summaryrefslogtreecommitdiffstats
path: root/src/base/seq
diff options
context:
space:
mode:
authorAlan Mishchenko <alanmi@berkeley.edu>2007-10-01 08:01:00 -0700
committerAlan Mishchenko <alanmi@berkeley.edu>2007-10-01 08:01:00 -0700
commit4812c90424dfc40d26725244723887a2d16ddfd9 (patch)
treeb32ace96e7e2d84d586e09ba605463b6f49c3271 /src/base/seq
parente54d9691616b9a0326e2fdb3156bb4eeb8abfcd7 (diff)
downloadabc-4812c90424dfc40d26725244723887a2d16ddfd9.tar.gz
abc-4812c90424dfc40d26725244723887a2d16ddfd9.tar.bz2
abc-4812c90424dfc40d26725244723887a2d16ddfd9.zip
Version abc71001
Diffstat (limited to 'src/base/seq')
-rw-r--r--src/base/seq/module.make14
-rw-r--r--src/base/seq/seq.h101
-rw-r--r--src/base/seq/seqAigCore.c977
-rw-r--r--src/base/seq/seqAigIter.c268
-rw-r--r--src/base/seq/seqCreate.c482
-rw-r--r--src/base/seq/seqFpgaCore.c643
-rw-r--r--src/base/seq/seqFpgaIter.c270
-rw-r--r--src/base/seq/seqInt.h256
-rw-r--r--src/base/seq/seqLatch.c223
-rw-r--r--src/base/seq/seqMan.c133
-rw-r--r--src/base/seq/seqMapCore.c652
-rw-r--r--src/base/seq/seqMapIter.c623
-rw-r--r--src/base/seq/seqMaxMeanCycle.c567
-rw-r--r--src/base/seq/seqRetCore.c492
-rw-r--r--src/base/seq/seqRetIter.c403
-rw-r--r--src/base/seq/seqShare.c388
-rw-r--r--src/base/seq/seqUtil.c597
17 files changed, 7089 insertions, 0 deletions
diff --git a/src/base/seq/module.make b/src/base/seq/module.make
new file mode 100644
index 00000000..c7716180
--- /dev/null
+++ b/src/base/seq/module.make
@@ -0,0 +1,14 @@
+SRC += src/base/seq/seqAigCore.c \
+ src/base/seq/seqAigIter.c \
+ src/base/seq/seqCreate.c \
+ src/base/seq/seqFpgaCore.c \
+ src/base/seq/seqFpgaIter.c \
+ src/base/seq/seqLatch.c \
+ src/base/seq/seqMan.c \
+ src/base/seq/seqMapCore.c \
+ src/base/seq/seqMapIter.c \
+ src/base/seq/seqMaxMeanCycle.c \
+ src/base/seq/seqRetCore.c \
+ src/base/seq/seqRetIter.c \
+ src/base/seq/seqShare.c \
+ src/base/seq/seqUtil.c
diff --git a/src/base/seq/seq.h b/src/base/seq/seq.h
new file mode 100644
index 00000000..d3c9abda
--- /dev/null
+++ b/src/base/seq/seq.h
@@ -0,0 +1,101 @@
+/**CFile****************************************************************
+
+ FileName [seq.h]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [External declarations.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seq.h,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#ifndef __SEQ_H__
+#define __SEQ_H__
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+////////////////////////////////////////////////////////////////////////
+/// INCLUDES ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// PARAMETERS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// BASIC TYPES ///
+////////////////////////////////////////////////////////////////////////
+
+typedef struct Abc_Seq_t_ Abc_Seq_t;
+
+////////////////////////////////////////////////////////////////////////
+/// MACRO DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/*=== seqAigCore.c ===========================================================*/
+extern void Seq_NtkSeqRetimeDelay( Abc_Ntk_t * pNtk, int nMaxIters, int fInitial, int fVerbose );
+extern void Seq_NtkSeqRetimeForward( Abc_Ntk_t * pNtk, int fInitial, int fVerbose );
+extern void Seq_NtkSeqRetimeBackward( Abc_Ntk_t * pNtk, int fInitial, int fVerbose );
+/*=== seqFpgaCore.c ===============================================================*/
+extern Abc_Ntk_t * Seq_NtkFpgaMapRetime( Abc_Ntk_t * pNtk, int nMaxIters, int fVerbose );
+/*=== seqMapCore.c ===============================================================*/
+extern Abc_Ntk_t * Seq_MapRetime( Abc_Ntk_t * pNtk, int nMaxIters, int fVerbose );
+/*=== seqRetCore.c ===========================================================*/
+extern Abc_Ntk_t * Seq_NtkRetime( Abc_Ntk_t * pNtk, int nMaxIters, int fInitial, int fVerbose );
+/*=== seqLatch.c ===============================================================*/
+extern void Seq_NodeDupLats( Abc_Obj_t * pObjNew, Abc_Obj_t * pObj, int Edge );
+extern int Seq_NodeCompareLats( Abc_Obj_t * pObj1, int Edge1, Abc_Obj_t * pObj2, int Edge2 );
+/*=== seqMan.c ===============================================================*/
+extern Abc_Seq_t * Seq_Create( Abc_Ntk_t * pNtk );
+extern void Seq_Resize( Abc_Seq_t * p, int nMaxId );
+extern void Seq_Delete( Abc_Seq_t * p );
+/*=== seqMaxMeanCycle.c ======================================================*/
+extern float Seq_NtkHoward( Abc_Ntk_t * pNtk, int fVerbose );
+extern void Seq_NtkSkewForward( Abc_Ntk_t * pNtk, float period, int fMinimize );
+/*=== abcSeq.c ===============================================================*/
+extern Abc_Ntk_t * Abc_NtkAigToSeq( Abc_Ntk_t * pNtk );
+extern Abc_Ntk_t * Abc_NtkSeqToLogicSop( Abc_Ntk_t * pNtk );
+extern bool Abc_NtkSeqCheck( Abc_Ntk_t * pNtk );
+/*=== seqShare.c =============================================================*/
+extern void Seq_NtkShareFanouts( Abc_Ntk_t * pNtk );
+extern void Seq_NtkShareLatches( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtk );
+extern void Seq_NtkShareLatchesMapping( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtk, Vec_Ptr_t * vMapAnds, int fFpga );
+extern void Seq_NtkShareLatchesClean( Abc_Ntk_t * pNtk );
+/*=== seqUtil.c ==============================================================*/
+extern char * Seq_ObjFaninGetInitPrintable( Abc_Obj_t * pObj, int Edge );
+extern void Seq_NtkLatchSetValues( Abc_Ntk_t * pNtk, Abc_InitType_t Init );
+extern int Seq_NtkLatchNum( Abc_Ntk_t * pNtk );
+extern int Seq_NtkLatchNumMax( Abc_Ntk_t * pNtk );
+extern int Seq_NtkLatchNumShared( Abc_Ntk_t * pNtk );
+extern void Seq_NtkLatchGetInitNums( Abc_Ntk_t * pNtk, int * pInits );
+extern int Seq_NtkLatchGetEqualFaninNum( Abc_Ntk_t * pNtk );
+extern int Seq_NtkCountNodesAboveLimit( Abc_Ntk_t * pNtk, int Limit );
+extern int Seq_MapComputeAreaFlows( Abc_Ntk_t * pNtk, int fVerbose );
+extern Vec_Ptr_t * Seq_NtkReachNodes( Abc_Ntk_t * pNtk, int fFromPos );
+extern int Seq_NtkCleanup( Abc_Ntk_t * pNtk, int fVerbose );
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
diff --git a/src/base/seq/seqAigCore.c b/src/base/seq/seqAigCore.c
new file mode 100644
index 00000000..42fa14a2
--- /dev/null
+++ b/src/base/seq/seqAigCore.c
@@ -0,0 +1,977 @@
+/**CFile****************************************************************
+
+ FileName [seqRetCore.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [The core of retiming procedures.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqRetCore.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/*
+ Retiming can be represented in three equivalent forms:
+ - as a set of integer lags for each node (array of chars by node ID)
+ - as a set of node numbers with lag for each, fwd and bwd (two arrays of Seq_RetStep_t_)
+ - as a set of latch moves over the nodes, fwd and bwd (two arrays of node pointers Abc_Obj_t *)
+*/
+
+static void Abc_ObjRetimeForward( Abc_Obj_t * pObj );
+static int Abc_ObjRetimeBackward( Abc_Obj_t * pObj, Abc_Ntk_t * pNtk, stmm_table * tTable, Vec_Int_t * vValues );
+static void Abc_ObjRetimeBackwardUpdateEdge( Abc_Obj_t * pObj, int Edge, stmm_table * tTable );
+static void Abc_NtkRetimeSetInitialValues( Abc_Ntk_t * pNtk, stmm_table * tTable, int * pModel );
+
+static void Seq_NtkImplementRetimingForward( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMoves );
+static int Seq_NtkImplementRetimingBackward( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMoves, int fVerbose );
+static void Abc_ObjRetimeForward( Abc_Obj_t * pObj );
+static int Abc_ObjRetimeBackward( Abc_Obj_t * pObj, Abc_Ntk_t * pNtk, stmm_table * tTable, Vec_Int_t * vValues );
+static void Abc_ObjRetimeBackwardUpdateEdge( Abc_Obj_t * pObj, int Edge, stmm_table * tTable );
+static void Abc_NtkRetimeSetInitialValues( Abc_Ntk_t * pNtk, stmm_table * tTable, int * pModel );
+
+static Vec_Ptr_t * Abc_NtkUtilRetimingTry( Abc_Ntk_t * pNtk, bool fForward );
+static Vec_Ptr_t * Abc_NtkUtilRetimingGetMoves( Abc_Ntk_t * pNtk, Vec_Int_t * vSteps, bool fForward );
+static Vec_Int_t * Abc_NtkUtilRetimingSplit( Vec_Str_t * vLags, int fForward );
+static void Abc_ObjRetimeForwardTry( Abc_Obj_t * pObj, int nLatches );
+static void Abc_ObjRetimeBackwardTry( Abc_Obj_t * pObj, int nLatches );
+
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Performs performs optimal delay retiming.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkSeqRetimeDelay( Abc_Ntk_t * pNtk, int nMaxIters, int fInitial, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ int RetValue;
+ if ( !fInitial )
+ Seq_NtkLatchSetValues( pNtk, ABC_INIT_DC );
+ // get the retiming lags
+ p->nMaxIters = nMaxIters;
+ if ( !Seq_AigRetimeDelayLags( pNtk, fVerbose ) )
+ return;
+ // implement this retiming
+ RetValue = Seq_NtkImplementRetiming( pNtk, p->vLags, fVerbose );
+ if ( RetValue == 0 )
+ printf( "Retiming completed but initial state computation has failed.\n" );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs most forward retiming.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkSeqRetimeForward( Abc_Ntk_t * pNtk, int fInitial, int fVerbose )
+{
+ Vec_Ptr_t * vMoves;
+ Abc_Obj_t * pNode;
+ int i;
+ if ( !fInitial )
+ Seq_NtkLatchSetValues( pNtk, ABC_INIT_DC );
+ // get the forward moves
+ vMoves = Abc_NtkUtilRetimingTry( pNtk, 1 );
+ // undo the forward moves
+ Vec_PtrForEachEntryReverse( vMoves, pNode, i )
+ Abc_ObjRetimeBackwardTry( pNode, 1 );
+ // implement this forward retiming
+ Seq_NtkImplementRetimingForward( pNtk, vMoves );
+ Vec_PtrFree( vMoves );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs most backward retiming.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkSeqRetimeBackward( Abc_Ntk_t * pNtk, int fInitial, int fVerbose )
+{
+ Vec_Ptr_t * vMoves;
+ Abc_Obj_t * pNode;
+ int i, RetValue;
+ if ( !fInitial )
+ Seq_NtkLatchSetValues( pNtk, ABC_INIT_DC );
+ // get the backward moves
+ vMoves = Abc_NtkUtilRetimingTry( pNtk, 0 );
+ // undo the backward moves
+ Vec_PtrForEachEntryReverse( vMoves, pNode, i )
+ Abc_ObjRetimeForwardTry( pNode, 1 );
+ // implement this backward retiming
+ RetValue = Seq_NtkImplementRetimingBackward( pNtk, vMoves, fVerbose );
+ Vec_PtrFree( vMoves );
+ if ( RetValue == 0 )
+ printf( "Retiming completed but initial state computation has failed.\n" );
+}
+
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Implements the retiming on the sequential AIG.]
+
+ Description [Split the retiming into forward and backward.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkImplementRetiming( Abc_Ntk_t * pNtk, Vec_Str_t * vLags, int fVerbose )
+{
+ Vec_Int_t * vSteps;
+ Vec_Ptr_t * vMoves;
+ int RetValue;
+
+ // forward retiming
+ vSteps = Abc_NtkUtilRetimingSplit( vLags, 1 );
+ // translate each set of steps into moves
+ if ( fVerbose )
+ printf( "The number of forward steps = %6d.\n", Vec_IntSize(vSteps) );
+ vMoves = Abc_NtkUtilRetimingGetMoves( pNtk, vSteps, 1 );
+ if ( fVerbose )
+ printf( "The number of forward moves = %6d.\n", Vec_PtrSize(vMoves) );
+ // implement this retiming
+ Seq_NtkImplementRetimingForward( pNtk, vMoves );
+ Vec_IntFree( vSteps );
+ Vec_PtrFree( vMoves );
+
+ // backward retiming
+ vSteps = Abc_NtkUtilRetimingSplit( vLags, 0 );
+ // translate each set of steps into moves
+ if ( fVerbose )
+ printf( "The number of backward steps = %6d.\n", Vec_IntSize(vSteps) );
+ vMoves = Abc_NtkUtilRetimingGetMoves( pNtk, vSteps, 0 );
+ if ( fVerbose )
+ printf( "The number of backward moves = %6d.\n", Vec_PtrSize(vMoves) );
+ // implement this retiming
+ RetValue = Seq_NtkImplementRetimingBackward( pNtk, vMoves, fVerbose );
+ Vec_IntFree( vSteps );
+ Vec_PtrFree( vMoves );
+ return RetValue;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Implements the given retiming on the sequential AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkImplementRetimingForward( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMoves )
+{
+ Abc_Obj_t * pNode;
+ int i;
+ Vec_PtrForEachEntry( vMoves, pNode, i )
+ Abc_ObjRetimeForward( pNode );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Retimes node forward by one latch.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ObjRetimeForward( Abc_Obj_t * pObj )
+{
+ Abc_Obj_t * pFanout;
+ int Init0, Init1, Init, i;
+ assert( Abc_ObjFaninNum(pObj) == 2 );
+ assert( Seq_ObjFaninL0(pObj) >= 1 );
+ assert( Seq_ObjFaninL1(pObj) >= 1 );
+ // remove the init values from the fanins
+ Init0 = Seq_NodeDeleteFirst( pObj, 0 );
+ Init1 = Seq_NodeDeleteFirst( pObj, 1 );
+ assert( Init0 != ABC_INIT_NONE );
+ assert( Init1 != ABC_INIT_NONE );
+ // take into account the complements in the node
+ if ( Abc_ObjFaninC0(pObj) )
+ {
+ if ( Init0 == ABC_INIT_ZERO )
+ Init0 = ABC_INIT_ONE;
+ else if ( Init0 == ABC_INIT_ONE )
+ Init0 = ABC_INIT_ZERO;
+ }
+ if ( Abc_ObjFaninC1(pObj) )
+ {
+ if ( Init1 == ABC_INIT_ZERO )
+ Init1 = ABC_INIT_ONE;
+ else if ( Init1 == ABC_INIT_ONE )
+ Init1 = ABC_INIT_ZERO;
+ }
+ // compute the value at the output of the node
+ if ( Init0 == ABC_INIT_ZERO || Init1 == ABC_INIT_ZERO )
+ Init = ABC_INIT_ZERO;
+ else if ( Init0 == ABC_INIT_ONE && Init1 == ABC_INIT_ONE )
+ Init = ABC_INIT_ONE;
+ else
+ Init = ABC_INIT_DC;
+
+ // make sure the label is clean
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ assert( pFanout->fMarkC == 0 );
+ // add the init values to the fanouts
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ {
+ if ( pFanout->fMarkC )
+ continue;
+ pFanout->fMarkC = 1;
+ if ( Abc_ObjFaninId0(pFanout) != Abc_ObjFaninId1(pFanout) )
+ Seq_NodeInsertLast( pFanout, Abc_ObjFanoutEdgeNum(pObj, pFanout), Init );
+ else
+ {
+ assert( Abc_ObjFanin0(pFanout) == pObj );
+ Seq_NodeInsertLast( pFanout, 0, Init );
+ Seq_NodeInsertLast( pFanout, 1, Init );
+ }
+ }
+ // clean the label
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ pFanout->fMarkC = 0;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Implements the given retiming on the sequential AIG.]
+
+ Description [Returns 0 of initial state computation fails.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkImplementRetimingBackward( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMoves, int fVerbose )
+{
+ Seq_RetEdge_t RetEdge;
+ stmm_table * tTable;
+ stmm_generator * gen;
+ Vec_Int_t * vValues;
+ Abc_Ntk_t * pNtkProb, * pNtkMiter, * pNtkCnf;
+ Abc_Obj_t * pNode, * pNodeNew;
+ int * pModel, RetValue, i, clk;
+
+ // return if the retiming is trivial
+ if ( Vec_PtrSize(vMoves) == 0 )
+ return 1;
+
+ // create the network for the initial state computation
+ // start the table and the array of PO values
+ pNtkProb = Abc_NtkAlloc( ABC_NTK_LOGIC, ABC_FUNC_SOP, 1 );
+ tTable = stmm_init_table( stmm_numcmp, stmm_numhash );
+ vValues = Vec_IntAlloc( 100 );
+
+ // perform the backward moves and build the network for initial state computation
+ RetValue = 0;
+ Vec_PtrForEachEntry( vMoves, pNode, i )
+ RetValue |= Abc_ObjRetimeBackward( pNode, pNtkProb, tTable, vValues );
+
+ // add the PIs corresponding to the white spots
+ stmm_foreach_item( tTable, gen, (char **)&RetEdge, (char **)&pNodeNew )
+ Abc_ObjAddFanin( pNodeNew, Abc_NtkCreatePi(pNtkProb) );
+
+ // add the PI/PO names
+ Abc_NtkAddDummyPiNames( pNtkProb );
+ Abc_NtkAddDummyPoNames( pNtkProb );
+ Abc_NtkAddDummyAssertNames( pNtkProb );
+
+ // make sure everything is okay with the network structure
+ if ( !Abc_NtkDoCheck( pNtkProb ) )
+ {
+ printf( "Seq_NtkImplementRetimingBackward: The internal network check has failed.\n" );
+ Abc_NtkRetimeSetInitialValues( pNtk, tTable, NULL );
+ Abc_NtkDelete( pNtkProb );
+ stmm_free_table( tTable );
+ Vec_IntFree( vValues );
+ return 0;
+ }
+
+ // check if conflict is found
+ if ( RetValue )
+ {
+ printf( "Seq_NtkImplementRetimingBackward: A top level conflict is detected. DC latch values are used.\n" );
+ Abc_NtkRetimeSetInitialValues( pNtk, tTable, NULL );
+ Abc_NtkDelete( pNtkProb );
+ stmm_free_table( tTable );
+ Vec_IntFree( vValues );
+ return 0;
+ }
+
+ // get the miter cone
+ pNtkMiter = Abc_NtkCreateTarget( pNtkProb, pNtkProb->vCos, vValues );
+ Abc_NtkDelete( pNtkProb );
+ Vec_IntFree( vValues );
+
+ if ( fVerbose )
+ printf( "The number of ANDs in the AIG = %5d.\n", Abc_NtkNodeNum(pNtkMiter) );
+
+ // transform the miter into a logic network for efficient CNF construction
+// pNtkCnf = Abc_Ntk_Renode( pNtkMiter, 0, 100, 1, 0, 0 );
+// Abc_NtkDelete( pNtkMiter );
+ pNtkCnf = pNtkMiter;
+
+ // solve the miter
+clk = clock();
+// RetValue = Abc_NtkMiterSat_OldAndRusty( pNtkCnf, 30, 0 );
+ RetValue = Abc_NtkMiterSat( pNtkCnf, (sint64)500000, (sint64)50000000, 0, 0, NULL, NULL );
+if ( fVerbose )
+if ( clock() - clk > 100 )
+{
+PRT( "SAT solving time", clock() - clk );
+}
+ pModel = pNtkCnf->pModel; pNtkCnf->pModel = NULL;
+ Abc_NtkDelete( pNtkCnf );
+
+ // analyze the result
+ if ( RetValue == -1 || RetValue == 1 )
+ {
+ Abc_NtkRetimeSetInitialValues( pNtk, tTable, NULL );
+ if ( RetValue == 1 )
+ printf( "Seq_NtkImplementRetimingBackward: The problem is unsatisfiable. DC latch values are used.\n" );
+ else
+ printf( "Seq_NtkImplementRetimingBackward: The SAT problem timed out. DC latch values are used.\n" );
+ stmm_free_table( tTable );
+ return 0;
+ }
+
+ // set the values of the latches
+ Abc_NtkRetimeSetInitialValues( pNtk, tTable, pModel );
+ stmm_free_table( tTable );
+ free( pModel );
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Retimes node backward by one latch.]
+
+ Description [Constructs the problem for initial state computation.
+ Returns 1 if the conflict is found.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_ObjRetimeBackward( Abc_Obj_t * pObj, Abc_Ntk_t * pNtkNew, stmm_table * tTable, Vec_Int_t * vValues )
+{
+ Abc_Obj_t * pFanout;
+ Abc_InitType_t Init, Value;
+ Seq_RetEdge_t RetEdge;
+ Abc_Obj_t * pNodeNew, * pFanoutNew, * pBuffer;
+ int i, Edge, fMet0, fMet1, fMetN;
+
+ // make sure the node can be retimed
+ assert( Seq_ObjFanoutLMin(pObj) > 0 );
+ // get the fanout values
+ fMet0 = fMet1 = fMetN = 0;
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ {
+ if ( Abc_ObjFaninId0(pFanout) == pObj->Id )
+ {
+ Init = Seq_NodeGetInitLast( pFanout, 0 );
+ if ( Init == ABC_INIT_ZERO )
+ fMet0 = 1;
+ else if ( Init == ABC_INIT_ONE )
+ fMet1 = 1;
+ else if ( Init == ABC_INIT_NONE )
+ fMetN = 1;
+ }
+ if ( Abc_ObjFaninId1(pFanout) == pObj->Id )
+ {
+ Init = Seq_NodeGetInitLast( pFanout, 1 );
+ if ( Init == ABC_INIT_ZERO )
+ fMet0 = 1;
+ else if ( Init == ABC_INIT_ONE )
+ fMet1 = 1;
+ else if ( Init == ABC_INIT_NONE )
+ fMetN = 1;
+ }
+ }
+
+ // consider the case when all fanout latches have don't-care values
+ // the new values on the fanin edges will be don't-cares
+ if ( !fMet0 && !fMet1 && !fMetN )
+ {
+ // make sure the label is clean
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ assert( pFanout->fMarkC == 0 );
+ // update the fanout edges
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ {
+ if ( pFanout->fMarkC )
+ continue;
+ pFanout->fMarkC = 1;
+ if ( Abc_ObjFaninId0(pFanout) == pObj->Id )
+ Seq_NodeDeleteLast( pFanout, 0 );
+ if ( Abc_ObjFaninId1(pFanout) == pObj->Id )
+ Seq_NodeDeleteLast( pFanout, 1 );
+ }
+ // clean the label
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ pFanout->fMarkC = 0;
+ // update the fanin edges
+ Abc_ObjRetimeBackwardUpdateEdge( pObj, 0, tTable );
+ Abc_ObjRetimeBackwardUpdateEdge( pObj, 1, tTable );
+ Seq_NodeInsertFirst( pObj, 0, ABC_INIT_DC );
+ Seq_NodeInsertFirst( pObj, 1, ABC_INIT_DC );
+ return 0;
+ }
+ // the initial values on the fanout edges contain 0, 1, or unknown
+ // the new values on the fanin edges will be unknown
+
+ // add new AND-gate to the network
+ pNodeNew = Abc_NtkCreateNode( pNtkNew );
+ pNodeNew->pData = Abc_SopCreateAnd2( pNtkNew->pManFunc, Abc_ObjFaninC0(pObj), Abc_ObjFaninC1(pObj) );
+
+ // add PO fanouts if any
+ if ( fMet0 )
+ {
+ Abc_ObjAddFanin( Abc_NtkCreatePo(pNtkNew), pNodeNew );
+ Vec_IntPush( vValues, 0 );
+ }
+ if ( fMet1 )
+ {
+ Abc_ObjAddFanin( Abc_NtkCreatePo(pNtkNew), pNodeNew );
+ Vec_IntPush( vValues, 1 );
+ }
+
+ // make sure the label is clean
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ assert( pFanout->fMarkC == 0 );
+ // perform the changes
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ {
+ if ( pFanout->fMarkC )
+ continue;
+ pFanout->fMarkC = 1;
+ if ( Abc_ObjFaninId0(pFanout) == pObj->Id )
+ {
+ Edge = 0;
+ Value = Seq_NodeDeleteLast( pFanout, Edge );
+ if ( Value == ABC_INIT_NONE )
+ {
+ // value is unknown, remove it from the table
+ RetEdge.iNode = pFanout->Id;
+ RetEdge.iEdge = Edge;
+ RetEdge.iLatch = Seq_ObjFaninL( pFanout, Edge ); // after edge is removed
+ if ( !stmm_delete( tTable, (char **)&RetEdge, (char **)&pFanoutNew ) )
+ assert( 0 );
+ // create the fanout of the AND gate
+ Abc_ObjAddFanin( pFanoutNew, pNodeNew );
+ }
+ }
+ if ( Abc_ObjFaninId1(pFanout) == pObj->Id )
+ {
+ Edge = 1;
+ Value = Seq_NodeDeleteLast( pFanout, Edge );
+ if ( Value == ABC_INIT_NONE )
+ {
+ // value is unknown, remove it from the table
+ RetEdge.iNode = pFanout->Id;
+ RetEdge.iEdge = Edge;
+ RetEdge.iLatch = Seq_ObjFaninL( pFanout, Edge ); // after edge is removed
+ if ( !stmm_delete( tTable, (char **)&RetEdge, (char **)&pFanoutNew ) )
+ assert( 0 );
+ // create the fanout of the AND gate
+ Abc_ObjAddFanin( pFanoutNew, pNodeNew );
+ }
+ }
+ }
+ // clean the label
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ pFanout->fMarkC = 0;
+
+ // update the fanin edges
+ Abc_ObjRetimeBackwardUpdateEdge( pObj, 0, tTable );
+ Abc_ObjRetimeBackwardUpdateEdge( pObj, 1, tTable );
+ Seq_NodeInsertFirst( pObj, 0, ABC_INIT_NONE );
+ Seq_NodeInsertFirst( pObj, 1, ABC_INIT_NONE );
+
+ // add the buffer
+ pBuffer = Abc_NtkCreateNode( pNtkNew );
+ pBuffer->pData = Abc_SopCreateBuf( pNtkNew->pManFunc );
+ Abc_ObjAddFanin( pNodeNew, pBuffer );
+ // point to it from the table
+ RetEdge.iNode = pObj->Id;
+ RetEdge.iEdge = 0;
+ RetEdge.iLatch = 0;
+ if ( stmm_insert( tTable, (char *)Seq_RetEdge2Int(RetEdge), (char *)pBuffer ) )
+ assert( 0 );
+
+ // add the buffer
+ pBuffer = Abc_NtkCreateNode( pNtkNew );
+ pBuffer->pData = Abc_SopCreateBuf( pNtkNew->pManFunc );
+ Abc_ObjAddFanin( pNodeNew, pBuffer );
+ // point to it from the table
+ RetEdge.iNode = pObj->Id;
+ RetEdge.iEdge = 1;
+ RetEdge.iLatch = 0;
+ if ( stmm_insert( tTable, (char *)Seq_RetEdge2Int(RetEdge), (char *)pBuffer ) )
+ assert( 0 );
+
+ // report conflict is found
+ return fMet0 && fMet1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Generates the printable edge label with the initial state.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ObjRetimeBackwardUpdateEdge( Abc_Obj_t * pObj, int Edge, stmm_table * tTable )
+{
+ Abc_Obj_t * pFanoutNew;
+ Seq_RetEdge_t RetEdge;
+ Abc_InitType_t Init;
+ int nLatches, i;
+
+ // get the number of latches on the edge
+ nLatches = Seq_ObjFaninL( pObj, Edge );
+ for ( i = nLatches - 1; i >= 0; i-- )
+ {
+ // get the value of this latch
+ Init = Seq_NodeGetInitOne( pObj, Edge, i );
+ if ( Init != ABC_INIT_NONE )
+ continue;
+ // get the retiming edge
+ RetEdge.iNode = pObj->Id;
+ RetEdge.iEdge = Edge;
+ RetEdge.iLatch = i;
+ // remove entry from table and add it with a different key
+ if ( !stmm_delete( tTable, (char **)&RetEdge, (char **)&pFanoutNew ) )
