kit_DsdNtk_t * p, int iLit ) +{ + Kit_DsdObj_t * pObj; + unsigned uSupport, k; + int iFaninLit; + pObj = Kit_DsdNtkObj( p, Kit_DsdLit2Var(iLit) ); + if ( pObj == NULL ) + return Kit_DsdLitSupport( p, iLit ); + uSupport = 0; + Kit_DsdObjForEachFanin( p, pObj, iFaninLit, k ) + uSupport |= Kit_DsdGetSupports_rec( p, iFaninLit ); + p->pSupps[pObj->Id - p->nVars] = uSupport; + assert( uSupport <= 0xFFFF ); + return uSupport; +} + +/**Function************************************************************* + + Synopsis [Compute the support.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_DsdGetSupports( Kit_DsdNtk_t * p ) +{ + Kit_DsdObj_t * pRoot; + unsigned uSupport; + assert( p->pSupps == NULL ); + p->pSupps = ALLOC( unsigned, p->nNodes ); + // consider simple special cases + pRoot = Kit_DsdNtkRoot(p); + if ( pRoot->Type == KIT_DSD_CONST1 ) + { + assert( p->nNodes == 1 ); + uSupport = p->pSupps[0] = 0; + } + if ( pRoot->Type == KIT_DSD_VAR ) + { + assert( p->nNodes == 1 ); + uSupport = p->pSupps[0] = Kit_DsdLitSupport( p, pRoot->pFans[0] ); + } + else + uSupport = Kit_DsdGetSupports_rec( p, p->Root ); + assert( uSupport <= 0xFFFF ); + return uSupport; +} + +/**Function************************************************************* + + Synopsis [Returns 1 if there is a component with more than 3 inputs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdFindLargeBox_rec( Kit_DsdNtk_t * pNtk, int Id, int Size ) +{ + Kit_DsdObj_t * pObj; + unsigned iLit, i, RetValue; + pObj = Kit_DsdNtkObj( pNtk, Id ); + if ( pObj == NULL ) + return 0; + if ( pObj->Type == KIT_DSD_PRIME && (int)pObj->nFans > Size ) + return 1; + RetValue = 0; + Kit_DsdObjForEachFanin( pNtk, pObj, iLit, i ) + RetValue |= Kit_DsdFindLargeBox_rec( pNtk, Kit_DsdLit2Var(iLit), Size ); + return RetValue; +} + +/**Function************************************************************* + + Synopsis [Returns 1 if there is a component with more than 3 inputs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdFindLargeBox( Kit_DsdNtk_t * pNtk, int Size ) +{ + return Kit_DsdFindLargeBox_rec( pNtk, Kit_DsdLit2Var(pNtk->Root), Size ); +} + +/**Function************************************************************* + + Synopsis [Returns 1 if the non-DSD 4-var func is implementable with two 3-LUTs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdRootNodeHasCommonVars( Kit_DsdObj_t * pObj0, Kit_DsdObj_t * pObj1 ) +{ + unsigned i, k; + for ( i = 0; i < pObj0->nFans; i++ ) + { + if ( Kit_DsdLit2Var(pObj0->pFans[i]) >= 4 ) + continue; + for ( k = 0; k < pObj1->nFans; k++ ) + if ( Kit_DsdLit2Var(pObj0->pFans[i]) == Kit_DsdLit2Var(pObj1->pFans[k]) ) + return 1; + } + return 0; +} + +/**Function************************************************************* + + Synopsis [Returns 1 if the non-DSD 4-var func is implementable with two 3-LUTs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdCheckVar4Dec2( Kit_DsdNtk_t * pNtk0, Kit_DsdNtk_t * pNtk1 ) +{ + assert( pNtk0->nVars == 4 ); + assert( pNtk1->nVars == 4 ); + if ( Kit_DsdFindLargeBox(pNtk0, 2) ) + return 0; + if ( Kit_DsdFindLargeBox(pNtk1, 2) ) + return 0; + return Kit_DsdRootNodeHasCommonVars( Kit_DsdNtkRoot(pNtk0), Kit_DsdNtkRoot(pNtk1) ); +} + +/**Function************************************************************* + + Synopsis [Performs decomposition of the node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdDecompose_rec( Kit_DsdNtk_t * pNtk, Kit_DsdObj_t * pObj, unsigned uSupp, unsigned char * pPar, int nDecMux ) +{ + Kit_DsdObj_t * pRes, * pRes0, * pRes1; + int nWords = Kit_TruthWordNum(pObj->nFans); + unsigned * pTruth = Kit_DsdObjTruth(pObj); + unsigned * pCofs2[2] = { pNtk->pMem, pNtk->pMem + nWords }; + unsigned * pCofs4[2][2] = { {pNtk->pMem + 2 * nWords, pNtk->pMem + 3 * nWords}, {pNtk->pMem + 4 * nWords, pNtk->pMem + 5 * nWords} }; + int i, iLit0, iLit1, nFans0, nFans1, nPairs; + int fEquals[2][2], fOppos, fPairs[4][4]; + unsigned j, k, nFansNew, uSupp0, uSupp1; + + assert( pObj->nFans > 0 ); + assert( pObj->Type == KIT_DSD_PRIME ); + assert( uSupp == (uSupp0 = (unsigned)Kit_TruthSupport(pTruth, pObj->nFans)) ); + + // compress the truth table + if ( uSupp != Kit_BitMask(pObj->nFans) ) + { + nFansNew = Kit_WordCountOnes(uSupp); + Kit_TruthShrink( pNtk->pMem, pTruth, nFansNew, pObj->nFans, uSupp, 1 ); + for ( j = k = 0; j < pObj->nFans; j++ ) + if ( uSupp & (1 << j) ) + pObj->pFans[k++] = pObj->pFans[j]; + assert( k == nFansNew ); + pObj->nFans = k; + uSupp = Kit_BitMask(pObj->nFans); + } + + // consider the single variable case + if ( pObj->nFans == 1 ) + { + pObj->Type = KIT_DSD_NONE; + if ( pTruth[0] == 0x55555555 ) + pObj->pFans[0] = Kit_DsdLitNot(pObj->pFans[0]); + else + assert( pTruth[0] == 0xAAAAAAAA ); + // update the parent pointer + *pPar = Kit_DsdLitNotCond( pObj->pFans[0], Kit_DsdLitIsCompl(*pPar) ); + return; + } + + // decompose the output + if ( !pObj->fMark ) + for ( i = pObj->nFans - 1; i >= 0; i-- ) + { + // get the two-variable cofactors + Kit_TruthCofactor0New( pCofs2[0], pTruth, pObj->nFans, i ); + Kit_TruthCofactor1New( pCofs2[1], pTruth, pObj->nFans, i ); +// assert( !Kit_TruthVarInSupport( pCofs2[0], pObj->nFans, i) ); +// assert( !Kit_TruthVarInSupport( pCofs2[1], pObj->nFans, i) ); + // get the constant cofs + fEquals[0][0] = Kit_TruthIsConst0( pCofs2[0], pObj->nFans ); + fEquals[0][1] = Kit_TruthIsConst0( pCofs2[1], pObj->nFans ); + fEquals[1][0] = Kit_TruthIsConst1( pCofs2[0], pObj->nFans ); + fEquals[1][1] = Kit_TruthIsConst1( pCofs2[1], pObj->nFans ); + fOppos = Kit_TruthIsOpposite( pCofs2[0], pCofs2[1], pObj->nFans ); + assert( !Kit_TruthIsEqual(pCofs2[0], pCofs2[1], pObj->nFans) ); + if ( fEquals[0][0] + fEquals[0][1] + fEquals[1][0] + fEquals[1][1] + fOppos == 0 ) + { + // check the MUX decomposition + uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans ); + uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans ); + assert( uSupp == (uSupp0 | uSupp1 | (1<<i)) ); + if ( uSupp0 & uSupp1 ) + continue; + // perform MUX decomposition + pRes0 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans ); + pRes1 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans ); + for ( k = 0; k < pObj->nFans; k++ ) + { + pRes0->pFans[k] = (uSupp0 & (1 << k))? pObj->pFans[k] : 127; + pRes1->pFans[k] = (uSupp1 & (1 << k))? pObj->pFans[k] : 127; + } + Kit_TruthCopy( Kit_DsdObjTruth(pRes0), pCofs2[0], pObj->nFans ); + Kit_TruthCopy( Kit_DsdObjTruth(pRes1), pCofs2[1], pObj->nFans ); + // update the current one + assert( pObj->Type == KIT_DSD_PRIME ); + pTruth[0] = 0xCACACACA; + pObj->nFans = 3; + pObj->pFans[2] = pObj->pFans[i]; + pObj->pFans[0] = 2*pRes0->Id; pRes0->nRefs++; + pObj->pFans[1] = 2*pRes1->Id; pRes1->nRefs++; + // call recursively + Kit_DsdDecompose_rec( pNtk, pRes0, uSupp0, pObj->pFans + 0, nDecMux ); + Kit_DsdDecompose_rec( pNtk, pRes1, uSupp1, pObj->pFans + 1, nDecMux ); + return; + } + + // create the new node + pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_AND, 2 ); + pRes->nRefs++; + pRes->nFans = 2; + pRes->pFans[0] = pObj->pFans[i]; pObj->pFans[i] = 127; uSupp &= ~(1 << i); + pRes->pFans[1] = 2*pObj->Id; + // update the parent pointer + *pPar = Kit_DsdLitNotCond( 2 * pRes->Id, Kit_DsdLitIsCompl(*pPar) ); + // consider different decompositions + if ( fEquals[0][0] ) + { + Kit_TruthCopy( pTruth, pCofs2[1], pObj->nFans ); + } + else if ( fEquals[0][1] ) + { + pRes->pFans[0] = Kit_DsdLitNot(pRes->pFans[0]); + Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans ); + } + else if ( fEquals[1][0] ) + { + *pPar = Kit_DsdLitNot(*pPar); + pRes->pFans[1] = Kit_DsdLitNot(pRes->pFans[1]); + Kit_TruthCopy( pTruth, pCofs2[1], pObj->nFans ); + } + else if ( fEquals[1][1] ) + { + *pPar = Kit_DsdLitNot(*pPar); + pRes->pFans[0] = Kit_DsdLitNot(pRes->pFans[0]); + pRes->pFans[1] = Kit_DsdLitNot(pRes->pFans[1]); + Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans ); + } + else if ( fOppos ) + { + pRes->Type = KIT_DSD_XOR; + Kit_TruthCopy( pTruth, pCofs2[0], pObj->nFans ); + } + else + assert( 0 ); + // decompose the remainder + assert( Kit_DsdObjTruth(pObj) == pTruth ); + Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pRes->pFans + 1, nDecMux ); + return; + } + pObj->fMark = 1; + + // decompose the input + for ( i = pObj->nFans - 1; i >= 0; i-- ) + { + assert( Kit_TruthVarInSupport( pTruth, pObj->nFans, i ) ); + // get the single variale cofactors + Kit_TruthCofactor0New( pCofs2[0], pTruth, pObj->nFans, i ); + Kit_TruthCofactor1New( pCofs2[1], pTruth, pObj->nFans, i ); + // check the existence of MUX decomposition + uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans ); + uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans ); + assert( uSupp == (uSupp0 | uSupp1 | (1<<i)) ); + // if one of the cofs is a constant, it is time to check the output again + if ( uSupp0 == 0 || uSupp1 == 0 ) + { + pObj->fMark = 0; + Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux ); + return; + } + assert( uSupp0 && uSupp1 ); + // get the number of unique variables + nFans0 = Kit_WordCountOnes( uSupp0 & ~uSupp1 ); + nFans1 = Kit_WordCountOnes( uSupp1 & ~uSupp0 ); + if ( nFans0 == 1 && nFans1 == 1 ) + { + // get the cofactors w.r.t. the unique variables + iLit0 = Kit_WordFindFirstBit( uSupp0 & ~uSupp1 ); + iLit1 = Kit_WordFindFirstBit( uSupp1 & ~uSupp0 ); + // get four cofactors + Kit_TruthCofactor0New( pCofs4[0][0], pCofs2[0], pObj->nFans, iLit0 ); + Kit_TruthCofactor1New( pCofs4[0][1], pCofs2[0], pObj->nFans, iLit0 ); + Kit_TruthCofactor0New( pCofs4[1][0], pCofs2[1], pObj->nFans, iLit1 ); + Kit_TruthCofactor1New( pCofs4[1][1], pCofs2[1], pObj->nFans, iLit1 ); + // check existence conditions + fEquals[0][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][0], pObj->nFans ); + fEquals[0][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][1], pObj->nFans ); + fEquals[1][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][1], pObj->nFans ); + fEquals[1][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][0], pObj->nFans ); + if ( (fEquals[0][0] && fEquals[0][1]) || (fEquals[1][0] && fEquals[1][1]) ) + { + // construct the MUX + pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, 3 ); + Kit_DsdObjTruth(pRes)[0] = 0xCACACACA; + pRes->nRefs++; + pRes->nFans = 3; + pRes->pFans[0] = pObj->pFans[iLit0]; pObj->pFans[iLit0] = 127; uSupp &= ~(1 << iLit0); + pRes->pFans[1] = pObj->pFans[iLit1]; pObj->pFans[iLit1] = 127; uSupp &= ~(1 << iLit1); + pRes->pFans[2] = pObj->pFans[i]; pObj->pFans[i] = 2 * pRes->Id; // remains in support + // update the node +// if ( fEquals[0][0] && fEquals[0][1] ) +// Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, i ); +// else +// Kit_TruthMuxVar( pTruth, pCofs4[0][1], pCofs4[0][0], pObj->nFans, i ); + Kit_TruthMuxVar( pTruth, pCofs4[1][0], pCofs4[1][1], pObj->nFans, i ); + if ( fEquals[1][0] && fEquals[1][1] ) + pRes->pFans[0] = Kit_DsdLitNot(pRes->pFans[0]); + // decompose the remainder + Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux ); + return; + } + } + + // try other inputs + for ( k = i+1; k < pObj->nFans; k++ ) + { + // get four cofactors ik + Kit_TruthCofactor0New( pCofs4[0][0], pCofs2[0], pObj->nFans, k ); // 00 + Kit_TruthCofactor1New( pCofs4[0][1], pCofs2[0], pObj->nFans, k ); // 01 + Kit_TruthCofactor0New( pCofs4[1][0], pCofs2[1], pObj->nFans, k ); // 10 + Kit_TruthCofactor1New( pCofs4[1][1], pCofs2[1], pObj->nFans, k ); // 11 + // compare equal pairs + fPairs[0][1] = fPairs[1][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[0][1], pObj->nFans ); + fPairs[0][2] = fPairs[2][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][0], pObj->nFans ); + fPairs[0][3] = fPairs[3][0] = Kit_TruthIsEqual( pCofs4[0][0], pCofs4[1][1], pObj->nFans ); + fPairs[1][2] = fPairs[2][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][0], pObj->nFans ); + fPairs[1][3] = fPairs[3][1] = Kit_TruthIsEqual( pCofs4[0][1], pCofs4[1][1], pObj->nFans ); + fPairs[2][3] = fPairs[3][2] = Kit_TruthIsEqual( pCofs4[1][0], pCofs4[1][1], pObj->nFans ); + nPairs = fPairs[0][1] + fPairs[0][2] + fPairs[0][3] + fPairs[1][2] + fPairs[1][3] + fPairs[2][3]; + if ( nPairs != 3 && nPairs != 2 ) + continue; + + // decomposition exists + pRes = Kit_DsdObjAlloc( pNtk, KIT_DSD_AND, 2 ); + pRes->nRefs++; + pRes->nFans = 2; + pRes->pFans[0] = pObj->pFans[k]; pObj->pFans[k] = 2 * pRes->Id; // remains in support + pRes->pFans[1] = pObj->pFans[i]; pObj->pFans[i] = 127; uSupp &= ~(1 << i); + if ( !fPairs[0][1] && !fPairs[0][2] && !fPairs[0][3] ) // 00 + { + pRes->pFans[0] = Kit_DsdLitNot(pRes->pFans[0]); + pRes->pFans[1] = Kit_DsdLitNot(pRes->pFans[1]); + Kit_TruthMuxVar( pTruth, pCofs4[1][1], pCofs4[0][0], pObj->nFans, k ); + } + else if ( !fPairs[1][0] && !fPairs[1][2] && !fPairs[1][3] ) // 01 + { + pRes->pFans[1] = Kit_DsdLitNot(pRes->pFans[1]); + Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, k ); + } + else if ( !fPairs[2][0] && !fPairs[2][1] && !fPairs[2][3] ) // 10 + { + pRes->pFans[0] = Kit_DsdLitNot(pRes->pFans[0]); + Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[1][0], pObj->nFans, k ); + } + else if ( !fPairs[3][0] && !fPairs[3][1] && !fPairs[3][2] ) // 11 + { +// unsigned uSupp0 = Kit_TruthSupport(pCofs4[0][0], pObj->nFans); +// unsigned uSupp1 = Kit_TruthSupport(pCofs4[1][1], pObj->nFans); +// unsigned uSupp; +// Extra_PrintBinary( stdout, &uSupp0, pObj->nFans ); printf( "\n" ); +// Extra_PrintBinary( stdout, &uSupp1, pObj->nFans ); printf( "\n" ); + Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[1][1], pObj->nFans, k ); +// uSupp = Kit_TruthSupport(pTruth, pObj->nFans); +// Extra_PrintBinary( stdout, &uSupp, pObj->nFans ); printf( "\n" ); printf( "\n" ); + } + else + { + assert( fPairs[0][3] && fPairs[1][2] ); + pRes->Type = KIT_DSD_XOR;; + Kit_TruthMuxVar( pTruth, pCofs4[0][0], pCofs4[0][1], pObj->nFans, k ); + } + // decompose the remainder + Kit_DsdDecompose_rec( pNtk, pObj, uSupp, pPar, nDecMux ); + return; + } + } +/* + // if all decomposition methods failed and we are still above the limit, perform MUX-decomposition + if ( nDecMux > 0 && (int)pObj->nFans > nDecMux ) + { + int iBestVar = Kit_TruthBestCofVar( pTruth, pObj->nFans, pCofs2[0], pCofs2[1] ); + uSupp0 = Kit_TruthSupport( pCofs2[0], pObj->nFans ); + uSupp1 = Kit_TruthSupport( pCofs2[1], pObj->nFans ); + // perform MUX decomposition + pRes0 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans ); + pRes1 = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, pObj->nFans ); + for ( k = 0; k < pObj->nFans; k++ ) + pRes0->pFans[k] = pRes1->pFans[k] = pObj->pFans[k]; + Kit_TruthCopy( Kit_DsdObjTruth(pRes0), pCofs2[0], pObj->nFans ); + Kit_TruthCopy( Kit_DsdObjTruth(pRes1), pCofs2[1], pObj->nFans ); + // update the current one + assert( pObj->Type == KIT_DSD_PRIME ); + pTruth[0] = 0xCACACACA; + pObj->nFans = 3; + pObj->pFans[0] = 2*pRes0->Id; pRes0->nRefs++; + pObj->pFans[1] = 2*pRes1->Id; pRes1->nRefs++; + pObj->pFans[2] = pObj->pFans[iBestVar]; + // call recursively + Kit_DsdDecompose_rec( pNtk, pRes0, uSupp0, pObj->pFans + 0, nDecMux ); + Kit_DsdDecompose_rec( pNtk, pRes1, uSupp1, pObj->pFans + 1, nDecMux ); + } +*/ +} + +/**Function************************************************************* + + Synopsis [Performs decomposition of the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_DsdNtk_t * Kit_DsdDecomposeInt( unsigned * pTruth, int nVars, int nDecMux ) +{ + Kit_DsdNtk_t * pNtk; + Kit_DsdObj_t * pObj; + unsigned uSupp; + int i, nVarsReal; + assert( nVars <= 16 ); + pNtk = Kit_DsdNtkAlloc( nVars ); + pNtk->Root = Kit_DsdVar2Lit( pNtk->nVars, 0 ); + // create the first node + pObj = Kit_DsdObjAlloc( pNtk, KIT_DSD_PRIME, nVars ); + assert( pNtk->pNodes[0] == pObj ); + for ( i = 0; i < nVars; i++ ) + pObj->pFans[i] = Kit_DsdVar2Lit( i, 0 ); + Kit_TruthCopy( Kit_DsdObjTruth(pObj), pTruth, nVars ); + uSupp = Kit_TruthSupport( pTruth, nVars ); + // consider special cases + nVarsReal = Kit_WordCountOnes( uSupp ); + if ( nVarsReal == 0 ) + { + pObj->Type = KIT_DSD_CONST1; + pObj->nFans = 0; + if ( pTruth[0] == 0 ) + pNtk->Root = Kit_DsdLitNot(pNtk->Root); + return pNtk; + } + if ( nVarsReal == 1 ) + { + pObj->Type = KIT_DSD_VAR; + pObj->nFans = 1; + pObj->pFans[0] = Kit_DsdVar2Lit( Kit_WordFindFirstBit(uSupp), (pTruth[0] & 1) ); + return pNtk; + } + Kit_DsdDecompose_rec( pNtk, pNtk->pNodes[0], uSupp, &pNtk->Root, nDecMux ); + return pNtk; +} + +/**Function************************************************************* + + Synopsis [Performs decomposition of the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_DsdNtk_t * Kit_DsdDecompose( unsigned * pTruth, int nVars ) +{ + return Kit_DsdDecomposeInt( pTruth, nVars, 0 ); +} + +/**Function************************************************************* + + Synopsis [Performs decomposition of the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_DsdNtk_t * Kit_DsdDecomposeExpand( unsigned * pTruth, int nVars ) +{ + Kit_DsdNtk_t * pNtk, * pTemp; + pNtk = Kit_DsdDecomposeInt( pTruth, nVars, 0 ); + pNtk = Kit_DsdExpand( pTemp = pNtk ); + Kit_DsdNtkFree( pTemp ); + return pNtk; +} + +/**Function************************************************************* + + Synopsis [Performs decomposition of the truth table.] + + Description [Uses MUXes to break-down large prime nodes.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_DsdNtk_t * Kit_DsdDecomposeMux( unsigned * pTruth, int nVars, int nDecMux ) +{ + return Kit_DsdDecomposeInt( pTruth, nVars, nDecMux ); +} + +/**Function************************************************************* + + Synopsis [Performs decomposition of the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdTestCofs( Kit_DsdNtk_t * pNtk, unsigned * pTruthInit ) +{ + Kit_DsdNtk_t * pNtk0, * pNtk1, * pTemp; +// Kit_DsdObj_t * pRoot; + unsigned * pCofs2[2] = { pNtk->pMem, pNtk->pMem + Kit_TruthWordNum(pNtk->nVars) }; + unsigned i, * pTruth; + int fVerbose = 1; + int RetValue = 0; + + pTruth = pTruthInit; +// pRoot = Kit_DsdNtkRoot(pNtk); +// pTruth = Kit_DsdObjTruth(pRoot); +// assert( pRoot->nFans == pNtk->nVars ); + + if ( fVerbose ) + { + printf( "Function: " ); +// Extra_PrintBinary( stdout, pTruth, (1 << pNtk->nVars) ); + Extra_PrintHexadecimal( stdout, pTruth, pNtk->nVars ); + printf( "\n" ); + Kit_DsdPrint( stdout, pNtk ); + } + for ( i = 0; i < pNtk->nVars; i++ ) + { + Kit_TruthCofactor0New( pCofs2[0], pTruth, pNtk->nVars, i ); + pNtk0 = Kit_DsdDecompose( pCofs2[0], pNtk->nVars ); + pNtk0 = Kit_DsdExpand( pTemp = pNtk0 ); + Kit_DsdNtkFree( pTemp ); + + if ( fVerbose ) + { + printf( "Cof%d0: ", i ); + Kit_DsdPrint( stdout, pNtk0 ); + } + + Kit_TruthCofactor1New( pCofs2[1], pTruth, pNtk->nVars, i ); + pNtk1 = Kit_DsdDecompose( pCofs2[1], pNtk->nVars ); + pNtk1 = Kit_DsdExpand( pTemp = pNtk1 ); + Kit_DsdNtkFree( pTemp ); + + if ( fVerbose ) + { + printf( "Cof%d1: ", i ); + Kit_DsdPrint( stdout, pNtk1 ); + } + +// if ( Kit_DsdCheckVar4Dec2( pNtk0, pNtk1 ) ) +// RetValue = 1; + + Kit_DsdNtkFree( pNtk0 ); + Kit_DsdNtkFree( pNtk1 ); + } + if ( fVerbose ) + printf( "\n" ); + + return RetValue; +} + +/**Function************************************************************* + + Synopsis [Performs decomposition of the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdEval( unsigned * pTruth, int nVars, int nLutSize ) +{ + Kit_DsdMan_t * p; + Kit_DsdNtk_t * pNtk; + unsigned * pTruthC; + int Result; + + // decompose the function + pNtk = Kit_DsdDecompose( pTruth, nVars ); + Result = Kit_DsdCountLuts( pNtk, nLutSize ); +// printf( "\n" ); +// Kit_DsdPrint( stdout, pNtk ); +// printf( "Eval = %d.\n", Result ); + + // recompute the truth table + p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk) ); + pTruthC = Kit_DsdTruthCompute( p, pNtk ); + if ( !Kit_TruthIsEqual( pTruth, pTruthC, nVars ) ) + printf( "Verification failed.\n" ); + Kit_DsdManFree( p ); + + Kit_DsdNtkFree( pNtk ); + return Result; +} + +/**Function************************************************************* + + Synopsis [Performs decomposition of the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdVerify( Kit_DsdNtk_t * pNtk, unsigned * pTruth, int nVars ) +{ + Kit_DsdMan_t * p; + unsigned * pTruthC; + p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk)+2 ); + pTruthC = Kit_DsdTruthCompute( p, pNtk ); + if ( !Extra_TruthIsEqual( pTruth, pTruthC, nVars ) ) + printf( "Verification failed.\n" ); + Kit_DsdManFree( p ); +} + +/**Function************************************************************* + + Synopsis [Performs decomposition of the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdTest( unsigned * pTruth, int nVars ) +{ + Kit_DsdMan_t * p; + unsigned * pTruthC; + Kit_DsdNtk_t * pNtk, * pTemp; + pNtk = Kit_DsdDecompose( pTruth, nVars ); + +// if ( Kit_DsdFindLargeBox(pNtk, Kit_DsdLit2Var(pNtk->Root)) ) +// Kit_DsdPrint( stdout, pNtk ); + +// if ( Kit_DsdNtkRoot(pNtk)->nFans == (unsigned)nVars && nVars == 6 ) + + printf( "\n" ); + Kit_DsdPrint( stdout, pNtk ); + + pNtk = Kit_DsdExpand( pTemp = pNtk ); + Kit_DsdNtkFree( pTemp ); + + Kit_DsdPrint( stdout, pNtk ); + +// if ( Kit_DsdFindLargeBox(pNtk, Kit_DsdLit2Var(pNtk->Root)) ) +// Kit_DsdTestCofs( pNtk, pTruth ); + + // recompute the truth table + p = Kit_DsdManAlloc( nVars, Kit_DsdNtkObjNum(pNtk) ); + pTruthC = Kit_DsdTruthCompute( p, pNtk ); +// Extra_PrintBinary( stdout, pTruth, 1 << nVars ); printf( "\n" ); +// Extra_PrintBinary( stdout, pTruthC, 1 << nVars ); printf( "\n" ); + if ( Extra_TruthIsEqual( pTruth, pTruthC, nVars ) ) + { +// printf( "Verification is okay.\n" ); + } + else + printf( "Verification failed.\n" ); + Kit_DsdManFree( p ); + + + Kit_DsdNtkFree( pNtk ); +} + +/**Function************************************************************* + + Synopsis [Performs decomposition of the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdPrecompute4Vars() +{ + Kit_DsdMan_t * p; + Kit_DsdNtk_t * pNtk, * pTemp; + FILE * pFile; + unsigned uTruth; + unsigned * pTruthC; + char Buffer[256]; + int i, RetValue; + int Counter1 = 0, Counter2 = 0; + + pFile = fopen( "5npn/npn4.txt", "r" ); + for ( i = 0; fgets( Buffer, 100, pFile ); i++ ) + { + Buffer[6] = 0; + Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 ); + uTruth = ((uTruth & 0xffff) << 16) | (uTruth & 0xffff); + pNtk = Kit_DsdDecompose( &uTruth, 4 ); + + pNtk = Kit_DsdExpand( pTemp = pNtk ); + Kit_DsdNtkFree( pTemp ); + + + if ( Kit_DsdFindLargeBox(pNtk, 3) ) + { +// RetValue = 0; + RetValue = Kit_DsdTestCofs( pNtk, &uTruth ); + printf( "\n" ); + printf( "%3d : Non-DSD function %s %s\n", i, Buffer + 2, RetValue? "implementable" : "" ); + Kit_DsdPrint( stdout, pNtk ); + + Counter1++; + Counter2 += RetValue; + } + +/* + printf( "%3d : Function %s ", i, Buffer + 2 ); + if ( !Kit_DsdFindLargeBox(pNtk, 3) ) + Kit_DsdPrint( stdout, pNtk ); + else + printf( "\n" ); +*/ + + p = Kit_DsdManAlloc( 4, Kit_DsdNtkObjNum(pNtk) ); + pTruthC = Kit_DsdTruthCompute( p, pNtk ); + if ( !Extra_TruthIsEqual( &uTruth, pTruthC, 4 ) ) + printf( "Verification failed.\n" ); + Kit_DsdManFree( p ); + + Kit_DsdNtkFree( pNtk ); + } + fclose( pFile ); + printf( "non-DSD = %d implementable = %d\n", Counter1, Counter2 ); +} + + +/**Function************************************************************* + + Synopsis [Returns the set of cofactoring variables.] + + Description [If there is no DSD components returns 0.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdCofactoringGetVars( Kit_DsdNtk_t ** ppNtk, int nSize, int * pVars ) +{ + Kit_DsdObj_t * pObj; + unsigned m; + int i, k, v, Var, nVars, iFaninLit; + // go through all the networks + nVars = 0; + for ( i = 0; i < nSize; i++ ) + { + // go through the prime objects of each networks + Kit_DsdNtkForEachObj( ppNtk[i], pObj, k ) + { + if ( pObj->Type != KIT_DSD_PRIME ) + continue; + if ( pObj->nFans == 3 ) + continue; + // collect direct fanin variables + Kit_DsdObjForEachFanin( ppNtk[i], pObj, iFaninLit, m ) + { + if ( !Kit_DsdLitIsLeaf(ppNtk[i], iFaninLit) ) + continue; + // add it to the array + Var = Kit_DsdLit2Var( iFaninLit ); + for ( v = 0; v < nVars; v++ ) + if ( pVars[v] == Var ) + break; + if ( v == nVars ) + pVars[nVars++] = Var; + } + } + } + return nVars; +} + +/**Function************************************************************* + + Synopsis [Canonical decomposition into completely DSD-structure.] + + Description [Returns the number of cofactoring steps. Also returns + the cofactoring variables in pVars.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_DsdCofactoring( unsigned * pTruth, int nVars, int * pCofVars, int nLimit, int fVerbose ) +{ + Kit_DsdNtk_t * ppNtks[5][16] = {0}, * pTemp; + unsigned * ppCofs[5][16]; + int pTryVars[16], nTryVars; + int nPrimeSizeMin, nPrimeSizeMax, nPrimeSizeCur; + int nSuppSizeMin, nSuppSizeMax, iVarBest; + int i, k, v, nStep, nSize, nMemSize; + assert( nLimit < 5 ); + + // allocate storage for cofactors + nMemSize = Kit_TruthWordNum(nVars); + ppCofs[0][0] = ALLOC( unsigned, 80 * nMemSize ); + nSize = 0; + for ( i = 0; i < 5; i++ ) + for ( k = 0; k < 16; k++ ) + ppCofs[i][k] = ppCofs[0][0] + nMemSize * nSize++; + assert( nSize == 80 ); + + // copy the function + Kit_TruthCopy( ppCofs[0][0], pTruth, nVars ); + ppNtks[0][0] = Kit_DsdDecompose( ppCofs[0][0], nVars ); + + if ( fVerbose ) + printf( "\nProcessing prime function with %d support variables:\n", nVars ); + + // perform recursive cofactoring + for ( nStep = 0; nStep < nLimit; nStep++ ) + { + nSize = (1 << nStep); + // find the variables to use in the cofactoring step + nTryVars = Kit_DsdCofactoringGetVars( ppNtks[nStep], nSize, pTryVars ); + if ( nTryVars == 0 ) + break; + // cofactor w.r.t. the above variables + iVarBest = -1; + nPrimeSizeMin = 10000; + nSuppSizeMin = 10000; + for ( v = 0; v < nTryVars; v++ ) + { + nPrimeSizeMax = 0; + nSuppSizeMax = 0; + for ( i = 0; i < nSize; i++ ) + { + // cofactor and decompose cofactors + Kit_TruthCofactor0New( ppCofs[nStep+1][2*i+0], ppCofs[nStep][i], nVars, pTryVars[v] ); + Kit_TruthCofactor1New( ppCofs[nStep+1][2*i+1], ppCofs[nStep][i], nVars, pTryVars[v] ); + ppNtks[nStep+1][2*i+0] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+0], nVars ); + ppNtks[nStep+1][2*i+1] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+1], nVars ); + // compute the largest non-decomp block + nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[nStep+1][2*i+0]); + nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); + nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[nStep+1][2*i+1]); + nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); + // compute the sum total of supports + nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nStep+1][2*i+0], nVars ); + nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nStep+1][2*i+1], nVars ); + // free the networks + Kit_DsdNtkFree( ppNtks[nStep+1][2*i+0] ); + Kit_DsdNtkFree( ppNtks[nStep+1][2*i+1] ); + } + // find the min max support size of the prime component + if ( nPrimeSizeMin > nPrimeSizeMax || (nPrimeSizeMin == nPrimeSizeMax && nSuppSizeMin > nSuppSizeMax) ) + { + nPrimeSizeMin = nPrimeSizeMax; + nSuppSizeMin = nSuppSizeMax; + iVarBest = pTryVars[v]; + } + } + assert( iVarBest != -1 ); + // save the variable + if ( pCofVars ) + pCofVars[nStep] = iVarBest; + // cofactor w.r.t. the best + for ( i = 0; i < nSize; i++ ) + { + Kit_TruthCofactor0New( ppCofs[nStep+1][2*i+0], ppCofs[nStep][i], nVars, iVarBest ); + Kit_TruthCofactor1New( ppCofs[nStep+1][2*i+1], ppCofs[nStep][i], nVars, iVarBest ); + ppNtks[nStep+1][2*i+0] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+0], nVars ); + ppNtks[nStep+1][2*i+1] = Kit_DsdDecompose( ppCofs[nStep+1][2*i+1], nVars ); + if ( fVerbose ) + { + ppNtks[nStep+1][2*i+0] = Kit_DsdExpand( pTemp = ppNtks[nStep+1][2*i+0] ); + Kit_DsdNtkFree( pTemp ); + ppNtks[nStep+1][2*i+1] = Kit_DsdExpand( pTemp = ppNtks[nStep+1][2*i+1] ); + Kit_DsdNtkFree( pTemp ); + + printf( "Cof%d%d: ", nStep+1, 2*i+0 ); + Kit_DsdPrint( stdout, ppNtks[nStep+1][2*i+0] ); + printf( "Cof%d%d: ", nStep+1, 2*i+1 ); + Kit_DsdPrint( stdout, ppNtks[nStep+1][2*i+1] ); + } + } + } + + // free the networks + for ( i = 0; i < 5; i++ ) + for ( k = 0; k < 16; k++ ) + if ( ppNtks[i][k] ) + Kit_DsdNtkFree( ppNtks[i][k] ); + free( ppCofs[0][0] ); + + assert( nStep <= nLimit ); + return nStep; +} + +/**Function************************************************************* + + Synopsis [Canonical decomposition into completely DSD-structure.] + + Description [Returns the number of cofactoring steps. Also returns + the cofactoring variables in pVars.