+ assert( 0 );
+ RetEdge.iLatch++;
+ if ( stmm_insert( tTable, (char *)Seq_RetEdge2Int(RetEdge), (char *)pFanoutNew ) )
+ assert( 0 );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sets the initial values.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_NtkRetimeSetInitialValues( Abc_Ntk_t * pNtk, stmm_table * tTable, int * pModel )
+{
+ Abc_Obj_t * pNode;
+ stmm_generator * gen;
+ Seq_RetEdge_t RetEdge;
+ Abc_InitType_t Init;
+ int i;
+
+ i = 0;
+ stmm_foreach_item( tTable, gen, (char **)&RetEdge, NULL )
+ {
+ pNode = Abc_NtkObj( pNtk, RetEdge.iNode );
+ Init = pModel? (pModel[i]? ABC_INIT_ONE : ABC_INIT_ZERO) : ABC_INIT_DC;
+ Seq_NodeSetInitOne( pNode, RetEdge.iEdge, RetEdge.iLatch, Init );
+ i++;
+ }
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Performs forward retiming of the sequential AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Vec_Ptr_t * Abc_NtkUtilRetimingTry( Abc_Ntk_t * pNtk, bool fForward )
+{
+ Vec_Ptr_t * vNodes, * vMoves;
+ Abc_Obj_t * pNode, * pFanout, * pFanin;
+ int i, k, nLatches;
+ assert( Abc_NtkIsSeq( pNtk ) );
+ // assume that all nodes can be retimed
+ vNodes = Vec_PtrAlloc( 100 );
+ Abc_AigForEachAnd( pNtk, pNode, i )
+ {
+ Vec_PtrPush( vNodes, pNode );
+ pNode->fMarkA = 1;
+ }
+ // process the nodes
+ vMoves = Vec_PtrAlloc( 100 );
+ Vec_PtrForEachEntry( vNodes, pNode, i )
+ {
+// printf( "(%d,%d) ", Seq_ObjFaninL0(pNode), Seq_ObjFaninL0(pNode) );
+ // unmark the node as processed
+ pNode->fMarkA = 0;
+ // get the number of latches to retime
+ if ( fForward )
+ nLatches = Seq_ObjFaninLMin(pNode);
+ else
+ nLatches = Seq_ObjFanoutLMin(pNode);
+ if ( nLatches == 0 )
+ continue;
+ assert( nLatches > 0 );
+ // retime the latches forward
+ if ( fForward )
+ Abc_ObjRetimeForwardTry( pNode, nLatches );
+ else
+ Abc_ObjRetimeBackwardTry( pNode, nLatches );
+ // write the moves
+ for ( k = 0; k < nLatches; k++ )
+ Vec_PtrPush( vMoves, pNode );
+ // schedule fanouts for updating
+ if ( fForward )
+ {
+ Abc_ObjForEachFanout( pNode, pFanout, k )
+ {
+ if ( Abc_ObjFaninNum(pFanout) != 2 || pFanout->fMarkA )
+ continue;
+ pFanout->fMarkA = 1;
+ Vec_PtrPush( vNodes, pFanout );
+ }
+ }
+ else
+ {
+ Abc_ObjForEachFanin( pNode, pFanin, k )
+ {
+ if ( Abc_ObjFaninNum(pFanin) != 2 || pFanin->fMarkA )
+ continue;
+ pFanin->fMarkA = 1;
+ Vec_PtrPush( vNodes, pFanin );
+ }
+ }
+ }
+ Vec_PtrFree( vNodes );
+ // make sure the marks are clean the the retiming is final
+ Abc_AigForEachAnd( pNtk, pNode, i )
+ {
+ assert( pNode->fMarkA == 0 );
+ if ( fForward )
+ assert( Seq_ObjFaninLMin(pNode) == 0 );
+ else
+ assert( Seq_ObjFanoutLMin(pNode) == 0 );
+ }
+ return vMoves;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Translates retiming steps into retiming moves.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Vec_Ptr_t * Abc_NtkUtilRetimingGetMoves( Abc_Ntk_t * pNtk, Vec_Int_t * vSteps, bool fForward )
+{
+ Seq_RetStep_t RetStep;
+ Vec_Ptr_t * vMoves;
+ Abc_Obj_t * pNode;
+ int i, k, iNode, nLatches, Number;
+ int fChange;
+ assert( Abc_NtkIsSeq( pNtk ) );
+
+/*
+ // try implementing all the moves at once
+ Vec_IntForEachEntry( vSteps, Number, i )
+ {
+ // get the retiming step
+ RetStep = Seq_Int2RetStep( Number );
+ // get the node to be retimed
+ pNode = Abc_NtkObj( pNtk, RetStep.iNode );
+ assert( RetStep.nLatches > 0 );
+ nLatches = RetStep.nLatches;
+
+ if ( fForward )
+ Abc_ObjRetimeForwardTry( pNode, nLatches );
+ else
+ Abc_ObjRetimeBackwardTry( pNode, nLatches );
+ }
+ // now look if any node has wrong number of latches
+ Abc_AigForEachAnd( pNtk, pNode, i )
+ {
+ if ( Seq_ObjFaninL0(pNode) < 0 )
+ printf( "Wrong 0node %d.\n", pNode->Id );
+ if ( Seq_ObjFaninL1(pNode) < 0 )
+ printf( "Wrong 1node %d.\n", pNode->Id );
+ }
+ // try implementing all the moves at once
+ Vec_IntForEachEntry( vSteps, Number, i )
+ {
+ // get the retiming step
+ RetStep = Seq_Int2RetStep( Number );
+ // get the node to be retimed
+ pNode = Abc_NtkObj( pNtk, RetStep.iNode );
+ assert( RetStep.nLatches > 0 );
+ nLatches = RetStep.nLatches;
+
+ if ( !fForward )
+ Abc_ObjRetimeForwardTry( pNode, nLatches );
+ else
+ Abc_ObjRetimeBackwardTry( pNode, nLatches );
+ }
+*/
+
+ // process the nodes
+ vMoves = Vec_PtrAlloc( 100 );
+ while ( Vec_IntSize(vSteps) > 0 )
+ {
+ iNode = 0;
+ fChange = 0;
+ Vec_IntForEachEntry( vSteps, Number, i )
+ {
+ // get the retiming step
+ RetStep = Seq_Int2RetStep( Number );
+ // get the node to be retimed
+ pNode = Abc_NtkObj( pNtk, RetStep.iNode );
+ assert( RetStep.nLatches > 0 );
+ // get the number of latches that can be retimed
+ if ( fForward )
+ nLatches = Seq_ObjFaninLMin(pNode);
+ else
+ nLatches = Seq_ObjFanoutLMin(pNode);
+ if ( nLatches == 0 )
+ {
+ Vec_IntWriteEntry( vSteps, iNode++, Seq_RetStep2Int(RetStep) );
+ continue;
+ }
+ assert( nLatches > 0 );
+ fChange = 1;
+ // get the number of latches to be retimed over this node
+ nLatches = ABC_MIN( nLatches, (int)RetStep.nLatches );
+ // retime the latches forward
+ if ( fForward )
+ Abc_ObjRetimeForwardTry( pNode, nLatches );
+ else
+ Abc_ObjRetimeBackwardTry( pNode, nLatches );
+ // write the moves
+ for ( k = 0; k < nLatches; k++ )
+ Vec_PtrPush( vMoves, pNode );
+ // subtract the retiming performed
+ RetStep.nLatches -= nLatches;
+ // store the node if it is not retimed completely
+ if ( RetStep.nLatches > 0 )
+ Vec_IntWriteEntry( vSteps, iNode++, Seq_RetStep2Int(RetStep) );
+ }
+ // reduce the array
+ Vec_IntShrink( vSteps, iNode );
+ if ( !fChange )
+ {
+ printf( "Warning: %d strange steps (a minor bug to be fixed later).\n", Vec_IntSize(vSteps) );
+/*
+ Vec_IntForEachEntry( vSteps, Number, i )
+ {
+ RetStep = Seq_Int2RetStep( Number );
+ printf( "%d(%d) ", RetStep.iNode, RetStep.nLatches );
+ }
+ printf( "\n" );
+*/
+ break;
+ }
+ }
+ // undo the tentative retiming
+ if ( fForward )
+ {
+ Vec_PtrForEachEntryReverse( vMoves, pNode, i )
+ Abc_ObjRetimeBackwardTry( pNode, 1 );
+ }
+ else
+ {
+ Vec_PtrForEachEntryReverse( vMoves, pNode, i )
+ Abc_ObjRetimeForwardTry( pNode, 1 );
+ }
+ return vMoves;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Splits retiming into forward and backward.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Vec_Int_t * Abc_NtkUtilRetimingSplit( Vec_Str_t * vLags, int fForward )
+{
+ Vec_Int_t * vNodes;
+ Seq_RetStep_t RetStep;
+ int Value, i;
+ vNodes = Vec_IntAlloc( 100 );
+ Vec_StrForEachEntry( vLags, Value, i )
+ {
+ if ( Value < 0 && fForward )
+ {
+ RetStep.iNode = i;
+ RetStep.nLatches = -Value;
+ Vec_IntPush( vNodes, Seq_RetStep2Int(RetStep) );
+ }
+ else if ( Value > 0 && !fForward )
+ {
+ RetStep.iNode = i;
+ RetStep.nLatches = Value;
+ Vec_IntPush( vNodes, Seq_RetStep2Int(RetStep) );
+ }
+ }
+ return vNodes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Retime node forward without initial states.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ObjRetimeForwardTry( Abc_Obj_t * pObj, int nLatches )
+{
+ Abc_Obj_t * pFanout;
+ int i;
+ // make sure it is an AND gate
+ assert( Abc_ObjFaninNum(pObj) == 2 );
+ // make sure it has enough latches
+// assert( Seq_ObjFaninL0(pObj) >= nLatches );
+// assert( Seq_ObjFaninL1(pObj) >= nLatches );
+ // subtract these latches on the fanin side
+ Seq_ObjAddFaninL0( pObj, -nLatches );
+ Seq_ObjAddFaninL1( pObj, -nLatches );
+ // make sure the label is clean
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ assert( pFanout->fMarkC == 0 );
+ // add these latches on the fanout side
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ {
+ if ( pFanout->fMarkC )
+ continue;
+ pFanout->fMarkC = 1;
+ if ( Abc_ObjFaninId0(pFanout) != Abc_ObjFaninId1(pFanout) )
+ Seq_ObjAddFanoutL( pObj, pFanout, nLatches );
+ else
+ {
+ assert( Abc_ObjFanin0(pFanout) == pObj );
+ Seq_ObjAddFaninL0( pFanout, nLatches );
+ Seq_ObjAddFaninL1( pFanout, nLatches );
+ }
+ }
+ // clean the label
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ pFanout->fMarkC = 0;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Retime node backward without initial states.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ObjRetimeBackwardTry( Abc_Obj_t * pObj, int nLatches )
+{
+ Abc_Obj_t * pFanout;
+ int i;
+ // make sure it is an AND gate
+ assert( Abc_ObjFaninNum(pObj) == 2 );
+ // make sure the label is clean
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ assert( pFanout->fMarkC == 0 );
+ // subtract these latches on the fanout side
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ {
+ if ( pFanout->fMarkC )
+ continue;
+ pFanout->fMarkC = 1;
+// assert( Abc_ObjFanoutL(pObj, pFanout) >= nLatches );
+ if ( Abc_ObjFaninId0(pFanout) != Abc_ObjFaninId1(pFanout) )
+ Seq_ObjAddFanoutL( pObj, pFanout, -nLatches );
+ else
+ {
+ assert( Abc_ObjFanin0(pFanout) == pObj );
+ Seq_ObjAddFaninL0( pFanout, -nLatches );
+ Seq_ObjAddFaninL1( pFanout, -nLatches );
+ }
+ }
+ // clean the label
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ pFanout->fMarkC = 0;
+ // add these latches on the fanin side
+ Seq_ObjAddFaninL0( pObj, nLatches );
+ Seq_ObjAddFaninL1( pObj, nLatches );
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/base/seq/seqAigIter.c b/src/base/seq/seqAigIter.c
new file mode 100644
index 00000000..392638b8
--- /dev/null
+++ b/src/base/seq/seqAigIter.c
@@ -0,0 +1,268 @@
+/**CFile****************************************************************
+
+ FileName [seqRetIter.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [The iterative L-Value computation for retiming procedures.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqRetIter.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// the internal procedures
+static int Seq_RetimeSearch_rec( Abc_Ntk_t * pNtk, int FiMin, int FiMax, int fVerbose );
+static int Seq_RetimeForPeriod( Abc_Ntk_t * pNtk, int Fi, int fVerbose );
+static int Seq_RetimeNodeUpdateLValue( Abc_Obj_t * pObj, int Fi );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Retimes AIG for optimal delay using Pan's algorithm.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_AigRetimeDelayLags( Abc_Ntk_t * pNtk, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Abc_Obj_t * pNode;
+ int i, FiMax, RetValue, clk, clkIter;
+ char NodeLag;
+
+ assert( Abc_NtkIsSeq( pNtk ) );
+
+ // get the upper bound on the clock period
+ FiMax = 2 + Seq_NtkLevelMax(pNtk);
+
+ // make sure this clock period is feasible
+ if ( !Seq_RetimeForPeriod( pNtk, FiMax, fVerbose ) )
+ {
+ Vec_StrFill( p->vLags, p->nSize, 0 );
+ printf( "Error: The upper bound on the clock period cannot be computed.\n" );
+ printf( "The reason for this error may be the presence in the circuit of logic\n" );
+ printf( "that is not reachable from the PIs. Mapping/retiming is not performed.\n" );
+ return 0;
+ }
+
+ // search for the optimal clock period between 0 and nLevelMax
+clk = clock();
+ p->FiBestInt = Seq_RetimeSearch_rec( pNtk, 0, FiMax, fVerbose );
+clkIter = clock() - clk;
+
+ // recompute the best l-values
+ RetValue = Seq_RetimeForPeriod( pNtk, p->FiBestInt, fVerbose );
+ assert( RetValue );
+
+ // fix the problem with non-converged delays
+ Abc_AigForEachAnd( pNtk, pNode, i )
+ if ( Seq_NodeGetLValue(pNode) < -ABC_INFINITY/2 )
+ Seq_NodeSetLValue( pNode, 0 );
+
+ // write the retiming lags
+ Vec_StrFill( p->vLags, p->nSize, 0 );
+ Abc_AigForEachAnd( pNtk, pNode, i )
+ {
+ NodeLag = Seq_NodeComputeLag( Seq_NodeGetLValue(pNode), p->FiBestInt );
+ Seq_NodeSetLag( pNode, NodeLag );
+ }
+
+ // print the result
+ if ( fVerbose )
+ printf( "The best clock period is %3d.\n", p->FiBestInt );
+
+/*
+ printf( "lvalues and lags : " );
+ Abc_AigForEachAnd( pNtk, pNode, i )
+ printf( "%d=%d(%d) ", pNode->Id, Seq_NodeGetLValue(pNode), Seq_NodeGetLag(pNode) );
+ printf( "\n" );
+*/
+/*
+ {
+ FILE * pTable;
+ pTable = fopen( "stats.txt", "a+" );
+ fprintf( pTable, "%s ", pNtk->pName );
+ fprintf( pTable, "%d ", FiBest );
+ fprintf( pTable, "\n" );
+ fclose( pTable );
+ }
+*/
+/*
+ {
+ FILE * pTable;
+ pTable = fopen( "stats.txt", "a+" );
+ fprintf( pTable, "%s ", pNtk->pName );
+ fprintf( pTable, "%.2f ", (float)(p->timeCuts)/(float)(CLOCKS_PER_SEC) );
+ fprintf( pTable, "%.2f ", (float)(clkIter)/(float)(CLOCKS_PER_SEC) );
+ fprintf( pTable, "\n" );
+ fclose( pTable );
+ }
+*/
+ return 1;
+
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs binary search for the optimal clock period.]
+
+ Description [Assumes that FiMin is infeasible while FiMax is feasible.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_RetimeSearch_rec( Abc_Ntk_t * pNtk, int FiMin, int FiMax, int fVerbose )
+{
+ int Median;
+ assert( FiMin < FiMax );
+ if ( FiMin + 1 == FiMax )
+ return FiMax;
+ Median = FiMin + (FiMax - FiMin)/2;
+ if ( Seq_RetimeForPeriod( pNtk, Median, fVerbose ) )
+ return Seq_RetimeSearch_rec( pNtk, FiMin, Median, fVerbose ); // Median is feasible
+ else
+ return Seq_RetimeSearch_rec( pNtk, Median, FiMax, fVerbose ); // Median is infeasible
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if retiming with this clock period is feasible.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_RetimeForPeriod( Abc_Ntk_t * pNtk, int Fi, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Abc_Obj_t * pObj;
+ int i, c, RetValue, fChange, Counter;
+ char * pReason = "";
+
+ // set l-values of all nodes to be minus infinity
+ Vec_IntFill( p->vLValues, p->nSize, -ABC_INFINITY );
+
+ // set l-values of constants and PIs
+ pObj = Abc_NtkObj( pNtk, 0 );
+ Seq_NodeSetLValue( pObj, 0 );
+ Abc_NtkForEachPi( pNtk, pObj, i )
+ Seq_NodeSetLValue( pObj, 0 );
+
+ // update all values iteratively
+ Counter = 0;
+ for ( c = 0; c < p->nMaxIters; c++ )
+ {
+ fChange = 0;
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ {
+ Counter++;
+ if ( Seq_NodeCutMan(pObj) )
+ RetValue = Seq_FpgaNodeUpdateLValue( pObj, Fi );
+ else
+ RetValue = Seq_RetimeNodeUpdateLValue( pObj, Fi );
+ if ( RetValue == SEQ_UPDATE_YES )
+ fChange = 1;
+ }
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ {
+ if ( Seq_NodeCutMan(pObj) )
+ RetValue = Seq_FpgaNodeUpdateLValue( pObj, Fi );
+ else
+ RetValue = Seq_RetimeNodeUpdateLValue( pObj, Fi );
+ if ( RetValue == SEQ_UPDATE_FAIL )
+ break;
+ }
+ if ( RetValue == SEQ_UPDATE_FAIL )
+ break;
+ if ( fChange == 0 )
+ break;
+ }
+ if ( c == p->nMaxIters )
+ {
+ RetValue = SEQ_UPDATE_FAIL;
+ pReason = "(timeout)";
+ }
+ else
+ c++;
+ // report the results
+ if ( fVerbose )
+ {
+ if ( RetValue == SEQ_UPDATE_FAIL )
+ printf( "Period = %3d. Iterations = %3d. Updates = %10d. Infeasible %s\n", Fi, c, Counter, pReason );
+ else
+ printf( "Period = %3d. Iterations = %3d. Updates = %10d. Feasible\n", Fi, c, Counter );
+ }
+/*
+ // check if any AND gates have infinite delay
+ Counter = 0;
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ Counter += (Seq_NodeGetLValue(pObj) < -ABC_INFINITY/2);
+ if ( Counter > 0 )
+ printf( "Warning: %d internal nodes have wrong l-values!\n", Counter );
+*/
+ return RetValue != SEQ_UPDATE_FAIL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the l-value of the node.]
+
+ Description [The node can be internal or a PO.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_RetimeNodeUpdateLValue( Abc_Obj_t * pObj, int Fi )
+{
+ int lValueNew, lValueOld, lValue0, lValue1;
+ assert( !Abc_ObjIsPi(pObj) );
+ assert( Abc_ObjFaninNum(pObj) > 0 );
+ lValue0 = Seq_NodeGetLValue(Abc_ObjFanin0(pObj)) - Fi * Seq_ObjFaninL0(pObj);
+ if ( Abc_ObjIsPo(pObj) )
+ return (lValue0 > Fi)? SEQ_UPDATE_FAIL : SEQ_UPDATE_NO;
+ if ( Abc_ObjFaninNum(pObj) == 2 )
+ lValue1 = Seq_NodeGetLValue(Abc_ObjFanin1(pObj)) - Fi * Seq_ObjFaninL1(pObj);
+ else
+ lValue1 = -ABC_INFINITY;
+ lValueNew = 1 + ABC_MAX( lValue0, lValue1 );
+ lValueOld = Seq_NodeGetLValue(pObj);
+// if ( lValueNew == lValueOld )
+ if ( lValueNew <= lValueOld )
+ return SEQ_UPDATE_NO;
+ Seq_NodeSetLValue( pObj, lValueNew );
+ return SEQ_UPDATE_YES;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/base/seq/seqCreate.c b/src/base/seq/seqCreate.c
new file mode 100644
index 00000000..16c7cc92
--- /dev/null
+++ b/src/base/seq/seqCreate.c
@@ -0,0 +1,482 @@
+/**CFile****************************************************************
+
+ FileName [seqCreate.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [Transformations to and from the sequential AIG.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqCreate.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+
+/*
+ A sequential network is similar to AIG in that it contains only
+ AND gates. However, the AND-gates are currently not hashed.
+
+ When converting AIG into sequential AIG:
+ - Const1/PIs/POs remain the same as in the original AIG.
+ - Instead of the latches, a new cutset is added, which is currently
+ defined as a set of AND gates that have a latch among their fanouts.
+ - The edges of a sequential AIG are labeled with latch attributes
+ in addition to the complementation attibutes.
+ - The attributes contain information about the number of latches
+ and their initial states.
+ - The number of latches is stored directly on the edges. The initial
+ states are stored in the sequential AIG manager.
+
+ In the current version of the code, the sequential AIG is static
+ in the sense that the new AIG nodes are never created.
+ The retiming (or retiming/mapping) is performed by moving the
+ latches over the static nodes of the AIG.
+ The new initial state after backward retiming is computed
+ by setting up and solving a SAT problem.
+*/
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+static Abc_Obj_t * Abc_NodeAigToSeq( Abc_Obj_t * pObjNew, Abc_Obj_t * pObj, int Edge, Vec_Int_t * vInitValues );
+static void Abc_NtkAigCutsetCopy( Abc_Ntk_t * pNtk );
+static Abc_Obj_t * Abc_NodeSeqToLogic( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanin, Seq_Lat_t * pRing, int nLatches );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+
+/**Function*************************************************************
+
+ Synopsis [Converts combinational AIG with latches into sequential AIG.]
+
+ Description [The const/PI/PO nodes are duplicated. The internal
+ nodes are duplicated in the topological order. The dangling nodes
+ are not duplicated. The choice nodes are duplicated.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Abc_NtkAigToSeq( Abc_Ntk_t * pNtk )
+{
+ Abc_Ntk_t * pNtkNew;
+ Abc_Obj_t * pObj, * pFaninNew;
+ Vec_Int_t * vInitValues;
+ Abc_InitType_t Init;
+ int i, k, RetValue;
+
+ // make sure it is an AIG without self-feeding latches
+ assert( Abc_NtkIsStrash(pNtk) );
+ assert( Abc_NtkIsDfsOrdered(pNtk) );
+
+ if ( RetValue = Abc_NtkRemoveSelfFeedLatches(pNtk) )
+ printf( "Modified %d self-feeding latches. The result may not verify.\n", RetValue );
+ assert( Abc_NtkCountSelfFeedLatches(pNtk) == 0 );
+
+ // start the network
+ pNtkNew = Abc_NtkAlloc( ABC_NTK_SEQ, ABC_FUNC_AIG, 1 );
+ // duplicate the name and the spec
+ pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
+ pNtkNew->pSpec = Extra_UtilStrsav(pNtk->pSpec);
+
+ // map the constant nodes
+ Abc_NtkCleanCopy( pNtk );
+ Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
+
+ // copy all objects, except the latches and constant
+ Vec_PtrFill( pNtkNew->vObjs, Abc_NtkObjNumMax(pNtk), NULL );
+ Vec_PtrWriteEntry( pNtkNew->vObjs, 0, Abc_AigConst1(pNtk)->pCopy );
+ Abc_NtkForEachObj( pNtk, pObj, i )
+ {
+ if ( i == 0 || Abc_ObjIsLatch(pObj) )
+ continue;
+ pObj->pCopy = Abc_ObjAlloc( pNtkNew, pObj->Type );
+ pObj->pCopy->Id = pObj->Id; // the ID is the same for both
+ pObj->pCopy->fPhase = pObj->fPhase; // used to work with choices
+ pObj->pCopy->Level = pObj->Level; // used for upper bound on clock cycle
+ Vec_PtrWriteEntry( pNtkNew->vObjs, pObj->pCopy->Id, pObj->pCopy );
+ pNtkNew->nObjs++;
+ }
+ pNtkNew->nObjCounts[ABC_OBJ_NODE] = pNtk->nObjCounts[ABC_OBJ_NODE];
+
+ // create PI/PO and their names
+ Abc_NtkForEachPi( pNtk, pObj, i )
+ {
+ Vec_PtrPush( pNtkNew->vPis, pObj->pCopy );
+ Vec_PtrPush( pNtkNew->vCis, pObj->pCopy );
+ Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
+ }
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ {
+ Vec_PtrPush( pNtkNew->vPos, pObj->pCopy );
+ Vec_PtrPush( pNtkNew->vCos, pObj->pCopy );
+ Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
+ }
+ Abc_NtkForEachAssert( pNtk, pObj, i )
+ {
+ Vec_PtrPush( pNtkNew->vAsserts, pObj->pCopy );
+ Vec_PtrPush( pNtkNew->vCos, pObj->pCopy );
+ Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
+ }
+
+ // relink the choice nodes
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ if ( pObj->pData )
+ pObj->pCopy->pData = ((Abc_Obj_t *)pObj->pData)->pCopy;
+
+ // start the storage for initial states
+ Seq_Resize( pNtkNew->pManFunc, Abc_NtkObjNumMax(pNtkNew) );
+ // reconnect the internal nodes
+ vInitValues = Vec_IntAlloc( 100 );
+ Abc_NtkForEachObj( pNtk, pObj, i )
+ {
+ // skip constants, PIs, and latches
+ if ( Abc_ObjFaninNum(pObj) == 0 || Abc_ObjIsLatch(pObj) )
+ continue;
+ // process the first fanin
+ Vec_IntClear( vInitValues );
+ pFaninNew = Abc_NodeAigToSeq( pObj->pCopy, pObj, 0, vInitValues );
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+ // store the initial values
+ Vec_IntForEachEntry( vInitValues, Init, k )
+ Seq_NodeInsertFirst( pObj->pCopy, 0, Init );
+ // skip single-input nodes
+ if ( Abc_ObjFaninNum(pObj) == 1 )
+ continue;
+ // process the second fanin
+ Vec_IntClear( vInitValues );
+ pFaninNew = Abc_NodeAigToSeq( pObj->pCopy, pObj, 1, vInitValues );
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+ // store the initial values
+ Vec_IntForEachEntry( vInitValues, Init, k )
+ Seq_NodeInsertFirst( pObj->pCopy, 1, Init );
+ }
+ Vec_IntFree( vInitValues );
+
+ // set the cutset composed of latch drivers
+ Abc_NtkAigCutsetCopy( pNtk );
+ Seq_NtkLatchGetEqualFaninNum( pNtkNew );
+
+ // copy EXDC and check correctness
+ if ( pNtk->pExdc )
+ fprintf( stdout, "Warning: EXDC is not copied when converting to sequential AIG.\n" );
+ if ( !Abc_NtkCheck( pNtkNew ) )
+ fprintf( stdout, "Abc_NtkAigToSeq(): Network check has failed.\n" );
+ return pNtkNew;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Determines the fanin that is transparent for latches.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Obj_t * Abc_NodeAigToSeq( Abc_Obj_t * pObjNew, Abc_Obj_t * pObj, int Edge, Vec_Int_t * vInitValues )
+{
+ Abc_Obj_t * pFanin, * pFaninNew;
+ Abc_InitType_t Init;
+ // get the given fanin of the node
+ pFanin = Abc_ObjFanin( pObj, Edge );
+ // if fanin is the internal node, return its copy in the corresponding polarity
+ if ( !Abc_ObjIsLatch(pFanin) )
+ return Abc_ObjNotCond( pFanin->pCopy, Abc_ObjFaninC(pObj, Edge) );
+ // fanin is a latch
+ // get the new fanins
+ pFaninNew = Abc_NodeAigToSeq( pObjNew, pFanin, 0, vInitValues );
+ // get the initial state
+ Init = Abc_LatchInit(pFanin);
+ // complement the initial state if the inv is retimed over the latch
+ if ( Abc_ObjIsComplement(pFaninNew) )
+ {
+ if ( Init == ABC_INIT_ZERO )
+ Init = ABC_INIT_ONE;
+ else if ( Init == ABC_INIT_ONE )
+ Init = ABC_INIT_ZERO;
+ else if ( Init != ABC_INIT_DC )
+ assert( 0 );
+ }
+ // record the initial state
+ Vec_IntPush( vInitValues, Init );
+ return Abc_ObjNotCond( pFaninNew, Abc_ObjFaninC(pObj, Edge) );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collects the cut set nodes.]