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_DsdPrintCofactors( unsigned * pTruth, int nVars, int nCofLevel, int fVerbose ) +{ + Kit_DsdNtk_t * ppNtks[32] = {0}, * pTemp; + unsigned * ppCofs[5][16]; + int piCofVar[5]; + int nPrimeSizeMax, nPrimeSizeCur, nSuppSizeMax; + int i, k, v1, v2, v3, v4, s, nSteps, nSize, nMemSize; + assert( nCofLevel < 5 ); + + // print the function + ppNtks[0] = Kit_DsdDecompose( pTruth, nVars ); + ppNtks[0] = Kit_DsdExpand( pTemp = ppNtks[0] ); + Kit_DsdNtkFree( pTemp ); + if ( fVerbose ) + Kit_DsdPrint( stdout, ppNtks[0] ); + Kit_DsdNtkFree( ppNtks[0] ); + + // allocate storage for cofactors + nMemSize = Kit_TruthWordNum(nVars); + ppCofs[0][0] = ALLOC( unsigned, 80 * nMemSize ); + nSize = 0; + for ( i = 0; i < 5; i++ ) + for ( k = 0; k < 16; k++ ) + ppCofs[i][k] = ppCofs[0][0] + nMemSize * nSize++; + assert( nSize == 80 ); + + // copy the function + Kit_TruthCopy( ppCofs[0][0], pTruth, nVars ); + + if ( nCofLevel == 1 ) + for ( v1 = 0; v1 < nVars; v1++ ) + { + nSteps = 0; + piCofVar[nSteps++] = v1; + + printf( " Variables { " ); + for ( i = 0; i < nSteps; i++ ) + printf( "%c ", 'a' + piCofVar[i] ); + printf( "}\n" ); + + // single cofactors + for ( s = 1; s <= nSteps; s++ ) + { + for ( k = 0; k < s; k++ ) + { + nSize = (1 << k); + for ( i = 0; i < nSize; i++ ) + { + Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] ); + Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] ); + } + } + } + // compute DSD networks + nSize = (1 << nSteps); + nPrimeSizeMax = 0; + nSuppSizeMax = 0; + for ( i = 0; i < nSize; i++ ) + { + ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars ); + ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] ); + Kit_DsdNtkFree( pTemp ); + if ( fVerbose ) + { + printf( "Cof%d%d: ", nSteps, i ); + Kit_DsdPrint( stdout, ppNtks[i] ); + } + // compute the largest non-decomp block + nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]); + nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); + Kit_DsdNtkFree( ppNtks[i] ); + nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars ); + } + printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax ); + } + + if ( nCofLevel == 2 ) + for ( v1 = 0; v1 < nVars; v1++ ) + for ( v2 = v1+1; v2 < nVars; v2++ ) + { + nSteps = 0; + piCofVar[nSteps++] = v1; + piCofVar[nSteps++] = v2; + + printf( " Variables { " ); + for ( i = 0; i < nSteps; i++ ) + printf( "%c ", 'a' + piCofVar[i] ); + printf( "}\n" ); + + // single cofactors + for ( s = 1; s <= nSteps; s++ ) + { + for ( k = 0; k < s; k++ ) + { + nSize = (1 << k); + for ( i = 0; i < nSize; i++ ) + { + Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] ); + Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] ); + } + } + } + // compute DSD networks + nSize = (1 << nSteps); + nPrimeSizeMax = 0; + nSuppSizeMax = 0; + for ( i = 0; i < nSize; i++ ) + { + ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars ); + ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] ); + Kit_DsdNtkFree( pTemp ); + if ( fVerbose ) + { + printf( "Cof%d%d: ", nSteps, i ); + Kit_DsdPrint( stdout, ppNtks[i] ); + } + // compute the largest non-decomp block + nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]); + nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); + Kit_DsdNtkFree( ppNtks[i] ); + nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars ); + } + printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax ); + } + + if ( nCofLevel == 3 ) + for ( v1 = 0; v1 < nVars; v1++ ) + for ( v2 = v1+1; v2 < nVars; v2++ ) + for ( v3 = v2+1; v3 < nVars; v3++ ) + { + nSteps = 0; + piCofVar[nSteps++] = v1; + piCofVar[nSteps++] = v2; + piCofVar[nSteps++] = v3; + + printf( " Variables { " ); + for ( i = 0; i < nSteps; i++ ) + printf( "%c ", 'a' + piCofVar[i] ); + printf( "}\n" ); + + // single cofactors + for ( s = 1; s <= nSteps; s++ ) + { + for ( k = 0; k < s; k++ ) + { + nSize = (1 << k); + for ( i = 0; i < nSize; i++ ) + { + Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] ); + Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] ); + } + } + } + // compute DSD networks + nSize = (1 << nSteps); + nPrimeSizeMax = 0; + nSuppSizeMax = 0; + for ( i = 0; i < nSize; i++ ) + { + ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars ); + ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] ); + Kit_DsdNtkFree( pTemp ); + if ( fVerbose ) + { + printf( "Cof%d%d: ", nSteps, i ); + Kit_DsdPrint( stdout, ppNtks[i] ); + } + // compute the largest non-decomp block + nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]); + nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); + Kit_DsdNtkFree( ppNtks[i] ); + nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars ); + } + printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax ); + } + + if ( nCofLevel == 4 ) + for ( v1 = 0; v1 < nVars; v1++ ) + for ( v2 = v1+1; v2 < nVars; v2++ ) + for ( v3 = v2+1; v3 < nVars; v3++ ) + for ( v4 = v3+1; v4 < nVars; v4++ ) + { + nSteps = 0; + piCofVar[nSteps++] = v1; + piCofVar[nSteps++] = v2; + piCofVar[nSteps++] = v3; + piCofVar[nSteps++] = v4; + + printf( " Variables { " ); + for ( i = 0; i < nSteps; i++ ) + printf( "%c ", 'a' + piCofVar[i] ); + printf( "}\n" ); + + // single cofactors + for ( s = 1; s <= nSteps; s++ ) + { + for ( k = 0; k < s; k++ ) + { + nSize = (1 << k); + for ( i = 0; i < nSize; i++ ) + { + Kit_TruthCofactor0New( ppCofs[k+1][2*i+0], ppCofs[k][i], nVars, piCofVar[k] ); + Kit_TruthCofactor1New( ppCofs[k+1][2*i+1], ppCofs[k][i], nVars, piCofVar[k] ); + } + } + } + // compute DSD networks + nSize = (1 << nSteps); + nPrimeSizeMax = 0; + nSuppSizeMax = 0; + for ( i = 0; i < nSize; i++ ) + { + ppNtks[i] = Kit_DsdDecompose( ppCofs[nSteps][i], nVars ); + ppNtks[i] = Kit_DsdExpand( pTemp = ppNtks[i] ); + Kit_DsdNtkFree( pTemp ); + if ( fVerbose ) + { + printf( "Cof%d%d: ", nSteps, i ); + Kit_DsdPrint( stdout, ppNtks[i] ); + } + // compute the largest non-decomp block + nPrimeSizeCur = Kit_DsdNonDsdSizeMax(ppNtks[i]); + nPrimeSizeMax = KIT_MAX( nPrimeSizeMax, nPrimeSizeCur ); + Kit_DsdNtkFree( ppNtks[i] ); + nSuppSizeMax += Kit_TruthSupportSize( ppCofs[nSteps][i], nVars ); + } + printf( "Max = %2d. Supps = %2d.\n", nPrimeSizeMax, nSuppSizeMax ); + } + + + free( ppCofs[0][0] ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/abc8/kit/kitFactor.c b/src/abc8/kit/kitFactor.c new file mode 100644 index 00000000..f596d9a8 --- /dev/null +++ b/src/abc8/kit/kitFactor.c @@ -0,0 +1,339 @@ +/**CFile**************************************************************** + + FileName [kitFactor.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Algebraic factoring.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitFactor.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +// factoring fails if intermediate memory usage exceed this limit +#define KIT_FACTOR_MEM_LIMIT (1<<16) + +static Kit_Edge_t Kit_SopFactor_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ); +static Kit_Edge_t Kit_SopFactorLF_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, Kit_Sop_t * cSimple, int nLits, Vec_Int_t * vMemory ); +static Kit_Edge_t Kit_SopFactorTrivial( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits ); +static Kit_Edge_t Kit_SopFactorTrivialCube( Kit_Graph_t * pFForm, unsigned uCube, int nLits ); + +extern int Kit_SopFactorVerify( Vec_Int_t * cSop, Kit_Graph_t * pFForm, int nVars ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Factors the cover.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_SopFactor( Vec_Int_t * vCover, int fCompl, int nVars, Vec_Int_t * vMemory ) +{ + Kit_Sop_t Sop, * cSop = &Sop; + Kit_Graph_t * pFForm; + Kit_Edge_t eRoot; +// int nCubes; + + // works for up to 15 variables because division procedure + // used the last bit for marking the cubes going to the remainder + assert( nVars < 16 ); + + // check for trivial functions + if ( Vec_IntSize(vCover) == 0 ) + return Kit_GraphCreateConst0(); + if ( Vec_IntSize(vCover) == 1 && Vec_IntEntry(vCover, 0) == 0 ) + return Kit_GraphCreateConst1(); + + // prepare memory manager +// Vec_IntClear( vMemory ); + Vec_IntGrow( vMemory, KIT_FACTOR_MEM_LIMIT ); + + // perform CST + Kit_SopCreateInverse( cSop, vCover, 2 * nVars, vMemory ); // CST + + // start the factored form + pFForm = Kit_GraphCreate( nVars ); + // factor the cover + eRoot = Kit_SopFactor_rec( pFForm, cSop, 2 * nVars, vMemory ); + // finalize the factored form + Kit_GraphSetRoot( pFForm, eRoot ); + if ( fCompl ) + Kit_GraphComplement( pFForm ); + + // verify the factored form +// nCubes = Vec_IntSize(vCover); +// Vec_IntShrink( vCover, nCubes ); +// if ( !Kit_SopFactorVerify( vCover, pFForm, nVars ) ) +// printf( "Verification has failed.\n" ); + return pFForm; +} + +/**Function************************************************************* + + Synopsis [Recursive factoring procedure.] + + Description [For the pseudo-code, see Hachtel/Somenzi, + Logic synthesis and verification algorithms, Kluwer, 1996, p. 432.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactor_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ) +{ + Kit_Sop_t Div, Quo, Rem, Com; + Kit_Sop_t * cDiv = &Div, * cQuo = &Quo, * cRem = &Rem, * cCom = &Com; + Kit_Edge_t eNodeDiv, eNodeQuo, eNodeRem, eNodeAnd; + + // make sure the cover contains some cubes + assert( Kit_SopCubeNum(cSop) > 0 ); + + // get the divisor + if ( !Kit_SopDivisor(cDiv, cSop, nLits, vMemory) ) + return Kit_SopFactorTrivial( pFForm, cSop, nLits ); + + // divide the cover by the divisor + Kit_SopDivideInternal( cSop, cDiv, cQuo, cRem, vMemory ); + + // check the trivial case + assert( Kit_SopCubeNum(cQuo) > 0 ); + if ( Kit_SopCubeNum(cQuo) == 1 ) + return Kit_SopFactorLF_rec( pFForm, cSop, cQuo, nLits, vMemory ); + + // make the quotient cube free + Kit_SopMakeCubeFree( cQuo ); + + // divide the cover by the quotient + Kit_SopDivideInternal( cSop, cQuo, cDiv, cRem, vMemory ); + + // check the trivial case + if ( Kit_SopIsCubeFree( cDiv ) ) + { + eNodeDiv = Kit_SopFactor_rec( pFForm, cDiv, nLits, vMemory ); + eNodeQuo = Kit_SopFactor_rec( pFForm, cQuo, nLits, vMemory ); + eNodeAnd = Kit_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); + if ( Kit_SopCubeNum(cRem) == 0 ) + return eNodeAnd; + eNodeRem = Kit_SopFactor_rec( pFForm, cRem, nLits, vMemory ); + return Kit_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); + } + + // get the common cube + Kit_SopCommonCubeCover( cCom, cDiv, vMemory ); + + // solve the simple problem + return Kit_SopFactorLF_rec( pFForm, cSop, cCom, nLits, vMemory ); +} + + +/**Function************************************************************* + + Synopsis [Internal recursive factoring procedure for the leaf case.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorLF_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, Kit_Sop_t * cSimple, int nLits, Vec_Int_t * vMemory ) +{ + Kit_Sop_t Div, Quo, Rem; + Kit_Sop_t * cDiv = &Div, * cQuo = &Quo, * cRem = &Rem; + Kit_Edge_t eNodeDiv, eNodeQuo, eNodeRem, eNodeAnd; + assert( Kit_SopCubeNum(cSimple) == 1 ); + // get the most often occurring literal + Kit_SopBestLiteralCover( cDiv, cSop, Kit_SopCube(cSimple, 0), nLits, vMemory ); + // divide the cover by the literal + Kit_SopDivideByCube( cSop, cDiv, cQuo, cRem, vMemory ); + // get the node pointer for the literal + eNodeDiv = Kit_SopFactorTrivialCube( pFForm, Kit_SopCube(cDiv, 0), nLits ); + // factor the quotient and remainder + eNodeQuo = Kit_SopFactor_rec( pFForm, cQuo, nLits, vMemory ); + eNodeAnd = Kit_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); + if ( Kit_SopCubeNum(cRem) == 0 ) + return eNodeAnd; + eNodeRem = Kit_SopFactor_rec( pFForm, cRem, nLits, vMemory ); + return Kit_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); +} + + +/**Function************************************************************* + + Synopsis [Factoring cube.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivialCube_rec( Kit_Graph_t * pFForm, unsigned uCube, int nStart, int nFinish ) +{ + Kit_Edge_t eNode1, eNode2; + int i, iLit = -1, nLits, nLits1, nLits2; + assert( uCube ); + // count the number of literals in this interval + nLits = 0; + for ( i = nStart; i < nFinish; i++ ) + if ( Kit_CubeHasLit(uCube, i) ) + { + iLit = i; + nLits++; + } + assert( iLit != -1 ); + // quit if there is only one literal + if ( nLits == 1 ) + return Kit_EdgeCreate( iLit/2, iLit%2 ); // CST + // split the literals into two parts + nLits1 = nLits/2; + nLits2 = nLits - nLits1; +// nLits2 = nLits/2; +// nLits1 = nLits - nLits2; + // find the splitting point + nLits = 0; + for ( i = nStart; i < nFinish; i++ ) + if ( Kit_CubeHasLit(uCube, i) ) + { + if ( nLits == nLits1 ) + break; + nLits++; + } + // recursively construct the tree for the parts + eNode1 = Kit_SopFactorTrivialCube_rec( pFForm, uCube, nStart, i ); + eNode2 = Kit_SopFactorTrivialCube_rec( pFForm, uCube, i, nFinish ); + return Kit_GraphAddNodeAnd( pFForm, eNode1, eNode2 ); +} + +/**Function************************************************************* + + Synopsis [Factoring cube.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivialCube( Kit_Graph_t * pFForm, unsigned uCube, int nLits ) +{ + return Kit_SopFactorTrivialCube_rec( pFForm, uCube, 0, nLits ); +} + +/**Function************************************************************* + + Synopsis [Factoring SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivial_rec( Kit_Graph_t * pFForm, unsigned * pCubes, int nCubes, int nLits ) +{ + Kit_Edge_t eNode1, eNode2; + int nCubes1, nCubes2; + if ( nCubes == 1 ) + return Kit_SopFactorTrivialCube_rec( pFForm, pCubes[0], 0, nLits ); + // split the cubes into two parts + nCubes1 = nCubes/2; + nCubes2 = nCubes - nCubes1; +// nCubes2 = nCubes/2; +// nCubes1 = nCubes - nCubes2; + // recursively construct the tree for the parts + eNode1 = Kit_SopFactorTrivial_rec( pFForm, pCubes, nCubes1, nLits ); + eNode2 = Kit_SopFactorTrivial_rec( pFForm, pCubes + nCubes1, nCubes2, nLits ); + return Kit_GraphAddNodeOr( pFForm, eNode1, eNode2 ); +} + +/**Function************************************************************* + + Synopsis [Factoring the cover, which has no algebraic divisors.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivial( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits ) +{ + return Kit_SopFactorTrivial_rec( pFForm, cSop->pCubes, cSop->nCubes, nLits ); +} + + +/**Function************************************************************* + + Synopsis [Testing procedure for the factoring code.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_FactorTest( unsigned * pTruth, int nVars ) +{ + Vec_Int_t * vCover, * vMemory; + Kit_Graph_t * pGraph; +// unsigned uTruthRes; + int RetValue; + + // derive SOP + vCover = Vec_IntAlloc( 0 ); + RetValue = Kit_TruthIsop( pTruth, nVars, vCover, 0 ); + assert( RetValue == 0 ); + + // derive factored form + vMemory = Vec_IntAlloc( 0 ); + pGraph = Kit_SopFactor( vCover, 0, nVars, vMemory ); +/* + // derive truth table + assert( nVars <= 5 ); + uTruthRes = Kit_GraphToTruth( pGraph ); + if ( uTruthRes != pTruth[0] ) + printf( "Verification failed!" ); +*/ + printf( "Vars = %2d. Cubes = %3d. FFNodes = %3d. FF_memory = %3d.\n", + nVars, Vec_IntSize(vCover), Kit_GraphNodeNum(pGraph), Vec_IntSize(vMemory) ); + + Vec_IntFree( vMemory ); + Vec_IntFree( vCover ); + Kit_GraphFree( pGraph ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/abc8/kit/kitGraph.c b/src/abc8/kit/kitGraph.c new file mode 100644 index 00000000..80dcbdc0 --- /dev/null +++ b/src/abc8/kit/kitGraph.c @@ -0,0 +1,397 @@ +/**CFile**************************************************************** + + FileName [kitGraph.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Decomposition graph representation.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitGraph.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Creates a graph with the given number of leaves.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreate( int nLeaves ) +{ + Kit_Graph_t * pGraph; + pGraph = ALLOC( Kit_Graph_t, 1 ); + memset( pGraph, 0, sizeof(Kit_Graph_t) ); + pGraph->nLeaves = nLeaves; + pGraph->nSize = nLeaves; + pGraph->nCap = 2 * nLeaves + 50; + pGraph->pNodes = ALLOC( Kit_Node_t, pGraph->nCap ); + memset( pGraph->pNodes, 0, sizeof(Kit_Node_t) * pGraph->nSize ); + return pGraph; +} + +/**Function************************************************************* + + Synopsis [Creates constant 0 graph.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreateConst0() +{ + Kit_Graph_t * pGraph; + pGraph = ALLOC( Kit_Graph_t, 1 ); + memset( pGraph, 0, sizeof(Kit_Graph_t) ); + pGraph->fConst = 1; + pGraph->eRoot.fCompl = 1; + return pGraph; +} + +/**Function************************************************************* + + Synopsis [Creates constant 1 graph.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreateConst1() +{ + Kit_Graph_t * pGraph; + pGraph = ALLOC( Kit_Graph_t, 1 ); + memset( pGraph, 0, sizeof(Kit_Graph_t) ); + pGraph->fConst = 1; + return pGraph; +} + +/**Function************************************************************* + + Synopsis [Creates the literal graph.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl ) +{ + Kit_Graph_t * pGraph; + assert( 0 <= iLeaf && iLeaf < nLeaves ); + pGraph = Kit_GraphCreate( nLeaves ); + pGraph->eRoot.Node = iLeaf; + pGraph->eRoot.fCompl = fCompl; + return pGraph; +} + +/**Function************************************************************* + + Synopsis [Creates a graph with the given number of leaves.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_GraphFree( Kit_Graph_t * pGraph ) +{ + FREE( pGraph->pNodes ); + free( pGraph ); +} + +/**Function************************************************************* + + Synopsis [Appends a new node to the graph.] + + Description [This procedure is meant for internal use.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph ) +{ + Kit_Node_t * pNode; + if ( pGraph->nSize == pGraph->nCap ) + { + pGraph->pNodes = REALLOC( Kit_Node_t, pGraph->pNodes, 2 * pGraph->nCap ); + pGraph->nCap = 2 * pGraph->nCap; + } + pNode = pGraph->pNodes + pGraph->nSize++; + memset( pNode, 0, sizeof(Kit_Node_t) ); + return pNode; +} + +/**Function************************************************************* + + Synopsis [Creates an AND node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ) +{ + Kit_Node_t * pNode; + // get the new node + pNode = Kit_GraphAppendNode( pGraph ); + // set the inputs and other info + pNode->eEdge0 = eEdge0; + pNode->eEdge1 = eEdge1; + pNode->fCompl0 = eEdge0.fCompl; + pNode->fCompl1 = eEdge1.fCompl; + return Kit_EdgeCreate( pGraph->nSize - 1, 0 ); +} + +/**Function************************************************************* + + Synopsis [Creates an OR node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ) +{ + Kit_Node_t * pNode; + // get the new node + pNode = Kit_GraphAppendNode( pGraph ); + // set the inputs and other info + pNode->eEdge0 = eEdge0; + pNode->eEdge1 = eEdge1; + pNode->fCompl0 = eEdge0.fCompl; + pNode->fCompl1 = eEdge1.fCompl; + // make adjustments for the OR gate + pNode->fNodeOr = 1; + pNode->eEdge0.fCompl = !pNode->eEdge0.fCompl; + pNode->eEdge1.fCompl = !pNode->eEdge1.fCompl; + return Kit_EdgeCreate( pGraph->nSize - 1, 1 ); +} + +/**Function************************************************************* + + Synopsis [Creates an XOR node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type ) +{ + Kit_Edge_t eNode0, eNode1, eNode; + if ( Type == 0 ) + { + // derive the first AND + eEdge0.fCompl ^= 1; + eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); + eEdge0.fCompl ^= 1; + // derive the second AND + eEdge1.fCompl ^= 1; + eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); + // derive the final OR + eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + } + else + { + // derive the first AND + eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); + // derive the second AND + eEdge0.fCompl ^= 1; + eEdge1.fCompl ^= 1; + eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); + // derive the final OR + eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + eNode.fCompl ^= 1; + } + return eNode; +} + +/**Function************************************************************* + + Synopsis [Creates an XOR node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type ) +{ + Kit_Edge_t eNode0, eNode1, eNode; + if ( Type == 0 ) + { + // derive the first AND + eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT ); + // derive the second AND + eEdgeC.fCompl ^= 1; + eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE ); + // derive the final OR + eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + } + else + { + // complement the arguments + eEdgeT.fCompl ^= 1; + eEdgeE.fCompl ^= 1; + // derive the first AND + eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT ); + // derive the second AND + eEdgeC.fCompl ^= 1; + eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE ); + // derive the final OR + eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + eNode.fCompl ^= 1; + } + return eNode; +} + +/**Function************************************************************* + + Synopsis [Derives the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph ) +{ + unsigned uTruths[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; + unsigned uTruth = 0, uTruth0, uTruth1; + Kit_Node_t * pNode; + int i; + + // sanity checks + assert( Kit_GraphLeaveNum(pGraph) >= 0 ); + assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize ); + assert( Kit_GraphLeaveNum(pGraph) <= 5 ); + + // check for constant function + if ( Kit_GraphIsConst(pGraph) ) + return Kit_GraphIsComplement(pGraph)? 0 : ~((unsigned)0); + // check for a literal + if ( Kit_GraphIsVar(pGraph) ) + return Kit_GraphIsComplement(pGraph)? ~uTruths[Kit_GraphVarInt(pGraph)] : uTruths[Kit_GraphVarInt(pGraph)]; + + // assign the elementary variables + Kit_GraphForEachLeaf( pGraph, pNode, i ) + pNode->pFunc = (void *)(long)uTruths[i]; + + // compute the function for each internal node + Kit_GraphForEachNode( pGraph, pNode, i ) + { + uTruth0 = (unsigned)(long)Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc; + uTruth1 = (unsigned)(long)Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc; + uTruth0 = pNode->eEdge0.fCompl? ~uTruth0 : uTruth0; + uTruth1 = pNode->eEdge1.fCompl? ~uTruth1 : uTruth1; + uTruth = uTruth0 & uTruth1; + pNode->pFunc = (void *)(long)uTruth; + } + + // complement the result if necessary + return Kit_GraphIsComplement(pGraph)? ~uTruth : uTruth; +} + +/**Function************************************************************* + + Synopsis [Derives the factored form from the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory ) +{ + Kit_Graph_t * pGraph; + int RetValue; + // derive SOP + RetValue = Kit_TruthIsop( pTruth, nVars, vMemory, 1 ); // tried 1 and found not useful in "renode" + if ( RetValue == -1 ) + return NULL; + if ( Vec_IntSize(vMemory) > 128 ) + return NULL; +// printf( "Isop size = %d.\n", Vec_IntSize(vMemory) ); + assert( RetValue == 0 || RetValue == 1 ); + // derive factored form + pGraph = Kit_SopFactor( vMemory, RetValue, nVars, vMemory ); + return pGraph; +} + +/**Function************************************************************* + + Synopsis [Derives the maximum depth from the leaf to the root.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_GraphLeafDepth_rec( Kit_Graph_t * pGraph, Kit_Node_t * pNode, Kit_Node_t * pLeaf ) +{ + int Depth0, Depth1, Depth; + if ( pNode == pLeaf ) + return 0; + if ( Kit_GraphNodeIsVar(pGraph, pNode) ) + return -100; + Depth0 = Kit_GraphLeafDepth_rec( pGraph, Kit_GraphNodeFanin0(pGraph, pNode), pLeaf ); + Depth1 = Kit_GraphLeafDepth_rec( pGraph, Kit_GraphNodeFanin1(pGraph, pNode), pLeaf ); + Depth = KIT_MAX( Depth0, Depth1 ); + Depth = (Depth == -100) ? -100 : Depth + 1; + return Depth; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + diff --git a/src/abc8/kit/kitHop.c b/src/abc8/kit/kitHop.c new file mode 100644 index 00000000..86ec5a88 --- /dev/null +++ b/src/abc8/kit/kitHop.c @@ -0,0 +1,144 @@ +/**CFile**************************************************************** + + FileName [kitHop.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Procedures involving AIGs.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitHop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" +#include "hop.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Transforms the decomposition graph into the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Hop_Obj_t * Kit_GraphToHopInternal( Hop_Man_t * pMan, Kit_Graph_t * pGraph ) +{ + Kit_Node_t * pNode = NULL; + Hop_Obj_t * pAnd0, * pAnd1; + int i; + // check for constant function + if ( Kit_GraphIsConst(pGraph) ) + return Hop_NotCond( Hop_ManConst1(pMan), Kit_GraphIsComplement(pGraph) ); + // check for a literal + if ( Kit_GraphIsVar(pGraph) ) + return Hop_NotCond( Kit_GraphVar(pGraph)->pFunc, Kit_GraphIsComplement(pGraph) ); + // build the AIG nodes corresponding to the AND gates of the graph + Kit_GraphForEachNode( pGraph, pNode, i ) + { + pAnd0 = Hop_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); + pAnd1 = Hop_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); + pNode->pFunc = Hop_And( pMan, pAnd0, pAnd1 ); + } + // complement the result if necessary + return Hop_NotCond( pNode->pFunc, Kit_GraphIsComplement(pGraph) ); +} + +/**Function************************************************************* + + Synopsis [Strashes one logic node using its SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Hop_Obj_t * Kit_GraphToHop( Hop_Man_t * pMan, Kit_Graph_t * pGraph ) +{ + Kit_Node_t * pNode = NULL; + int i; + // collect the fanins + Kit_GraphForEachLeaf( pGraph, pNode, i ) + pNode->pFunc = Hop_IthVar( pMan, i ); + // perform strashing + return Kit_GraphToHopInternal( pMan, pGraph ); +} + +/**Function************************************************************* + + Synopsis [Strashed onen logic nodes using its truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Hop_Obj_t * Kit_TruthToHop( Hop_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory ) +{ + Hop_Obj_t * pObj; + Kit_Graph_t * pGraph; + // transform truth table into the decomposition tree + if ( vMemory == NULL ) + { + vMemory = Vec_IntAlloc( 0 ); + pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory ); + Vec_IntFree( vMemory ); + } + else + pGraph = Kit_TruthToGraph( pTruth, nVars, vMemory ); + // derive the AIG for the decomposition tree + pObj = Kit_GraphToHop( pMan, pGraph ); + Kit_GraphFree( pGraph ); + return pObj; +} + +/**Function************************************************************* + + Synopsis [Strashes one logic node using its SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Hop_Obj_t * Kit_CoverToHop( Hop_Man_t * pMan, Vec_Int_t * vCover, int nVars, Vec_Int_t * vMemory ) +{ + Kit_Graph_t * pGraph; + Hop_Obj_t * pFunc; + // perform factoring + pGraph = Kit_SopFactor( vCover, 0, nVars, vMemory ); + // convert graph to the AIG + pFunc = Kit_GraphToHop( pMan, pGraph ); + Kit_GraphFree( pGraph ); + return pFunc; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/abc8/kit/kitIsop.c b/src/abc8/kit/kitIsop.c new file mode 100644 index 00000000..42fae2ea --- /dev/null +++ b/src/abc8/kit/kitIsop.c @@ -0,0 +1,325 @@ +/**CFile**************************************************************** + + FileName [kitIsop.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [ISOP computation based on Morreale's algorithm.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitIsop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +// ISOP computation fails if intermediate memory usage exceed this limit +#define KIT_ISOP_MEM_LIMIT (1<<16) + +// static procedures to compute ISOP +static unsigned * Kit_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ); +static unsigned Kit_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Computes ISOP from TT.] + + Description [Returns the cover in vMemory. Uses the rest of array in vMemory + as an intermediate memory storage. Returns the cover with -1 cubes, if the + the computation exceeded the memory limit (KIT_ISOP_MEM_LIMIT words of + intermediate data).] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth ) +{ + Kit_Sop_t cRes, * pcRes = &cRes; + Kit_Sop_t cRes2, * pcRes2 = &cRes2; + unsigned * pResult; + int RetValue = 0; + assert( nVars >= 0 && nVars < 16 ); + // if nVars < 5, make sure it does not depend on those vars +// for ( i = nVars; i < 5; i++ ) +// assert( !Kit_TruthVarInSupport(puTruth, 5, i) ); + // prepare memory manager + Vec_IntClear( vMemory ); + Vec_IntGrow( vMemory, KIT_ISOP_MEM_LIMIT ); + // compute ISOP for the direct polarity + pResult = Kit_TruthIsop_rec( puTruth, puTruth, nVars, pcRes, vMemory ); + if ( pcRes->nCubes == -1 ) + { + vMemory->nSize = -1; + return -1; + } + assert( Kit_TruthIsEqual( puTruth, pResult, nVars ) ); + if ( pcRes->nCubes == 0 || (pcRes->nCubes == 1 && pcRes->pCubes[0] == 0) ) + { + vMemory->pArray[0] = 0; + Vec_IntShrink( vMemory, pcRes->nCubes ); + return 0; + } + if ( fTryBoth ) + { + // compute ISOP for the complemented polarity + Kit_TruthNot( puTruth, puTruth, nVars ); + pResult = Kit_TruthIsop_rec( puTruth, puTruth, nVars, pcRes2, vMemory ); + if ( pcRes2->nCubes >= 0 ) + { + assert( Kit_TruthIsEqual( puTruth, pResult, nVars ) ); + if ( pcRes->nCubes > pcRes2->nCubes ) + { + RetValue = 1; + pcRes = pcRes2; + } + } + Kit_TruthNot( puTruth, puTruth, nVars ); + } +// printf( "%d ", vMemory->nSize ); + // move the cover representation to the beginning of the memory buffer + memmove( vMemory->pArray, pcRes->pCubes, pcRes->nCubes * sizeof(unsigned) ); + Vec_IntShrink( vMemory, pcRes->nCubes ); + return RetValue; +} + +/**Function************************************************************* + + Synopsis [Computes ISOP 6 variables or more.