+
+ Description [These are internal AND gates that have latch fanouts.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_NtkAigCutsetCopy( Abc_Ntk_t * pNtk )
+{
+ Abc_Obj_t * pLatch, * pDriver, * pDriverNew;
+ int i;
+ Abc_NtkIncrementTravId(pNtk);
+ Abc_NtkForEachLatch( pNtk, pLatch, i )
+ {
+ pDriver = Abc_ObjFanin0(pLatch);
+ if ( Abc_NodeIsTravIdCurrent(pDriver) || !Abc_AigNodeIsAnd(pDriver) )
+ continue;
+ Abc_NodeSetTravIdCurrent(pDriver);
+ pDriverNew = pDriver->pCopy;
+ Vec_PtrPush( pDriverNew->pNtk->vCutSet, pDriverNew );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Converts a sequential AIG into a logic SOP network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Abc_NtkSeqToLogicSop( Abc_Ntk_t * pNtk )
+{
+ Abc_Ntk_t * pNtkNew;
+ Abc_Obj_t * pObj, * pFaninNew;
+ Seq_Lat_t * pRing;
+ int i;
+
+ assert( Abc_NtkIsSeq(pNtk) );
+ // start the network without latches
+ pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_SOP );
+ // duplicate the nodes
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ {
+ Abc_NtkDupObj(pNtkNew, pObj, 0);
+ pObj->pCopy->pData = Abc_SopCreateAnd2( pNtkNew->pManFunc, Abc_ObjFaninC0(pObj), Abc_ObjFaninC1(pObj) );
+ }
+ // share and create the latches
+ Seq_NtkShareLatches( pNtkNew, pNtk );
+ // connect the objects
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ {
+ if ( pRing = Seq_NodeGetRing(pObj,0) )
+ pFaninNew = pRing->pLatch;
+ else
+ pFaninNew = Abc_ObjFanin0(pObj)->pCopy;
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+
+ if ( pRing = Seq_NodeGetRing(pObj,1) )
+ pFaninNew = pRing->pLatch;
+ else
+ pFaninNew = Abc_ObjFanin1(pObj)->pCopy;
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+ }
+ // connect the POs
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ {
+ if ( pRing = Seq_NodeGetRing(pObj,0) )
+ pFaninNew = pRing->pLatch;
+ else
+ pFaninNew = Abc_ObjFanin0(pObj)->pCopy;
+ pFaninNew = Abc_ObjNotCond( pFaninNew, Abc_ObjFaninC0(pObj) );
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+ }
+ // clean the latch pointers
+ Seq_NtkShareLatchesClean( pNtk );
+
+ // add the latches and their names
+ Abc_NtkAddDummyBoxNames( pNtkNew );
+ Abc_NtkOrderCisCos( pNtkNew );
+ // fix the problem with complemented and duplicated CO edges
+ Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 );
+ if ( !Abc_NtkCheck( pNtkNew ) )
+ fprintf( stdout, "Abc_NtkSeqToLogicSop(): Network check has failed.\n" );
+ return pNtkNew;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Converts a sequential AIG into a logic SOP network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Abc_NtkSeqToLogicSop_old( Abc_Ntk_t * pNtk )
+{
+ Abc_Ntk_t * pNtkNew;
+ Abc_Obj_t * pObj, * pFaninNew;
+ int i;
+
+ assert( Abc_NtkIsSeq(pNtk) );
+ // start the network without latches
+ pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_SOP );
+
+ // duplicate the nodes, create node functions
+ Abc_NtkForEachNode( pNtk, pObj, i )
+ {
+ // skip the constant
+ if ( Abc_ObjFaninNum(pObj) == 0 )
+ continue;
+ // duplicate the node
+ Abc_NtkDupObj(pNtkNew, pObj, 0);
+ if ( Abc_ObjFaninNum(pObj) == 1 )
+ {
+ assert( !Abc_ObjFaninC0(pObj) );
+ pObj->pCopy->pData = Abc_SopCreateBuf( pNtkNew->pManFunc );
+ continue;
+ }
+ pObj->pCopy->pData = Abc_SopCreateAnd2( pNtkNew->pManFunc, Abc_ObjFaninC0(pObj), Abc_ObjFaninC1(pObj) );
+ }
+ // connect the objects
+ Abc_NtkForEachObj( pNtk, pObj, i )
+ {
+ assert( (int)pObj->Id == i );
+ // skip PIs and the constant
+ if ( Abc_ObjFaninNum(pObj) == 0 )
+ continue;
+ // create the edge
+ pFaninNew = Abc_NodeSeqToLogic( pNtkNew, Abc_ObjFanin0(pObj), Seq_NodeGetRing(pObj,0), Seq_ObjFaninL0(pObj) );
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+ if ( Abc_ObjFaninNum(pObj) == 1 )
+ {
+ // create the complemented edge
+ if ( Abc_ObjFaninC0(pObj) )
+ Abc_ObjSetFaninC( pObj->pCopy, 0 );
+ continue;
+ }
+ // create the edge
+ pFaninNew = Abc_NodeSeqToLogic( pNtkNew, Abc_ObjFanin1(pObj), Seq_NodeGetRing(pObj,1), Seq_ObjFaninL1(pObj) );
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+ // the complemented edges are subsumed by the node function
+ }
+ // add the latches and their names
+ Abc_NtkAddDummyBoxNames( pNtkNew );
+ Abc_NtkOrderCisCos( pNtkNew );
+ // fix the problem with complemented and duplicated CO edges
+ Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 );
+ if ( !Abc_NtkCheck( pNtkNew ) )
+ fprintf( stdout, "Abc_NtkSeqToLogicSop(): Network check has failed.\n" );
+ return pNtkNew;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Creates latches on one edge.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Obj_t * Abc_NodeSeqToLogic( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pFanin, Seq_Lat_t * pRing, int nLatches )
+{
+ Abc_Obj_t * pLatch;
+ if ( nLatches == 0 )
+ {
+ assert( pFanin->pCopy );
+ return pFanin->pCopy;
+ }
+ pFanin = Abc_NodeSeqToLogic( pNtkNew, pFanin, Seq_LatNext(pRing), nLatches - 1 );
+ pLatch = Abc_NtkCreateLatch( pNtkNew );
+ pLatch->pData = (void *)Seq_LatInit( pRing );
+ Abc_ObjAddFanin( pLatch, pFanin );
+ return pLatch;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Makes sure that every node in the table is in the network and vice versa.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+bool Abc_NtkSeqCheck( Abc_Ntk_t * pNtk )
+{
+ Abc_Obj_t * pObj;
+ int i, nFanins;
+ Abc_NtkForEachNode( pNtk, pObj, i )
+ {
+ nFanins = Abc_ObjFaninNum(pObj);
+ if ( nFanins == 0 )
+ {
+ if ( pObj != Abc_AigConst1(pNtk) )
+ {
+ printf( "Abc_SeqCheck: The AIG has non-standard constant nodes.\n" );
+ return 0;
+ }
+ continue;
+ }
+ if ( nFanins == 1 )
+ {
+ printf( "Abc_SeqCheck: The AIG has single input nodes.\n" );
+ return 0;
+ }
+ if ( nFanins > 2 )
+ {
+ printf( "Abc_SeqCheck: The AIG has non-standard nodes.\n" );
+ return 0;
+ }
+ }
+ // check the correctness of the internal representation of the initial states
+ Abc_NtkForEachObj( pNtk, pObj, i )
+ {
+ nFanins = Abc_ObjFaninNum(pObj);
+ if ( nFanins == 0 )
+ continue;
+ if ( nFanins == 1 )
+ {
+ if ( Seq_NodeCountLats(pObj, 0) != Seq_ObjFaninL0(pObj) )
+ {
+ printf( "Abc_SeqCheck: Node %d has mismatch in the number of latches.\n", Abc_ObjName(pObj) );
+ return 0;
+ }
+ }
+ // look at both inputs
+ if ( Seq_NodeCountLats(pObj, 0) != Seq_ObjFaninL0(pObj) )
+ {
+ printf( "Abc_SeqCheck: The first fanin of node %d has mismatch in the number of latches.\n", Abc_ObjName(pObj) );
+ return 0;
+ }
+ if ( Seq_NodeCountLats(pObj, 1) != Seq_ObjFaninL1(pObj) )
+ {
+ printf( "Abc_SeqCheck: The second fanin of node %d has mismatch in the number of latches.\n", Abc_ObjName(pObj) );
+ return 0;
+ }
+ }
+ return 1;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/base/seq/seqFpgaCore.c b/src/base/seq/seqFpgaCore.c
new file mode 100644
index 00000000..b106ded2
--- /dev/null
+++ b/src/base/seq/seqFpgaCore.c
@@ -0,0 +1,643 @@
+/**CFile****************************************************************
+
+ FileName [seqFpgaCore.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [The core of FPGA mapping/retiming package.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqFpgaCore.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+static Abc_Ntk_t * Seq_NtkFpgaDup( Abc_Ntk_t * pNtk );
+static int Seq_NtkFpgaInitCompatible( Abc_Ntk_t * pNtk, int fVerbose );
+static Abc_Ntk_t * Seq_NtkSeqFpgaMapped( Abc_Ntk_t * pNtkNew );
+static int Seq_FpgaMappingCount( Abc_Ntk_t * pNtk );
+static int Seq_FpgaMappingCount_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Vec_Ptr_t * vLeaves );
+static Abc_Obj_t * Seq_FpgaMappingBuild_rec( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtk, unsigned SeqEdge, int fTop, int LagCut, Vec_Ptr_t * vLeaves );
+static DdNode * Seq_FpgaMappingBdd_rec( DdManager * dd, Abc_Ntk_t * pNtk, unsigned SeqEdge, Vec_Ptr_t * vLeaves );
+static void Seq_FpgaMappingEdges_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, Vec_Ptr_t * vLeaves, Vec_Vec_t * vMapEdges );
+static void Seq_FpgaMappingConnect_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, int Edge, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves );
+static DdNode * Seq_FpgaMappingConnectBdd_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, int Edge, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Performs FPGA mapping and retiming.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Seq_NtkFpgaMapRetime( Abc_Ntk_t * pNtk, int nMaxIters, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Abc_Ntk_t * pNtkNew;
+ Abc_Ntk_t * pNtkMap;
+ int RetValue;
+
+ // get the LUT library
+ p->nVarsMax = Fpga_LutLibReadVarMax( Abc_FrameReadLibLut() );
+ p->nMaxIters = nMaxIters;
+
+ // find the best mapping and retiming for all nodes (p->vLValues, p->vBestCuts, p->vLags)
+ if ( !Seq_FpgaMappingDelays( pNtk, fVerbose ) )
+ return NULL;
+ if ( RetValue = Abc_NtkGetChoiceNum(pNtk) )
+ {
+ printf( "The network has %d choices. The resulting network is not derived (this is temporary).\n", RetValue );
+ printf( "The mininum clock period computed is %d.\n", p->FiBestInt );
+ return NULL;
+ }
+
+ // duplicate the nodes contained in multiple cuts
+ pNtkNew = Seq_NtkFpgaDup( pNtk );
+// return pNtkNew;
+
+ // implement the retiming
+ RetValue = Seq_NtkImplementRetiming( pNtkNew, ((Abc_Seq_t *)pNtkNew->pManFunc)->vLags, fVerbose );
+ if ( RetValue == 0 )
+ printf( "Retiming completed but initial state computation has failed.\n" );
+// return pNtkNew;
+
+ // check the compatibility of initial states computed
+ if ( RetValue = Seq_NtkFpgaInitCompatible( pNtkNew, fVerbose ) )
+ printf( "The number of LUTs with incompatible edges = %d.\n", RetValue );
+
+ // create the final mapped network
+ pNtkMap = Seq_NtkSeqFpgaMapped( pNtkNew );
+ Abc_NtkDelete( pNtkNew );
+ if ( RetValue )
+ printf( "The number of LUTs with more than %d inputs = %d.\n",
+ p->nVarsMax, Seq_NtkCountNodesAboveLimit(pNtkMap, p->nVarsMax) );
+ return pNtkMap;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the network by duplicating some of the nodes.]
+
+ Description [Information about mapping is given as mapping nodes (p->vMapAnds)
+ and best cuts for each node (p->vMapCuts).]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Seq_NtkFpgaDup( Abc_Ntk_t * pNtk )
+{
+ Abc_Seq_t * pNew, * p = pNtk->pManFunc;
+ Abc_Ntk_t * pNtkNew;
+ Abc_Obj_t * pObj, * pLeaf;
+ Vec_Ptr_t * vLeaves;
+ unsigned SeqEdge;
+ int i, k, nObjsNew, Lag;
+
+ assert( Abc_NtkIsSeq(pNtk) );
+
+ // start the expanded network
+ pNtkNew = Abc_NtkStartFrom( pNtk, pNtk->ntkType, pNtk->ntkFunc );
+
+ // start the new sequential AIG manager
+ nObjsNew = 1 + Abc_NtkPiNum(pNtk) + Abc_NtkPoNum(pNtk) + Seq_FpgaMappingCount(pNtk);
+ Seq_Resize( pNtkNew->pManFunc, nObjsNew );
+
+ // duplicate the nodes in the mapping
+ Vec_PtrForEachEntry( p->vMapAnds, pObj, i )
+ Abc_NtkDupObj( pNtkNew, pObj, 0 );
+
+ // recursively construct the internals of each node
+ Vec_PtrForEachEntry( p->vMapAnds, pObj, i )
+ {
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+ Seq_FpgaMappingBuild_rec( pNtkNew, pNtk, pObj->Id << 8, 1, Seq_NodeGetLag(pObj), vLeaves );
+ }
+ assert( nObjsNew == pNtkNew->nObjs );
+
+ // set the POs
+ Abc_NtkFinalize( pNtk, pNtkNew );
+ // duplicate the latches on the PO edges
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Seq_NodeDupLats( pObj->pCopy, pObj, 0 );
+
+ // transfer the mapping info to the new manager
+ Vec_PtrForEachEntry( p->vMapAnds, pObj, i )
+ {
+ // get the leaves of the cut
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+ // convert the leaf nodes
+ Vec_PtrForEachEntry( vLeaves, pLeaf, k )
+ {
+ SeqEdge = (unsigned)pLeaf;
+ pLeaf = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = (SeqEdge & 255) + Seq_NodeGetLag(pObj) - Seq_NodeGetLag(pLeaf);
+ assert( Lag >= 0 );
+ // translate the old leaf into the leaf in the new network
+ Vec_PtrWriteEntry( vLeaves, k, (void *)((pLeaf->pCopy->Id << 8) | Lag) );
+// printf( "%d -> %d\n", pLeaf->Id, pLeaf->pCopy->Id );
+ }
+ // convert the root node
+ Vec_PtrWriteEntry( p->vMapAnds, i, pObj->pCopy );
+ }
+ pNew = pNtkNew->pManFunc;
+ pNew->nVarsMax = p->nVarsMax;
+ pNew->vMapAnds = p->vMapAnds; p->vMapAnds = NULL;
+ pNew->vMapCuts = p->vMapCuts; p->vMapCuts = NULL;
+
+ if ( !Abc_NtkCheck( pNtkNew ) )
+ fprintf( stdout, "Seq_NtkFpgaDup(): Network check has failed.\n" );
+ return pNtkNew;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Checks if the initial states are compatible.]
+
+ Description [Checks of all the initial states on the fanins edges
+ of the cut have compatible number of latches and initial states.
+ If this is not true, then the mapped network with the does not have initial
+ state. Returns the number of LUTs with incompatible edges.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkFpgaInitCompatible( Abc_Ntk_t * pNtk, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Abc_Obj_t * pAnd, * pLeaf, * pFanout0, * pFanout1;
+ Vec_Vec_t * vTotalEdges;
+ Vec_Ptr_t * vLeaves, * vEdges;
+ int i, k, m, Edge0, Edge1, nLatchAfter, nLatches1, nLatches2;
+ unsigned SeqEdge;
+ int CountBad = 0, CountAll = 0;
+
+ vTotalEdges = Vec_VecStart( p->nVarsMax );
+ // go through all the nodes (cuts) used in the mapping
+ Vec_PtrForEachEntry( p->vMapAnds, pAnd, i )
+ {
+// printf( "*** Node %d.\n", pAnd->Id );
+
+ // get the cut of this gate
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+
+ // get the edges pointing to the leaves
+ Vec_VecClear( vTotalEdges );
+ Seq_FpgaMappingEdges_rec( pNtk, pAnd->Id << 8, NULL, vLeaves, vTotalEdges );
+
+ // for each leaf, consider its edges
+ Vec_PtrForEachEntry( vLeaves, pLeaf, k )
+ {
+ SeqEdge = (unsigned)pLeaf;
+ pLeaf = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ nLatchAfter = SeqEdge & 255;
+ if ( nLatchAfter == 0 )
+ continue;
+
+ // go through the edges
+ vEdges = Vec_VecEntry( vTotalEdges, k );
+ pFanout0 = NULL;
+ Vec_PtrForEachEntry( vEdges, pFanout1, m )
+ {
+ Edge1 = Abc_ObjIsComplement(pFanout1);
+ pFanout1 = Abc_ObjRegular(pFanout1);
+//printf( "Fanin = %d. Fanout = %d.\n", pLeaf->Id, pFanout1->Id );
+
+ // make sure this is the same fanin
+ if ( Edge1 )
+ assert( pLeaf == Abc_ObjFanin1(pFanout1) );
+ else
+ assert( pLeaf == Abc_ObjFanin0(pFanout1) );
+
+ // save the first one
+ if ( pFanout0 == NULL )
+ {
+ pFanout0 = pFanout1;
+ Edge0 = Edge1;
+ continue;
+ }
+ // compare the rings
+ // if they have different number of latches, this is the bug
+ nLatches1 = Seq_NodeCountLats(pFanout0, Edge0);
+ nLatches2 = Seq_NodeCountLats(pFanout1, Edge1);
+ assert( nLatches1 == nLatches2 );
+ assert( nLatches1 == nLatchAfter );
+ assert( nLatches1 > 0 );
+
+ // if they have different initial states, this is the problem
+ if ( !Seq_NodeCompareLats(pFanout0, Edge0, pFanout1, Edge1) )
+ {
+ CountBad++;
+ break;
+ }
+ CountAll++;
+ }
+ }
+ }
+ if ( fVerbose )
+ printf( "The number of pairs of edges checked = %d.\n", CountAll );
+ Vec_VecFree( vTotalEdges );
+ return CountBad;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the final mapped network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Seq_NtkSeqFpgaMapped( Abc_Ntk_t * pNtk )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Abc_Ntk_t * pNtkMap;
+ Vec_Ptr_t * vLeaves;
+ Abc_Obj_t * pObj, * pFaninNew;
+ Seq_Lat_t * pRing;
+ int i;
+
+ assert( Abc_NtkIsSeq(pNtk) );
+
+ // start the network
+ pNtkMap = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_BDD );
+
+ // duplicate the nodes used in the mapping
+ Vec_PtrForEachEntry( p->vMapAnds, pObj, i )
+ pObj->pCopy = Abc_NtkCreateNode( pNtkMap );
+
+ // create and share the latches
+ Seq_NtkShareLatchesMapping( pNtkMap, pNtk, p->vMapAnds, 1 );
+
+ // connect the nodes
+ Vec_PtrForEachEntry( p->vMapAnds, pObj, i )
+ {
+ // get the leaves of this gate
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+ // get the BDD of the node
+ pObj->pCopy->pData = Seq_FpgaMappingConnectBdd_rec( pNtk, pObj->Id << 8, NULL, -1, pObj, vLeaves );
+ Cudd_Ref( pObj->pCopy->pData );
+ // complement the BDD of the cut if it came from the opposite polarity choice cut
+// if ( Vec_StrEntry(p->vPhase, i) )
+// pObj->pCopy->pData = Cudd_Not( pObj->pCopy->pData );
+ }
+
+ // set the POs
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ {
+ if ( pRing = Seq_NodeGetRing(pObj,0) )
+ pFaninNew = pRing->pLatch;
+ else
+ pFaninNew = Abc_ObjFanin0(pObj)->pCopy;
+ pFaninNew = Abc_ObjNotCond( pFaninNew, Abc_ObjFaninC0(pObj) );
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+ }
+
+ // add the latches and their names
+ Abc_NtkAddDummyBoxNames( pNtkMap );
+ Abc_NtkOrderCisCos( pNtkMap );
+ // fix the problem with complemented and duplicated CO edges
+ Abc_NtkLogicMakeSimpleCos( pNtkMap, 1 );
+ // make the network minimum base
+ Abc_NtkMinimumBase( pNtkMap );
+ if ( !Abc_NtkCheck( pNtkMap ) )
+ fprintf( stdout, "Seq_NtkSeqFpgaMapped(): Network check has failed.\n" );
+ return pNtkMap;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of nodes in the bag.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_FpgaMappingCount( Abc_Ntk_t * pNtk )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Vec_Ptr_t * vLeaves;
+ Abc_Obj_t * pAnd;
+ int i, Counter = 0;
+ Vec_PtrForEachEntry( p->vMapAnds, pAnd, i )
+ {
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+ Counter += Seq_FpgaMappingCount_rec( pNtk, pAnd->Id << 8, vLeaves );
+ }
+ return Counter;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of nodes in the bag.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_FpgaMappingCount_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Vec_Ptr_t * vLeaves )
+{
+ Abc_Obj_t * pObj, * pLeaf;
+ unsigned SeqEdge0, SeqEdge1;
+ int Lag, i;
+ // get the object and the lag
+ pObj = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = SeqEdge & 255;
+ // if the node is the fanin of the cut, return
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ if ( SeqEdge == (unsigned)pLeaf )
+ return 0;
+ // continue unfolding
+ assert( Abc_AigNodeIsAnd(pObj) );
+ // get new sequential edges
+ assert( Lag + Seq_ObjFaninL0(pObj) < 255 );
+ assert( Lag + Seq_ObjFaninL1(pObj) < 255 );
+ SeqEdge0 = (Abc_ObjFanin0(pObj)->Id << 8) + Lag + Seq_ObjFaninL0(pObj);
+ SeqEdge1 = (Abc_ObjFanin1(pObj)->Id << 8) + Lag + Seq_ObjFaninL1(pObj);
+ // call for the children
+ return 1 + Seq_FpgaMappingCount_rec( pNtk, SeqEdge0, vLeaves ) +
+ Seq_FpgaMappingCount_rec( pNtk, SeqEdge1, vLeaves );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collects the edges pointing to the leaves of the cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Obj_t * Seq_FpgaMappingBuild_rec( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtk, unsigned SeqEdge, int fTop, int LagCut, Vec_Ptr_t * vLeaves )
+{
+ Abc_Obj_t * pObj, * pObjNew, * pLeaf, * pFaninNew0, * pFaninNew1;
+ unsigned SeqEdge0, SeqEdge1;
+ int Lag, i;
+ // get the object and the lag
+ pObj = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = SeqEdge & 255;
+ // if the node is the fanin of the cut, return
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ if ( SeqEdge == (unsigned)pLeaf )
+ return pObj->pCopy;
+ // continue unfolding
+ assert( Abc_AigNodeIsAnd(pObj) );
+ // get new sequential edges
+ assert( Lag + Seq_ObjFaninL0(pObj) < 255 );
+ assert( Lag + Seq_ObjFaninL1(pObj) < 255 );
+ SeqEdge0 = (Abc_ObjFanin0(pObj)->Id << 8) + Lag + Seq_ObjFaninL0(pObj);
+ SeqEdge1 = (Abc_ObjFanin1(pObj)->Id << 8) + Lag + Seq_ObjFaninL1(pObj);
+ // call for the children
+ pObjNew = fTop? pObj->pCopy : Abc_NtkCreateNode( pNtkNew );
+ // solve subproblems
+ pFaninNew0 = Seq_FpgaMappingBuild_rec( pNtkNew, pNtk, SeqEdge0, 0, LagCut, vLeaves );
+ pFaninNew1 = Seq_FpgaMappingBuild_rec( pNtkNew, pNtk, SeqEdge1, 0, LagCut, vLeaves );
+ // add the fanins to the node
+ Abc_ObjAddFanin( pObjNew, Abc_ObjNotCond( pFaninNew0, Abc_ObjFaninC0(pObj) ) );
+ Abc_ObjAddFanin( pObjNew, Abc_ObjNotCond( pFaninNew1, Abc_ObjFaninC1(pObj) ) );
+ Seq_NodeDupLats( pObjNew, pObj, 0 );
+ Seq_NodeDupLats( pObjNew, pObj, 1 );
+ // set the lag of the new node equal to the internal lag plus mapping/retiming lag
+ Seq_NodeSetLag( pObjNew, (char)(Lag + LagCut) );
+// Seq_NodeSetLag( pObjNew, (char)(Lag) );
+ return pObjNew;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the BDD of the selected cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode * Seq_FpgaMappingBdd_rec( DdManager * dd, Abc_Ntk_t * pNtk, unsigned SeqEdge, Vec_Ptr_t * vLeaves )
+{
+ Abc_Obj_t * pObj, * pLeaf;
+ DdNode * bFunc0, * bFunc1, * bFunc;
+ unsigned SeqEdge0, SeqEdge1;
+ int Lag, i;
+ // get the object and the lag
+ pObj = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = SeqEdge & 255;
+ // if the node is the fanin of the cut, return
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ if ( SeqEdge == (unsigned)pLeaf )
+ return Cudd_bddIthVar( dd, i );
+ // continue unfolding
+ assert( Abc_AigNodeIsAnd(pObj) );
+ // get new sequential edges
+ assert( Lag + Seq_ObjFaninL0(pObj) < 255 );
+ assert( Lag + Seq_ObjFaninL1(pObj) < 255 );
+ SeqEdge0 = (Abc_ObjFanin0(pObj)->Id << 8) + Lag + Seq_ObjFaninL0(pObj);
+ SeqEdge1 = (Abc_ObjFanin1(pObj)->Id << 8) + Lag + Seq_ObjFaninL1(pObj);
+ // call for the children
+ bFunc0 = Seq_FpgaMappingBdd_rec( dd, pNtk, SeqEdge0, vLeaves ); Cudd_Ref( bFunc0 );
+ bFunc1 = Seq_FpgaMappingBdd_rec( dd, pNtk, SeqEdge1, vLeaves ); Cudd_Ref( bFunc1 );
+ bFunc0 = Cudd_NotCond( bFunc0, Abc_ObjFaninC0(pObj) );
+ bFunc1 = Cudd_NotCond( bFunc1, Abc_ObjFaninC1(pObj) );
+ // get the BDD of the node
+ bFunc = Cudd_bddAnd( dd, bFunc0, bFunc1 ); Cudd_Ref( bFunc );
+ Cudd_RecursiveDeref( dd, bFunc0 );
+ Cudd_RecursiveDeref( dd, bFunc1 );
+ // return the BDD
+ Cudd_Deref( bFunc );
+ return bFunc;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collects the edges pointing to the leaves of the cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_FpgaMappingEdges_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, Vec_Ptr_t * vLeaves, Vec_Vec_t * vMapEdges )
+{
+ Abc_Obj_t * pObj, * pLeaf;
+ unsigned SeqEdge0, SeqEdge1;
+ int Lag, i;
+ // get the object and the lag
+ pObj = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = SeqEdge & 255;
+ // if the node is the fanin of the cut, return
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ {
+ if ( SeqEdge == (unsigned)pLeaf )
+ {
+ assert( pPrev != NULL );
+ Vec_VecPush( vMapEdges, i, pPrev );
+ return;
+ }
+ }
+ // continue unfolding
+ assert( Abc_AigNodeIsAnd(pObj) );
+ // get new sequential edges
+ assert( Lag + Seq_ObjFaninL0(pObj) < 255 );
+ assert( Lag + Seq_ObjFaninL1(pObj) < 255 );
+ SeqEdge0 = (Abc_ObjFanin0(pObj)->Id << 8) + Lag + Seq_ObjFaninL0(pObj);
+ SeqEdge1 = (Abc_ObjFanin1(pObj)->Id << 8) + Lag + Seq_ObjFaninL1(pObj);
+ // call for the children
+ Seq_FpgaMappingEdges_rec( pNtk, SeqEdge0, pObj , vLeaves, vMapEdges );
+ Seq_FpgaMappingEdges_rec( pNtk, SeqEdge1, Abc_ObjNot(pObj), vLeaves, vMapEdges );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collects the edges pointing to the leaves of the cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_FpgaMappingConnect_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, int Edge, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves )
+{
+ Seq_Lat_t * pRing;
+ Abc_Obj_t * pObj, * pLeaf, * pFanin, * pFaninNew;
+ unsigned SeqEdge0, SeqEdge1;
+ int Lag, i, k;
+ // get the object and the lag
+ pObj = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = SeqEdge & 255;
+ // if the node is the fanin of the cut, add the connection and return
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ {
+ if ( SeqEdge == (unsigned)pLeaf )
+ {
+ assert( pPrev != NULL );
+ if ( pRing = Seq_NodeGetRing(pPrev,Edge) )
+ pFaninNew = pRing->pLatch;
+ else
+ pFaninNew = Abc_ObjFanin(pPrev,Edge)->pCopy;
+ // check if the root already has this fanin
+ Abc_ObjForEachFanin( pRoot, pFanin, k )
+ if ( pFanin == pFaninNew )
+ return;
+ Abc_ObjAddFanin( pRoot->pCopy, pFaninNew );
+ return;
+ }
+ }
+ // continue unfolding
+ assert( Abc_AigNodeIsAnd(pObj) );
+ // get new sequential edges
+ assert( Lag + Seq_ObjFaninL0(pObj) < 255 );
+ assert( Lag + Seq_ObjFaninL1(pObj) < 255 );
+ SeqEdge0 = (Abc_ObjFanin0(pObj)->Id << 8) + Lag + Seq_ObjFaninL0(pObj);
+ SeqEdge1 = (Abc_ObjFanin1(pObj)->Id << 8) + Lag + Seq_ObjFaninL1(pObj);
+ // call for the children
+ Seq_FpgaMappingConnect_rec( pNtk, SeqEdge0, pObj, 0, pRoot, vLeaves );
+ Seq_FpgaMappingConnect_rec( pNtk, SeqEdge1, pObj, 1, pRoot, vLeaves );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collects the edges pointing to the leaves of the cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode * Seq_FpgaMappingConnectBdd_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, int Edge, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves )
+{
+ Seq_Lat_t * pRing;
+ Abc_Obj_t * pObj, * pLeaf, * pFanin, * pFaninNew;
+ unsigned SeqEdge0, SeqEdge1;
+ DdManager * dd = pRoot->pCopy->pNtk->pManFunc;
+ DdNode * bFunc, * bFunc0, * bFunc1;
+ int Lag, i, k;
+ // get the object and the lag
+ pObj = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = SeqEdge & 255;
+ // if the node is the fanin of the cut, add the connection and return
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ {
+ if ( SeqEdge == (unsigned)pLeaf )
+ {
+ assert( pPrev != NULL );
+ if ( pRing = Seq_NodeGetRing(pPrev,Edge) )
+ pFaninNew = pRing->pLatch;
+ else
+ pFaninNew = Abc_ObjFanin(pPrev,Edge)->pCopy;
+ // check if the root already has this fanin
+ Abc_ObjForEachFanin( pRoot->pCopy, pFanin, k )
+ if ( pFanin == pFaninNew )
+ return Cudd_bddIthVar( dd, k );
+ Abc_ObjAddFanin( pRoot->pCopy, pFaninNew );
+ return Cudd_bddIthVar( dd, k );
+ }
+ }
+ // continue unfolding
+ assert( Abc_AigNodeIsAnd(pObj) );
+ // get new sequential edges
+ assert( Lag + Seq_ObjFaninL0(pObj) < 255 );
+ assert( Lag + Seq_ObjFaninL1(pObj) < 255 );
+ SeqEdge0 = (Abc_ObjFanin0(pObj)->Id << 8) + Lag + Seq_ObjFaninL0(pObj);
+ SeqEdge1 = (Abc_ObjFanin1(pObj)->Id << 8) + Lag + Seq_ObjFaninL1(pObj);
+ // call for the children
+ bFunc0 = Seq_FpgaMappingConnectBdd_rec( pNtk, SeqEdge0, pObj, 0, pRoot, vLeaves ); Cudd_Ref( bFunc0 );
+ bFunc1 = Seq_FpgaMappingConnectBdd_rec( pNtk, SeqEdge1, pObj, 1, pRoot, vLeaves ); Cudd_Ref( bFunc1 );
+ bFunc0 = Cudd_NotCond( bFunc0, Abc_ObjFaninC0(pObj) );
+ bFunc1 = Cudd_NotCond( bFunc1, Abc_ObjFaninC1(pObj) );
+ // get the BDD of the node
+ bFunc = Cudd_bddAnd( dd, bFunc0, bFunc1 ); Cudd_Ref( bFunc );
+ Cudd_RecursiveDeref( dd, bFunc0 );
+ Cudd_RecursiveDeref( dd, bFunc1 );
+ // return the BDD
+ Cudd_Deref( bFunc );
+ return bFunc;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/base/seq/seqFpgaIter.c b/src/base/seq/seqFpgaIter.c
new file mode 100644
index 00000000..a300b362
--- /dev/null
+++ b/src/base/seq/seqFpgaIter.c
@@ -0,0 +1,270 @@
+/**CFile****************************************************************
+
+ FileName [seqFpgaIter.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [Iterative delay computation in FPGA mapping/retiming package.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqFpgaIter.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+#include "main.h"
+#include "fpga.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+static void Seq_FpgaMappingCollectNode_rec( Abc_Obj_t * pAnd, Vec_Ptr_t * vMapping, Vec_Vec_t * vMapCuts );
+static Cut_Cut_t * Seq_FpgaMappingSelectCut( Abc_Obj_t * pAnd );
+
+extern Cut_Man_t * Abc_NtkSeqCuts( Abc_Ntk_t * pNtk, Cut_Params_t * pParams );
+extern Cut_Man_t * Abc_NtkCuts( Abc_Ntk_t * pNtk, Cut_Params_t * pParams );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Computes the retiming lags for FPGA mapping.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_FpgaMappingDelays( Abc_Ntk_t * pNtk, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Cut_Params_t Params, * pParams = &Params;
+ Abc_Obj_t * pObj;
+ int i, clk;
+
+ // set defaults for cut computation
+ memset( pParams, 0, sizeof(Cut_Params_t) );
+ pParams->nVarsMax = p->nVarsMax; // the max cut size ("k" of the k-feasible cuts)
+ pParams->nKeepMax = 1000; // the max number of cuts kept at a node
+ pParams->fTruth = 0; // compute truth tables
+ pParams->fFilter = 1; // filter dominated cuts
+ pParams->fSeq = 1; // compute sequential cuts
+ pParams->fVerbose = fVerbose; // the verbosiness flag
+
+ // compute the cuts
+clk = clock();
+ p->pCutMan = Abc_NtkSeqCuts( pNtk, pParams );
+// pParams->fSeq = 0;
+// p->pCutMan = Abc_NtkCuts( pNtk, pParams );
+p->timeCuts = clock() - clk;
+
+ if ( fVerbose )
+ Cut_ManPrintStats( p->pCutMan );
+
+ // compute area flows
+// Seq_MapComputeAreaFlows( pNtk, fVerbose );
+
+ // compute the delays
+clk = clock();
+ if ( !Seq_AigRetimeDelayLags( pNtk, fVerbose ) )
+ return 0;
+ p->timeDelay = clock() - clk;
+
+ // collect the nodes and cuts used in the mapping
+ p->vMapAnds = Vec_PtrAlloc( 1000 );
+ p->vMapCuts = Vec_VecAlloc( 1000 );
+ Abc_NtkIncrementTravId( pNtk );
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Seq_FpgaMappingCollectNode_rec( Abc_ObjFanin0(pObj), p->vMapAnds, p->vMapCuts );
+
+ if ( fVerbose )
+ printf( "The number of LUTs = %d.\n", Vec_PtrSize(p->vMapAnds) );
+
+ // remove the cuts
+ Cut_ManStop( p->pCutMan );
+ p->pCutMan = NULL;
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the parameters of the best mapping/retiming for one node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_FpgaMappingCollectNode_rec( Abc_Obj_t * pAnd, Vec_Ptr_t * vMapping, Vec_Vec_t * vMapCuts )
+{
+ Abc_Obj_t * pFanin;
+ Cut_Cut_t * pCutBest;
+ int k;
+
+ // skip if this is a non-PI node
+ if ( !Abc_AigNodeIsAnd(pAnd) )
+ return;
+ // skip a visited node
+ if ( Abc_NodeIsTravIdCurrent(pAnd) )
+ return;
+ Abc_NodeSetTravIdCurrent(pAnd);
+
+ // visit the fanins of the node
+ pCutBest = Seq_FpgaMappingSelectCut( pAnd );
+ for ( k = 0; k < (int)pCutBest->nLeaves; k++ )
+ {
+ pFanin = Abc_NtkObj( pAnd->pNtk, pCutBest->pLeaves[k] >> 8 );
+ Seq_FpgaMappingCollectNode_rec( pFanin, vMapping, vMapCuts );
+ }
+
+ // add this node
+ Vec_PtrPush( vMapping, pAnd );
+ for ( k = 0; k < (int)pCutBest->nLeaves; k++ )
+ Vec_VecPush( vMapCuts, Vec_PtrSize(vMapping)-1, (void *)pCutBest->pLeaves[k] );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Selects the best cut to represent the node in the mapping.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Cut_Cut_t * Seq_FpgaMappingSelectCut( Abc_Obj_t * pAnd )
+{
+ Abc_Obj_t * pFanin;
+ Cut_Cut_t * pCut, * pCutBest, * pList;
+ float CostCur, CostMin = ABC_INFINITY;
+ int ArrivalCut, ArrivalMin, i;
+ // get the arrival time of the best non-trivial cut
+ ArrivalMin = Seq_NodeGetLValue( pAnd );
+ // iterate through the cuts and select the one with the minimum cost
+ pList = Abc_NodeReadCuts( Seq_NodeCutMan(pAnd), pAnd );
+ CostMin = ABC_INFINITY;
+ pCutBest = NULL;
+ for ( pCut = pList->pNext; pCut; pCut = pCut->pNext )
+ {
+ ArrivalCut = *((int *)&pCut->uSign);
+// assert( ArrivalCut >= ArrivalMin );
+ if ( ArrivalCut > ArrivalMin )
+ continue;
+ CostCur = 0.0;
+ for ( i = 0; i < (int)pCut->nLeaves; i++ )
+ {
+ pFanin = Abc_NtkObj( pAnd->pNtk, pCut->pLeaves[i] >> 8 );
+ if ( Abc_ObjIsPi(pFanin) )
+ continue;
+ if ( Abc_NodeIsTravIdCurrent(pFanin) )
+ continue;
+ CostCur += (float)(1.0 / Abc_ObjFanoutNum(pFanin));
+// CostCur += Seq_NodeGetFlow( pFanin );
+ }
+ if ( CostMin > CostCur )
+ {
+ CostMin = CostCur;
+ pCutBest = pCut;
+ }
+ }
+ assert( pCutBest != NULL );
+ return pCutBest;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Computes the l-value of the cut.]
+
+ Description [The node should be internal.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+static inline int Seq_FpgaCutUpdateLValue( Cut_Cut_t * pCut, Abc_Obj_t * pObj, int Fi )
+{
+ Abc_Obj_t * pFanin;
+ int i, lValueMax, lValueCur;
+ assert( Abc_AigNodeIsAnd(pObj) );
+ lValueMax = -ABC_INFINITY;
+ for ( i = 0; i < (int)pCut->nLeaves; i++ )
+ {
+// lValue0 = Seq_NodeGetLValue(Abc_ObjFanin0(pObj)) - Fi * Abc_ObjFaninL0(pObj);
+ pFanin = Abc_NtkObj(pObj->pNtk, pCut->pLeaves[i] >> 8);
+ lValueCur = Seq_NodeGetLValue(pFanin) - Fi * (pCut->pLeaves[i] & 255);
+ if ( lValueMax < lValueCur )
+ lValueMax = lValueCur;
+ }
+ lValueMax += 1;
+ *((int *)&pCut->uSign) = lValueMax;
+ return lValueMax;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the l-value of the node.]
+
+ Description [The node can be internal or a PO.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_FpgaNodeUpdateLValue( Abc_Obj_t * pObj, int Fi )
+{
+ Cut_Cut_t * pCut, * pList;
+ int lValueNew, lValueOld, lValueCut;
+ assert( !Abc_ObjIsPi(pObj) );
+ assert( Abc_ObjFaninNum(pObj) > 0 );
+ if ( Abc_ObjIsPo(pObj) )
+ {
+ lValueNew = Seq_NodeGetLValue(Abc_ObjFanin0(pObj)) - Fi * Seq_ObjFaninL0(pObj);
+ return (lValueNew > Fi)? SEQ_UPDATE_FAIL : SEQ_UPDATE_NO;
+ }
+ // get the arrival time of the best non-trivial cut
+ pList = Abc_NodeReadCuts( Seq_NodeCutMan(pObj), pObj );
+ // skip the choice nodes
+ if ( pList == NULL )
+ return SEQ_UPDATE_NO;
+ lValueNew = ABC_INFINITY;
+ for ( pCut = pList->pNext; pCut; pCut = pCut->pNext )
+ {
+ lValueCut = Seq_FpgaCutUpdateLValue( pCut, pObj, Fi );
+ if ( lValueNew > lValueCut )
+ lValueNew = lValueCut;
+ }
+ // compare the arrival time with the previous arrival time
+ lValueOld = Seq_NodeGetLValue(pObj);
+// if ( lValueNew == lValueOld )
+ if ( lValueNew <= lValueOld )
+ return SEQ_UPDATE_NO;
+ Seq_NodeSetLValue( pObj, lValueNew );
+//printf( "%d -> %d ", lValueOld, lValueNew );
+ return SEQ_UPDATE_YES;
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/base/seq/seqInt.h b/src/base/seq/seqInt.h
new file mode 100644
index 00000000..221efc91
--- /dev/null
+++ b/src/base/seq/seqInt.h
@@ -0,0 +1,256 @@
+/**CFile****************************************************************
+
+ FileName [seqInt.h]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [Internal declarations.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqInt.h,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#ifndef __SEQ_INT_H__
+#define __SEQ_INT_H__
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+////////////////////////////////////////////////////////////////////////
+/// INCLUDES ///
+////////////////////////////////////////////////////////////////////////
+
+#include "abc.h"
+#include "cut.h"
+#include "main.h"
+#include "mio.h"
+#include "mapper.h"
+#include "fpga.h"
+#include "seq.h"
+
+////////////////////////////////////////////////////////////////////////
+/// PARAMETERS ///
+////////////////////////////////////////////////////////////////////////
+
+#define SEQ_FULL_MASK 0xFFFFFFFF
+
+// node status after updating its arrival time
+enum { SEQ_UPDATE_FAIL, SEQ_UPDATE_NO, SEQ_UPDATE_YES };
+
+////////////////////////////////////////////////////////////////////////
+/// BASIC TYPES ///
+////////////////////////////////////////////////////////////////////////
+
+// manager of sequential AIG
+struct Abc_Seq_t_
+{
+ // sequential information
+ Abc_Ntk_t * pNtk; // the network
+ int nSize; // the number of entries in all internal arrays
+ Vec_Int_t * vNums; // the number of latches on each edge in the AIG
+ Vec_Ptr_t * vInits; // the initial states for each edge in the AIG
+ Extra_MmFixed_t * pMmInits; // memory manager for latch structures used to remember init states
+ int fVerbose; // the verbose flag
+ float fEpsilon; // the accuracy for delay computation
+ int fStandCells; // the flag denoting standard cell mapping
+ int nMaxIters; // the max number of iterations
+ int FiBestInt; // the best clock period
+ float FiBestFloat; // the best clock period
+ // K-feasible cuts
+ int nVarsMax; // the max cut size
+ Cut_Man_t * pCutMan; // cut manager
+ Map_SuperLib_t * pSuperLib; // the current supergate library
+ // sequential arrival time computation
+ Vec_Int_t * vAFlows; // the area flow of each cut
+ Vec_Int_t * vLValues; // the arrival times (L-Values of nodes)
+ Vec_Int_t * vLValuesN; // the arrival times (L-Values of nodes)
+ Vec_Str_t * vLags; // the lags of the mapped nodes
+ Vec_Str_t * vLagsN; // the lags of the mapped nodes
+ Vec_Str_t * vUses; // the phase usage
+ // representation of the mapping
+ Vec_Ptr_t * vMapAnds; // nodes visible in the mapping
+ Vec_Vec_t * vMapCuts; // best cuts for each node
+ Vec_Vec_t * vMapDelays; // the delay of each fanin
+ Vec_Vec_t * vMapFanins; // the delay of each fanin
+ // runtime stats
+ int timeCuts; // runtime to compute the cuts
+ int timeDelay; // runtime to compute the L-values
+ int timeRet; // runtime to retime the resulting network
+ int timeNtk; // runtime to create the final network
+
+};
+
+// data structure to store initial state
+typedef struct Seq_Lat_t_ Seq_Lat_t;
+struct Seq_Lat_t_
+{
+ Seq_Lat_t * pNext; // the next Lat in the ring
+ Seq_Lat_t * pPrev; // the prev Lat in the ring
+ Abc_Obj_t * pLatch; // the real latch corresponding to Lat
+};
+
+// representation of latch on the edge
+typedef struct Seq_RetEdge_t_ Seq_RetEdge_t;
+struct Seq_RetEdge_t_ // 1 word
+{
+ unsigned iNode : 24; // the ID of the node
+ unsigned iEdge : 1; // the edge of the node
+ unsigned iLatch : 7; // the latch number counting from the node
+};
+
+// representation of one retiming step
+typedef struct Seq_RetStep_t_ Seq_RetStep_t;
+struct Seq_RetStep_t_ // 1 word
+{
+ unsigned iNode : 24; // the ID of the node
+ unsigned nLatches : 8; // the number of latches to retime
+};
+
+// representation of one mapping match
+typedef struct Seq_Match_t_ Seq_Match_t;
+struct Seq_Match_t_ // 3 words
+{
+ Abc_Obj_t * pAnd; // the AND gate used in the mapping
+ Cut_Cut_t * pCut; // the cut used to map it
+ Map_Super_t * pSuper; // the supergate used to implement the cut
+ unsigned fCompl : 1; // the polarity of the AND gate
+ unsigned fCutInv : 1; // the polarity of the cut
+ unsigned PolUse : 2; // the polarity use of this node
+ unsigned uPhase : 14; // the phase assignment at the boundary
+ unsigned uPhaseR : 14; // the real phase assignment at the boundary
+};
+
+////////////////////////////////////////////////////////////////////////
+/// MACRO DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+// transforming retedges into ints and back
+static inline int Seq_RetEdge2Int( Seq_RetEdge_t Val ) { return *((int *)&Val); }
+static inline Seq_RetEdge_t Seq_Int2RetEdge( int Num ) { return *((Seq_RetEdge_t *)&Num); }
+// transforming retsteps into ints and back
+static inline int Seq_RetStep2Int( Seq_RetStep_t Val ) { return *((int *)&Val); }
+static inline Seq_RetStep_t Seq_Int2RetStep( int Num ) { return *((Seq_RetStep_t *)&Num); }
+
+// manipulating the number of latches on each edge
+static inline Vec_Int_t * Seq_ObjLNums( Abc_Obj_t * pObj ) { return ((Abc_Seq_t*)pObj->pNtk->pManFunc)->vNums; }
+static inline int Seq_ObjFaninL( Abc_Obj_t * pObj, int i ) { return Vec_IntEntry(Seq_ObjLNums(pObj), 2*pObj->Id + i); }
+static inline int Seq_ObjFaninL0( Abc_Obj_t * pObj ) { return Vec_IntEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 0); }
+static inline int Seq_ObjFaninL1( Abc_Obj_t * pObj ) { return Vec_IntEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 1); }
+static inline void Seq_ObjSetFaninL( Abc_Obj_t * pObj, int i, int nLats ) { Vec_IntWriteEntry(Seq_ObjLNums(pObj), 2*pObj->Id + i, nLats); }
+static inline void Seq_ObjSetFaninL0( Abc_Obj_t * pObj, int nLats ) { Vec_IntWriteEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 0, nLats); }
+static inline void Seq_ObjSetFaninL1( Abc_Obj_t * pObj, int nLats ) { Vec_IntWriteEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 1, nLats); }
+static inline void Seq_ObjAddFaninL( Abc_Obj_t * pObj, int i, int nLats ) { Vec_IntAddToEntry(Seq_ObjLNums(pObj), 2*pObj->Id + i, nLats); }
+static inline void Seq_ObjAddFaninL0( Abc_Obj_t * pObj, int nLats ) { Vec_IntAddToEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 0, nLats); }
+static inline void Seq_ObjAddFaninL1( Abc_Obj_t * pObj, int nLats ) { Vec_IntAddToEntry(Seq_ObjLNums(pObj), 2*pObj->Id + 1, nLats); }
+static inline int Seq_ObjFanoutL( Abc_Obj_t * pObj, Abc_Obj_t * pFanout ) { return Seq_ObjFaninL( pFanout, Abc_ObjFanoutEdgeNum(pObj,pFanout) ); }
+static inline void Seq_ObjSetFanoutL( Abc_Obj_t * pObj, Abc_Obj_t * pFanout, int nLats ) { Seq_ObjSetFaninL( pFanout, Abc_ObjFanoutEdgeNum(pObj,pFanout), nLats ); }
+static inline void Seq_ObjAddFanoutL( Abc_Obj_t * pObj, Abc_Obj_t * pFanout, int nLats ) { Seq_ObjAddFaninL( pFanout, Abc_ObjFanoutEdgeNum(pObj,pFanout), nLats ); }
+static inline int Seq_ObjFaninLMin( Abc_Obj_t * pObj ) { assert( Abc_ObjIsNode(pObj) ); return ABC_MIN( Seq_ObjFaninL0(pObj), Seq_ObjFaninL1(pObj) ); }
+static inline int Seq_ObjFaninLMax( Abc_Obj_t * pObj ) { assert( Abc_ObjIsNode(pObj) ); return ABC_MAX( Seq_ObjFaninL0(pObj), Seq_ObjFaninL1(pObj) ); }
+
+// reading l-values and lags
+static inline Vec_Int_t * Seq_NodeLValues( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vLValues; }
+static inline Vec_Int_t * Seq_NodeLValuesN( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vLValuesN; }
+static inline int Seq_NodeGetLValue( Abc_Obj_t * pNode ) { return Vec_IntEntry( Seq_NodeLValues(pNode), (pNode)->Id ); }
+static inline void Seq_NodeSetLValue( Abc_Obj_t * pNode, int Value ) { Vec_IntWriteEntry( Seq_NodeLValues(pNode), (pNode)->Id, Value ); }
+static inline float Seq_NodeGetLValueP( Abc_Obj_t * pNode ) { return Abc_Int2Float( Vec_IntEntry( Seq_NodeLValues(pNode), (pNode)->Id ) ); }
+static inline float Seq_NodeGetLValueN( Abc_Obj_t * pNode ) { return Abc_Int2Float( Vec_IntEntry( Seq_NodeLValuesN(pNode), (pNode)->Id ) ); }
+static inline void Seq_NodeSetLValueP( Abc_Obj_t * pNode, float Value ) { Vec_IntWriteEntry( Seq_NodeLValues(pNode), (pNode)->Id, Abc_Float2Int(Value) ); }
+static inline void Seq_NodeSetLValueN( Abc_Obj_t * pNode, float Value ) { Vec_IntWriteEntry( Seq_NodeLValuesN(pNode), (pNode)->Id, Abc_Float2Int(Value) ); }
+
+// reading area flows
+static inline Vec_Int_t * Seq_NodeFlow( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vAFlows; }
+static inline float Seq_NodeGetFlow( Abc_Obj_t * pNode ) { return Abc_Int2Float( Vec_IntEntry( Seq_NodeFlow(pNode), (pNode)->Id ) ); }
+static inline void Seq_NodeSetFlow( Abc_Obj_t * pNode, float Value ) { Vec_IntWriteEntry( Seq_NodeFlow(pNode), (pNode)->Id, Abc_Float2Int(Value) ); }
+
+// reading the contents of the lat
+static inline Abc_InitType_t Seq_LatInit( Seq_Lat_t * pLat ) { return ((unsigned)pLat->pPrev) & 3; }
+static inline Seq_Lat_t * Seq_LatNext( Seq_Lat_t * pLat ) { return pLat->pNext; }
+static inline Seq_Lat_t * Seq_LatPrev( Seq_Lat_t * pLat ) { return (void *)(((unsigned)pLat->pPrev) & (SEQ_FULL_MASK << 2)); }
+
+// setting the contents of the lat
+static inline void Seq_LatSetInit( Seq_Lat_t * pLat, Abc_InitType_t Init ) { pLat->pPrev = (void *)( (3 & Init) | (((unsigned)pLat->pPrev) & (SEQ_FULL_MASK << 2)) ); }
+static inline void Seq_LatSetNext( Seq_Lat_t * pLat, Seq_Lat_t * pNext ) { pLat->pNext = pNext; }
+static inline void Seq_LatSetPrev( Seq_Lat_t * pLat, Seq_Lat_t * pPrev ) { Abc_InitType_t Init = Seq_LatInit(pLat); pLat->pPrev = pPrev; Seq_LatSetInit(pLat, Init); }
+
+// accessing retiming lags
+static inline Cut_Man_t * Seq_NodeCutMan( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->pCutMan; }
+static inline Vec_Str_t * Seq_NodeLags( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vLags; }
+static inline Vec_Str_t * Seq_NodeLagsN( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vLagsN; }
+static inline char Seq_NodeGetLag( Abc_Obj_t * pNode ) { return Vec_StrEntry( Seq_NodeLags(pNode), (pNode)->Id ); }
+static inline char Seq_NodeGetLagN( Abc_Obj_t * pNode ) { return Vec_StrEntry( Seq_NodeLagsN(pNode), (pNode)->Id ); }
+static inline void Seq_NodeSetLag( Abc_Obj_t * pNode, char Value ) { Vec_StrWriteEntry( Seq_NodeLags(pNode), (pNode)->Id, (Value) ); }
+static inline void Seq_NodeSetLagN( Abc_Obj_t * pNode, char Value ) { Vec_StrWriteEntry( Seq_NodeLagsN(pNode), (pNode)->Id, (Value) ); }
+static inline int Seq_NodeComputeLag( int LValue, int Fi ) { return (LValue + 1024*Fi)/Fi - 1024 - (int)(LValue % Fi == 0); }
+static inline int Seq_NodeComputeLagFloat( float LValue, float Fi ) { return ((int)ceil(LValue/Fi)) - 1; }
+
+// phase usage
+static inline Vec_Str_t * Seq_NodeUses( Abc_Obj_t * pNode ) { return ((Abc_Seq_t *)(pNode)->pNtk->pManFunc)->vUses; }
+static inline char Seq_NodeGetUses( Abc_Obj_t * pNode ) { return Vec_StrEntry( Seq_NodeUses(pNode), (pNode)->Id ); }
+static inline void Seq_NodeSetUses( Abc_Obj_t * pNode, char Value ) { Vec_StrWriteEntry( Seq_NodeUses(pNode), (pNode)->Id, (Value) ); }
+
+// accessing initial states
+static inline Vec_Ptr_t * Seq_NodeLats( Abc_Obj_t * pObj ) { return ((Abc_Seq_t*)pObj->pNtk->pManFunc)->vInits; }
+static inline Seq_Lat_t * Seq_NodeGetRing( Abc_Obj_t * pObj, int Edge ) { return Vec_PtrEntry( Seq_NodeLats(pObj), (pObj->Id<<1)+Edge ); }
+static inline void Seq_NodeSetRing( Abc_Obj_t * pObj, int Edge, Seq_Lat_t * pLat ) { Vec_PtrWriteEntry( Seq_NodeLats(pObj), (pObj->Id<<1)+Edge, pLat ); }
+static inline Seq_Lat_t * Seq_NodeCreateLat( Abc_Obj_t * pObj ) { Seq_Lat_t * p = (Seq_Lat_t *)Extra_MmFixedEntryFetch( ((Abc_Seq_t*)pObj->pNtk->pManFunc)->pMmInits ); p->pNext = p->pPrev = NULL; p->pLatch = NULL; return p; }
+static inline void Seq_NodeRecycleLat( Abc_Obj_t * pObj, Seq_Lat_t * pLat ) { Extra_MmFixedEntryRecycle( ((Abc_Seq_t*)pObj->pNtk->pManFunc)->pMmInits, (char *)pLat ); }
+
+// getting hold of the structure storing initial states of the latches
+static inline Seq_Lat_t * Seq_NodeGetLatFirst( Abc_Obj_t * pObj, int Edge ) { return Seq_NodeGetRing(pObj, Edge); }
+static inline Seq_Lat_t * Seq_NodeGetLatLast( Abc_Obj_t * pObj, int Edge ) { return Seq_LatPrev( Seq_NodeGetRing(pObj, Edge) ); }
+static inline Seq_Lat_t * Seq_NodeGetLat( Abc_Obj_t * pObj, int Edge, int iLat ) { int c; Seq_Lat_t * pLat = Seq_NodeGetRing(pObj, Edge); for ( c = 0; c != iLat; c++ ) pLat = pLat->pNext; return pLat; }
+static inline int Seq_NodeCountLats( Abc_Obj_t * pObj, int Edge ) { int c; Seq_Lat_t * pLat, * pRing = Seq_NodeGetRing(pObj, Edge); if ( pRing == NULL ) return 0; for ( c = 0, pLat = pRing; !c || pLat != pRing; c++ ) pLat = pLat->pNext; return c; }
+static inline void Seq_NodeCleanLats( Abc_Obj_t * pObj, int Edge ) { int c; Seq_Lat_t * pLat, * pRing = Seq_NodeGetRing(pObj, Edge); if ( pRing == NULL ) return ; for ( c = 0, pLat = pRing; !c || pLat != pRing; c++ ) pLat->pLatch = NULL, pLat = pLat->pNext; return; }
+
+// getting/setting initial states of the latches
+static inline Abc_InitType_t Seq_NodeGetInitOne( Abc_Obj_t * pObj, int Edge, int iLat ) { return Seq_LatInit( Seq_NodeGetLat(pObj, Edge, iLat) ); }
+static inline Abc_InitType_t Seq_NodeGetInitFirst( Abc_Obj_t * pObj, int Edge ) { return Seq_LatInit( Seq_NodeGetLatFirst(pObj, Edge) ); }
+static inline Abc_InitType_t Seq_NodeGetInitLast( Abc_Obj_t * pObj, int Edge ) { return Seq_LatInit( Seq_NodeGetLatLast(pObj, Edge) ); }
+static inline void Seq_NodeSetInitOne( Abc_Obj_t * pObj, int Edge, int iLat, Abc_InitType_t Init ) { Seq_LatSetInit( Seq_NodeGetLat(pObj, Edge, iLat), Init ); }
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/*=== seqAigIter.c =============================================================*/
+extern int Seq_AigRetimeDelayLags( Abc_Ntk_t * pNtk, int fVerbose );
+extern int Seq_NtkImplementRetiming( Abc_Ntk_t * pNtk, Vec_Str_t * vLags, int fVerbose );
+/*=== seqFpgaIter.c ============================================================*/
+extern int Seq_FpgaMappingDelays( Abc_Ntk_t * pNtk, int fVerbose );
+extern int Seq_FpgaNodeUpdateLValue( Abc_Obj_t * pObj, int Fi );
+/*=== seqMapIter.c ============================================================*/
+extern int Seq_MapRetimeDelayLags( Abc_Ntk_t * pNtk, int fVerbose );
+/*=== seqRetIter.c =============================================================*/
+extern int Seq_NtkRetimeDelayLags( Abc_Ntk_t * pNtkOld, Abc_Ntk_t * pNtk, int fVerbose );
+/*=== seqLatch.c ===============================================================*/
+extern void Seq_NodeInsertFirst( Abc_Obj_t * pObj, int Edge, Abc_InitType_t Init );
+extern void Seq_NodeInsertLast( Abc_Obj_t * pObj, int Edge, Abc_InitType_t Init );
+extern Abc_InitType_t Seq_NodeDeleteFirst( Abc_Obj_t * pObj, int Edge );
+extern Abc_InitType_t Seq_NodeDeleteLast( Abc_Obj_t * pObj, int Edge );
+/*=== seqUtil.c ================================================================*/
+extern int Seq_NtkLevelMax( Abc_Ntk_t * pNtk );
+extern int Seq_ObjFanoutLMax( Abc_Obj_t * pObj );
+extern int Seq_ObjFanoutLMin( Abc_Obj_t * pObj );
+extern int Seq_ObjFanoutLSum( Abc_Obj_t * pObj );
+extern int Seq_ObjFaninLSum( Abc_Obj_t * pObj );
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
diff --git a/src/base/seq/seqLatch.c b/src/base/seq/seqLatch.c
new file mode 100644
index 00000000..cb3e1e36
--- /dev/null
+++ b/src/base/seq/seqLatch.c
@@ -0,0 +1,223 @@
+/**CFile****************************************************************
+
+ FileName [seqLatch.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [Manipulation of latch data structures representing initial states.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqLatch.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Insert the first Lat on the edge.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NodeInsertFirst( Abc_Obj_t * pObj, int Edge, Abc_InitType_t Init )
+{
+ Seq_Lat_t * pLat, * pRing, * pPrev;
+ pRing = Seq_NodeGetRing( pObj, Edge );
+ pLat = Seq_NodeCreateLat( pObj );
+ if ( pRing == NULL )
+ {
+ Seq_LatSetPrev( pLat, pLat );
+ Seq_LatSetNext( pLat, pLat );
+ Seq_NodeSetRing( pObj, Edge, pLat );
+ }
+ else
+ {
+ pPrev = Seq_LatPrev( pRing );
+ Seq_LatSetPrev( pLat, pPrev );
+ Seq_LatSetNext( pPrev, pLat );
+ Seq_LatSetPrev( pRing, pLat );
+ Seq_LatSetNext( pLat, pRing );
+ Seq_NodeSetRing( pObj, Edge, pLat ); // rotate the ring to make pLat the first
+ }
+ Seq_LatSetInit( pLat, Init );
+ Seq_ObjAddFaninL( pObj, Edge, 1 );
+ assert( pLat->pLatch == NULL );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Insert the last Lat on the edge.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NodeInsertLast( Abc_Obj_t * pObj, int Edge, Abc_InitType_t Init )
+{
+ Seq_Lat_t * pLat, * pRing, * pPrev;
+ pRing = Seq_NodeGetRing( pObj, Edge );
+ pLat = Seq_NodeCreateLat( pObj );
+ if ( pRing == NULL )
+ {
+ Seq_LatSetPrev( pLat, pLat );
+ Seq_LatSetNext( pLat, pLat );
+ Seq_NodeSetRing( pObj, Edge, pLat );
+ }
+ else
+ {
+ pPrev = Seq_LatPrev( pRing );
+ Seq_LatSetPrev( pLat, pPrev );
+ Seq_LatSetNext( pPrev, pLat );
+ Seq_LatSetPrev( pRing, pLat );
+ Seq_LatSetNext( pLat, pRing );
+ }
+ Seq_LatSetInit( pLat, Init );
+ Seq_ObjAddFaninL( pObj, Edge, 1 );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Delete the first Lat on the edge.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_InitType_t Seq_NodeDeleteFirst( Abc_Obj_t * pObj, int Edge )
+{
+ Abc_InitType_t Init;
+ Seq_Lat_t * pLat, * pRing, * pPrev, * pNext;
+ pRing = Seq_NodeGetRing( pObj, Edge );
+ pLat = pRing; // consider the first latch
+ if ( pLat->pNext == pLat )
+ Seq_NodeSetRing( pObj, Edge, NULL );
+ else
+ {
+ pPrev = Seq_LatPrev( pLat );
+ pNext = Seq_LatNext( pLat );
+ Seq_LatSetPrev( pNext, pPrev );
+ Seq_LatSetNext( pPrev, pNext );
+ Seq_NodeSetRing( pObj, Edge, pNext ); // rotate the ring
+ }
+ Init = Seq_LatInit( pLat );
+ Seq_NodeRecycleLat( pObj, pLat );
+ Seq_ObjAddFaninL( pObj, Edge, -1 );
+ return Init;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Delete the last Lat on the edge.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_InitType_t Seq_NodeDeleteLast( Abc_Obj_t * pObj, int Edge )
+{
+ Abc_InitType_t Init;
+ Seq_Lat_t * pLat, * pRing, * pPrev, * pNext;
+ pRing = Seq_NodeGetRing( pObj, Edge );
+ pLat = Seq_LatPrev( pRing ); // consider the last latch
+ if ( pLat->pNext == pLat )
+ Seq_NodeSetRing( pObj, Edge, NULL );
+ else
+ {
+ pPrev = Seq_LatPrev( pLat );
+ pNext = Seq_LatNext( pLat );
+ Seq_LatSetPrev( pNext, pPrev );
+ Seq_LatSetNext( pPrev, pNext );
+ }
+ Init = Seq_LatInit( pLat );
+ Seq_NodeRecycleLat( pObj, pLat );
+ Seq_ObjAddFaninL( pObj, Edge, -1 );
+ return Init;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Insert the last Lat on the edge.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NodeDupLats( Abc_Obj_t * pObjNew, Abc_Obj_t * pObj, int Edge )
+{
+ Seq_Lat_t * pRing, * pLat;
+ int i, nLatches;
+ pRing = Seq_NodeGetRing( pObj, Edge );
+ if ( pRing == NULL )
+ return;
+ nLatches = Seq_NodeCountLats( pObj, Edge );
+ for ( i = 0, pLat = pRing; i < nLatches; i++, pLat = pLat->pNext )
+ Seq_NodeInsertLast( pObjNew, Edge, Seq_LatInit(pLat) );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Insert the last Lat on the edge.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NodeCompareLats( Abc_Obj_t * pObj1, int Edge1, Abc_Obj_t * pObj2, int Edge2 )
+{
+ Seq_Lat_t * pRing1, * pRing2, * pLat1, * pLat2;
+ int i, nLatches1, nLatches2;
+
+ nLatches1 = Seq_NodeCountLats( pObj1, Edge1 );
+ nLatches2 = Seq_NodeCountLats( pObj2, Edge2 );
+ if ( nLatches1 != nLatches2 )
+ return 0;
+
+ pRing1 = Seq_NodeGetRing( pObj1, Edge1 );
+ pRing2 = Seq_NodeGetRing( pObj2, Edge2 );
+ for ( i = 0, pLat1 = pRing1, pLat2 = pRing2; i < nLatches1; i++, pLat1 = pLat1->pNext, pLat2 = pLat2->pNext )
+ if ( Seq_LatInit(pLat1) != Seq_LatInit(pLat2) )
+ return 0;
+
+ return 1;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/base/seq/seqMan.c b/src/base/seq/seqMan.c
new file mode 100644
index 00000000..bdfb2630
--- /dev/null
+++ b/src/base/seq/seqMan.c
@@ -0,0 +1,133 @@
+/**CFile****************************************************************
+
+ FileName [seqMan.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [Manager of sequential AIG containing.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqMan.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Allocates sequential AIG manager.]