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Kit_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ) +{ + Kit_Sop_t cRes0, cRes1, cRes2; + Kit_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2; + unsigned * puRes0, * puRes1, * puRes2; + unsigned * puOn0, * puOn1, * puOnDc0, * puOnDc1, * pTemp, * pTemp0, * pTemp1; + int i, k, Var, nWords, nWordsAll; +// assert( Kit_TruthIsImply( puOn, puOnDc, nVars ) ); + // allocate room for the resulting truth table + nWordsAll = Kit_TruthWordNum( nVars ); + pTemp = Vec_IntFetch( vStore, nWordsAll ); + if ( pTemp == NULL ) + { + pcRes->nCubes = -1; + return NULL; + } + // check for constants + if ( Kit_TruthIsConst0( puOn, nVars ) ) + { + pcRes->nCubes = 0; + pcRes->pCubes = NULL; + Kit_TruthClear( pTemp, nVars ); + return pTemp; + } + if ( Kit_TruthIsConst1( puOnDc, nVars ) ) + { + pcRes->nCubes = 1; + pcRes->pCubes = Vec_IntFetch( vStore, 1 ); + if ( pcRes->pCubes == NULL ) + { + pcRes->nCubes = -1; + return NULL; + } + pcRes->pCubes[0] = 0; + Kit_TruthFill( pTemp, nVars ); + return pTemp; + } + assert( nVars > 0 ); + // find the topmost var + for ( Var = nVars-1; Var >= 0; Var-- ) + if ( Kit_TruthVarInSupport( puOn, nVars, Var ) || + Kit_TruthVarInSupport( puOnDc, nVars, Var ) ) + break; + assert( Var >= 0 ); + // consider a simple case when one-word computation can be used + if ( Var < 5 ) + { + unsigned uRes = Kit_TruthIsop5_rec( puOn[0], puOnDc[0], Var+1, pcRes, vStore ); + for ( i = 0; i < nWordsAll; i++ ) + pTemp[i] = uRes; + return pTemp; + } + assert( Var >= 5 ); + nWords = Kit_TruthWordNum( Var ); + // cofactor + puOn0 = puOn; puOn1 = puOn + nWords; + puOnDc0 = puOnDc; puOnDc1 = puOnDc + nWords; + pTemp0 = pTemp; pTemp1 = pTemp + nWords; + // solve for cofactors + Kit_TruthSharp( pTemp0, puOn0, puOnDc1, Var ); + puRes0 = Kit_TruthIsop_rec( pTemp0, puOnDc0, Var, pcRes0, vStore ); + if ( pcRes0->nCubes == -1 ) + { + pcRes->nCubes = -1; + return NULL; + } + Kit_TruthSharp( pTemp1, puOn1, puOnDc0, Var ); + puRes1 = Kit_TruthIsop_rec( pTemp1, puOnDc1, Var, pcRes1, vStore ); + if ( pcRes1->nCubes == -1 ) + { + pcRes->nCubes = -1; + return NULL; + } + Kit_TruthSharp( pTemp0, puOn0, puRes0, Var ); + Kit_TruthSharp( pTemp1, puOn1, puRes1, Var ); + Kit_TruthOr( pTemp0, pTemp0, pTemp1, Var ); + Kit_TruthAnd( pTemp1, puOnDc0, puOnDc1, Var ); + puRes2 = Kit_TruthIsop_rec( pTemp0, pTemp1, Var, pcRes2, vStore ); + if ( pcRes2->nCubes == -1 ) + { + pcRes->nCubes = -1; + return NULL; + } + // create the resulting cover + pcRes->nCubes = pcRes0->nCubes + pcRes1->nCubes + pcRes2->nCubes; + pcRes->pCubes = Vec_IntFetch( vStore, pcRes->nCubes ); + if ( pcRes->pCubes == NULL ) + { + pcRes->nCubes = -1; + return NULL; + } + k = 0; + for ( i = 0; i < pcRes0->nCubes; i++ ) + pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+0)); + for ( i = 0; i < pcRes1->nCubes; i++ ) + pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+1)); + for ( i = 0; i < pcRes2->nCubes; i++ ) + pcRes->pCubes[k++] = pcRes2->pCubes[i]; + assert( k == pcRes->nCubes ); + // create the resulting truth table + Kit_TruthOr( pTemp0, puRes0, puRes2, Var ); + Kit_TruthOr( pTemp1, puRes1, puRes2, Var ); + // copy the table if needed + nWords <<= 1; + for ( i = 1; i < nWordsAll/nWords; i++ ) + for ( k = 0; k < nWords; k++ ) + pTemp[i*nWords + k] = pTemp[k]; + // verify in the end +// assert( Kit_TruthIsImply( puOn, pTemp, nVars ) ); +// assert( Kit_TruthIsImply( pTemp, puOnDc, nVars ) ); + return pTemp; +} + +/**Function************************************************************* + + Synopsis [Computes ISOP for 5 variables or less.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ) +{ + unsigned uMasks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; + Kit_Sop_t cRes0, cRes1, cRes2; + Kit_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2; + unsigned uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2; + int i, k, Var; + assert( nVars <= 5 ); + assert( (uOn & ~uOnDc) == 0 ); + if ( uOn == 0 ) + { + pcRes->nCubes = 0; + pcRes->pCubes = NULL; + return 0; + } + if ( uOnDc == 0xFFFFFFFF ) + { + pcRes->nCubes = 1; + pcRes->pCubes = Vec_IntFetch( vStore, 1 ); + if ( pcRes->pCubes == NULL ) + { + pcRes->nCubes = -1; + return 0; + } + pcRes->pCubes[0] = 0; + return 0xFFFFFFFF; + } + assert( nVars > 0 ); + // find the topmost var + for ( Var = nVars-1; Var >= 0; Var-- ) + if ( Kit_TruthVarInSupport( &uOn, 5, Var ) || + Kit_TruthVarInSupport( &uOnDc, 5, Var ) ) + break; + assert( Var >= 0 ); + // cofactor + uOn0 = uOn1 = uOn; + uOnDc0 = uOnDc1 = uOnDc; + Kit_TruthCofactor0( &uOn0, Var + 1, Var ); + Kit_TruthCofactor1( &uOn1, Var + 1, Var ); + Kit_TruthCofactor0( &uOnDc0, Var + 1, Var ); + Kit_TruthCofactor1( &uOnDc1, Var + 1, Var ); + // solve for cofactors + uRes0 = Kit_TruthIsop5_rec( uOn0 & ~uOnDc1, uOnDc0, Var, pcRes0, vStore ); + if ( pcRes0->nCubes == -1 ) + { + pcRes->nCubes = -1; + return 0; + } + uRes1 = Kit_TruthIsop5_rec( uOn1 & ~uOnDc0, uOnDc1, Var, pcRes1, vStore ); + if ( pcRes1->nCubes == -1 ) + { + pcRes->nCubes = -1; + return 0; + } + uRes2 = Kit_TruthIsop5_rec( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var, pcRes2, vStore ); + if ( pcRes2->nCubes == -1 ) + { + pcRes->nCubes = -1; + return 0; + } + // create the resulting cover + pcRes->nCubes = pcRes0->nCubes + pcRes1->nCubes + pcRes2->nCubes; + pcRes->pCubes = Vec_IntFetch( vStore, pcRes->nCubes ); + if ( pcRes->pCubes == NULL ) + { + pcRes->nCubes = -1; + return 0; + } + k = 0; + for ( i = 0; i < pcRes0->nCubes; i++ ) + pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+0)); + for ( i = 0; i < pcRes1->nCubes; i++ ) + pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+1)); + for ( i = 0; i < pcRes2->nCubes; i++ ) + pcRes->pCubes[k++] = pcRes2->pCubes[i]; + assert( k == pcRes->nCubes ); + // derive the final truth table + uRes2 |= (uRes0 & ~uMasks[Var]) | (uRes1 & uMasks[Var]); +// assert( (uOn & ~uRes2) == 0 ); +// assert( (uRes2 & ~uOnDc) == 0 ); + return uRes2; +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/abc8/kit/kitSop.c b/src/abc8/kit/kitSop.c new file mode 100644 index 00000000..20ad0651 --- /dev/null +++ b/src/abc8/kit/kitSop.c @@ -0,0 +1,572 @@ +/**CFile**************************************************************** + + FileName [kitSop.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Procedures involving SOPs.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitSop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Creates SOP from the cube array.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopCreate( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ) +{ + unsigned uCube; + int i; + // start the cover + cResult->nCubes = 0; + cResult->pCubes = Vec_IntFetch( vMemory, Vec_IntSize(vInput) ); + // add the cubes + Vec_IntForEachEntry( vInput, uCube, i ) + Kit_SopPushCube( cResult, uCube ); +} + +/**Function************************************************************* + + Synopsis [Creates SOP from the cube array.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopCreateInverse( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nLits, Vec_Int_t * vMemory ) +{ + unsigned uCube, uMask = 0; + int i, nCubes = Vec_IntSize(vInput); + // start the cover + cResult->nCubes = 0; + cResult->pCubes = Vec_IntFetch( vMemory, nCubes ); + // add the cubes +// Vec_IntForEachEntry( vInput, uCube, i ) + for ( i = 0; i < nCubes; i++ ) + { + uCube = Vec_IntEntry( vInput, i ); + uMask = ((uCube | (uCube >> 1)) & 0x55555555); + uMask |= (uMask << 1); + Kit_SopPushCube( cResult, uCube ^ uMask ); + } +} + +/**Function************************************************************* + + Synopsis [Duplicates SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopDup( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ) +{ + unsigned uCube; + int i; + // start the cover + cResult->nCubes = 0; + cResult->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); + // add the cubes + Kit_SopForEachCube( cSop, uCube, i ) + Kit_SopPushCube( cResult, uCube ); +} + +/**Function************************************************************* + + Synopsis [Derives the quotient of division by literal.] + + Description [Reduces the cover to be equal to the result of + division of the given cover by the literal.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopDivideByLiteralQuo( Kit_Sop_t * cSop, int iLit ) +{ + unsigned uCube; + int i, k = 0; + Kit_SopForEachCube( cSop, uCube, i ) + { + if ( Kit_CubeHasLit(uCube, iLit) ) + Kit_SopWriteCube( cSop, Kit_CubeRemLit(uCube, iLit), k++ ); + } + Kit_SopShrink( cSop, k ); +} + + +/**Function************************************************************* + + Synopsis [Divides cover by one cube.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopDivideByCube( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ) +{ + unsigned uCube, uDiv; + int i; + // get the only cube + assert( Kit_SopCubeNum(cDiv) == 1 ); + uDiv = Kit_SopCube(cDiv, 0); + // allocate covers + vQuo->nCubes = 0; + vQuo->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); + vRem->nCubes = 0; + vRem->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); + // sort the cubes + Kit_SopForEachCube( cSop, uCube, i ) + { + if ( Kit_CubeContains( uCube, uDiv ) ) + Kit_SopPushCube( vQuo, Kit_CubeSharp(uCube, uDiv) ); + else + Kit_SopPushCube( vRem, uCube ); + } +} + +/**Function************************************************************* + + Synopsis [Divides cover by one cube.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopDivideInternal( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ) +{ + unsigned uCube, uDiv, uCube2, uDiv2, uQuo; + int i, i2, k, k2, nCubesRem; + assert( Kit_SopCubeNum(cSop) >= Kit_SopCubeNum(cDiv) ); + // consider special case + if ( Kit_SopCubeNum(cDiv) == 1 ) + { + Kit_SopDivideByCube( cSop, cDiv, vQuo, vRem, vMemory ); + return; + } + // allocate quotient + vQuo->nCubes = 0; + vQuo->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) / Kit_SopCubeNum(cDiv) ); + // for each cube of the cover + // it either belongs to the quotient or to the remainder + Kit_SopForEachCube( cSop, uCube, i ) + { + // skip taken cubes + if ( Kit_CubeIsMarked(uCube) ) + continue; + // find a matching cube in the divisor + uDiv = ~0; + Kit_SopForEachCube( cDiv, uDiv, k ) + if ( Kit_CubeContains( uCube, uDiv ) ) + break; + // the cube is not found + if ( k == Kit_SopCubeNum(cDiv) ) + continue; + // the quotient cube exists + uQuo = Kit_CubeSharp( uCube, uDiv ); + // find corresponding cubes for other cubes of the divisor + uDiv2 = ~0; + Kit_SopForEachCube( cDiv, uDiv2, k2 ) + { + if ( k2 == k ) + continue; + // find a matching cube + Kit_SopForEachCube( cSop, uCube2, i2 ) + { + // skip taken cubes + if ( Kit_CubeIsMarked(uCube2) ) + continue; + // check if the cube can be used + if ( Kit_CubeContains( uCube2, uDiv2 ) && uQuo == Kit_CubeSharp( uCube2, uDiv2 ) ) + break; + } + // the case when the cube is not found + if ( i2 == Kit_SopCubeNum(cSop) ) + break; + } + // we did not find some cubes - continue looking at other cubes + if ( k2 != Kit_SopCubeNum(cDiv) ) + continue; + // we found all cubes - add the quotient cube + Kit_SopPushCube( vQuo, uQuo ); + + // mark the first cube + Kit_SopWriteCube( cSop, Kit_CubeMark(uCube), i ); + // mark other cubes that have this quotient + Kit_SopForEachCube( cDiv, uDiv2, k2 ) + { + if ( k2 == k ) + continue; + // find a matching cube + Kit_SopForEachCube( cSop, uCube2, i2 ) + { + // skip taken cubes + if ( Kit_CubeIsMarked(uCube2) ) + continue; + // check if the cube can be used + if ( Kit_CubeContains( uCube2, uDiv2 ) && uQuo == Kit_CubeSharp( uCube2, uDiv2 ) ) + break; + } + assert( i2 < Kit_SopCubeNum(cSop) ); + // the cube is found, mark it + // (later we will add all unmarked cubes to the remainder) + Kit_SopWriteCube( cSop, Kit_CubeMark(uCube2), i2 ); + } + } + // determine the number of cubes in the remainder + nCubesRem = Kit_SopCubeNum(cSop) - Kit_SopCubeNum(vQuo) * Kit_SopCubeNum(cDiv); + // allocate remainder + vRem->nCubes = 0; + vRem->pCubes = Vec_IntFetch( vMemory, nCubesRem ); + // finally add the remaining unmarked cubes to the remainder + // and clean the marked cubes in the cover + Kit_SopForEachCube( cSop, uCube, i ) + { + if ( !Kit_CubeIsMarked(uCube) ) + { + Kit_SopPushCube( vRem, uCube ); + continue; + } + Kit_SopWriteCube( cSop, Kit_CubeUnmark(uCube), i ); + } + assert( nCubesRem == Kit_SopCubeNum(vRem) ); +} + +/**Function************************************************************* + + Synopsis [Returns the common cube.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline unsigned Kit_SopCommonCube( Kit_Sop_t * cSop ) +{ + unsigned uMask, uCube; + int i; + uMask = ~(unsigned)0; + Kit_SopForEachCube( cSop, uCube, i ) + uMask &= uCube; + return uMask; +} + +/**Function************************************************************* + + Synopsis [Makes the cover cube-free.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopMakeCubeFree( Kit_Sop_t * cSop ) +{ + unsigned uMask, uCube; + int i; + uMask = Kit_SopCommonCube( cSop ); + if ( uMask == 0 ) + return; + // remove the common cube + Kit_SopForEachCube( cSop, uCube, i ) + Kit_SopWriteCube( cSop, Kit_CubeSharp(uCube, uMask), i ); +} + +/**Function************************************************************* + + Synopsis [Checks if the cover is cube-free.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopIsCubeFree( Kit_Sop_t * cSop ) +{ + return Kit_SopCommonCube( cSop ) == 0; +} + +/**Function************************************************************* + + Synopsis [Creates SOP composes of the common cube of the given SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopCommonCubeCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ) +{ + assert( Kit_SopCubeNum(cSop) > 0 ); + cResult->nCubes = 0; + cResult->pCubes = Vec_IntFetch( vMemory, 1 ); + Kit_SopPushCube( cResult, Kit_SopCommonCube(cSop) ); +} + + +/**Function************************************************************* + + Synopsis [Find any literal that occurs more than once.