+
+ Description [The manager contains all the data structures needed to
+ represent sequential AIG and compute stand-alone retiming as well as
+ the integrated mapping/retiming of the sequential AIG.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Seq_t * Seq_Create( Abc_Ntk_t * pNtk )
+{
+ Abc_Seq_t * p;
+ // start the manager
+ p = ALLOC( Abc_Seq_t, 1 );
+ memset( p, 0, sizeof(Abc_Seq_t) );
+ p->pNtk = pNtk;
+ p->nSize = 1000;
+ p->nMaxIters = 15;
+ p->pMmInits = Extra_MmFixedStart( sizeof(Seq_Lat_t) );
+ p->fEpsilon = (float)0.001;
+ // create internal data structures
+ p->vNums = Vec_IntStart( 2 * p->nSize );
+ p->vInits = Vec_PtrStart( 2 * p->nSize );
+ p->vLValues = Vec_IntStart( p->nSize );
+ p->vLags = Vec_StrStart( p->nSize );
+ p->vLValuesN = Vec_IntStart( p->nSize );
+ p->vAFlows = Vec_IntStart( p->nSize );
+ p->vLagsN = Vec_StrStart( p->nSize );
+ p->vUses = Vec_StrStart( p->nSize );
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Deallocates sequential AIG manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_Resize( Abc_Seq_t * p, int nMaxId )
+{
+ if ( p->nSize > nMaxId )
+ return;
+ p->nSize = nMaxId + 1;
+ Vec_IntFill( p->vNums, 2 * p->nSize, 0 );
+ Vec_PtrFill( p->vInits, 2 * p->nSize, NULL );
+ Vec_IntFill( p->vLValues, p->nSize, 0 );
+ Vec_StrFill( p->vLags, p->nSize, 0 );
+ Vec_IntFill( p->vLValuesN, p->nSize, 0 );
+ Vec_IntFill( p->vAFlows, p->nSize, 0 );
+ Vec_StrFill( p->vLagsN, p->nSize, 0 );
+ Vec_StrFill( p->vUses, p->nSize, 0 );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Deallocates sequential AIG manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_Delete( Abc_Seq_t * p )
+{
+ if ( p->fStandCells && p->vMapAnds )
+ {
+ void * pVoid; int i;
+ Vec_PtrForEachEntry( p->vMapAnds, pVoid, i )
+ free( pVoid );
+ }
+ if ( p->vMapDelays ) Vec_VecFree( p->vMapDelays ); // the nodes used in the mapping
+ if ( p->vMapFanins ) Vec_VecFree( p->vMapFanins ); // the cuts used in the mapping
+ if ( p->vMapAnds ) Vec_PtrFree( p->vMapAnds ); // the nodes used in the mapping
+ if ( p->vMapCuts ) Vec_VecFree( p->vMapCuts ); // the cuts used in the mapping
+ if ( p->vLValues ) Vec_IntFree( p->vLValues ); // the arrival times (L-Values of nodes)
+ if ( p->vLags ) Vec_StrFree( p->vLags ); // the lags of the mapped nodes
+ if ( p->vLValuesN ) Vec_IntFree( p->vLValuesN ); // the arrival times (L-Values of nodes)
+ if ( p->vAFlows ) Vec_IntFree( p->vAFlows ); // the arrival times (L-Values of nodes)
+ if ( p->vLagsN ) Vec_StrFree( p->vLagsN ); // the lags of the mapped nodes
+ if ( p->vUses ) Vec_StrFree( p->vUses ); // the uses of phases
+ if ( p->vInits ) Vec_PtrFree( p->vInits ); // the initial values of the latches
+ if ( p->vNums ) Vec_IntFree( p->vNums ); // the numbers of latches
+ Extra_MmFixedStop( p->pMmInits );
+ free( p );
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/base/seq/seqMapCore.c b/src/base/seq/seqMapCore.c
new file mode 100644
index 00000000..c465f31f
--- /dev/null
+++ b/src/base/seq/seqMapCore.c
@@ -0,0 +1,652 @@
+/**CFile****************************************************************
+
+ FileName [seqMapCore.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [The core of SC mapping/retiming package.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqMapCore.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+#include "main.h"
+#include "mio.h"
+#include "mapper.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+extern Abc_Ntk_t * Seq_NtkMapDup( Abc_Ntk_t * pNtk );
+extern int Seq_NtkMapInitCompatible( Abc_Ntk_t * pNtk, int fVerbose );
+extern Abc_Ntk_t * Seq_NtkSeqMapMapped( Abc_Ntk_t * pNtk );
+
+static int Seq_MapMappingCount( Abc_Ntk_t * pNtk );
+static int Seq_MapMappingCount_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Vec_Ptr_t * vLeaves );
+static Abc_Obj_t * Seq_MapMappingBuild_rec( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtk, unsigned SeqEdge, int fTop, int fCompl, int LagCut, Vec_Ptr_t * vLeaves, unsigned uPhase );
+static DdNode * Seq_MapMappingBdd_rec( DdManager * dd, Abc_Ntk_t * pNtk, unsigned SeqEdge, Vec_Ptr_t * vLeaves );
+static void Seq_MapMappingEdges_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, Vec_Ptr_t * vLeaves, Vec_Vec_t * vMapEdges );
+static void Seq_MapMappingConnect_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, int Edge, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves );
+static DdNode * Seq_MapMappingConnectBdd_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, int Edge, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Performs Map mapping and retiming.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Seq_MapRetime( Abc_Ntk_t * pNtk, int nMaxIters, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Abc_Ntk_t * pNtkNew;
+ Abc_Ntk_t * pNtkMap;
+ int RetValue;
+
+ // derive the supergate library
+ if ( Abc_FrameReadLibSuper() == NULL && Abc_FrameReadLibGen() )
+ {
+ printf( "A simple supergate library is derived from gate library \"%s\".\n",
+ Mio_LibraryReadName(Abc_FrameReadLibGen()) );
+ Map_SuperLibDeriveFromGenlib( Abc_FrameReadLibGen() );
+ }
+ p->pSuperLib = Abc_FrameReadLibSuper();
+ p->nVarsMax = Map_SuperLibReadVarsMax(p->pSuperLib);
+ p->nMaxIters = nMaxIters;
+ p->fStandCells = 1;
+
+ // find the best mapping and retiming for all nodes (p->vLValues, p->vBestCuts, p->vLags)
+ if ( !Seq_MapRetimeDelayLags( pNtk, fVerbose ) )
+ return NULL;
+ if ( RetValue = Abc_NtkGetChoiceNum(pNtk) )
+ {
+ printf( "The network has %d choices. The resulting network is not derived (this is temporary).\n", RetValue );
+ printf( "The mininum clock period computed is %5.2f.\n", p->FiBestFloat );
+ return NULL;
+ }
+ printf( "The mininum clock period computed is %5.2f.\n", p->FiBestFloat );
+ printf( "The resulting network is derived as BDD logic network (this is temporary).\n" );
+
+ // duplicate the nodes contained in multiple cuts
+ pNtkNew = Seq_NtkMapDup( pNtk );
+
+ // implement the retiming
+ RetValue = Seq_NtkImplementRetiming( pNtkNew, ((Abc_Seq_t *)pNtkNew->pManFunc)->vLags, fVerbose );
+ if ( RetValue == 0 )
+ printf( "Retiming completed but initial state computation has failed.\n" );
+
+ // check the compatibility of initial states computed
+ if ( RetValue = Seq_NtkMapInitCompatible( pNtkNew, fVerbose ) )
+ printf( "The number of LUTs with incompatible edges = %d.\n", RetValue );
+// return pNtkNew;
+
+ // create the final mapped network
+ pNtkMap = Seq_NtkSeqMapMapped( pNtkNew );
+ Abc_NtkDelete( pNtkNew );
+ return pNtkMap;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the network by duplicating some of the nodes.]
+
+ Description [Information about mapping is given as mapping nodes (p->vMapAnds)
+ and best cuts for each node (p->vMapCuts).]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Seq_NtkMapDup( Abc_Ntk_t * pNtk )
+{
+ Abc_Seq_t * pNew, * p = pNtk->pManFunc;
+ Seq_Match_t * pMatch;
+ Abc_Ntk_t * pNtkNew;
+ Abc_Obj_t * pObj, * pFanin, * pFaninNew, * pLeaf;
+ Vec_Ptr_t * vLeaves;
+ unsigned SeqEdge;
+ int i, k, nObjsNew, Lag;
+
+ assert( Abc_NtkIsSeq(pNtk) );
+
+ // start the expanded network
+ pNtkNew = Abc_NtkStartFrom( pNtk, pNtk->ntkType, pNtk->ntkFunc );
+ Abc_NtkCleanNext(pNtk);
+
+ // start the new sequential AIG manager
+ nObjsNew = 1 + Abc_NtkPiNum(pNtk) + Abc_NtkPoNum(pNtk) + Seq_MapMappingCount(pNtk);
+ Seq_Resize( pNtkNew->pManFunc, nObjsNew );
+
+ // duplicate the nodes in the mapping
+ Vec_PtrForEachEntry( p->vMapAnds, pMatch, i )
+ {
+// Abc_NtkDupObj( pNtkNew, pMatch->pAnd );
+ if ( !pMatch->fCompl )
+ pMatch->pAnd->pCopy = Abc_NtkCreateNode( pNtkNew );
+ else
+ pMatch->pAnd->pNext = Abc_NtkCreateNode( pNtkNew );
+ }
+
+ // compute the real phase assignment
+ Vec_PtrForEachEntry( p->vMapAnds, pMatch, i )
+ {
+ pMatch->uPhaseR = 0;
+ // get the leaves of the cut
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+ // convert the leaf nodes
+ Vec_PtrForEachEntry( vLeaves, pLeaf, k )
+ {
+ SeqEdge = (unsigned)pLeaf;
+ pLeaf = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+
+ // set the phase
+ if ( pMatch->uPhase & (1 << k) ) // neg is required
+ {
+ if ( pLeaf->pNext ) // neg is available
+ pMatch->uPhaseR |= (1 << k); // neg is used
+// else
+// Seq_NodeSetLag( pLeaf, Seq_NodeGetLagN(pLeaf) );
+ }
+ else // pos is required
+ {
+ if ( pLeaf->pCopy == NULL ) // pos is not available
+ pMatch->uPhaseR |= (1 << k); // neg is used
+// else
+// Seq_NodeSetLagN( pLeaf, Seq_NodeGetLag(pLeaf) );
+ }
+ }
+ }
+
+
+ // recursively construct the internals of each node
+ Vec_PtrForEachEntry( p->vMapAnds, pMatch, i )
+ {
+// if ( pMatch->pSuper == NULL )
+// {
+// int x = 0;
+// }
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+ if ( !pMatch->fCompl )
+ Seq_MapMappingBuild_rec( pNtkNew, pNtk, pMatch->pAnd->Id << 8, 1, pMatch->fCompl, Seq_NodeGetLag(pMatch->pAnd), vLeaves, pMatch->uPhaseR );
+ else
+ Seq_MapMappingBuild_rec( pNtkNew, pNtk, pMatch->pAnd->Id << 8, 1, pMatch->fCompl, Seq_NodeGetLagN(pMatch->pAnd), vLeaves, pMatch->uPhaseR );
+ }
+ assert( nObjsNew == pNtkNew->nObjs );
+
+ // set the POs
+// Abc_NtkFinalize( pNtk, pNtkNew );
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ {
+ pFanin = Abc_ObjFanin0(pObj);
+ if ( Abc_ObjFaninC0(pObj) )
+ pFaninNew = pFanin->pNext ? pFanin->pNext : pFanin->pCopy;
+ else
+ pFaninNew = pFanin->pCopy ? pFanin->pCopy : pFanin->pNext;
+ pFaninNew = Abc_ObjNotCond( pFaninNew, Abc_ObjFaninC0(pObj) );
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+ }
+
+ // duplicate the latches on the PO edges
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Seq_NodeDupLats( pObj->pCopy, pObj, 0 );
+
+ // transfer the mapping info to the new manager
+ Vec_PtrForEachEntry( p->vMapAnds, pMatch, i )
+ {
+ // get the leaves of the cut
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+ // convert the leaf nodes
+ Vec_PtrForEachEntry( vLeaves, pLeaf, k )
+ {
+ SeqEdge = (unsigned)pLeaf;
+ pLeaf = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+
+// Lag = (SeqEdge & 255) + Seq_NodeGetLag(pMatch->pAnd) - Seq_NodeGetLag(pLeaf);
+ Lag = (SeqEdge & 255) +
+ (pMatch->fCompl? Seq_NodeGetLagN(pMatch->pAnd) : Seq_NodeGetLag(pMatch->pAnd)) -
+ (((pMatch->uPhaseR & (1 << k)) > 0)? Seq_NodeGetLagN(pLeaf) : Seq_NodeGetLag(pLeaf) );
+
+ assert( Lag >= 0 );
+
+ // translate the old leaf into the leaf in the new network
+// if ( pMatch->uPhase & (1 << k) ) // negative phase is required
+// pFaninNew = pLeaf->pNext? pLeaf->pNext : pLeaf->pCopy;
+// else // positive phase is required
+// pFaninNew = pLeaf->pCopy? pLeaf->pCopy : pLeaf->pNext;
+
+ // translate the old leaf into the leaf in the new network
+ if ( pMatch->uPhaseR & (1 << k) ) // negative phase is required
+ pFaninNew = pLeaf->pNext;
+ else // positive phase is required
+ pFaninNew = pLeaf->pCopy;
+
+ Vec_PtrWriteEntry( vLeaves, k, (void *)((pFaninNew->Id << 8) | Lag) );
+// printf( "%d -> %d\n", pLeaf->Id, pLeaf->pCopy->Id );
+
+ // UPDATE PHASE!!! leaving only those bits that require inverters
+ }
+ // convert the root node
+// Vec_PtrWriteEntry( p->vMapAnds, i, pObj->pCopy );
+ pMatch->pAnd = pMatch->fCompl? pMatch->pAnd->pNext : pMatch->pAnd->pCopy;
+ }
+ pNew = pNtkNew->pManFunc;
+ pNew->nVarsMax = p->nVarsMax;
+ pNew->vMapAnds = p->vMapAnds; p->vMapAnds = NULL;
+ pNew->vMapCuts = p->vMapCuts; p->vMapCuts = NULL;
+ pNew->fStandCells = p->fStandCells; p->fStandCells = 0;
+
+ if ( !Abc_NtkCheck( pNtkNew ) )
+ fprintf( stdout, "Seq_NtkMapDup(): Network check has failed.\n" );
+ return pNtkNew;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Checks if the initial states are compatible.]
+
+ Description [Checks of all the initial states on the fanins edges
+ of the cut have compatible number of latches and initial states.
+ If this is not true, then the mapped network with the does not have initial
+ state. Returns the number of LUTs with incompatible edges.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkMapInitCompatible( Abc_Ntk_t * pNtk, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Seq_Match_t * pMatch;
+ Abc_Obj_t * pAnd, * pLeaf, * pFanout0, * pFanout1;
+ Vec_Vec_t * vTotalEdges;
+ Vec_Ptr_t * vLeaves, * vEdges;
+ int i, k, m, Edge0, Edge1, nLatchAfter, nLatches1, nLatches2;
+ unsigned SeqEdge;
+ int CountBad = 0, CountAll = 0;
+
+ vTotalEdges = Vec_VecStart( p->nVarsMax );
+ // go through all the nodes (cuts) used in the mapping
+ Vec_PtrForEachEntry( p->vMapAnds, pMatch, i )
+ {
+ pAnd = pMatch->pAnd;
+// printf( "*** Node %d.\n", pAnd->Id );
+
+ // get the cut of this gate
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+
+ // get the edges pointing to the leaves
+ Vec_VecClear( vTotalEdges );
+ Seq_MapMappingEdges_rec( pNtk, pAnd->Id << 8, NULL, vLeaves, vTotalEdges );
+
+ // for each leaf, consider its edges
+ Vec_PtrForEachEntry( vLeaves, pLeaf, k )
+ {
+ SeqEdge = (unsigned)pLeaf;
+ pLeaf = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ nLatchAfter = SeqEdge & 255;
+ if ( nLatchAfter == 0 )
+ continue;
+
+ // go through the edges
+ vEdges = Vec_VecEntry( vTotalEdges, k );
+ pFanout0 = NULL;
+ Vec_PtrForEachEntry( vEdges, pFanout1, m )
+ {
+ Edge1 = Abc_ObjIsComplement(pFanout1);
+ pFanout1 = Abc_ObjRegular(pFanout1);
+//printf( "Fanin = %d. Fanout = %d.\n", pLeaf->Id, pFanout1->Id );
+
+ // make sure this is the same fanin
+ if ( Edge1 )
+ assert( pLeaf == Abc_ObjFanin1(pFanout1) );
+ else
+ assert( pLeaf == Abc_ObjFanin0(pFanout1) );
+
+ // save the first one
+ if ( pFanout0 == NULL )
+ {
+ pFanout0 = pFanout1;
+ Edge0 = Edge1;
+ continue;
+ }
+ // compare the rings
+ // if they have different number of latches, this is the bug
+ nLatches1 = Seq_NodeCountLats(pFanout0, Edge0);
+ nLatches2 = Seq_NodeCountLats(pFanout1, Edge1);
+ assert( nLatches1 == nLatches2 );
+ assert( nLatches1 == nLatchAfter );
+ assert( nLatches1 > 0 );
+
+ // if they have different initial states, this is the problem
+ if ( !Seq_NodeCompareLats(pFanout0, Edge0, pFanout1, Edge1) )
+ {
+ CountBad++;
+ break;
+ }
+ CountAll++;
+ }
+ }
+ }
+ if ( fVerbose )
+ printf( "The number of pairs of edges checked = %d.\n", CountAll );
+ Vec_VecFree( vTotalEdges );
+ return CountBad;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the final mapped network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Seq_NtkSeqMapMapped( Abc_Ntk_t * pNtk )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Seq_Match_t * pMatch;
+ Abc_Ntk_t * pNtkMap;
+ Vec_Ptr_t * vLeaves;
+ Abc_Obj_t * pObj, * pFaninNew;
+ Seq_Lat_t * pRing;
+ int i;
+
+ assert( Abc_NtkIsSeq(pNtk) );
+
+ // start the network
+ pNtkMap = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_BDD );
+
+ // duplicate the nodes used in the mapping
+ Vec_PtrForEachEntry( p->vMapAnds, pMatch, i )
+ pMatch->pAnd->pCopy = Abc_NtkCreateNode( pNtkMap );
+
+ // create and share the latches
+ Seq_NtkShareLatchesMapping( pNtkMap, pNtk, p->vMapAnds, 0 );
+
+ // connect the nodes
+ Vec_PtrForEachEntry( p->vMapAnds, pMatch, i )
+ {
+ pObj = pMatch->pAnd;
+ // get the leaves of this gate
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+ // get the BDD of the node
+ pObj->pCopy->pData = Seq_MapMappingConnectBdd_rec( pNtk, pObj->Id << 8, NULL, -1, pObj, vLeaves );
+ Cudd_Ref( pObj->pCopy->pData );
+ // complement the BDD of the cut if it came from the opposite polarity choice cut
+// if ( Vec_StrEntry(p->vPhase, i) )
+// pObj->pCopy->pData = Cudd_Not( pObj->pCopy->pData );
+ }
+
+ // set the POs
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ {
+ if ( pRing = Seq_NodeGetRing(pObj,0) )
+ pFaninNew = pRing->pLatch;
+ else
+ pFaninNew = Abc_ObjFanin0(pObj)->pCopy;
+ pFaninNew = Abc_ObjNotCond( pFaninNew, Abc_ObjFaninC0(pObj) );
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+ }
+
+ // add the latches and their names
+ Abc_NtkAddDummyBoxNames( pNtkMap );
+ Abc_NtkOrderCisCos( pNtkMap );
+ // fix the problem with complemented and duplicated CO edges
+ Abc_NtkLogicMakeSimpleCos( pNtkMap, 1 );
+ // make the network minimum base
+ Abc_NtkMinimumBase( pNtkMap );
+ if ( !Abc_NtkCheck( pNtkMap ) )
+ fprintf( stdout, "Seq_NtkSeqFpgaMapped(): Network check has failed.\n" );
+ return pNtkMap;
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of nodes in the bag.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_MapMappingCount( Abc_Ntk_t * pNtk )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Vec_Ptr_t * vLeaves;
+ Seq_Match_t * pMatch;
+ int i, Counter = 0;
+ Vec_PtrForEachEntry( p->vMapAnds, pMatch, i )
+ {
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+ Counter += Seq_MapMappingCount_rec( pNtk, pMatch->pAnd->Id << 8, vLeaves );
+ }
+ return Counter;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of nodes in the bag.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_MapMappingCount_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Vec_Ptr_t * vLeaves )
+{
+ Abc_Obj_t * pObj, * pLeaf;
+ unsigned SeqEdge0, SeqEdge1;
+ int Lag, i;
+ // get the object and the lag
+ pObj = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = SeqEdge & 255;
+ // if the node is the fanin of the cut, return
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ if ( SeqEdge == (unsigned)pLeaf )
+ return 0;
+ // continue unfolding
+ assert( Abc_AigNodeIsAnd(pObj) );
+ // get new sequential edges
+ assert( Lag + Seq_ObjFaninL0(pObj) < 255 );
+ assert( Lag + Seq_ObjFaninL1(pObj) < 255 );
+ SeqEdge0 = (Abc_ObjFanin0(pObj)->Id << 8) + Lag + Seq_ObjFaninL0(pObj);
+ SeqEdge1 = (Abc_ObjFanin1(pObj)->Id << 8) + Lag + Seq_ObjFaninL1(pObj);
+ // call for the children
+ return 1 + Seq_MapMappingCount_rec( pNtk, SeqEdge0, vLeaves ) +
+ Seq_MapMappingCount_rec( pNtk, SeqEdge1, vLeaves );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collects the edges pointing to the leaves of the cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Obj_t * Seq_MapMappingBuild_rec( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtk, unsigned SeqEdge, int fTop, int fCompl, int LagCut, Vec_Ptr_t * vLeaves, unsigned uPhase )
+{
+ Abc_Obj_t * pObj, * pObjNew, * pLeaf, * pFaninNew0, * pFaninNew1;
+ unsigned SeqEdge0, SeqEdge1;
+ int Lag, i;
+ // get the object and the lag
+ pObj = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = SeqEdge & 255;
+ // if the node is the fanin of the cut, return
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ if ( SeqEdge == (unsigned)pLeaf )
+ {
+// if ( uPhase & (1 << i) ) // negative phase is required
+// return pObj->pNext? pObj->pNext : pObj->pCopy;
+// else // positive phase is required
+// return pObj->pCopy? pObj->pCopy : pObj->pNext;
+
+ if ( uPhase & (1 << i) ) // negative phase is required
+ return pObj->pNext;
+ else // positive phase is required
+ return pObj->pCopy;
+ }
+ // continue unfolding
+ assert( Abc_AigNodeIsAnd(pObj) );
+ // get new sequential edges
+ assert( Lag + Seq_ObjFaninL0(pObj) < 255 );
+ assert( Lag + Seq_ObjFaninL1(pObj) < 255 );
+ SeqEdge0 = (Abc_ObjFanin0(pObj)->Id << 8) + Lag + Seq_ObjFaninL0(pObj);
+ SeqEdge1 = (Abc_ObjFanin1(pObj)->Id << 8) + Lag + Seq_ObjFaninL1(pObj);
+ // call for the children
+ pObjNew = fTop? (fCompl? pObj->pNext : pObj->pCopy) : Abc_NtkCreateNode( pNtkNew );
+ // solve subproblems
+ pFaninNew0 = Seq_MapMappingBuild_rec( pNtkNew, pNtk, SeqEdge0, 0, fCompl, LagCut, vLeaves, uPhase );
+ pFaninNew1 = Seq_MapMappingBuild_rec( pNtkNew, pNtk, SeqEdge1, 0, fCompl, LagCut, vLeaves, uPhase );
+ // add the fanins to the node
+ Abc_ObjAddFanin( pObjNew, Abc_ObjNotCond( pFaninNew0, Abc_ObjFaninC0(pObj) ) );
+ Abc_ObjAddFanin( pObjNew, Abc_ObjNotCond( pFaninNew1, Abc_ObjFaninC1(pObj) ) );
+ Seq_NodeDupLats( pObjNew, pObj, 0 );
+ Seq_NodeDupLats( pObjNew, pObj, 1 );
+ // set the lag of the new node equal to the internal lag plus mapping/retiming lag
+ Seq_NodeSetLag( pObjNew, (char)(Lag + LagCut) );
+// Seq_NodeSetLag( pObjNew, (char)(Lag) );
+ return pObjNew;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Collects the edges pointing to the leaves of the cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_MapMappingEdges_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, Vec_Ptr_t * vLeaves, Vec_Vec_t * vMapEdges )
+{
+ Abc_Obj_t * pObj, * pLeaf;
+ unsigned SeqEdge0, SeqEdge1;
+ int Lag, i;
+ // get the object and the lag
+ pObj = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = SeqEdge & 255;
+ // if the node is the fanin of the cut, return
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ {
+ if ( SeqEdge == (unsigned)pLeaf )
+ {
+ assert( pPrev != NULL );
+ Vec_VecPush( vMapEdges, i, pPrev );
+ return;
+ }
+ }
+ // continue unfolding
+ assert( Abc_AigNodeIsAnd(pObj) );
+ // get new sequential edges
+ assert( Lag + Seq_ObjFaninL0(pObj) < 255 );
+ assert( Lag + Seq_ObjFaninL1(pObj) < 255 );
+ SeqEdge0 = (Abc_ObjFanin0(pObj)->Id << 8) + Lag + Seq_ObjFaninL0(pObj);
+ SeqEdge1 = (Abc_ObjFanin1(pObj)->Id << 8) + Lag + Seq_ObjFaninL1(pObj);
+ // call for the children
+ Seq_MapMappingEdges_rec( pNtk, SeqEdge0, pObj , vLeaves, vMapEdges );
+ Seq_MapMappingEdges_rec( pNtk, SeqEdge1, Abc_ObjNot(pObj), vLeaves, vMapEdges );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collects the edges pointing to the leaves of the cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+DdNode * Seq_MapMappingConnectBdd_rec( Abc_Ntk_t * pNtk, unsigned SeqEdge, Abc_Obj_t * pPrev, int Edge, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves )
+{
+ Seq_Lat_t * pRing;
+ Abc_Obj_t * pObj, * pLeaf, * pFanin, * pFaninNew;
+ unsigned SeqEdge0, SeqEdge1;
+ DdManager * dd = pRoot->pCopy->pNtk->pManFunc;
+ DdNode * bFunc, * bFunc0, * bFunc1;
+ int Lag, i, k;
+ // get the object and the lag
+ pObj = Abc_NtkObj( pNtk, SeqEdge >> 8 );
+ Lag = SeqEdge & 255;
+ // if the node is the fanin of the cut, add the connection and return
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ {
+ if ( SeqEdge == (unsigned)pLeaf )
+ {
+ assert( pPrev != NULL );
+ if ( pRing = Seq_NodeGetRing(pPrev,Edge) )
+ pFaninNew = pRing->pLatch;
+ else
+ pFaninNew = Abc_ObjFanin(pPrev,Edge)->pCopy;
+
+ // check if the root already has this fanin
+ Abc_ObjForEachFanin( pRoot->pCopy, pFanin, k )
+ if ( pFanin == pFaninNew )
+ return Cudd_bddIthVar( dd, k );
+ Abc_ObjAddFanin( pRoot->pCopy, pFaninNew );
+ return Cudd_bddIthVar( dd, k );
+ }
+ }
+ // continue unfolding
+ assert( Abc_AigNodeIsAnd(pObj) );
+ // get new sequential edges
+ assert( Lag + Seq_ObjFaninL0(pObj) < 255 );
+ assert( Lag + Seq_ObjFaninL1(pObj) < 255 );
+ SeqEdge0 = (Abc_ObjFanin0(pObj)->Id << 8) + Lag + Seq_ObjFaninL0(pObj);
+ SeqEdge1 = (Abc_ObjFanin1(pObj)->Id << 8) + Lag + Seq_ObjFaninL1(pObj);
+ // call for the children
+ bFunc0 = Seq_MapMappingConnectBdd_rec( pNtk, SeqEdge0, pObj, 0, pRoot, vLeaves ); Cudd_Ref( bFunc0 );
+ bFunc1 = Seq_MapMappingConnectBdd_rec( pNtk, SeqEdge1, pObj, 1, pRoot, vLeaves ); Cudd_Ref( bFunc1 );
+ bFunc0 = Cudd_NotCond( bFunc0, Abc_ObjFaninC0(pObj) );
+ bFunc1 = Cudd_NotCond( bFunc1, Abc_ObjFaninC1(pObj) );
+ // get the BDD of the node
+ bFunc = Cudd_bddAnd( dd, bFunc0, bFunc1 ); Cudd_Ref( bFunc );
+ Cudd_RecursiveDeref( dd, bFunc0 );
+ Cudd_RecursiveDeref( dd, bFunc1 );
+ // return the BDD
+ Cudd_Deref( bFunc );
+ return bFunc;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/base/seq/seqMapIter.c b/src/base/seq/seqMapIter.c
new file mode 100644
index 00000000..30333cea
--- /dev/null
+++ b/src/base/seq/seqMapIter.c
@@ -0,0 +1,623 @@
+/**CFile****************************************************************
+
+ FileName [seqMapIter.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [Iterative delay computation in SC mapping/retiming package.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqMapIter.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+#include "main.h"
+#include "mio.h"
+#include "mapperInt.h"
+
+// the internal procedures
+static float Seq_MapRetimeDelayLagsInternal( Abc_Ntk_t * pNtk, int fVerbose );
+static float Seq_MapRetimeSearch_rec( Abc_Ntk_t * pNtk, float FiMin, float FiMax, float Delta, int fVerbose );
+static int Seq_MapRetimeForPeriod( Abc_Ntk_t * pNtk, float Fi, int fVerbose );
+static int Seq_MapNodeUpdateLValue( Abc_Obj_t * pObj, float Fi, float DelayInv );
+static float Seq_MapCollectNode_rec( Abc_Obj_t * pAnd, float FiBest, Vec_Ptr_t * vMapping, Vec_Vec_t * vMapCuts );
+static void Seq_MapCanonicizeTruthTables( Abc_Ntk_t * pNtk );
+
+extern Cut_Man_t * Abc_NtkSeqCuts( Abc_Ntk_t * pNtk, Cut_Params_t * pParams );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Computes the retiming lags for FPGA mapping.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_MapRetimeDelayLags( Abc_Ntk_t * pNtk, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Cut_Params_t Params, * pParams = &Params;
+ Abc_Obj_t * pObj;
+ float TotalArea;
+ int i, clk;
+
+ // set defaults for cut computation
+ memset( pParams, 0, sizeof(Cut_Params_t) );
+ pParams->nVarsMax = p->nVarsMax; // the max cut size ("k" of the k-feasible cuts)
+ pParams->nKeepMax = 1000; // the max number of cuts kept at a node
+ pParams->fTruth = 1; // compute truth tables
+ pParams->fFilter = 1; // filter dominated cuts
+ pParams->fSeq = 1; // compute sequential cuts
+ pParams->fVerbose = fVerbose; // the verbosiness flag
+
+ // compute the cuts
+clk = clock();
+ p->pCutMan = Abc_NtkSeqCuts( pNtk, pParams );
+p->timeCuts = clock() - clk;
+ if ( fVerbose )
+ Cut_ManPrintStats( p->pCutMan );
+
+ // compute canonical forms of the truth tables of the cuts
+ Seq_MapCanonicizeTruthTables( pNtk );
+
+ // compute area flows
+// Seq_MapComputeAreaFlows( pNtk, fVerbose );
+
+ // compute the delays
+clk = clock();
+ p->FiBestFloat = Seq_MapRetimeDelayLagsInternal( pNtk, fVerbose );
+ if ( p->FiBestFloat == 0.0 )
+ return 0;
+p->timeDelay = clock() - clk;
+/*
+ {
+ FILE * pTable;
+ pTable = fopen( "stats.txt", "a+" );
+ fprintf( pTable, "%s ", pNtk->pName );
+ fprintf( pTable, "%.2f ", p->FiBestFloat );
+ fprintf( pTable, "%.2f ", (float)(p->timeCuts)/(float)(CLOCKS_PER_SEC) );
+ fprintf( pTable, "%.2f ", (float)(p->timeDelay)/(float)(CLOCKS_PER_SEC) );
+ fprintf( pTable, "\n" );
+ fclose( pTable );
+ }
+*/
+ // clean the marks
+ Abc_NtkForEachObj( pNtk, pObj, i )
+ assert( !pObj->fMarkA && !pObj->fMarkB );
+
+ // collect the nodes and cuts used in the mapping
+ p->vMapAnds = Vec_PtrAlloc( 1000 );
+ p->vMapCuts = Vec_VecAlloc( 1000 );
+ TotalArea = 0.0;
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ TotalArea += Seq_MapCollectNode_rec( Abc_ObjChild0(pObj), p->FiBestFloat, p->vMapAnds, p->vMapCuts );
+
+ // clean the marks
+ Abc_NtkForEachObj( pNtk, pObj, i )
+ pObj->fMarkA = pObj->fMarkB = 0;
+
+ if ( fVerbose )
+ printf( "Total area = %6.2f.\n", TotalArea );
+
+ // remove the cuts
+ Cut_ManStop( p->pCutMan );
+ p->pCutMan = NULL;
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Retimes AIG for optimal delay using Pan's algorithm.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+float Seq_MapRetimeDelayLagsInternal( Abc_Ntk_t * pNtk, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Abc_Obj_t * pNode;
+ float FiMax, FiBest, Delta;
+ int i, RetValue;
+ char NodeLag;
+
+ assert( Abc_NtkIsSeq( pNtk ) );
+
+ // assign the accuracy for min-period computation
+ Delta = Mio_LibraryReadDelayNand2Max(Abc_FrameReadLibGen());
+ if ( Delta == 0.0 )
+ {
+ Delta = Mio_LibraryReadDelayAnd2Max(Abc_FrameReadLibGen());
+ if ( Delta == 0.0 )
+ {
+ printf( "Cannot retime/map if the library does not have NAND2 or AND2.\n" );
+ return 0.0;
+ }
+ }
+
+ // get the upper bound on the clock period
+ FiMax = Delta * (5 + Seq_NtkLevelMax(pNtk));
+ Delta /= 2;
+
+ // make sure this clock period is feasible
+ if ( !Seq_MapRetimeForPeriod( pNtk, FiMax, fVerbose ) )
+ {
+ Vec_StrFill( p->vLags, p->nSize, 0 );
+ Vec_StrFill( p->vLagsN, p->nSize, 0 );
+ printf( "Error: The upper bound on the clock period cannot be computed.\n" );
+ printf( "The reason for this error may be the presence in the circuit of logic\n" );
+ printf( "that is not reachable from the PIs. Mapping/retiming is not performed.\n" );
+ return 0;
+ }
+
+ // search for the optimal clock period between 0 and nLevelMax
+ FiBest = Seq_MapRetimeSearch_rec( pNtk, 0.0, FiMax, Delta, fVerbose );
+
+ // recompute the best l-values
+ RetValue = Seq_MapRetimeForPeriod( pNtk, FiBest, fVerbose );
+ assert( RetValue );
+
+ // fix the problem with non-converged delays
+ Abc_AigForEachAnd( pNtk, pNode, i )
+ {
+ if ( Seq_NodeGetLValueP(pNode) < -ABC_INFINITY/2 )
+ Seq_NodeSetLValueP( pNode, 0 );
+ if ( Seq_NodeGetLValueN(pNode) < -ABC_INFINITY/2 )
+ Seq_NodeSetLValueN( pNode, 0 );
+ }
+
+ // write the retiming lags for both phases of each node
+ Vec_StrFill( p->vLags, p->nSize, 0 );
+ Vec_StrFill( p->vLagsN, p->nSize, 0 );
+ Abc_AigForEachAnd( pNtk, pNode, i )
+ {
+ NodeLag = Seq_NodeComputeLagFloat( Seq_NodeGetLValueP(pNode), FiBest );
+ Seq_NodeSetLag( pNode, NodeLag );
+ NodeLag = Seq_NodeComputeLagFloat( Seq_NodeGetLValueN(pNode), FiBest );
+ Seq_NodeSetLagN( pNode, NodeLag );
+//printf( "%6d=(%d,%d) ", pNode->Id, Seq_NodeGetLag(pNode), Seq_NodeGetLagN(pNode) );
+// if ( Seq_NodeGetLag(pNode) != Seq_NodeGetLagN(pNode) )
+// {
+//printf( "%6d=(%d,%d) ", pNode->Id, Seq_NodeGetLag(pNode), Seq_NodeGetLagN(pNode) );
+// }
+ }
+//printf( "\n\n" );
+
+ // print the result
+ if ( fVerbose )
+ printf( "The best clock period after mapping/retiming is %6.2f.\n", FiBest );
+ return FiBest;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs binary search for the optimal clock period.]
+
+ Description [Assumes that FiMin is infeasible while FiMax is feasible.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+float Seq_MapRetimeSearch_rec( Abc_Ntk_t * pNtk, float FiMin, float FiMax, float Delta, int fVerbose )
+{
+ float Median;
+ assert( FiMin < FiMax );
+ if ( FiMin + Delta >= FiMax )
+ return FiMax;
+ Median = FiMin + (FiMax - FiMin)/2;
+ if ( Seq_MapRetimeForPeriod( pNtk, Median, fVerbose ) )
+ return Seq_MapRetimeSearch_rec( pNtk, FiMin, Median, Delta, fVerbose ); // Median is feasible
+ else
+ return Seq_MapRetimeSearch_rec( pNtk, Median, FiMax, Delta, fVerbose ); // Median is infeasible
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if retiming with this clock period is feasible.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_MapRetimeForPeriod( Abc_Ntk_t * pNtk, float Fi, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Abc_Obj_t * pObj;
+ float DelayInv = Mio_LibraryReadDelayInvMax(Abc_FrameReadLibGen());
+ int i, c, RetValue, fChange, Counter;
+ char * pReason = "";
+
+ // set l-values of all nodes to be minus infinity
+ Vec_IntFill( p->vLValues, p->nSize, Abc_Float2Int( (float)-ABC_INFINITY ) );
+ Vec_IntFill( p->vLValuesN, p->nSize, Abc_Float2Int( (float)-ABC_INFINITY ) );
+ Vec_StrFill( p->vUses, p->nSize, 0 );
+
+ // set l-values of constants and PIs
+ pObj = Abc_NtkObj( pNtk, 0 );
+ Seq_NodeSetLValueP( pObj, 0.0 );
+ Seq_NodeSetLValueN( pObj, 0.0 );
+ Abc_NtkForEachPi( pNtk, pObj, i )
+ {
+ Seq_NodeSetLValueP( pObj, 0.0 );
+ Seq_NodeSetLValueN( pObj, DelayInv );
+ }
+
+ // update all values iteratively
+ Counter = 0;
+ for ( c = 0; c < p->nMaxIters; c++ )
+ {
+ fChange = 0;
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ {
+ Counter++;
+ RetValue = Seq_MapNodeUpdateLValue( pObj, Fi, DelayInv );
+ if ( RetValue == SEQ_UPDATE_YES )
+ fChange = 1;
+ }
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ {
+ RetValue = Seq_MapNodeUpdateLValue( pObj, Fi, DelayInv );
+ if ( RetValue == SEQ_UPDATE_FAIL )
+ break;
+ }
+ if ( RetValue == SEQ_UPDATE_FAIL )
+ break;
+ if ( fChange == 0 )
+ break;
+//printf( "\n\n" );
+ }
+ if ( c == p->nMaxIters )
+ {
+ RetValue = SEQ_UPDATE_FAIL;
+ pReason = "(timeout)";
+ }
+ else
+ c++;
+
+ // report the results
+ if ( fVerbose )
+ {
+ if ( RetValue == SEQ_UPDATE_FAIL )
+ printf( "Period = %6.2f. Iterations = %3d. Updates = %10d. Infeasible %s\n", Fi, c, Counter, pReason );
+ else
+ printf( "Period = %6.2f. Iterations = %3d. Updates = %10d. Feasible\n", Fi, c, Counter );
+ }
+ return RetValue != SEQ_UPDATE_FAIL;
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Computes the l-value of the cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+float Seq_MapSuperGetArrival( Abc_Obj_t * pObj, float Fi, Seq_Match_t * pMatch, float DelayMax )
+{
+ Abc_Seq_t * p = pObj->pNtk->pManFunc;
+ Abc_Obj_t * pFanin;
+ float lValueCur, lValueMax;
+ int i;
+ lValueMax = -ABC_INFINITY;
+ for ( i = pMatch->pCut->nLeaves - 1; i >= 0; i-- )
+ {
+ // get the arrival time of the fanin
+ pFanin = Abc_NtkObj( pObj->pNtk, pMatch->pCut->pLeaves[i] >> 8 );
+ if ( pMatch->uPhase & (1 << i) )
+ lValueCur = Seq_NodeGetLValueN(pFanin) - Fi * (pMatch->pCut->pLeaves[i] & 255);
+ else
+ lValueCur = Seq_NodeGetLValueP(pFanin) - Fi * (pMatch->pCut->pLeaves[i] & 255);
+ // add the arrival time of this pin
+ if ( lValueMax < lValueCur + pMatch->pSuper->tDelaysR[i].Worst )
+ lValueMax = lValueCur + pMatch->pSuper->tDelaysR[i].Worst;
+ if ( lValueMax < lValueCur + pMatch->pSuper->tDelaysF[i].Worst )
+ lValueMax = lValueCur + pMatch->pSuper->tDelaysF[i].Worst;
+ if ( lValueMax > DelayMax + p->fEpsilon )
+ return ABC_INFINITY;
+ }
+ return lValueMax;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the l-value of the cut.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+float Seq_MapNodeComputeCut( Abc_Obj_t * pObj, Cut_Cut_t * pCut, int fCompl, float Fi, Seq_Match_t * pMatchBest )
+{
+ Seq_Match_t Match, * pMatchCur = &Match;
+ Abc_Seq_t * p = pObj->pNtk->pManFunc;
+ Map_Super_t * pSuper, * pSuperList;
+ unsigned uCanon[2];
+ float lValueBest, lValueCur;
+ int i;
+ assert( pCut->nLeaves < 6 );
+ // get the canonical truth table of this cut
+ uCanon[0] = uCanon[1] = (fCompl? pCut->uCanon0 : pCut->uCanon1);
+ if ( uCanon[0] == 0 || ~uCanon[0] == 0 )
+ {
+ if ( pMatchBest )
+ {
+ memset( pMatchBest, 0, sizeof(Seq_Match_t) );
+ pMatchBest->pCut = pCut;
+ }
+ return (float)0.0;
+ }
+ // match the given phase of the cut
+ pSuperList = Map_SuperTableLookupC( p->pSuperLib, uCanon );
+ // compute the arrival times of each supergate
+ lValueBest = ABC_INFINITY;
+ for ( pSuper = pSuperList; pSuper; pSuper = pSuper->pNext )
+ {
+ // create the match
+ pMatchCur->pCut = pCut;
+ pMatchCur->pSuper = pSuper;
+ // get the phase
+ for ( i = 0; i < (int)pSuper->nPhases; i++ )
+ {
+ pMatchCur->uPhase = (fCompl? pCut->Num0 : pCut->Num1) ^ pSuper->uPhases[i];
+ // find the arrival time of this match
+ lValueCur = Seq_MapSuperGetArrival( pObj, Fi, pMatchCur, lValueBest );
+ if ( lValueBest > lValueCur )//&& lValueCur > -ABC_INFINITY/2 )
+ {
+ lValueBest = lValueCur;
+ if ( pMatchBest )
+ *pMatchBest = *pMatchCur;
+ }
+ }
+ }
+// assert( lValueBest < ABC_INFINITY/2 );
+ return lValueBest;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the l-value of the node.]
+
+ Description [The node can be internal or a PO.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+float Seq_MapNodeComputePhase( Abc_Obj_t * pObj, int fCompl, float Fi, Seq_Match_t * pMatchBest )
+{
+ Seq_Match_t Match, * pMatchCur = &Match;
+ Cut_Cut_t * pList, * pCut;
+ float lValueBest, lValueCut;
+ // get the list of cuts
+ pList = Abc_NodeReadCuts( Seq_NodeCutMan(pObj), pObj );
+ // get the arrival time of the best non-trivial cut
+ lValueBest = ABC_INFINITY;
+ for ( pCut = pList->pNext; pCut; pCut = pCut->pNext )
+ {
+ lValueCut = Seq_MapNodeComputeCut( pObj, pCut, fCompl, Fi, pMatchBest? pMatchCur : NULL );
+ if ( lValueBest > lValueCut )
+ {
+ lValueBest = lValueCut;
+ if ( pMatchBest )
+ *pMatchBest = *pMatchCur;
+ }
+ }
+// assert( lValueBest < ABC_INFINITY/2 );
+ return lValueBest;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the l-value of the node.]
+
+ Description [The node can be internal or a PO.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_MapNodeUpdateLValue( Abc_Obj_t * pObj, float Fi, float DelayInv )
+{
+ Abc_Seq_t * p = pObj->pNtk->pManFunc;
+ Cut_Cut_t * pList;
+ char Use;
+ float lValueOld0, lValueOld1, lValue0, lValue1, lValue;
+ assert( !Abc_ObjIsPi(pObj) );
+ assert( Abc_ObjFaninNum(pObj) > 0 );
+ // consider the case of the PO
+ if ( Abc_ObjIsPo(pObj) )
+ {
+ if ( Abc_ObjFaninC0(pObj) ) // PO requires negative polarity
+ lValue = Seq_NodeGetLValueN(Abc_ObjFanin0(pObj)) - Fi * Seq_ObjFaninL0(pObj);
+ else
+ lValue = Seq_NodeGetLValueP(Abc_ObjFanin0(pObj)) - Fi * Seq_ObjFaninL0(pObj);
+ return (lValue > Fi + p->fEpsilon)? SEQ_UPDATE_FAIL : SEQ_UPDATE_NO;
+ }
+ // get the cuts
+ pList = Abc_NodeReadCuts( Seq_NodeCutMan(pObj), pObj );
+ if ( pList == NULL )
+ return SEQ_UPDATE_NO;
+ // compute the arrival time of both phases
+ lValue0 = Seq_MapNodeComputePhase( pObj, 1, Fi, NULL );
+ lValue1 = Seq_MapNodeComputePhase( pObj, 0, Fi, NULL );
+ // consider the case when negative phase is too slow
+ if ( lValue0 > lValue1 + DelayInv + p->fEpsilon )
+ lValue0 = lValue1 + DelayInv, Use = 2;
+ else if ( lValue1 > lValue0 + DelayInv + p->fEpsilon )
+ lValue1 = lValue0 + DelayInv, Use = 1;
+ else
+ Use = 3;
+ // set the uses of the phases
+ Seq_NodeSetUses( pObj, Use );
+ // get the old arrival times
+ lValueOld0 = Seq_NodeGetLValueN(pObj);
+ lValueOld1 = Seq_NodeGetLValueP(pObj);
+ // compare
+ if ( lValue0 <= lValueOld0 + p->fEpsilon && lValue1 <= lValueOld1 + p->fEpsilon )
+ return SEQ_UPDATE_NO;
+ assert( lValue0 < ABC_INFINITY/2 );
+ assert( lValue1 < ABC_INFINITY/2 );
+ // update the values
+ if ( lValue0 > lValueOld0 + p->fEpsilon )
+ Seq_NodeSetLValueN( pObj, lValue0 );
+ if ( lValue1 > lValueOld1 + p->fEpsilon )
+ Seq_NodeSetLValueP( pObj, lValue1 );
+//printf( "%6d=(%4.2f,%4.2f) ", pObj->Id, Seq_NodeGetLValueP(pObj), Seq_NodeGetLValueN(pObj) );
+ return SEQ_UPDATE_YES;
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Derives the parameters of the best mapping/retiming for one node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+float Seq_MapCollectNode_rec( Abc_Obj_t * pAnd, float FiBest, Vec_Ptr_t * vMapping, Vec_Vec_t * vMapCuts )
+{
+ Seq_Match_t * pMatch;
+ Abc_Obj_t * pFanin;
+ int k, fCompl, Use;
+ float AreaInv = Mio_LibraryReadAreaInv(Abc_FrameReadLibGen());
+ float Area;
+
+ // get the polarity of the node
+ fCompl = Abc_ObjIsComplement(pAnd);
+ pAnd = Abc_ObjRegular(pAnd);
+
+ // skip visited nodes
+ if ( !fCompl )
+ { // need the positive polarity
+ if ( pAnd->fMarkA )
+ return 0.0;
+ pAnd->fMarkA = 1;
+ }
+ else
+ { // need the negative polarity
+ if ( pAnd->fMarkB )
+ return 0.0;
+ pAnd->fMarkB = 1;
+ }
+
+ // skip if this is a PI or a constant
+ if ( !Abc_AigNodeIsAnd(pAnd) )
+ {
+ if ( Abc_ObjIsPi(pAnd) && fCompl )
+ return AreaInv;
+ return 0.0;
+ }
+
+ // check the uses of this node
+ Use = Seq_NodeGetUses( pAnd );
+ if ( !fCompl && Use == 1 ) // the pos phase is required; only the neg phase is used
+ {
+ Area = Seq_MapCollectNode_rec( Abc_ObjNot(pAnd), FiBest, vMapping, vMapCuts );
+ return Area + AreaInv;
+ }
+ if ( fCompl && Use == 2 ) // the neg phase is required; only the pos phase is used
+ {
+ Area = Seq_MapCollectNode_rec( pAnd, FiBest, vMapping, vMapCuts );
+ return Area + AreaInv;
+ }
+ // both phases are used; the needed one can be selected
+
+ // get the best match
+ pMatch = ALLOC( Seq_Match_t, 1 );
+ memset( pMatch, 1, sizeof(Seq_Match_t) );
+ Seq_MapNodeComputePhase( pAnd, fCompl, FiBest, pMatch );
+ pMatch->pAnd = pAnd;
+ pMatch->fCompl = fCompl;
+ pMatch->fCutInv = pMatch->pCut->fCompl;
+ pMatch->PolUse = Use;
+
+ // call for the fanin cuts
+ Area = pMatch->pSuper? pMatch->pSuper->Area : (float)0.0;
+ for ( k = 0; k < (int)pMatch->pCut->nLeaves; k++ )
+ {
+ pFanin = Abc_NtkObj( pAnd->pNtk, pMatch->pCut->pLeaves[k] >> 8 );
+ if ( pMatch->uPhase & (1 << k) )
+ pFanin = Abc_ObjNot( pFanin );
+ Area += Seq_MapCollectNode_rec( pFanin, FiBest, vMapping, vMapCuts );
+ }
+
+ // add this node
+ Vec_PtrPush( vMapping, pMatch );
+ for ( k = 0; k < (int)pMatch->pCut->nLeaves; k++ )
+ Vec_VecPush( vMapCuts, Vec_PtrSize(vMapping)-1, (void *)pMatch->pCut->pLeaves[k] );
+
+ // the cut will become unavailable when the cuts are deallocated
+ pMatch->pCut = NULL;
+
+ return Area;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the canonical versions of the truth tables.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_MapCanonicizeTruthTables( Abc_Ntk_t * pNtk )
+{
+ Abc_Obj_t * pObj;
+ Cut_Cut_t * pCut, * pList;
+ int i;
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ {
+ pList = Abc_NodeReadCuts( Seq_NodeCutMan(pObj), pObj );
+ if ( pList == NULL )
+ continue;
+ for ( pCut = pList->pNext; pCut; pCut = pCut->pNext )
+ Cut_TruthNCanonicize( pCut );
+ }
+}
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
diff --git a/src/base/seq/seqMaxMeanCycle.c b/src/base/seq/seqMaxMeanCycle.c
new file mode 100644
index 00000000..46d73cbd
--- /dev/null
+++ b/src/base/seq/seqMaxMeanCycle.c
@@ -0,0 +1,567 @@
+/**CFile****************************************************************
+
+ FileName [seqMaxMeanCycle.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [Efficient computation of maximum mean cycle times.]
+
+ Author [Aaron P. Hurst]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - May 15, 2006.]
+
+ Revision [$Id: seqMaxMeanCycle.c,v 1.00 2005/05/15 00:00:00 ahurst Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+#include "hash.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+struct Abc_ManTime_t_
+{
+ Abc_Time_t tArrDef;
+ Abc_Time_t tReqDef;
+ Vec_Ptr_t * vArrs;
+ Vec_Ptr_t * vReqs;
+};
+
+typedef struct Seq_HowardData_t_
+{
+ char visited;
+ int mark;
+ int policy;
+ float cycle;
+ float skew;
+ float delay;
+} Seq_HowardData_t;
+
+// accessing the arrival and required times of a node
+static inline Abc_Time_t * Abc_NodeArrival( Abc_Obj_t * pNode ) { return pNode->pNtk->pManTime->vArrs->pArray[pNode->Id]; }
+static inline Abc_Time_t * Abc_NodeRequired( Abc_Obj_t * pNode ) { return pNode->pNtk->pManTime->vReqs->pArray[pNode->Id]; }
+
+Hash_Ptr_t * Seq_NtkPathDelays( Abc_Ntk_t * pNtk, int fVerbose );
+void Seq_NtkMergePios( Abc_Ntk_t * pNtk, Hash_Ptr_t * hFwdDelays, int fVerbose );
+
+void Seq_NtkHowardLoop( Abc_Ntk_t * pNtk, Hash_Ptr_t * hFwdDelays,
+ Hash_Ptr_t * hNodeData, int node,
+ int *howardDepth, float *howardDelay, int *howardSink,
+ float *maxMeanCycle);
+void Abc_NtkDfsReverse_rec2( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes, Vec_Ptr_t * vEndpoints );
+
+#define Seq_NtkGetPathDelay( hFwdDelays, from, to ) \
+ (Hash_PtrExists(hFwdDelays, from)?Hash_FltEntry( ((Hash_Flt_t *)Hash_PtrEntry(hFwdDelays, from, 0)), to, 0):0 )
+
+#define HOWARD_EPSILON 1e-3
+#define ZERO_SLOP 1e-5
+#define REMOVE_ZERO_SLOP( x ) \
+ (x = (x > -ZERO_SLOP && x < ZERO_SLOP)?0:x)
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Computes maximum mean cycle time.]
+
+ Description [Uses Howard's algorithm.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+float Seq_NtkHoward( Abc_Ntk_t * pNtk, int fVerbose ) {
+
+ Abc_Obj_t * pObj;
+ Hash_Ptr_t * hFwdDelays;
+ Hash_Flt_t * hOutgoing;
+ Hash_Ptr_Entry_t * pSourceEntry, * pNodeEntry;
+ Hash_Flt_Entry_t * pSinkEntry;
+ int i, j, iteration = 0;
+ int source, sink;
+ int fChanged;
+ int howardDepth, howardSink = 0;
+ float delay, howardDelay, t;
+ float maxMeanCycle = -ABC_INFINITY;
+ Hash_Ptr_t * hNodeData;
+ Seq_HowardData_t * pNodeData, * pSourceData, * pSinkData;
+
+ // gather timing constraints
+ hFwdDelays = Seq_NtkPathDelays( pNtk, fVerbose );
+ Seq_NtkMergePios( pNtk, hFwdDelays, fVerbose );
+
+ // initialize data, create initial policy
+ hNodeData = Hash_PtrAlloc( hFwdDelays->nSize );
+ Hash_PtrForEachEntry( hFwdDelays, pSourceEntry, i ) {
+ Hash_PtrWriteEntry( hNodeData, pSourceEntry->key,
+ (pNodeData = ALLOC(Seq_HowardData_t, 1)) );
+ pNodeData->skew = 0.0;
+ pNodeData->policy = 0;
+ hOutgoing = (Hash_Flt_t *)(pSourceEntry->data);
+ assert(hOutgoing);
+
+ Hash_FltForEachEntry( hOutgoing, pSinkEntry, j ) {
+ sink = pSinkEntry->key;
+ delay = pSinkEntry->data;
+ if (delay > pNodeData->skew) {
+ pNodeData->policy = sink;
+ pNodeData->skew = delay;
+ }
+ }
+ }
+
+ // iteratively refine policy
+ do {
+ iteration++;
+ fChanged = 0;
+ howardDelay = 0.0;
+ howardDepth = 0;
+
+ // reset data
+ Hash_PtrForEachEntry( hNodeData, pNodeEntry, i ) {
+ pNodeData = (Seq_HowardData_t *)pNodeEntry->data;
+ pNodeData->skew = -ABC_INFINITY;
+ pNodeData->cycle = -ABC_INFINITY;
+ pNodeData->mark = 0;
+ pNodeData->visited = 0;
+ }
+
+ // find loops in policy graph
+ Hash_PtrForEachEntry( hNodeData, pNodeEntry, i ) {
+ pNodeData = (Seq_HowardData_t *)(pNodeEntry->data);
+ assert(pNodeData);
+ if (!pNodeData->visited)
+ Seq_NtkHowardLoop( pNtk, hFwdDelays,
+ hNodeData, pNodeEntry->key,
+ &howardDepth, &howardDelay, &howardSink, &maxMeanCycle);
+ }
+
+ if (!howardSink) {
+ return -1;
+ }
+
+ // improve policy by tightening loops
+ Hash_PtrForEachEntry( hFwdDelays, pSourceEntry, i ) {
+ source = pSourceEntry->key;
+ pSourceData = (Seq_HowardData_t *)Hash_PtrEntry( hNodeData, source, 0 );
+ assert(pSourceData);
+ hOutgoing = (Hash_Flt_t *)(pSourceEntry->data);
+ assert(hOutgoing);
+ Hash_FltForEachEntry( hOutgoing, pSinkEntry, j ) {
+ sink = pSinkEntry->key;
+ pSinkData = (Seq_HowardData_t *)Hash_PtrEntry( hNodeData, sink, 0 );
+ assert(pSinkData);
+ delay = pSinkEntry->data;
+
+ if (pSinkData->cycle > pSourceData->cycle + HOWARD_EPSILON) {
+ fChanged = 1;
+ pSourceData->cycle = pSinkData->cycle;
+ pSourceData->policy = sink;
+ }
+ }
+ }
+
+ // improve policy by correcting skews
+ if (!fChanged) {
+ Hash_PtrForEachEntry( hFwdDelays, pSourceEntry, i ) {
+ source = pSourceEntry->key;
+ pSourceData = (Seq_HowardData_t *)Hash_PtrEntry( hNodeData, source, 0 );
+ assert(pSourceData);
+ hOutgoing = (Hash_Flt_t *)(pSourceEntry->data);
+ assert(hOutgoing);
+ Hash_FltForEachEntry( hOutgoing, pSinkEntry, j ) {
+ sink = pSinkEntry->key;
+ pSinkData = (Seq_HowardData_t *)Hash_PtrEntry( hNodeData, sink, 0 );
+ assert(pSinkData);
+ delay = pSinkEntry->data;
+
+ if (pSinkData->cycle < 0.0 || pSinkData->cycle < pSourceData->cycle)
+ continue;
+
+ t = delay - pSinkData->cycle + pSinkData->skew;
+ if (t > pSourceData->skew + HOWARD_EPSILON) {
+ fChanged = 1;
+ pSourceData->skew = t;
+ pSourceData->policy = sink;
+ }
+ }
+ }
+ }
+
+ if (fVerbose) printf("Iteration %d \t Period = %.2f\n", iteration, maxMeanCycle);
+ } while (fChanged);
+
+ // set global skew, mmct
+ pNodeData = Hash_PtrEntry( hNodeData, -1, 0 );
+ pNtk->globalSkew = -pNodeData->skew;
+ pNtk->maxMeanCycle = maxMeanCycle;
+
+ // set endpoint skews
+ Vec_FltGrow( pNtk->vSkews, Abc_NtkLatchNum( pNtk ) );
+ pNtk->vSkews->nSize = Abc_NtkLatchNum( pNtk );
+ Abc_NtkForEachLatch( pNtk, pObj, i ) {
+ pNodeData = Hash_PtrEntry( hNodeData, pObj->Id, 0 );
+ // skews are set based on latch # NOT id #
+ Abc_NtkSetLatSkew( pNtk, i, pNodeData->skew );
+ }
+
+ // free node data
+ Hash_PtrForEachEntry( hNodeData, pNodeEntry, i ) {
+ pNodeData = (Seq_HowardData_t *)(pNodeEntry->data);
+ FREE( pNodeData );
+ }
+ Hash_PtrFree(hNodeData);
+
+ // free delay data
+ Hash_PtrForEachEntry( hFwdDelays, pSourceEntry, i ) {
+ Hash_FltFree( (Hash_Flt_t *)(pSourceEntry->data) );
+ }
+ Hash_PtrFree(hFwdDelays);
+
+ return maxMeanCycle;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the mean cycle times of current policy graph.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkHowardLoop( Abc_Ntk_t * pNtk, Hash_Ptr_t * hFwdDelays,
+ Hash_Ptr_t * hNodeData, int node,
+ int *howardDepth, float *howardDelay, int *howardSink,
+ float *maxMeanCycle) {
+
+ Seq_HowardData_t * pNodeData, *pToData;
+ float delay, t;
+
+ pNodeData = (Seq_HowardData_t *)Hash_PtrEntry( hNodeData, node, 0 );
+ assert(pNodeData);
+ pNodeData->visited = 1;
+ pNodeData->mark = ++(*howardDepth);
+ pNodeData->delay = (*howardDelay);
+ if (pNodeData->policy) {
+ pToData = (Seq_HowardData_t *)Hash_PtrEntry( hNodeData, pNodeData->policy, 0 );
+ assert(pToData);
+ delay = Seq_NtkGetPathDelay( hFwdDelays, node, pNodeData->policy );
+ assert(delay > 0.0);
+ (*howardDelay) += delay;
+ if (pToData->mark) {
+ t = (*howardDelay - pToData->delay) / (*howardDepth - pToData->mark + 1);
+ pNodeData->cycle = t;
+ pNodeData->skew = 0.0;
+ if (*maxMeanCycle < t) {
+ *maxMeanCycle = t;
+ *howardSink = pNodeData->policy;
+ }
+ } else {
+ if(!pToData->visited) {
+ Seq_NtkHowardLoop(pNtk, hFwdDelays, hNodeData, pNodeData->policy,
+ howardDepth, howardDelay, howardSink, maxMeanCycle);
+ }
+ if(pToData->cycle > 0) {
+ t = delay - pToData->cycle + pToData->skew;
+ pNodeData->skew = t;
+ pNodeData->cycle = pToData->cycle;
+ }
+ }
+ }
+ *howardDelay = pNodeData->delay;
+ pNodeData->mark = 0;
+ --(*howardDepth);
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the register-to-register delays.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Hash_Ptr_t * Seq_NtkPathDelays( Abc_Ntk_t * pNtk, int fVerbose ) {
+
+ Abc_Time_t * pTime, ** ppTimes;
+ Abc_Obj_t * pObj, * pDriver, * pStart, * pFanout;
+ Vec_Ptr_t * vNodes, * vEndpoints;
+ int i, j, nPaths = 0;
+ Hash_Flt_t * hOutgoing;
+ Hash_Ptr_t * hFwdDelays;
+ float nMaxPath = 0, nSumPath = 0;
+
+ extern void Abc_NtkTimePrepare( Abc_Ntk_t * pNtk );
+ extern void Abc_NodeDelayTraceArrival( Abc_Obj_t * pNode );
+
+ if (fVerbose) printf("Gathering path delays...\n");
+
+ hFwdDelays = Hash_PtrAlloc( Abc_NtkCiNum( pNtk ) );
+
+ assert( Abc_NtkIsMappedLogic(pNtk) );
+
+ Abc_NtkTimePrepare( pNtk );
+ ppTimes = (Abc_Time_t **)pNtk->pManTime->vArrs->pArray;
+ vNodes = Vec_PtrAlloc( 100 );
+ vEndpoints = Vec_PtrAlloc( 100 );
+
+ // set the initial times (i.e. ignore all inputs)
+ Abc_NtkForEachObj( pNtk, pObj, i) {
+ pTime = ppTimes[pObj->Id];
+ pTime->Fall = pTime->Rise = pTime->Worst = -ABC_INFINITY;
+ }
+
+ // starting at each Ci, compute timing forward
+ Abc_NtkForEachCi( pNtk, pStart, j ) {
+
+ hOutgoing = Hash_FltAlloc( 10 );
+ Hash_PtrWriteEntry( hFwdDelays, pStart->Id, (void *)(hOutgoing) );
+
+ // seed the starting point of interest
+ pTime = ppTimes[pStart->Id];
+ pTime->Fall = pTime->Rise = pTime->Worst = 0.0;
+
+ // find a DFS ordering from the start
+ Abc_NtkIncrementTravId( pNtk );
+ Abc_NodeSetTravIdCurrent( pStart );
+ pObj = Abc_ObjFanout0Ntk(pStart);
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ Abc_NtkDfsReverse_rec2( pFanout, vNodes, vEndpoints );
+ if ( Abc_ObjIsCo( pStart ) )
+ Vec_PtrPush( vEndpoints, pStart );
+
+ // do timing analysis
+ for ( i = vNodes->nSize-1; i >= 0; --i )
+ Abc_NodeDelayTraceArrival( vNodes->pArray[i] );
+
+ // there is a path to each set of Co endpoints
+ Vec_PtrForEachEntry( vEndpoints, pObj, i )
+ {
+ assert(pObj);
+ assert( Abc_ObjIsCo( pObj ) );
+ pDriver = Abc_ObjFanin0(pObj);
+ pTime = Abc_NodeArrival(pDriver);
+ if ( pTime->Worst > 0 ) {
+ Hash_FltWriteEntry( hOutgoing, pObj->Id, pTime->Worst );
+ nPaths++;
+ // if (fVerbose) printf("\tpath %d,%d delay = %f\n", pStart->Id, pObj->Id, pTime->Worst);
+ nSumPath += pTime->Worst;
+ if (pTime->Worst > nMaxPath)
+ nMaxPath = pTime->Worst;
+ }
+ }
+
+ // clear the times that were altered
+ for ( i = 0; i < vNodes->nSize; i++ ) {
+ pObj = (Abc_Obj_t *)(vNodes->pArray[i]);
+ pTime = ppTimes[pObj->Id];
+ pTime->Fall = pTime->Rise = pTime->Worst = -ABC_INFINITY;
+ }
+ pTime = ppTimes[pStart->Id];
+ pTime->Fall = pTime->Rise = pTime->Worst = -ABC_INFINITY;
+
+ Vec_PtrClear( vNodes );
+ Vec_PtrClear( vEndpoints );
+ }
+
+ Vec_PtrFree( vNodes );
+
+ // rezero Cis (note: these should be restored to values if they were nonzero)
+ Abc_NtkForEachCi( pNtk, pObj, i) {
+ pTime = ppTimes[pObj->Id];
+ pTime->Fall = pTime->Rise = pTime->Worst = 0.0;
+ }
+
+ if (fVerbose) printf("Num. paths = %d\tMax. Path Delay = %.2f\tAvg. Path Delay = %.2f\n", nPaths, nMaxPath, nSumPath / nPaths);
+ return hFwdDelays;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Merges all the Pios together into one ID = -1.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkMergePios( Abc_Ntk_t * pNtk, Hash_Ptr_t * hFwdDelays,
+ int fVerbose ) {
+
+ Abc_Obj_t * pObj;
+ Hash_Flt_Entry_t * pSinkEntry;
+ Hash_Ptr_Entry_t * pSourceEntry;
+ Hash_Flt_t * hOutgoing, * hPioSource;
+ int i, j;
+ int source, sink, nMerges = 0;
+ float delay = 0, max_delay = 0;
+ Vec_Int_t * vFreeList;
+
+ vFreeList = Vec_IntAlloc( 10 );
+
+ // create a new "-1" source entry for the Pios
+ hPioSource = Hash_FltAlloc( 100 );
+ Hash_PtrWriteEntry( hFwdDelays, -1, (void *)(hPioSource) );
+
+ // merge all edges with a Pio as a source
+ Abc_NtkForEachPi( pNtk, pObj, i ) {
+ source = pObj->Id;
+ hOutgoing = (Hash_Flt_t *)Hash_PtrEntry( hFwdDelays, source, 0 );
+ if (!hOutgoing) continue;
+
+ Hash_PtrForEachEntry( hOutgoing, pSinkEntry, j ) {
+ nMerges++;
+ sink = pSinkEntry->key;
+ delay = pSinkEntry->data;
+ if (Hash_FltEntry( hPioSource, sink, 1 ) < delay) {
+ Hash_FltWriteEntry( hPioSource, sink, delay );
+ }
+ }
+
+ Hash_FltFree( hOutgoing );
+ Hash_PtrRemove( hFwdDelays, source );
+ }
+
+ // merge all edges with a Pio as a sink
+ Hash_PtrForEachEntry( hFwdDelays, pSourceEntry, i ) {
+ hOutgoing = (Hash_Flt_t *)(pSourceEntry->data);
+ Hash_FltForEachEntry( hOutgoing, pSinkEntry, j ) {
+ sink = pSinkEntry->key;
+ delay = pSinkEntry->data;
+
+ max_delay = -ABC_INFINITY;
+ if (Abc_ObjIsPo( Abc_NtkObj( pNtk, sink ) )) {
+ nMerges++;
+ if (delay > max_delay)
+ max_delay = delay;
+ Vec_IntPush( vFreeList, sink );
+ }
+ }
+ if (max_delay != -ABC_INFINITY)
+ Hash_FltWriteEntry( hOutgoing, -1, delay );
+ // do freeing
+ while( vFreeList->nSize > 0 ) {
+ Hash_FltRemove( hOutgoing, Vec_IntPop( vFreeList ) );
+ }
+ }
+
+ if (fVerbose) printf("Merged %d paths into one Pio node\n", nMerges);
+
+}
+
+/**Function*************************************************************
+
+ Synopsis [This is a modification of routine from abcDfs.c]
+
+ Description [Recursive DFS from a starting point. Keeps the endpoints.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_NtkDfsReverse_rec2( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes, Vec_Ptr_t * vEndpoints )
+{
+ Abc_Obj_t * pFanout;
+ int i;
+ assert( !Abc_ObjIsNet(pNode) );
+ // if this node is already visited, skip
+ if ( Abc_NodeIsTravIdCurrent( pNode ) )
+ return;
+ // mark the node as visited
+ Abc_NodeSetTravIdCurrent( pNode );
+ // terminate at the Co
+ if ( Abc_ObjIsCo(pNode) ) {
+ Vec_PtrPush( vEndpoints, pNode );
+ return;
+ }
+ assert( Abc_ObjIsNode( pNode ) );
+ // visit the transitive fanin of the node
+ pNode = Abc_ObjFanout0Ntk(pNode);
+ Abc_ObjForEachFanout( pNode, pFanout, i )
+ Abc_NtkDfsReverse_rec2( pFanout, vNodes, vEndpoints );
+ // add the node after the fanins have been added
+ Vec_PtrPush( vNodes, pNode );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Converts all skews into forward skews 0<skew<T.]