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopAnyLiteral( Kit_Sop_t * cSop, int nLits ) +{ + unsigned uCube; + int i, k, nLitsCur; + // go through each literal + for ( i = 0; i < nLits; i++ ) + { + // go through all the cubes + nLitsCur = 0; + Kit_SopForEachCube( cSop, uCube, k ) + if ( Kit_CubeHasLit(uCube, i) ) + nLitsCur++; + if ( nLitsCur > 1 ) + return i; + } + return -1; +} + +/**Function************************************************************* + + Synopsis [Find the least often occurring literal.] + + Description [Find the least often occurring literal among those + that occur more than once.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopWorstLiteral( Kit_Sop_t * cSop, int nLits ) +{ + unsigned uCube; + int i, k, iMin, nLitsMin, nLitsCur; + int fUseFirst = 1; + + // go through each literal + iMin = -1; + nLitsMin = 1000000; + for ( i = 0; i < nLits; i++ ) + { + // go through all the cubes + nLitsCur = 0; + Kit_SopForEachCube( cSop, uCube, k ) + if ( Kit_CubeHasLit(uCube, i) ) + nLitsCur++; + // skip the literal that does not occur or occurs once + if ( nLitsCur < 2 ) + continue; + // check if this is the best literal + if ( fUseFirst ) + { + if ( nLitsMin > nLitsCur ) + { + nLitsMin = nLitsCur; + iMin = i; + } + } + else + { + if ( nLitsMin >= nLitsCur ) + { + nLitsMin = nLitsCur; + iMin = i; + } + } + } + if ( nLitsMin < 1000000 ) + return iMin; + return -1; +} + +/**Function************************************************************* + + Synopsis [Find the least often occurring literal.] + + Description [Find the least often occurring literal among those + that occur more than once.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopBestLiteral( Kit_Sop_t * cSop, int nLits, unsigned uMask ) +{ + unsigned uCube; + int i, k, iMax, nLitsMax, nLitsCur; + int fUseFirst = 1; + + // go through each literal + iMax = -1; + nLitsMax = -1; + for ( i = 0; i < nLits; i++ ) + { + if ( !Kit_CubeHasLit(uMask, i) ) + continue; + // go through all the cubes + nLitsCur = 0; + Kit_SopForEachCube( cSop, uCube, k ) + if ( Kit_CubeHasLit(uCube, i) ) + nLitsCur++; + // skip the literal that does not occur or occurs once + if ( nLitsCur < 2 ) + continue; + // check if this is the best literal + if ( fUseFirst ) + { + if ( nLitsMax < nLitsCur ) + { + nLitsMax = nLitsCur; + iMax = i; + } + } + else + { + if ( nLitsMax <= nLitsCur ) + { + nLitsMax = nLitsCur; + iMax = i; + } + } + } + if ( nLitsMax >= 0 ) + return iMax; + return -1; +} + +/**Function************************************************************* + + Synopsis [Computes a level-zero kernel.] + + Description [Modifies the cover to contain one level-zero kernel.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopDivisorZeroKernel_rec( Kit_Sop_t * cSop, int nLits ) +{ + int iLit; + // find any literal that occurs at least two times + iLit = Kit_SopWorstLiteral( cSop, nLits ); + if ( iLit == -1 ) + return; + // derive the cube-free quotient + Kit_SopDivideByLiteralQuo( cSop, iLit ); // the same cover + Kit_SopMakeCubeFree( cSop ); // the same cover + // call recursively + Kit_SopDivisorZeroKernel_rec( cSop, nLits ); // the same cover +} + +/**Function************************************************************* + + Synopsis [Computes the quick divisor of the cover.] + + Description [Returns 0, if there is no divisor other than trivial.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopDivisor( Kit_Sop_t * cResult, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ) +{ + if ( Kit_SopCubeNum(cSop) <= 1 ) + return 0; + if ( Kit_SopAnyLiteral( cSop, nLits ) == -1 ) + return 0; + // duplicate the cover + Kit_SopDup( cResult, cSop, vMemory ); + // perform the kerneling + Kit_SopDivisorZeroKernel_rec( cResult, nLits ); + assert( Kit_SopCubeNum(cResult) > 0 ); + return 1; +} + + +/**Function************************************************************* + + Synopsis [Create the one-literal cover with the best literal from cSop.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopBestLiteralCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vMemory ) +{ + int iLitBest; + // get the best literal + iLitBest = Kit_SopBestLiteral( cSop, nLits, uCube ); + // start the cover + cResult->nCubes = 0; + cResult->pCubes = Vec_IntFetch( vMemory, 1 ); + // set the cube + Kit_SopPushCube( cResult, Kit_CubeSetLit(0, iLitBest) ); +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/abc8/kit/kitTruth.c b/src/abc8/kit/kitTruth.c new file mode 100644 index 00000000..dab60132 --- /dev/null +++ b/src/abc8/kit/kitTruth.c @@ -0,0 +1,1721 @@ +/**CFile**************************************************************** + + FileName [kitTruth.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Procedures involving truth tables.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitTruth.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Swaps two adjacent variables in the truth table.] + + Description [Swaps var number Start and var number Start+1 (0-based numbers). + The input truth table is pIn. The output truth table is pOut.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) +{ + static unsigned PMasks[4][3] = { + { 0x99999999, 0x22222222, 0x44444444 }, + { 0xC3C3C3C3, 0x0C0C0C0C, 0x30303030 }, + { 0xF00FF00F, 0x00F000F0, 0x0F000F00 }, + { 0xFF0000FF, 0x0000FF00, 0x00FF0000 } + }; + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step, Shift; + + assert( iVar < nVars - 1 ); + if ( iVar < 4 ) + { + Shift = (1 << iVar); + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift); + } + else if ( iVar > 4 ) + { + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 4*Step ) + { + for ( i = 0; i < Step; i++ ) + pOut[i] = pIn[i]; + for ( i = 0; i < Step; i++ ) + pOut[Step+i] = pIn[2*Step+i]; + for ( i = 0; i < Step; i++ ) + pOut[2*Step+i] = pIn[Step+i]; + for ( i = 0; i < Step; i++ ) + pOut[3*Step+i] = pIn[3*Step+i]; + pIn += 4*Step; + pOut += 4*Step; + } + } + else // if ( iVar == 4 ) + { + for ( i = 0; i < nWords; i += 2 ) + { + pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16); + pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); + } + } +} + +/**Function************************************************************* + + Synopsis [Swaps two adjacent variables in the truth table.] + + Description [Swaps var number Start and var number Start+1 (0-based numbers). + The input truth table is pIn. The output truth table is pOut.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthSwapAdjacentVars2( unsigned * pIn, unsigned * pOut, int nVars, int Start ) +{ + int nWords = (nVars <= 5)? 1 : (1 << (nVars-5)); + int i, k, Step; + + assert( Start < nVars - 1 ); + switch ( Start ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0x99999999) | ((pIn[i] & 0x22222222) << 1) | ((pIn[i] & 0x44444444) >> 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xC3C3C3C3) | ((pIn[i] & 0x0C0C0C0C) << 2) | ((pIn[i] & 0x30303030) >> 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xF00FF00F) | ((pIn[i] & 0x00F000F0) << 4) | ((pIn[i] & 0x0F000F00) >> 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xFF0000FF) | ((pIn[i] & 0x0000FF00) << 8) | ((pIn[i] & 0x00FF0000) >> 8); + return; + case 4: + for ( i = 0; i < nWords; i += 2 ) + { + pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16); + pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); + } + return; + default: + Step = (1 << (Start - 5)); + for ( k = 0; k < nWords; k += 4*Step ) + { + for ( i = 0; i < Step; i++ ) + pOut[i] = pIn[i]; + for ( i = 0; i < Step; i++ ) + pOut[Step+i] = pIn[2*Step+i]; + for ( i = 0; i < Step; i++ ) + pOut[2*Step+i] = pIn[Step+i]; + for ( i = 0; i < Step; i++ ) + pOut[3*Step+i] = pIn[3*Step+i]; + pIn += 4*Step; + pOut += 4*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Expands the truth table according to the phase.] + + Description [The input and output truth tables are in pIn/pOut. The current number + of variables is nVars. The total number of variables in nVarsAll. The last argument + (Phase) contains shows where the variables should go.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn ) +{ + unsigned * pTemp; + int i, k, Var = nVars - 1, Counter = 0; + for ( i = nVarsAll - 1; i >= 0; i-- ) + if ( Phase & (1 << i) ) + { + for ( k = Var; k < i; k++ ) + { + Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k ); + pTemp = pIn; pIn = pOut; pOut = pTemp; + Counter++; + } + Var--; + } + assert( Var == -1 ); + // swap if it was moved an even number of times + if ( fReturnIn ^ !(Counter & 1) ) + Kit_TruthCopy( pOut, pIn, nVarsAll ); +} + +/**Function************************************************************* + + Synopsis [Shrinks the truth table according to the phase.] + + Description [The input and output truth tables are in pIn/pOut. The current number + of variables is nVars. The total number of variables in nVarsAll. The last argument + (Phase) contains shows what variables should remain.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase, int fReturnIn ) +{ + unsigned * pTemp; + int i, k, Var = 0, Counter = 0; + for ( i = 0; i < nVarsAll; i++ ) + if ( Phase & (1 << i) ) + { + for ( k = i-1; k >= Var; k-- ) + { + Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k ); + pTemp = pIn; pIn = pOut; pOut = pTemp; + Counter++; + } + Var++; + } + assert( Var == nVars ); + // swap if it was moved an even number of times + if ( fReturnIn ^ !(Counter & 1) ) + Kit_TruthCopy( pOut, pIn, nVarsAll ); +} + + +/**Function************************************************************* + + Synopsis [Returns 1 if TT depends on the given variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + if ( (pTruth[i] & 0x55555555) != ((pTruth[i] & 0xAAAAAAAA) >> 1) ) + return 1; + return 0; + case 1: + for ( i = 0; i < nWords; i++ ) + if ( (pTruth[i] & 0x33333333) != ((pTruth[i] & 0xCCCCCCCC) >> 2) ) + return 1; + return 0; + case 2: + for ( i = 0; i < nWords; i++ ) + if ( (pTruth[i] & 0x0F0F0F0F) != ((pTruth[i] & 0xF0F0F0F0) >> 4) ) + return 1; + return 0; + case 3: + for ( i = 0; i < nWords; i++ ) + if ( (pTruth[i] & 0x00FF00FF) != ((pTruth[i] & 0xFF00FF00) >> 8) ) + return 1; + return 0; + case 4: + for ( i = 0; i < nWords; i++ ) + if ( (pTruth[i] & 0x0000FFFF) != ((pTruth[i] & 0xFFFF0000) >> 16) ) + return 1; + return 0; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + if ( pTruth[i] != pTruth[Step+i] ) + return 1; + pTruth += 2*Step; + } + return 0; + } +} + +/**Function************************************************************* + + Synopsis [Returns the number of support vars.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthSupportSize( unsigned * pTruth, int nVars ) +{ + int i, Counter = 0; + for ( i = 0; i < nVars; i++ ) + Counter += Kit_TruthVarInSupport( pTruth, nVars, i ); + return Counter; +} + +/**Function************************************************************* + + Synopsis [Returns support of the function.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_TruthSupport( unsigned * pTruth, int nVars ) +{ + int i, Support = 0; + for ( i = 0; i < nVars; i++ ) + if ( Kit_TruthVarInSupport( pTruth, nVars, i ) ) + Support |= (1 << i); + return Support; +} + + + +/**Function************************************************************* + + Synopsis [Computes negative cofactor of the function.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0x55555555) | ((pTruth[i] & 0x55555555) << 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0x33333333) | ((pTruth[i] & 0x33333333) << 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0x0F0F0F0F) | ((pTruth[i] & 0x0F0F0F0F) << 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0x00FF00FF) | ((pTruth[i] & 0x00FF00FF) << 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0x0000FFFF) | ((pTruth[i] & 0x0000FFFF) << 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + pTruth[Step+i] = pTruth[i]; + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Computes positive cofactor of the function.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0xAAAAAAAA) | ((pTruth[i] & 0xAAAAAAAA) >> 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0xCCCCCCCC) | ((pTruth[i] & 0xCCCCCCCC) >> 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0xF0F0F0F0) | ((pTruth[i] & 0xF0F0F0F0) >> 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0xFF00FF00) | ((pTruth[i] & 0xFF00FF00) >> 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0xFFFF0000) | ((pTruth[i] & 0xFFFF0000) >> 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + pTruth[i] = pTruth[Step+i]; + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Computes positive cofactor of the function.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthCofactor0New( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0x55555555) | ((pIn[i] & 0x55555555) << 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0x33333333) | ((pIn[i] & 0x33333333) << 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0x0F0F0F0F) | ((pIn[i] & 0x0F0F0F0F) << 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0x00FF00FF) | ((pIn[i] & 0x00FF00FF) << 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i] & 0x0000FFFF) << 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + pOut[i] = pOut[Step+i] = pIn[i]; + pIn += 2*Step; + pOut += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Computes positive cofactor of the function.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthCofactor1New( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xAAAAAAAA) | ((pIn[i] & 0xAAAAAAAA) >> 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xCCCCCCCC) | ((pIn[i] & 0xCCCCCCCC) >> 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xF0F0F0F0) | ((pIn[i] & 0xF0F0F0F0) >> 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xFF00FF00) | ((pIn[i] & 0xFF00FF00) >> 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + pOut[i] = pOut[Step+i] = pIn[Step+i]; + pIn += 2*Step; + pOut += 2*Step; + } + return; + } +} + + +/**Function************************************************************* + + Synopsis [Existentially quantifies the variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pTruth[i] |= ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pTruth[i] |= ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pTruth[i] |= ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pTruth[i] |= ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pTruth[i] |= ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pTruth[i] |= pTruth[Step+i]; + pTruth[Step+i] = pTruth[i]; + } + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Existentially quantifies the variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthExistNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] | ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] | ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] | ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] | ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] | ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pRes[i] = pTruth[i] | pTruth[Step+i]; + pRes[Step+i] = pRes[i]; + } + pRes += 2*Step; + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Existantially quantifies the set of variables.