+
+ Description [Can also minimize total skew by changing global skew.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkSkewForward( Abc_Ntk_t * pNtk, float period, int fMinimize ) {
+
+ Abc_Obj_t * pObj;
+ int i;
+ float skew;
+ float currentSum = 0, bestSum = ABC_INFINITY;
+ float currentOffset = 0, nextStep, bestOffset = 0;
+
+ assert( pNtk->vSkews->nSize >= Abc_NtkLatchNum( pNtk )-1 );
+
+ if (fMinimize) {
+ // search all offsets for the one that minimizes sum of skews
+ while(currentOffset < period) {
+ currentSum = 0;
+ nextStep = period;
+ Abc_NtkForEachLatch( pNtk, pObj, i ) {
+ skew = Abc_NtkGetLatSkew( pNtk, i ) + currentOffset;
+ skew = (float)(skew - period*floor(skew/period));
+ currentSum += skew;
+ if (skew > ZERO_SLOP && skew < nextStep) {
+ nextStep = skew;
+ }
+ }
+
+ if (currentSum < bestSum) {
+ bestSum = currentSum;
+ bestOffset = currentOffset;
+ }
+ currentOffset += nextStep;
+ }
+ printf("Offseting all skews by %.2f\n", bestOffset);
+ }
+
+ // convert global skew into forward skew
+ pNtk->globalSkew = pNtk->globalSkew - bestOffset;
+ pNtk->globalSkew = (float)(pNtk->globalSkew - period*floor(pNtk->globalSkew/period));
+ assert(pNtk->globalSkew>= 0 && pNtk->globalSkew < period);
+
+ // convert endpoint skews into forward skews
+ Abc_NtkForEachLatch( pNtk, pObj, i ) {
+ skew = Abc_NtkGetLatSkew( pNtk, i ) + bestOffset;
+ skew = (float)(skew - period*floor(skew/period));
+ REMOVE_ZERO_SLOP( skew );
+ assert(skew >=0 && skew < period);
+
+ Abc_NtkSetLatSkew( pNtk, i, skew );
+ }
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
diff --git a/src/base/seq/seqRetCore.c b/src/base/seq/seqRetCore.c
new file mode 100644
index 00000000..27638644
--- /dev/null
+++ b/src/base/seq/seqRetCore.c
@@ -0,0 +1,492 @@
+/**CFile****************************************************************
+
+ FileName [seqRetCore.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [The core of FPGA mapping/retiming package.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqRetCore.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+#include "dec.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+static Abc_Ntk_t * Seq_NtkRetimeDerive( Abc_Ntk_t * pNtk, int fVerbose );
+static Abc_Obj_t * Seq_NodeRetimeDerive( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode, char * pSop, Vec_Ptr_t * vFanins );
+static Abc_Ntk_t * Seq_NtkRetimeReconstruct( Abc_Ntk_t * pNtkOld, Abc_Ntk_t * pNtkSeq );
+static Abc_Obj_t * Seq_EdgeReconstruct_rec( Abc_Obj_t * pGoal, Abc_Obj_t * pNode );
+static Abc_Obj_t * Seq_EdgeReconstructPO( Abc_Obj_t * pNode );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Performs FPGA mapping and retiming.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Seq_NtkRetime( Abc_Ntk_t * pNtk, int nMaxIters, int fInitial, int fVerbose )
+{
+ Abc_Seq_t * p;
+ Abc_Ntk_t * pNtkSeq, * pNtkNew;
+ int RetValue;
+ assert( !Abc_NtkHasAig(pNtk) );
+ // derive the isomorphic seq AIG
+ pNtkSeq = Seq_NtkRetimeDerive( pNtk, fVerbose );
+ p = pNtkSeq->pManFunc;
+ p->nMaxIters = nMaxIters;
+
+ if ( !fInitial )
+ Seq_NtkLatchSetValues( pNtkSeq, ABC_INIT_DC );
+ // find the best mapping and retiming
+ if ( !Seq_NtkRetimeDelayLags( pNtk, pNtkSeq, fVerbose ) )
+ return NULL;
+
+ // implement the retiming
+ RetValue = Seq_NtkImplementRetiming( pNtkSeq, p->vLags, fVerbose );
+ if ( RetValue == 0 )
+ printf( "Retiming completed but initial state computation has failed.\n" );
+//return pNtkSeq;
+
+ // create the final mapped network
+ pNtkNew = Seq_NtkRetimeReconstruct( pNtk, pNtkSeq );
+ Abc_NtkDelete( pNtkSeq );
+ return pNtkNew;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives the isomorphic seq AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Seq_NtkRetimeDerive( Abc_Ntk_t * pNtk, int fVerbose )
+{
+ Abc_Seq_t * p;
+ Abc_Ntk_t * pNtkNew;
+ Abc_Obj_t * pObj, * pFanin, * pMirror;
+ Vec_Ptr_t * vMapAnds, * vMirrors;
+ Vec_Vec_t * vMapFanins;
+ int i, k, RetValue, fHasBdds;
+ char * pSop;
+
+ // make sure it is an AIG without self-feeding latches
+ assert( !Abc_NtkHasAig(pNtk) );
+ if ( RetValue = Abc_NtkRemoveSelfFeedLatches(pNtk) )
+ printf( "Modified %d self-feeding latches. The result may not verify.\n", RetValue );
+ assert( Abc_NtkCountSelfFeedLatches(pNtk) == 0 );
+
+ // remove the dangling nodes
+ Abc_NtkCleanup( pNtk, fVerbose );
+
+ // transform logic functions from BDD to SOP
+ if ( fHasBdds = Abc_NtkIsBddLogic(pNtk) )
+ {
+ if ( !Abc_NtkBddToSop(pNtk, 0) )
+ {
+ printf( "Seq_NtkRetimeDerive(): Converting to SOPs has failed.\n" );
+ return NULL;
+ }
+ }
+
+ // start the network
+ pNtkNew = Abc_NtkAlloc( ABC_NTK_SEQ, ABC_FUNC_AIG, 1 );
+ // duplicate the name and the spec
+ pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
+ pNtkNew->pSpec = Extra_UtilStrsav(pNtk->pSpec);
+
+ // map the constant nodes
+ Abc_NtkCleanCopy( pNtk );
+ // clone the PIs/POs/latches
+ Abc_NtkForEachPi( pNtk, pObj, i )
+ Abc_NtkDupObj( pNtkNew, pObj, 0 );
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Abc_NtkDupObj( pNtkNew, pObj, 0 );
+ // copy the names
+ Abc_NtkForEachPi( pNtk, pObj, i )
+ Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
+
+ // create one AND for each logic node in the topological order
+ vMapAnds = Abc_NtkDfs( pNtk, 0 );
+ Vec_PtrForEachEntry( vMapAnds, pObj, i )
+ {
+ if ( pObj->Id == 0 )
+ {
+ pObj->pCopy = Abc_AigConst1(pNtkNew);
+ continue;
+ }
+ pObj->pCopy = Abc_NtkCreateNode( pNtkNew );
+ }
+
+ // make the new seq AIG point to the old network through pNext
+ Abc_NtkForEachObj( pNtk, pObj, i )
+ if ( pObj->pCopy ) pObj->pCopy->pNext = pObj;
+
+ // make latches point to the latch fanins
+ Abc_NtkForEachLatch( pNtk, pObj, i )
+ {
+ assert( !Abc_ObjIsLatch(Abc_ObjFanin0(pObj)) );
+ pObj->pCopy = Abc_ObjFanin0(pObj)->pCopy;
+ }
+
+ // create internal AND nodes w/o strashing for each logic node (including constants)
+ vMapFanins = Vec_VecStart( Vec_PtrSize(vMapAnds) );
+ Vec_PtrForEachEntry( vMapAnds, pObj, i )
+ {
+ // get the SOP of the node
+ if ( Abc_NtkHasMapping(pNtk) )
+ pSop = Mio_GateReadSop(pObj->pData);
+ else
+ pSop = pObj->pData;
+ pFanin = Seq_NodeRetimeDerive( pNtkNew, pObj, pSop, Vec_VecEntry(vMapFanins, i) );
+ Abc_ObjAddFanin( pObj->pCopy, pFanin );
+ Abc_ObjAddFanin( pObj->pCopy, pFanin );
+ }
+ // connect the POs
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Abc_ObjAddFanin( pObj->pCopy, Abc_ObjFanin0(pObj)->pCopy );
+
+ // start the storage for initial states
+ p = pNtkNew->pManFunc;
+ Seq_Resize( p, Abc_NtkObjNumMax(pNtkNew) );
+
+ // add the sequential edges
+ Vec_PtrForEachEntry( vMapAnds, pObj, i )
+ {
+ vMirrors = Vec_VecEntry( vMapFanins, i );
+ Abc_ObjForEachFanin( pObj, pFanin, k )
+ {
+ pMirror = Vec_PtrEntry( vMirrors, k );
+ if ( Abc_ObjIsLatch(pFanin) )
+ {
+ Seq_NodeInsertFirst( pMirror, 0, Abc_LatchInit(pFanin) );
+ Seq_NodeInsertFirst( pMirror, 1, Abc_LatchInit(pFanin) );
+ }
+ }
+ }
+ // add the sequential edges to the POs
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ {
+ pFanin = Abc_ObjFanin0(pObj);
+ if ( Abc_ObjIsLatch(pFanin) )
+ Seq_NodeInsertFirst( pObj->pCopy, 0, Abc_LatchInit(pFanin) );
+ }
+
+
+ // save the fanin/delay info
+ p->vMapAnds = vMapAnds;
+ p->vMapFanins = vMapFanins;
+ p->vMapCuts = Vec_VecStart( Vec_PtrSize(p->vMapAnds) );
+ p->vMapDelays = Vec_VecStart( Vec_PtrSize(p->vMapAnds) );
+ Vec_PtrForEachEntry( p->vMapAnds, pObj, i )
+ {
+ // change the node to be the new one
+ Vec_PtrWriteEntry( p->vMapAnds, i, pObj->pCopy );
+ // collect the new fanins of this node
+ Abc_ObjForEachFanin( pObj, pFanin, k )
+ Vec_VecPush( p->vMapCuts, i, (void *)( (pFanin->pCopy->Id << 8) | Abc_ObjIsLatch(pFanin) ) );
+ // collect the delay info
+ if ( !Abc_NtkHasMapping(pNtk) )
+ {
+ Abc_ObjForEachFanin( pObj, pFanin, k )
+ Vec_VecPush( p->vMapDelays, i, (void *)Abc_Float2Int(1.0) );
+ }
+ else
+ {
+ Mio_Pin_t * pPin = Mio_GateReadPins(pObj->pData);
+ float Max, tDelayBlockRise, tDelayBlockFall;
+ Abc_ObjForEachFanin( pObj, pFanin, k )
+ {
+ tDelayBlockRise = (float)Mio_PinReadDelayBlockRise( pPin );
+ tDelayBlockFall = (float)Mio_PinReadDelayBlockFall( pPin );
+ Max = ABC_MAX( tDelayBlockRise, tDelayBlockFall );
+ Vec_VecPush( p->vMapDelays, i, (void *)Abc_Float2Int(Max) );
+ pPin = Mio_PinReadNext(pPin);
+ }
+ }
+ }
+
+ // set the cutset composed of latch drivers
+// Abc_NtkAigCutsetCopy( pNtk );
+// Seq_NtkLatchGetEqualFaninNum( pNtkNew );
+
+ // convert the network back into BDDs if this is how it was
+ if ( fHasBdds )
+ Abc_NtkSopToBdd(pNtk);
+
+ // copy EXDC and check correctness
+ if ( pNtk->pExdc )
+ fprintf( stdout, "Warning: EXDC is not copied when converting to sequential AIG.\n" );
+ if ( !Abc_NtkCheck( pNtkNew ) )
+ fprintf( stdout, "Seq_NtkRetimeDerive(): Network check has failed.\n" );
+ return pNtkNew;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Strashes one logic node using its SOP.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Obj_t * Seq_NodeRetimeDerive( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pRoot, char * pSop, Vec_Ptr_t * vFanins )
+{
+ Dec_Graph_t * pFForm;
+ Dec_Node_t * pNode;
+ Abc_Obj_t * pResult, * pFanin, * pMirror;
+ int i, nFanins;
+
+ // get the number of node's fanins
+ nFanins = Abc_ObjFaninNum( pRoot );
+ assert( nFanins == Abc_SopGetVarNum(pSop) );
+ if ( nFanins < 2 )
+ {
+ if ( Abc_SopIsConst1(pSop) )
+ pFanin = Abc_AigConst1(pNtkNew);
+ else if ( Abc_SopIsConst0(pSop) )
+ pFanin = Abc_ObjNot( Abc_AigConst1(pNtkNew) );
+ else if ( Abc_SopIsBuf(pSop) )
+ pFanin = Abc_ObjFanin0(pRoot)->pCopy;
+ else if ( Abc_SopIsInv(pSop) )
+ pFanin = Abc_ObjNot( Abc_ObjFanin0(pRoot)->pCopy );
+ else
+ assert( 0 );
+ // create the node with these fanins
+ pMirror = Abc_NtkCreateNode( pNtkNew );
+ Abc_ObjAddFanin( pMirror, pFanin );
+ Abc_ObjAddFanin( pMirror, pFanin );
+ Vec_PtrPush( vFanins, pMirror );
+ return pMirror;
+ }
+
+ // perform factoring
+ pFForm = Dec_Factor( pSop );
+ // collect the fanins
+ Dec_GraphForEachLeaf( pFForm, pNode, i )
+ {
+ pFanin = Abc_ObjFanin(pRoot,i)->pCopy;
+ pMirror = Abc_NtkCreateNode( pNtkNew );
+ Abc_ObjAddFanin( pMirror, pFanin );
+ Abc_ObjAddFanin( pMirror, pFanin );
+ Vec_PtrPush( vFanins, pMirror );
+ pNode->pFunc = pMirror;
+ }
+ // perform strashing
+ pResult = Dec_GraphToNetworkNoStrash( pNtkNew, pFForm );
+ Dec_GraphFree( pFForm );
+ return pResult;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Reconstructs the network after retiming.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Ntk_t * Seq_NtkRetimeReconstruct( Abc_Ntk_t * pNtkOld, Abc_Ntk_t * pNtkSeq )
+{
+ Abc_Seq_t * p = pNtkSeq->pManFunc;
+ Seq_Lat_t * pRing0, * pRing1;
+ Abc_Ntk_t * pNtkNew;
+ Abc_Obj_t * pObj, * pFanin, * pFaninNew, * pMirror;
+ Vec_Ptr_t * vMirrors;
+ int i, k;
+
+ assert( !Abc_NtkIsSeq(pNtkOld) );
+ assert( Abc_NtkIsSeq(pNtkSeq) );
+
+ // transfer the pointers pNtkOld->pNtkSeq from pCopy to pNext
+ Abc_NtkForEachObj( pNtkOld, pObj, i )
+ pObj->pNext = pObj->pCopy;
+
+ // start the final network
+ pNtkNew = Abc_NtkStartFrom( pNtkSeq, pNtkOld->ntkType, pNtkOld->ntkFunc );
+
+ // transfer the pointers to the old network
+ if ( Abc_AigConst1(pNtkOld) )
+ Abc_AigConst1(pNtkOld)->pCopy = Abc_AigConst1(pNtkNew);
+ Abc_NtkForEachPi( pNtkOld, pObj, i )
+ pObj->pCopy = pObj->pNext->pCopy;
+ Abc_NtkForEachPo( pNtkOld, pObj, i )
+ pObj->pCopy = pObj->pNext->pCopy;
+
+ // copy the internal nodes of the old network into the new network
+ // transfer the pointers pNktOld->pNtkNew to pNtkSeq->pNtkNew
+ Abc_NtkForEachNode( pNtkOld, pObj, i )
+ {
+ if ( i == 0 ) continue;
+ Abc_NtkDupObj( pNtkNew, pObj, 0 );
+ pObj->pNext->pCopy = pObj->pCopy;
+ }
+ Abc_NtkForEachLatch( pNtkOld, pObj, i )
+ pObj->pCopy = Abc_ObjFanin0(pObj)->pCopy;
+
+ // share the latches
+ Seq_NtkShareLatches( pNtkNew, pNtkSeq );
+
+ // connect the objects
+// Abc_NtkForEachNode( pNtkOld, pObj, i )
+ Vec_PtrForEachEntry( p->vMapAnds, pObj, i )
+ {
+ // pObj is from pNtkSeq - transform to pNtkOld
+ pObj = pObj->pNext;
+ // iterate through the fanins of this node in the old network
+ vMirrors = Vec_VecEntry( p->vMapFanins, i );
+ Abc_ObjForEachFanin( pObj, pFanin, k )
+ {
+ pMirror = Vec_PtrEntry( vMirrors, k );
+ assert( Seq_ObjFaninL0(pMirror) == Seq_ObjFaninL1(pMirror) );
+ pRing0 = Seq_NodeGetRing( pMirror, 0 );
+ pRing1 = Seq_NodeGetRing( pMirror, 1 );
+ if ( pRing0 == NULL )
+ {
+ Abc_ObjAddFanin( pObj->pCopy, pFanin->pCopy );
+ continue;
+ }
+// assert( pRing0->pLatch == pRing1->pLatch );
+ if ( pRing0->pLatch->pData > pRing1->pLatch->pData )
+ Abc_ObjAddFanin( pObj->pCopy, pRing0->pLatch );
+ else
+ Abc_ObjAddFanin( pObj->pCopy, pRing1->pLatch );
+ }
+ }
+
+ // connect the POs
+ Abc_NtkForEachPo( pNtkOld, pObj, i )
+ {
+ pFanin = Abc_ObjFanin0(pObj);
+ pRing0 = Seq_NodeGetRing( Abc_NtkPo(pNtkSeq, i), 0 );
+ if ( pRing0 )
+ pFaninNew = pRing0->pLatch;
+ else
+ pFaninNew = pFanin->pCopy;
+ assert( pFaninNew != NULL );
+ Abc_ObjAddFanin( pObj->pCopy, pFaninNew );
+ }
+
+ // clean the result of latch sharing
+ Seq_NtkShareLatchesClean( pNtkSeq );
+
+ // add the latches and their names
+ Abc_NtkAddDummyBoxNames( pNtkNew );
+ Abc_NtkOrderCisCos( pNtkNew );
+ // fix the problem with complemented and duplicated CO edges
+ Abc_NtkLogicMakeSimpleCos( pNtkNew, 1 );
+ if ( !Abc_NtkCheck( pNtkNew ) )
+ fprintf( stdout, "Seq_NtkRetimeReconstruct(): Network check has failed.\n" );
+ return pNtkNew;
+
+}
+
+/**Function*************************************************************
+
+ Synopsis [Reconstructs the network after retiming.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Obj_t * Seq_EdgeReconstruct_rec( Abc_Obj_t * pGoal, Abc_Obj_t * pNode )
+{
+ Seq_Lat_t * pRing;
+ Abc_Obj_t * pFanin, * pRes = NULL;
+
+ if ( !Abc_AigNodeIsAnd(pNode) )
+ return NULL;
+
+ // consider the first fanin
+ pFanin = Abc_ObjFanin0(pNode);
+ if ( pFanin->pCopy == NULL ) // internal node
+ pRes = Seq_EdgeReconstruct_rec( pGoal, pFanin );
+ else if ( pFanin == pGoal )
+ {
+ if ( pRing = Seq_NodeGetRing( pNode, 0 ) )
+ pRes = pRing->pLatch;
+ else
+ pRes = pFanin->pCopy;
+ }
+ if ( pRes != NULL )
+ return pRes;
+
+ // consider the second fanin
+ pFanin = Abc_ObjFanin1(pNode);
+ if ( pFanin->pCopy == NULL ) // internal node
+ pRes = Seq_EdgeReconstruct_rec( pGoal, pFanin );
+ else if ( pFanin == pGoal )
+ {
+ if ( pRing = Seq_NodeGetRing( pNode, 1 ) )
+ pRes = pRing->pLatch;
+ else
+ pRes = pFanin->pCopy;
+ }
+ return pRes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Reconstructs the network after retiming.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Obj_t * Seq_EdgeReconstructPO( Abc_Obj_t * pNode )
+{
+ Seq_Lat_t * pRing;
+ assert( Abc_ObjIsPo(pNode) );
+ if ( pRing = Seq_NodeGetRing( pNode, 0 ) )
+ return pRing->pLatch;
+ else
+ return Abc_ObjFanin0(pNode)->pCopy;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/base/seq/seqRetIter.c b/src/base/seq/seqRetIter.c
new file mode 100644
index 00000000..99c50914
--- /dev/null
+++ b/src/base/seq/seqRetIter.c
@@ -0,0 +1,403 @@
+/**CFile****************************************************************
+
+ FileName [seqRetIter.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [Iterative delay computation in FPGA mapping/retiming package.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqRetIter.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+#include "main.h"
+#include "fpga.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+static float Seq_NtkMappingSearch_rec( Abc_Ntk_t * pNtk, float FiMin, float FiMax, float Delta, int fVerbose );
+static int Seq_NtkMappingForPeriod( Abc_Ntk_t * pNtk, float Fi, int fVerbose );
+static int Seq_NtkNodeUpdateLValue( Abc_Obj_t * pObj, float Fi, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vDelays );
+static void Seq_NodeRetimeSetLag_rec( Abc_Obj_t * pNode, char Lag );
+
+static void Seq_NodePrintInfo( Abc_Obj_t * pNode );
+static void Seq_NodePrintInfoPlus( Abc_Obj_t * pNode );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Computes the retiming lags for arbitrary network.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkRetimeDelayLags( Abc_Ntk_t * pNtkOld, Abc_Ntk_t * pNtk, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Abc_Obj_t * pNode;
+ float FiMax, Delta;
+ int i, RetValue;
+ char NodeLag;
+
+ assert( Abc_NtkIsSeq( pNtk ) );
+
+ // the root AND gates and node delay should be assigned
+ assert( p->vMapAnds );
+ assert( p->vMapCuts );
+ assert( p->vMapDelays );
+ assert( p->vMapFanins );
+
+ // guess the upper bound on the clock period
+ if ( Abc_NtkHasMapping(pNtkOld) )
+ {
+ // assign the accuracy for min-period computation
+ Delta = Mio_LibraryReadDelayNand2Max(Abc_FrameReadLibGen());
+ if ( Delta == 0.0 )
+ {
+ Delta = Mio_LibraryReadDelayAnd2Max(Abc_FrameReadLibGen());
+ if ( Delta == 0.0 )
+ {
+ printf( "Cannot retime/map if the library does not have NAND2 or AND2.\n" );
+ return 0;
+ }
+ }
+ // get the upper bound on the clock period
+ FiMax = Delta * 2 + Abc_NtkDelayTrace(pNtkOld);
+ Delta /= 2;
+ }
+ else
+ {
+ FiMax = (float)2.0 + Abc_NtkGetLevelNum(pNtkOld);
+ Delta = 1;
+ }
+
+ // make sure this clock period is feasible
+ if ( !Seq_NtkMappingForPeriod( pNtk, FiMax, fVerbose ) )
+ {
+ printf( "Error: The upper bound on the clock period cannot be computed.\n" );
+ printf( "The reason for this error may be the presence in the circuit of logic\n" );
+ printf( "that is not reachable from the PIs. Mapping/retiming is not performed.\n" );
+ return 0;
+ }
+
+ // search for the optimal clock period between 0 and nLevelMax
+ p->FiBestFloat = Seq_NtkMappingSearch_rec( pNtk, 0.0, FiMax, Delta, fVerbose );
+
+ // recompute the best l-values
+ RetValue = Seq_NtkMappingForPeriod( pNtk, p->FiBestFloat, fVerbose );
+ assert( RetValue );
+
+ // fix the problem with non-converged delays
+ Vec_PtrForEachEntry( p->vMapAnds, pNode, i )
+ if ( Seq_NodeGetLValueP(pNode) < -ABC_INFINITY/2 )
+ Seq_NodeSetLValueP( pNode, 0 );
+
+ // experiment by adding an epsilon to all LValues
+// Vec_PtrForEachEntry( p->vMapAnds, pNode, i )
+// Seq_NodeSetLValueP( pNode, Seq_NodeGetLValueP(pNode) - p->fEpsilon );
+
+ // save the retiming lags
+ // mark the nodes
+ Vec_PtrForEachEntry( p->vMapAnds, pNode, i )
+ pNode->fMarkA = 1;
+ // process the nodes
+ Vec_StrFill( p->vLags, p->nSize, 0 );
+ Vec_PtrForEachEntry( p->vMapAnds, pNode, i )
+ {
+ if ( Vec_PtrSize( Vec_VecEntry(p->vMapCuts, i) ) == 0 )
+ {
+ Seq_NodeSetLag( pNode, 0 );
+ continue;
+ }
+ NodeLag = Seq_NodeComputeLagFloat( Seq_NodeGetLValueP(pNode), p->FiBestFloat );
+ Seq_NodeRetimeSetLag_rec( pNode, NodeLag );
+ }
+ // unmark the nodes
+ Vec_PtrForEachEntry( p->vMapAnds, pNode, i )
+ pNode->fMarkA = 0;
+
+ // print the result
+ if ( fVerbose )
+ printf( "The best clock period is %6.2f.\n", p->FiBestFloat );
+/*
+ {
+ FILE * pTable;
+ pTable = fopen( "stats.txt", "a+" );
+ fprintf( pTable, "%s ", pNtk->pName );
+ fprintf( pTable, "%.2f ", FiBest );
+ fprintf( pTable, "\n" );
+ fclose( pTable );
+ }
+*/
+// Seq_NodePrintInfo( Abc_NtkObj(pNtk, 847) );
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs binary search for the optimal clock period.]