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthExistSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask ) +{ + int v; + Kit_TruthCopy( pRes, pTruth, nVars ); + for ( v = 0; v < nVars; v++ ) + if ( uMask & (1 << v) ) + Kit_TruthExist( pRes, nVars, v ); +} + +/**Function************************************************************* + + Synopsis [Unversally quantifies the variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pTruth[i] &= ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pTruth[i] &= ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pTruth[i] &= ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pTruth[i] &= ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pTruth[i] &= ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pTruth[i] &= pTruth[Step+i]; + pTruth[Step+i] = pTruth[i]; + } + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Universally quantifies the variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthForallNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] & (((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1)); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] & (((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2)); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] & (((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4)); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] & (((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8)); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] & (((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16)); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pRes[i] = pTruth[i] & pTruth[Step+i]; + pRes[Step+i] = pRes[i]; + } + pRes += 2*Step; + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Universally quantifies the variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthUniqueNew( unsigned * pRes, unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1)); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2)); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4)); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8)); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pRes[i] = pTruth[i] ^ (((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16)); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pRes[i] = pTruth[i] ^ pTruth[Step+i]; + pRes[Step+i] = pRes[i]; + } + pRes += 2*Step; + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Universally quantifies the set of variables.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthForallSet( unsigned * pRes, unsigned * pTruth, int nVars, unsigned uMask ) +{ + int v; + Kit_TruthCopy( pRes, pTruth, nVars ); + for ( v = 0; v < nVars; v++ ) + if ( uMask & (1 << v) ) + Kit_TruthForall( pRes, nVars, v ); +} + + +/**Function************************************************************* + + Synopsis [Multiplexes two functions with the given variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthMuxVar( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pOut[i] = pCof0[i]; + pOut[Step+i] = pCof1[Step+i]; + } + pOut += 2*Step; + pCof0 += 2*Step; + pCof1 += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Multiplexes two functions with the given variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthMuxVarPhase( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar, int fCompl0 ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + if ( fCompl0 == 0 ) + { + Kit_TruthMuxVar( pOut, pCof0, pCof1, nVars, iVar ); + return; + } + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (~pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (~pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (~pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (~pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (~pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pOut[i] = ~pCof0[i]; + pOut[Step+i] = pCof1[Step+i]; + } + pOut += 2*Step; + pCof0 += 2*Step; + pCof1 += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Checks symmetry of two variables.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthVarsSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1 ) +{ + static unsigned uTemp0[16], uTemp1[16]; + assert( nVars <= 9 ); + // compute Cof01 + Kit_TruthCopy( uTemp0, pTruth, nVars ); + Kit_TruthCofactor0( uTemp0, nVars, iVar0 ); + Kit_TruthCofactor1( uTemp0, nVars, iVar1 ); + // compute Cof10 + Kit_TruthCopy( uTemp1, pTruth, nVars ); + Kit_TruthCofactor1( uTemp1, nVars, iVar0 ); + Kit_TruthCofactor0( uTemp1, nVars, iVar1 ); + // compare + return Kit_TruthIsEqual( uTemp0, uTemp1, nVars ); +} + +/**Function************************************************************* + + Synopsis [Checks antisymmetry of two variables.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthVarsAntiSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1 ) +{ + static unsigned uTemp0[16], uTemp1[16]; + assert( nVars <= 9 ); + // compute Cof00 + Kit_TruthCopy( uTemp0, pTruth, nVars ); + Kit_TruthCofactor0( uTemp0, nVars, iVar0 ); + Kit_TruthCofactor0( uTemp0, nVars, iVar1 ); + // compute Cof11 + Kit_TruthCopy( uTemp1, pTruth, nVars ); + Kit_TruthCofactor1( uTemp1, nVars, iVar0 ); + Kit_TruthCofactor1( uTemp1, nVars, iVar1 ); + // compare + return Kit_TruthIsEqual( uTemp0, uTemp1, nVars ); +} + +/**Function************************************************************* + + Synopsis [Changes phase of the function w.r.t. one variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + unsigned Temp; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ((pTruth[i] & 0x55555555) << 1) | ((pTruth[i] & 0xAAAAAAAA) >> 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ((pTruth[i] & 0x33333333) << 2) | ((pTruth[i] & 0xCCCCCCCC) >> 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ((pTruth[i] & 0x0F0F0F0F) << 4) | ((pTruth[i] & 0xF0F0F0F0) >> 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ((pTruth[i] & 0x00FF00FF) << 8) | ((pTruth[i] & 0xFF00FF00) >> 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ((pTruth[i] & 0x0000FFFF) << 16) | ((pTruth[i] & 0xFFFF0000) >> 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + Temp = pTruth[i]; + pTruth[i] = pTruth[Step+i]; + pTruth[Step+i] = Temp; + } + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Computes minimum overlap in supports of cofactors.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin ) +{ + static unsigned uCofactor[16]; + int i, ValueCur, ValueMin, VarMin; + unsigned uSupp0, uSupp1; + int nVars0, nVars1; + assert( nVars <= 9 ); + ValueMin = 32; + VarMin = -1; + for ( i = 0; i < nVars; i++ ) + { + // get negative cofactor + Kit_TruthCopy( uCofactor, pTruth, nVars ); + Kit_TruthCofactor0( uCofactor, nVars, i ); + uSupp0 = Kit_TruthSupport( uCofactor, nVars ); + nVars0 = Kit_WordCountOnes( uSupp0 ); +//Kit_PrintBinary( stdout, &uSupp0, 8 ); printf( "\n" ); + // get positive cofactor + Kit_TruthCopy( uCofactor, pTruth, nVars ); + Kit_TruthCofactor1( uCofactor, nVars, i ); + uSupp1 = Kit_TruthSupport( uCofactor, nVars ); + nVars1 = Kit_WordCountOnes( uSupp1 ); +//Kit_PrintBinary( stdout, &uSupp1, 8 ); printf( "\n" ); + // get the number of common vars + ValueCur = Kit_WordCountOnes( uSupp0 & uSupp1 ); + if ( ValueMin > ValueCur && nVars0 <= 5 && nVars1 <= 5 ) + { + ValueMin = ValueCur; + VarMin = i; + } + if ( ValueMin == 0 ) + break; + } + if ( pVarMin ) + *pVarMin = VarMin; + return ValueMin; +} + + +/**Function************************************************************* + + Synopsis [Find the best cofactoring variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthBestCofVar( unsigned * pTruth, int nVars, unsigned * pCof0, unsigned * pCof1 ) +{ + int i, iBestVar, nSuppSizeCur0, nSuppSizeCur1, nSuppSizeCur, nSuppSizeMin; + if ( Kit_TruthIsConst0(pTruth, nVars) || Kit_TruthIsConst1(pTruth, nVars) ) + return -1; + // iterate through variables + iBestVar = -1; + nSuppSizeMin = KIT_INFINITY; + for ( i = 0; i < nVars; i++ ) + { + // cofactor the functiona and get support sizes + Kit_TruthCofactor0New( pCof0, pTruth, nVars, i ); + Kit_TruthCofactor1New( pCof1, pTruth, nVars, i ); + nSuppSizeCur0 = Kit_TruthSupportSize( pCof0, nVars ); + nSuppSizeCur1 = Kit_TruthSupportSize( pCof1, nVars ); + nSuppSizeCur = nSuppSizeCur0 + nSuppSizeCur1; + // compare this variable with other variables + if ( nSuppSizeMin > nSuppSizeCur ) + { + nSuppSizeMin = nSuppSizeCur; + iBestVar = i; + } + } + assert( iBestVar != -1 ); + // cofactor w.r.t. this variable + Kit_TruthCofactor0New( pCof0, pTruth, nVars, iBestVar ); + Kit_TruthCofactor1New( pCof1, pTruth, nVars, iBestVar ); + return iBestVar; +} + + +/**Function************************************************************* + + Synopsis [Counts the number of 1's in each cofactor.] + + Description [The resulting numbers are stored in the array of shorts, + whose length is 2*nVars. The number of 1's is counted in a different + space than the original function. For example, if the function depends + on k variables, the cofactors are assumed to depend on k-1 variables.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, short * pStore ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Counter; + memset( pStore, 0, sizeof(short) * 2 * nVars ); + if ( nVars <= 5 ) + { + if ( nVars > 0 ) + { + pStore[2*0+0] = Kit_WordCountOnes( pTruth[0] & 0x55555555 ); + pStore[2*0+1] = Kit_WordCountOnes( pTruth[0] & 0xAAAAAAAA ); + } + if ( nVars > 1 ) + { + pStore[2*1+0] = Kit_WordCountOnes( pTruth[0] & 0x33333333 ); + pStore[2*1+1] = Kit_WordCountOnes( pTruth[0] & 0xCCCCCCCC ); + } + if ( nVars > 2 ) + { + pStore[2*2+0] = Kit_WordCountOnes( pTruth[0] & 0x0F0F0F0F ); + pStore[2*2+1] = Kit_WordCountOnes( pTruth[0] & 0xF0F0F0F0 ); + } + if ( nVars > 3 ) + { + pStore[2*3+0] = Kit_WordCountOnes( pTruth[0] & 0x00FF00FF ); + pStore[2*3+1] = Kit_WordCountOnes( pTruth[0] & 0xFF00FF00 ); + } + if ( nVars > 4 ) + { + pStore[2*4+0] = Kit_WordCountOnes( pTruth[0] & 0x0000FFFF ); + pStore[2*4+1] = Kit_WordCountOnes( pTruth[0] & 0xFFFF0000 ); + } + return; + } + // nVars >= 6 + // count 1's for all other variables + for ( k = 0; k < nWords; k++ ) + { + Counter = Kit_WordCountOnes( pTruth[k] ); + for ( i = 5; i < nVars; i++ ) + if ( k & (1 << (i-5)) ) + pStore[2*i+1] += Counter; + else + pStore[2*i+0] += Counter; + } + // count 1's for the first five variables + for ( k = 0; k < nWords/2; k++ ) + { + pStore[2*0+0] += Kit_WordCountOnes( (pTruth[0] & 0x55555555) | ((pTruth[1] & 0x55555555) << 1) ); + pStore[2*0+1] += Kit_WordCountOnes( (pTruth[0] & 0xAAAAAAAA) | ((pTruth[1] & 0xAAAAAAAA) >> 1) ); + pStore[2*1+0] += Kit_WordCountOnes( (pTruth[0] & 0x33333333) | ((pTruth[1] & 0x33333333) << 2) ); + pStore[2*1+1] += Kit_WordCountOnes( (pTruth[0] & 0xCCCCCCCC) | ((pTruth[1] & 0xCCCCCCCC) >> 2) ); + pStore[2*2+0] += Kit_WordCountOnes( (pTruth[0] & 0x0F0F0F0F) | ((pTruth[1] & 0x0F0F0F0F) << 4) ); + pStore[2*2+1] += Kit_WordCountOnes( (pTruth[0] & 0xF0F0F0F0) | ((pTruth[1] & 0xF0F0F0F0) >> 4) ); + pStore[2*3+0] += Kit_WordCountOnes( (pTruth[0] & 0x00FF00FF) | ((pTruth[1] & 0x00FF00FF) << 8) ); + pStore[2*3+1] += Kit_WordCountOnes( (pTruth[0] & 0xFF00FF00) | ((pTruth[1] & 0xFF00FF00) >> 8) ); + pStore[2*4+0] += Kit_WordCountOnes( (pTruth[0] & 0x0000FFFF) | ((pTruth[1] & 0x0000FFFF) << 16) ); + pStore[2*4+1] += Kit_WordCountOnes( (pTruth[0] & 0xFFFF0000) | ((pTruth[1] & 0xFFFF0000) >> 16) ); + pTruth += 2; + } +} + +/**Function************************************************************* + + Synopsis [Counts the number of 1's in each cofactor.] + + Description [Verifies the above procedure.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthCountOnesInCofsSlow( unsigned * pTruth, int nVars, short * pStore, unsigned * pAux ) +{ + int i; + for ( i = 0; i < nVars; i++ ) + { + Kit_TruthCofactor0New( pAux, pTruth, nVars, i ); + pStore[2*i+0] = Kit_TruthCountOnes( pAux, nVars ) / 2; + Kit_TruthCofactor1New( pAux, pTruth, nVars, i ); + pStore[2*i+1] = Kit_TruthCountOnes( pAux, nVars ) / 2; + } +} + +/**Function************************************************************* + + Synopsis [Canonicize the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_TruthHash( unsigned * pIn, int nWords ) +{ + // The 1,024 smallest prime numbers used to compute the hash value + // http://www.math.utah.edu/~alfeld/math/primelist.html + static int HashPrimes[1024] = { 2, 3, 5, + 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, + 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, + 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, + 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, + 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, + 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, + 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, + 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, + 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, + 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, + 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, + 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, + 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, + 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, + 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, + 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, + 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, + 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, + 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, + 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, + 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, + 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, + 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, + 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, + 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, + 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, + 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, + 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, + 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, + 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, + 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, + 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, + 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, + 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, + 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, + 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, + 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, + 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, + 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, + 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, + 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, + 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, + 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, + 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, + 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, + 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, + 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, + 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, + 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, + 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, + 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, + 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, + 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, + 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, + 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, + 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, + 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, + 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, + 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, + 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, + 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, + 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, + 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, + 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, + 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, + 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, + 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, + 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, + 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, + 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, + 8147, 8161 }; + int i; + unsigned uHashKey; + assert( nWords <= 1024 ); + uHashKey = 0; + for ( i = 0; i < nWords; i++ ) + uHashKey ^= HashPrimes[i] * pIn[i]; + return uHashKey; +} + + +/**Function************************************************************* + + Synopsis [Canonicize the truth table.] + + Description [Returns the phase. ] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm, short * pStore ) +{ +// short pStore2[32]; + unsigned * pIn = pInOut, * pOut = pAux, * pTemp; +// int nWords = Kit_TruthWordNum( nVars ); + int i, Temp, fChange, Counter;//, nOnes;//, k, j, w, Limit; + unsigned uCanonPhase; + + // canonicize output + uCanonPhase = 0; +/* + nOnes = Kit_TruthCountOnes(pIn, nVars); + if ( (nOnes > nWords * 16) )//|| ((nOnes == nWords * 16) && (pIn[0] & 1)) ) + { + uCanonPhase |= (1 << nVars); + Kit_TruthNot( pIn, pIn, nVars ); + } +*/ + // collect the minterm counts + Kit_TruthCountOnesInCofs( pIn, nVars, pStore ); +// Kit_TruthCountOnesInCofsSlow( pIn, nVars, pStore2, pAux ); +// for ( i = 0; i < 2*nVars; i++ ) +// { +// assert( pStore[i] == pStore2[i] ); +// } + + // canonicize phase + for ( i = 0; i < nVars; i++ ) + { + if ( pStore[2*i+0] >= pStore[2*i+1] ) + continue; + uCanonPhase |= (1 << i); + Temp = pStore[2*i+0]; + pStore[2*i+0] = pStore[2*i+1]; + pStore[2*i+1] = Temp; + Kit_TruthChangePhase( pIn, nVars, i ); + } + +// Kit_PrintHexadecimal( stdout, pIn, nVars ); +// printf( "\n" ); + + // permute + Counter = 0; + do { + fChange = 0; + for ( i = 0; i < nVars-1; i++ ) + { + if ( pStore[2*i] >= pStore[2*(i+1)] ) + continue; + Counter++; + fChange = 1; + + Temp = pCanonPerm[i]; + pCanonPerm[i] = pCanonPerm[i+1]; + pCanonPerm[i+1] = Temp; + + Temp = pStore[2*i]; + pStore[2*i] = pStore[2*(i+1)]; + pStore[2*(i+1)] = Temp; + + Temp = pStore[2*i+1]; + pStore[2*i+1] = pStore[2*(i+1)+1]; + pStore[2*(i+1)+1] = Temp; + + // if the polarity of variables is different, swap them + if ( ((uCanonPhase & (1 << i)) > 0) != ((uCanonPhase & (1 << (i+1))) > 0) ) + { + uCanonPhase ^= (1 << i); + uCanonPhase ^= (1 << (i+1)); + } + + Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i ); + pTemp = pIn; pIn = pOut; pOut = pTemp; + } + } while ( fChange ); + +/* + Extra_PrintBinary( stdout, &uCanonPhase, nVars+1 ); printf( " : " ); + for ( i = 0; i < nVars; i++ ) + printf( "%d=%d/%d ", pCanonPerm[i], pStore[2*i], pStore[2*i+1] ); + printf( " C = %d\n", Counter ); + Extra_PrintHexadecimal( stdout, pIn, nVars ); + printf( "\n" ); +*/ + +/* + // process symmetric variable groups + uSymms = 0; + for ( i = 0; i < nVars-1; i++ ) + { + if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric + continue; + if ( pStore[2*i] != pStore[2*i+1] ) + continue; + if ( Kit_TruthVarsSymm( pIn, nVars, i, i+1 ) ) + continue; + if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, i+1 ) ) + Kit_TruthChangePhase( pIn, nVars, i+1 ); + } +*/ + +/* + // process symmetric variable groups + uSymms = 0; + for ( i = 0; i < nVars-1; i++ ) + { + if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric + continue; + // i and i+1 can be symmetric + // find the end of this group + for ( k = i+1; k < nVars; k++ ) + if ( pStore[2*i] != pStore[2*k] ) + break; + Limit = k; + assert( i < Limit-1 ); + // go through the variables in this group + for ( j = i + 1; j < Limit; j++ ) + { + // check symmetry + if ( Kit_TruthVarsSymm( pIn, nVars, i, j ) ) + { + uSymms |= (1 << j); + continue; + } + // they are phase-unknown + if ( pStore[2*i] == pStore[2*i+1] ) + { + if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, j ) ) + { + Kit_TruthChangePhase( pIn, nVars, j ); + uCanonPhase ^= (1 << j); + uSymms |= (1 << j); + continue; + } + } + + // they are not symmetric - move j as far as it goes in the group + for ( k = j; k < Limit-1; k++ ) + { + Counter++; + + Temp = pCanonPerm[k]; + pCanonPerm[k] = pCanonPerm[k+1]; + pCanonPerm[k+1] = Temp; + + assert( pStore[2*k] == pStore[2*(k+1)] ); + Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, k ); + pTemp = pIn; pIn = pOut; pOut = pTemp; + } + Limit--; + j--; + } + i = Limit - 1; + } +*/ + + // swap if it was moved an even number of times + if ( Counter & 1 ) + Kit_TruthCopy( pOut, pIn, nVars ); + return uCanonPhase; +} + + +/**Function************************************************************* + + Synopsis [Fast counting minterms in the cofactors of a function.] + + Description [Returns the total number of minterms in the function. + The resulting array (pRes) contains the number of minterms in 0-cofactor + w.r.t. each variables. The additional array (pBytes) is used for internal + storage. It should have the size equal to the number of truth table bytes.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthCountMinterms( unsigned * pTruth, int nVars, int * pRes, int * pBytes ) +{ + // the number of 1s if every byte as well as in the 0-cofactors w.r.t. three variables + static unsigned Table[256] = { + 0x00000000, 0x01010101, 0x01010001, 0x02020102, 0x01000101, 0x02010202, 0x02010102, 0x03020203, + 0x01000001, 0x02010102, 0x02010002, 0x03020103, 0x02000102, 0x03010203, 0x03010103, 0x04020204, + 0x00010101, 0x01020202, 0x01020102, 0x02030203, 0x01010202, 0x02020303, 0x02020203, 0x03030304, + 0x01010102, 0x02020203, 0x02020103, 0x03030204, 0x02010203, 0x03020304, 0x03020204, 0x04030305, + 0x00010001, 0x01020102, 0x01020002, 0x02030103, 0x01010102, 0x02020203, 0x02020103, 0x03030204, + 0x01010002, 0x02020103, 0x02020003, 0x03030104, 0x02010103, 0x03020204, 0x03020104, 0x04030205, + 0x00020102, 0x01030203, 0x01030103, 0x02040204, 0x01020203, 0x02030304, 0x02030204, 0x03040305, + 0x01020103, 0x02030204, 0x02030104, 0x03040205, 0x02020204, 0x03030305, 0x03030205, 0x04040306, + 0x00000101, 0x01010202, 0x01010102, 0x02020203, 0x01000202, 0x02010303, 0x02010203, 0x03020304, + 0x01000102, 0x02010203, 0x02010103, 0x03020204, 0x02000203, 0x03010304, 0x03010204, 0x04020305, + 0x00010202, 0x01020303, 0x01020203, 0x02030304, 0x01010303, 0x02020404, 0x02020304, 0x03030405, + 0x01010203, 0x02020304, 0x02020204, 0x03030305, 0x02010304, 0x03020405, 0x03020305, 0x04030406, + 0x00010102, 0x01020203, 0x01020103, 0x02030204, 0x01010203, 0x02020304, 0x02020204, 0x03030305, + 0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x02010204, 0x03020305, 0x03020205, 0x04030306, + 0x00020203, 0x01030304, 0x01030204, 0x02040305, 0x01020304, 0x02030405, 0x02030305, 0x03040406, + 0x01020204, 0x02030305, 0x02030205, 0x03040306, 0x02020305, 0x03030406, 0x03030306, 0x04040407, + 0x00000001, 0x01010102, 0x01010002, 0x02020103, 0x01000102, 0x02010203, 0x02010103, 0x03020204, + 0x01000002, 0x02010103, 0x02010003, 0x03020104, 0x02000103, 0x03010204, 0x03010104, 0x04020205, + 0x00010102, 0x01020203, 0x01020103, 0x02030204, 0x01010203, 0x02020304, 0x02020204, 0x03030305, + 0x01010103, 0x02020204, 0x02020104, 0x03030205, 0x02010204, 0x03020305, 0x03020205, 0x04030306, + 0x00010002, 0x01020103, 0x01020003, 0x02030104, 0x01010103, 0x02020204, 0x02020104, 0x03030205, + 0x01010003, 0x02020104, 0x02020004, 0x03030105, 0x02010104, 0x03020205, 0x03020105, 0x04030206, + 0x00020103, 0x01030204, 0x01030104, 0x02040205, 0x01020204, 0x02030305, 0x02030205, 0x03040306, + 0x01020104, 0x02030205, 0x02030105, 0x03040206, 0x02020205, 0x03030306, 0x03030206, 0x04040307, + 0x00000102, 0x01010203, 0x01010103, 0x02020204, 0x01000203, 0x02010304, 0x02010204, 0x03020305, + 0x01000103, 0x02010204, 0x02010104, 0x03020205, 0x02000204, 0x03010305, 0x03010205, 0x04020306, + 0x00010203, 0x01020304, 0x01020204, 0x02030305, 0x01010304, 0x02020405, 0x02020305, 0x03030406, + 0x01010204, 0x02020305, 0x02020205, 0x03030306, 0x02010305, 0x03020406, 0x03020306, 0x04030407, + 0x00010103, 0x01020204, 0x01020104, 0x02030205, 0x01010204, 0x02020305, 0x02020205, 0x03030306, + 0x01010104, 0x02020205, 0x02020105, 0x03030206, 0x02010205, 0x03020306, 0x03020206, 0x04030307, + 0x00020204, 0x01030305, 0x01030205, 0x02040306, 0x01020305, 0x02030406, 0x02030306, 0x03040407, + 0x01020205, 0x02030306, 0x02030206, 0x03040307, 0x02020306, 0x03030407, 0x03030307, 0x04040408 + }; + unsigned uSum; + unsigned char * pTruthC, * pLimit; + int i, iVar, Step, nWords, nBytes, nTotal; + + assert( nVars <= 20 ); + + // clear storage + memset( pRes, 0, sizeof(int) * nVars ); + + // count the number of one's in 0-cofactors of the first three variables + nTotal = uSum = 0; + nWords = Kit_TruthWordNum( nVars ); + nBytes = nWords * 4; + pTruthC = (unsigned char *)pTruth; + pLimit = pTruthC + nBytes; + for ( ; pTruthC < pLimit; pTruthC++ ) + { + uSum += Table[*pTruthC]; + *pBytes++ = (Table[*pTruthC] & 0xff); + if ( (uSum & 0xff) > 246 ) + { + nTotal += (uSum & 0xff); + pRes[0] += ((uSum >> 8) & 0xff); + pRes[2] += ((uSum >> 16) & 0xff); + pRes[3] += ((uSum >> 24) & 0xff); + uSum = 0; + } + } + if ( uSum ) + { + nTotal += (uSum & 0xff); + pRes[0] += ((uSum >> 8) & 0xff); + pRes[1] += ((uSum >> 16) & 0xff); + pRes[2] += ((uSum >> 24) & 0xff); + } + + // count all other variables + for ( iVar = 3, Step = 1; Step < nBytes; Step *= 2, iVar++ ) + for ( i = 0; i < nBytes; i += Step + Step ) + { + pRes[iVar] += pBytes[i]; + pBytes[i] += pBytes[i+Step]; + } + assert( pBytes[0] == nTotal ); + assert( iVar == nVars ); + return nTotal; +} + +/**Function************************************************************* + + Synopsis [Prints the hex unsigned into a file.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_PrintHexadecimal( FILE * pFile, unsigned Sign[], int nVars ) +{ + int nDigits, Digit, k; + // write the number into the file + nDigits = (1 << nVars) / 4; + for ( k = nDigits - 1; k >= 0; k-- ) + { + Digit = ((Sign[k/8] >> ((k%8) * 4)) & 15); + if ( Digit < 10 ) + fprintf( pFile, "%d", Digit ); + else + fprintf( pFile, "%c", 'a' + Digit-10 ); + } +// fprintf( pFile, "\n" ); +} + +/**Function************************************************************* + + Synopsis [Fast counting minterms for the functions.] + + Description [Returns 0 if the function is a constant.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthCountMintermsPrecomp() +{ + int bit_count[256] = { + 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, + 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, + 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, + 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, + 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, + 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, + 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, + 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 + }; + unsigned i, uWord; + for ( i = 0; i < 256; i++ ) + { + if ( i % 8 == 0 ) + printf( "\n" ); + uWord = bit_count[i]; + uWord |= (bit_count[i & 0x55] << 8); + uWord |= (bit_count[i & 0x33] << 16); + uWord |= (bit_count[i & 0x0f] << 24); + printf( "0x" ); + Kit_PrintHexadecimal( stdout, &uWord, 5 ); + printf( ", " ); + } +} + +/**Function************************************************************* + + Synopsis [Dumps truth table into a file.] + + Description [Generates script file for reading into ABC.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +char * Kit_TruthDumpToFile( unsigned * pTruth, int nVars, int nFile ) +{ + static char pFileName[100]; + FILE * pFile; + sprintf( pFileName, "tt\\s%04d", nFile ); + pFile = fopen( pFileName, "w" ); + fprintf( pFile, "rt " ); + Kit_PrintHexadecimal( pFile, pTruth, nVars ); + fprintf( pFile, "; bdd; sop; ps\n" ); + fclose( pFile ); + return pFileName; +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/abc8/kit/kit_.c b/src/abc8/kit/kit_.c new file mode 100644 index 00000000..5c68ee3c --- /dev/null +++ b/src/abc8/kit/kit_.c @@ -0,0 +1,48 @@ +/**CFile**************************************************************** + + FileName [kit_.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kit_.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/abc8/kit/module.make b/src/abc8/kit/module.make new file mode 100644 index 00000000..3df3aa1c --- /dev/null +++ b/src/abc8/kit/module.make @@ -0,0 +1,8 @@ +SRC += src/aig/kit/kitAig.c \ + src/aig/kit/kitCloud.c src/aig/kit/cloud.c \ + src/aig/kit/kitFactor.c \ + src/aig/kit/kitGraph.c \ + src/aig/kit/kitHop.c \ + src/aig/kit/kitIsop.c \ + src/aig/kit/kitSop.c \ + src/aig/kit/kitTruth.c |