+
+ Description [Assumes that FiMin is infeasible while FiMax is feasible.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+float Seq_NtkMappingSearch_rec( Abc_Ntk_t * pNtk, float FiMin, float FiMax, float Delta, int fVerbose )
+{
+ float Median;
+ assert( FiMin < FiMax );
+ if ( FiMin + Delta >= FiMax )
+ return FiMax;
+ Median = FiMin + (FiMax - FiMin)/2;
+ if ( Seq_NtkMappingForPeriod( pNtk, Median, fVerbose ) )
+ return Seq_NtkMappingSearch_rec( pNtk, FiMin, Median, Delta, fVerbose ); // Median is feasible
+ else
+ return Seq_NtkMappingSearch_rec( pNtk, Median, FiMax, Delta, fVerbose ); // Median is infeasible
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns 1 if retiming with this clock period is feasible.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkMappingForPeriod( Abc_Ntk_t * pNtk, float Fi, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Vec_Ptr_t * vLeaves, * vDelays;
+ Abc_Obj_t * pObj;
+ int i, c, RetValue, fChange, Counter;
+ char * pReason = "";
+
+ // set l-values of all nodes to be minus infinity
+ Vec_IntFill( p->vLValues, p->nSize, Abc_Float2Int( (float)-ABC_INFINITY ) );
+
+ // set l-values of constants and PIs
+ pObj = Abc_NtkObj( pNtk, 0 );
+ Seq_NodeSetLValueP( pObj, 0.0 );
+ Abc_NtkForEachPi( pNtk, pObj, i )
+ Seq_NodeSetLValueP( pObj, 0.0 );
+
+ // update all values iteratively
+ Counter = 0;
+ for ( c = 0; c < p->nMaxIters; c++ )
+ {
+ fChange = 0;
+ Vec_PtrForEachEntry( p->vMapAnds, pObj, i )
+ {
+ Counter++;
+ vLeaves = Vec_VecEntry( p->vMapCuts, i );
+ vDelays = Vec_VecEntry( p->vMapDelays, i );
+ if ( Vec_PtrSize(vLeaves) == 0 )
+ {
+ Seq_NodeSetLValueP( pObj, 0.0 );
+ continue;
+ }
+ RetValue = Seq_NtkNodeUpdateLValue( pObj, Fi, vLeaves, vDelays );
+ if ( RetValue == SEQ_UPDATE_YES )
+ fChange = 1;
+ }
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ {
+ RetValue = Seq_NtkNodeUpdateLValue( pObj, Fi, NULL, NULL );
+ if ( RetValue == SEQ_UPDATE_FAIL )
+ break;
+ }
+ if ( RetValue == SEQ_UPDATE_FAIL )
+ break;
+ if ( fChange == 0 )
+ break;
+ }
+ if ( c == p->nMaxIters )
+ {
+ RetValue = SEQ_UPDATE_FAIL;
+ pReason = "(timeout)";
+ }
+ else
+ c++;
+
+ // report the results
+ if ( fVerbose )
+ {
+ if ( RetValue == SEQ_UPDATE_FAIL )
+ printf( "Period = %6.2f. Iterations = %3d. Updates = %10d. Infeasible %s\n", Fi, c, Counter, pReason );
+ else
+ printf( "Period = %6.2f. Iterations = %3d. Updates = %10d. Feasible\n", Fi, c, Counter );
+ }
+ return RetValue != SEQ_UPDATE_FAIL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the l-value of the node.]
+
+ Description [The node can be internal or a PO.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkNodeUpdateLValue( Abc_Obj_t * pObj, float Fi, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vDelays )
+{
+ Abc_Seq_t * p = pObj->pNtk->pManFunc;
+ float lValueOld, lValueNew, lValueCur, lValuePin;
+ unsigned SeqEdge;
+ Abc_Obj_t * pLeaf;
+ int i;
+
+ assert( !Abc_ObjIsPi(pObj) );
+ assert( Abc_ObjFaninNum(pObj) > 0 );
+ // consider the case of the PO
+ if ( Abc_ObjIsPo(pObj) )
+ {
+ lValueCur = Seq_NodeGetLValueP(Abc_ObjFanin0(pObj)) - Fi * Seq_ObjFaninL0(pObj);
+ return (lValueCur > Fi + p->fEpsilon)? SEQ_UPDATE_FAIL : SEQ_UPDATE_NO;
+ }
+ // get the new arrival time of the cut output
+ lValueNew = -ABC_INFINITY;
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ {
+ SeqEdge = (unsigned)pLeaf;
+ pLeaf = Abc_NtkObj( pObj->pNtk, SeqEdge >> 8 );
+ lValueCur = Seq_NodeGetLValueP(pLeaf) - Fi * (SeqEdge & 255);
+ lValuePin = Abc_Int2Float( (int)Vec_PtrEntry(vDelays, i) );
+ if ( lValueNew < lValuePin + lValueCur )
+ lValueNew = lValuePin + lValueCur;
+ }
+ // compare
+ lValueOld = Seq_NodeGetLValueP( pObj );
+ if ( lValueNew <= lValueOld + p->fEpsilon )
+ return SEQ_UPDATE_NO;
+ // update the values
+ if ( lValueNew > lValueOld + p->fEpsilon )
+ Seq_NodeSetLValueP( pObj, lValueNew );
+ return SEQ_UPDATE_YES;
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Add sequential edges.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NodeRetimeSetLag_rec( Abc_Obj_t * pNode, char Lag )
+{
+ Abc_Obj_t * pFanin;
+ if ( !Abc_AigNodeIsAnd(pNode) )
+ return;
+ Seq_NodeSetLag( pNode, Lag );
+ // consider the first fanin
+ pFanin = Abc_ObjFanin0(pNode);
+ if ( pFanin->fMarkA == 0 ) // internal node
+ Seq_NodeRetimeSetLag_rec( pFanin, Lag );
+ // consider the second fanin
+ pFanin = Abc_ObjFanin1(pNode);
+ if ( pFanin->fMarkA == 0 ) // internal node
+ Seq_NodeRetimeSetLag_rec( pFanin, Lag );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Add sequential edges.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NodePrintInfo( Abc_Obj_t * pNode )
+{
+ Abc_Seq_t * p = pNode->pNtk->pManFunc;
+ Abc_Obj_t * pFanin, * pObj, * pLeaf;
+ Vec_Ptr_t * vLeaves;
+ unsigned SeqEdge;
+ int i, Number;
+
+ // print the node
+ printf( " Node = %6d. LValue = %7.2f. Lag = %2d.\n",
+ pNode->Id, Seq_NodeGetLValueP(pNode), Seq_NodeGetLag(pNode) );
+
+ // find the number
+ Vec_PtrForEachEntry( p->vMapAnds, pObj, Number )
+ if ( pObj == pNode )
+ break;
+
+ // get the leaves
+ vLeaves = Vec_VecEntry( p->vMapCuts, Number );
+
+ // print the leaves
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ {
+ SeqEdge = (unsigned)pLeaf;
+ pFanin = Abc_NtkObj( pNode->pNtk, SeqEdge >> 8 );
+ // print the leaf
+ printf( " Fanin%d(%d) = %6d. LValue = %7.2f. Lag = %2d.\n", i, SeqEdge & 255,
+ pFanin->Id, Seq_NodeGetLValueP(pFanin), Seq_NodeGetLag(pFanin) );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Add sequential edges.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NodePrintInfoPlus( Abc_Obj_t * pNode )
+{
+ Abc_Obj_t * pFanout;
+ int i;
+ printf( "CENTRAL NODE:\n" );
+ Seq_NodePrintInfo( pNode );
+ Abc_ObjForEachFanout( pNode, pFanout, i )
+ {
+ printf( "FANOUT%d:\n", i );
+ Seq_NodePrintInfo( pFanout );
+ }
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+
diff --git a/src/base/seq/seqShare.c b/src/base/seq/seqShare.c
new file mode 100644
index 00000000..742de46b
--- /dev/null
+++ b/src/base/seq/seqShare.c
@@ -0,0 +1,388 @@
+/**CFile****************************************************************
+
+ FileName [seqShare.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [Latch sharing at the fanout stems.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqShare.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+static void Seq_NodeShareFanouts( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes );
+static void Seq_NodeShareOne( Abc_Obj_t * pNode, Abc_InitType_t Init, Vec_Ptr_t * vNodes );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Transforms the sequential AIG to take fanout sharing into account.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkShareFanouts( Abc_Ntk_t * pNtk )
+{
+ Vec_Ptr_t * vNodes;
+ Abc_Obj_t * pObj;
+ int i;
+ vNodes = Vec_PtrAlloc( 10 );
+ // share the PI latches
+ Abc_NtkForEachPi( pNtk, pObj, i )
+ Seq_NodeShareFanouts( pObj, vNodes );
+ // share the node latches
+ Abc_NtkForEachNode( pNtk, pObj, i )
+ Seq_NodeShareFanouts( pObj, vNodes );
+ Vec_PtrFree( vNodes );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Transforms the node to take fanout sharing into account.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NodeShareFanouts( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes )
+{
+ Abc_Obj_t * pFanout;
+ Abc_InitType_t Type;
+ int nLatches[4], i;
+ // skip the node with only one fanout
+ if ( Abc_ObjFanoutNum(pNode) < 2 )
+ return;
+ // clean the the fanout counters
+ for ( i = 0; i < 4; i++ )
+ nLatches[i] = 0;
+ // find the number of fanouts having latches of each type
+ Abc_ObjForEachFanout( pNode, pFanout, i )
+ {
+ if ( Seq_ObjFanoutL(pNode, pFanout) == 0 )
+ continue;
+ Type = Seq_NodeGetInitLast( pFanout, Abc_ObjFanoutEdgeNum(pNode, pFanout) );
+ nLatches[Type]++;
+ }
+ // decide what to do
+ if ( nLatches[ABC_INIT_ZERO] > 1 && nLatches[ABC_INIT_ONE] > 1 ) // 0-group and 1-group
+ {
+ Seq_NodeShareOne( pNode, ABC_INIT_ZERO, vNodes ); // shares 0 and DC
+ Seq_NodeShareOne( pNode, ABC_INIT_ONE, vNodes ); // shares 1 and DC
+ }
+ else if ( nLatches[ABC_INIT_ZERO] > 1 ) // 0-group
+ Seq_NodeShareOne( pNode, ABC_INIT_ZERO, vNodes ); // shares 0 and DC
+ else if ( nLatches[ABC_INIT_ONE] > 1 ) // 1-group
+ Seq_NodeShareOne( pNode, ABC_INIT_ONE, vNodes ); // shares 1 and DC
+ else if ( nLatches[ABC_INIT_DC] > 1 ) // DC-group
+ {
+ if ( nLatches[ABC_INIT_ZERO] > 0 )
+ Seq_NodeShareOne( pNode, ABC_INIT_ZERO, vNodes ); // shares 0 and DC
+ else
+ Seq_NodeShareOne( pNode, ABC_INIT_ONE, vNodes ); // shares 1 and DC
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Transforms the node to take fanout sharing into account.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NodeShareOne( Abc_Obj_t * pNode, Abc_InitType_t Init, Vec_Ptr_t * vNodes )
+{
+ Vec_Int_t * vNums = Seq_ObjLNums( pNode );
+ Vec_Ptr_t * vInits = Seq_NodeLats( pNode );
+ Abc_Obj_t * pFanout, * pBuffer;
+ Abc_InitType_t Type, InitNew;
+ int i;
+ // collect the fanouts that satisfy the property (have initial value Init or DC)
+ InitNew = ABC_INIT_DC;
+ Vec_PtrClear( vNodes );
+ Abc_ObjForEachFanout( pNode, pFanout, i )
+ {
+ if ( Seq_ObjFanoutL(pNode, pFanout) == 0 )
+ continue;
+ Type = Seq_NodeGetInitLast( pFanout, Abc_ObjFanoutEdgeNum(pNode, pFanout) );
+ if ( Type == Init )
+ InitNew = Init;
+ if ( Type == Init || Type == ABC_INIT_DC )
+ {
+ Vec_PtrPush( vNodes, pFanout );
+ Seq_NodeDeleteLast( pFanout, Abc_ObjFanoutEdgeNum(pNode, pFanout) );
+ }
+ }
+ // create the new buffer
+ pBuffer = Abc_NtkCreateNode( pNode->pNtk );
+ Abc_ObjAddFanin( pBuffer, pNode );
+
+ // grow storage for initial states
+ Vec_PtrGrow( vInits, 2 * pBuffer->Id + 2 );
+ for ( i = Vec_PtrSize(vInits); i < 2 * (int)pBuffer->Id + 2; i++ )
+ Vec_PtrPush( vInits, NULL );
+ // grow storage for numbers of latches
+ Vec_IntGrow( vNums, 2 * pBuffer->Id + 2 );
+ for ( i = Vec_IntSize(vNums); i < 2 * (int)pBuffer->Id + 2; i++ )
+ Vec_IntPush( vNums, 0 );
+ // insert the new latch
+ Seq_NodeInsertFirst( pBuffer, 0, InitNew );
+
+ // redirect the fanouts
+ Vec_PtrForEachEntry( vNodes, pFanout, i )
+ Abc_ObjPatchFanin( pFanout, pNode, pBuffer );
+}
+
+
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Maps virtual latches into real latches.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+static inline unsigned Seq_NtkShareLatchesKey( Abc_Obj_t * pObj, Abc_InitType_t Init )
+{
+ return (pObj->Id << 2) | Init;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Maps virtual latches into real latches.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_Obj_t * Seq_NtkShareLatches_rec( Abc_Ntk_t * pNtk, Abc_Obj_t * pObj, Seq_Lat_t * pRing, int nLatch, stmm_table * tLatchMap )
+{
+ Abc_Obj_t * pLatch, * pFanin;
+ Abc_InitType_t Init;
+ unsigned Key;
+ if ( nLatch == 0 )
+ return pObj;
+ assert( pRing->pLatch == NULL );
+ // get the latch on the previous level
+ pFanin = Seq_NtkShareLatches_rec( pNtk, pObj, Seq_LatNext(pRing), nLatch - 1, tLatchMap );
+
+ // get the initial state
+ Init = Seq_LatInit( pRing );
+ // check if the latch with this initial state exists
+ Key = Seq_NtkShareLatchesKey( pFanin, Init );
+ if ( stmm_lookup( tLatchMap, (char *)Key, (char **)&pLatch ) )
+ return pRing->pLatch = pLatch;
+
+ // does not exist
+ if ( Init != ABC_INIT_DC )
+ {
+ // check if the don't-care exists
+ Key = Seq_NtkShareLatchesKey( pFanin, ABC_INIT_DC );
+ if ( stmm_lookup( tLatchMap, (char *)Key, (char **)&pLatch ) ) // yes
+ {
+ // update the table
+ stmm_delete( tLatchMap, (char **)&Key, (char **)&pLatch );
+ Key = Seq_NtkShareLatchesKey( pFanin, Init );
+ stmm_insert( tLatchMap, (char *)Key, (char *)pLatch );
+ // change don't-care to the given value
+ pLatch->pData = (void *)Init;
+ return pRing->pLatch = pLatch;
+ }
+
+ // add the latch with this value
+ pLatch = Abc_NtkCreateLatch( pNtk );
+ pLatch->pData = (void *)Init;
+ Abc_ObjAddFanin( pLatch, pFanin );
+ // add it to the table
+ Key = Seq_NtkShareLatchesKey( pFanin, Init );
+ stmm_insert( tLatchMap, (char *)Key, (char *)pLatch );
+ return pRing->pLatch = pLatch;
+ }
+ // the init value is the don't-care
+
+ // check if care values exist
+ Key = Seq_NtkShareLatchesKey( pFanin, ABC_INIT_ZERO );
+ if ( stmm_lookup( tLatchMap, (char *)Key, (char **)&pLatch ) )
+ {
+ Seq_LatSetInit( pRing, ABC_INIT_ZERO );
+ return pRing->pLatch = pLatch;
+ }
+ Key = Seq_NtkShareLatchesKey( pFanin, ABC_INIT_ONE );
+ if ( stmm_lookup( tLatchMap, (char *)Key, (char **)&pLatch ) )
+ {
+ Seq_LatSetInit( pRing, ABC_INIT_ONE );
+ return pRing->pLatch = pLatch;
+ }
+
+ // create the don't-care latch
+ pLatch = Abc_NtkCreateLatch( pNtk );
+ pLatch->pData = (void *)ABC_INIT_DC;
+ Abc_ObjAddFanin( pLatch, pFanin );
+ // add it to the table
+ Key = Seq_NtkShareLatchesKey( pFanin, ABC_INIT_DC );
+ stmm_insert( tLatchMap, (char *)Key, (char *)pLatch );
+ return pRing->pLatch = pLatch;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Maps virtual latches into real latches.]
+
+ Description [Creates new latches and assigns them to virtual latches
+ on the edges of a sequential AIG. The nodes of the new network should
+ be created before this procedure is called.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkShareLatches( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtk )
+{
+ Abc_Obj_t * pObj, * pFanin;
+ stmm_table * tLatchMap;
+ int i;
+ assert( Abc_NtkIsSeq( pNtk ) );
+ tLatchMap = stmm_init_table( stmm_ptrcmp, stmm_ptrhash );
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ {
+ pFanin = Abc_ObjFanin0(pObj);
+ Seq_NtkShareLatches_rec( pNtkNew, pFanin->pCopy, Seq_NodeGetRing(pObj,0), Seq_NodeCountLats(pObj,0), tLatchMap );
+ pFanin = Abc_ObjFanin1(pObj);
+ Seq_NtkShareLatches_rec( pNtkNew, pFanin->pCopy, Seq_NodeGetRing(pObj,1), Seq_NodeCountLats(pObj,1), tLatchMap );
+ }
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Seq_NtkShareLatches_rec( pNtkNew, Abc_ObjFanin0(pObj)->pCopy, Seq_NodeGetRing(pObj,0), Seq_NodeCountLats(pObj,0), tLatchMap );
+ stmm_free_table( tLatchMap );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Maps virtual latches into real latches.]
+
+ Description [Creates new latches and assigns them to virtual latches
+ on the edges of a sequential AIG. The nodes of the new network should
+ be created before this procedure is called.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkShareLatchesMapping( Abc_Ntk_t * pNtkNew, Abc_Ntk_t * pNtk, Vec_Ptr_t * vMapAnds, int fFpga )
+{
+ Seq_Match_t * pMatch;
+ Abc_Obj_t * pObj, * pFanout;
+ stmm_table * tLatchMap;
+ Vec_Ptr_t * vNodes;
+ int i, k;
+ assert( Abc_NtkIsSeq( pNtk ) );
+
+ // start the table
+ tLatchMap = stmm_init_table( stmm_ptrcmp, stmm_ptrhash );
+
+ // create the array of all nodes with sharable fanouts
+ vNodes = Vec_PtrAlloc( 100 );
+ Vec_PtrPush( vNodes, Abc_AigConst1(pNtk) );
+ Abc_NtkForEachPi( pNtk, pObj, i )
+ Vec_PtrPush( vNodes, pObj );
+ if ( fFpga )
+ {
+ Vec_PtrForEachEntry( vMapAnds, pObj, i )
+ Vec_PtrPush( vNodes, pObj );
+ }
+ else
+ {
+ Vec_PtrForEachEntry( vMapAnds, pMatch, i )
+ Vec_PtrPush( vNodes, pMatch->pAnd );
+ }
+
+ // process nodes used in the mapping
+ Vec_PtrForEachEntry( vNodes, pObj, i )
+ {
+ // make sure the label is clean
+ Abc_ObjForEachFanout( pObj, pFanout, k )
+ assert( pFanout->fMarkC == 0 );
+ Abc_ObjForEachFanout( pObj, pFanout, k )
+ {
+ if ( pFanout->fMarkC )
+ continue;
+ pFanout->fMarkC = 1;
+ if ( Abc_ObjFaninId0(pFanout) == pObj->Id )
+ Seq_NtkShareLatches_rec( pNtkNew, pObj->pCopy, Seq_NodeGetRing(pFanout,0), Seq_NodeCountLats(pFanout,0), tLatchMap );
+ if ( Abc_ObjFaninId1(pFanout) == pObj->Id )
+ Seq_NtkShareLatches_rec( pNtkNew, pObj->pCopy, Seq_NodeGetRing(pFanout,1), Seq_NodeCountLats(pFanout,1), tLatchMap );
+ }
+ // clean the label
+ Abc_ObjForEachFanout( pObj, pFanout, k )
+ pFanout->fMarkC = 0;
+ }
+ stmm_free_table( tLatchMap );
+ // return to the old array
+ Vec_PtrFree( vNodes );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Clean the latches after sharing them.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkShareLatchesClean( Abc_Ntk_t * pNtk )
+{
+ Abc_Obj_t * pObj;
+ int i;
+ assert( Abc_NtkIsSeq( pNtk ) );
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ {
+ Seq_NodeCleanLats( pObj, 0 );
+ Seq_NodeCleanLats( pObj, 1 );
+ }
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Seq_NodeCleanLats( pObj, 0 );
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
diff --git a/src/base/seq/seqUtil.c b/src/base/seq/seqUtil.c
new file mode 100644
index 00000000..55b9df8e
--- /dev/null
+++ b/src/base/seq/seqUtil.c
@@ -0,0 +1,597 @@
+/**CFile****************************************************************
+
+ FileName [seqUtil.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Construction and manipulation of sequential AIGs.]
+
+ Synopsis [Various utilities working with sequential AIGs.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: seqUtil.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "seqInt.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Returns the maximum latch number on any of the fanouts.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkLevelMax( Abc_Ntk_t * pNtk )
+{
+ Abc_Obj_t * pNode;
+ int i, Result;
+ assert( Abc_NtkIsSeq(pNtk) );
+ Result = 0;
+ Abc_NtkForEachPo( pNtk, pNode, i )
+ {
+ pNode = Abc_ObjFanin0(pNode);
+ if ( Result < (int)pNode->Level )
+ Result = pNode->Level;
+ }
+ Abc_SeqForEachCutsetNode( pNtk, pNode, i )
+ {
+ if ( Result < (int)pNode->Level )
+ Result = pNode->Level;
+ }
+ return Result;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the maximum latch number on any of the fanouts.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_ObjFanoutLMax( Abc_Obj_t * pObj )
+{
+ Abc_Obj_t * pFanout;
+ int i, nLatchCur, nLatchRes;
+ if ( Abc_ObjFanoutNum(pObj) == 0 )
+ return 0;
+ nLatchRes = 0;
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ {
+ nLatchCur = Seq_ObjFanoutL(pObj, pFanout);
+ if ( nLatchRes < nLatchCur )
+ nLatchRes = nLatchCur;
+ }
+ assert( nLatchRes >= 0 );
+ return nLatchRes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the minimum latch number on any of the fanouts.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_ObjFanoutLMin( Abc_Obj_t * pObj )
+{
+ Abc_Obj_t * pFanout;
+ int i, nLatchCur, nLatchRes;
+ if ( Abc_ObjFanoutNum(pObj) == 0 )
+ return 0;
+ nLatchRes = ABC_INFINITY;
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ {
+ nLatchCur = Seq_ObjFanoutL(pObj, pFanout);
+ if ( nLatchRes > nLatchCur )
+ nLatchRes = nLatchCur;
+ }
+ assert( nLatchRes < ABC_INFINITY );
+ return nLatchRes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the sum of latches on the fanout edges.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_ObjFanoutLSum( Abc_Obj_t * pObj )
+{
+ Abc_Obj_t * pFanout;
+ int i, nSum = 0;
+ Abc_ObjForEachFanout( pObj, pFanout, i )
+ nSum += Seq_ObjFanoutL(pObj, pFanout);
+ return nSum;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the sum of latches on the fanin edges.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_ObjFaninLSum( Abc_Obj_t * pObj )
+{
+ Abc_Obj_t * pFanin;
+ int i, nSum = 0;
+ Abc_ObjForEachFanin( pObj, pFanin, i )
+ nSum += Seq_ObjFaninL(pObj, i);
+ return nSum;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Generates the printable edge label with the initial state.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+char * Seq_ObjFaninGetInitPrintable( Abc_Obj_t * pObj, int Edge )
+{
+ static char Buffer[1000];
+ Abc_InitType_t Init;
+ int nLatches, i;
+ nLatches = Seq_ObjFaninL( pObj, Edge );
+ for ( i = 0; i < nLatches; i++ )
+ {
+ Init = Seq_LatInit( Seq_NodeGetLat(pObj, Edge, i) );
+ if ( Init == ABC_INIT_NONE )
+ Buffer[i] = '_';
+ else if ( Init == ABC_INIT_ZERO )
+ Buffer[i] = '0';
+ else if ( Init == ABC_INIT_ONE )
+ Buffer[i] = '1';
+ else if ( Init == ABC_INIT_DC )
+ Buffer[i] = 'x';
+ else assert( 0 );
+ }
+ Buffer[nLatches] = 0;
+ return Buffer;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sets the given value to all the latches of the edge.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NodeLatchSetValues( Abc_Obj_t * pObj, int Edge, Abc_InitType_t Init )
+{
+ Seq_Lat_t * pLat, * pRing;
+ int c;
+ pRing = Seq_NodeGetRing(pObj, Edge);
+ if ( pRing == NULL )
+ return;
+ for ( c = 0, pLat = pRing; !c || pLat != pRing; c++, pLat = pLat->pNext )
+ Seq_LatSetInit( pLat, Init );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Sets the given value to all the latches of the edge.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkLatchSetValues( Abc_Ntk_t * pNtk, Abc_InitType_t Init )
+{
+ Abc_Obj_t * pObj;
+ int i;
+ assert( Abc_NtkIsSeq( pNtk ) );
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Seq_NodeLatchSetValues( pObj, 0, Init );
+ Abc_NtkForEachNode( pNtk, pObj, i )
+ {
+ Seq_NodeLatchSetValues( pObj, 0, Init );
+ Seq_NodeLatchSetValues( pObj, 1, Init );
+ }
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of latches in the sequential AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkLatchNum( Abc_Ntk_t * pNtk )
+{
+ Abc_Obj_t * pObj;
+ int i, Counter;
+ assert( Abc_NtkIsSeq( pNtk ) );
+ Counter = 0;
+ Abc_NtkForEachNode( pNtk, pObj, i )
+ Counter += Seq_ObjFaninLSum( pObj );
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Counter += Seq_ObjFaninLSum( pObj );
+ return Counter;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of latches in the sequential AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkLatchNumMax( Abc_Ntk_t * pNtk )
+{
+ Abc_Obj_t * pObj;
+ int i, Max, Cur;
+ assert( Abc_NtkIsSeq( pNtk ) );
+ Max = 0;
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ {
+ Cur = Seq_ObjFaninLMax( pObj );
+ if ( Max < Cur )
+ Max = Cur;
+ }
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ {
+ Cur = Seq_ObjFaninL0( pObj );
+ if ( Max < Cur )
+ Max = Cur;
+ }
+ return Max;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of latches in the sequential AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkLatchNumShared( Abc_Ntk_t * pNtk )
+{
+ Abc_Obj_t * pObj;
+ int i, Counter;
+ assert( Abc_NtkIsSeq( pNtk ) );
+ Counter = 0;
+ Abc_NtkForEachPi( pNtk, pObj, i )
+ Counter += Seq_ObjFanoutLMax( pObj );
+ Abc_NtkForEachNode( pNtk, pObj, i )
+ Counter += Seq_ObjFanoutLMax( pObj );
+ return Counter;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of latches in the sequential AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_ObjLatchGetInitNums( Abc_Obj_t * pObj, int Edge, int * pInits )
+{
+ Abc_InitType_t Init;
+ int nLatches, i;
+ nLatches = Seq_ObjFaninL( pObj, Edge );
+ for ( i = 0; i < nLatches; i++ )
+ {
+ Init = Seq_NodeGetInitOne( pObj, Edge, i );
+ pInits[Init]++;
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Counts the number of latches in the sequential AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkLatchGetInitNums( Abc_Ntk_t * pNtk, int * pInits )
+{
+ Abc_Obj_t * pObj;
+ int i;
+ assert( Abc_NtkIsSeq( pNtk ) );
+ for ( i = 0; i < 4; i++ )
+ pInits[i] = 0;
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Seq_ObjLatchGetInitNums( pObj, 0, pInits );
+ Abc_NtkForEachNode( pNtk, pObj, i )
+ {
+ if ( Abc_ObjFaninNum(pObj) > 0 )
+ Seq_ObjLatchGetInitNums( pObj, 0, pInits );
+ if ( Abc_ObjFaninNum(pObj) > 1 )
+ Seq_ObjLatchGetInitNums( pObj, 1, pInits );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Report nodes with equal fanins.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkLatchGetEqualFaninNum( Abc_Ntk_t * pNtk )
+{
+ Abc_Obj_t * pObj;
+ int i, Counter;
+ assert( Abc_NtkIsSeq( pNtk ) );
+ Counter = 0;
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ if ( Abc_ObjFaninId0(pObj) == Abc_ObjFaninId1(pObj) )
+ Counter++;
+ if ( Counter )
+ printf( "The number of nodes with equal fanins = %d.\n", Counter );
+ return Counter;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Returns the maximum latch number on any of the fanouts.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkCountNodesAboveLimit( Abc_Ntk_t * pNtk, int Limit )
+{
+ Abc_Obj_t * pNode;
+ int i, Counter;
+ assert( !Abc_NtkIsSeq(pNtk) );
+ Counter = 0;
+ Abc_NtkForEachNode( pNtk, pNode, i )
+ if ( Abc_ObjFaninNum(pNode) > Limit )
+ Counter++;
+ return Counter;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes area flows.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_MapComputeAreaFlows( Abc_Ntk_t * pNtk, int fVerbose )
+{
+ Abc_Seq_t * p = pNtk->pManFunc;
+ Abc_Obj_t * pObj;
+ float AFlow;
+ int i, c;
+
+ assert( Abc_NtkIsSeq(pNtk) );
+
+ Vec_IntFill( p->vAFlows, p->nSize, Abc_Float2Int( (float)0.0 ) );
+
+ // update all values iteratively
+ for ( c = 0; c < 7; c++ )
+ {
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ {
+ AFlow = (float)1.0 + Seq_NodeGetFlow( Abc_ObjFanin0(pObj) ) + Seq_NodeGetFlow( Abc_ObjFanin1(pObj) );
+ AFlow /= Abc_ObjFanoutNum(pObj);
+ pObj->pNext = (void *)Abc_Float2Int( AFlow );
+ }
+ Abc_AigForEachAnd( pNtk, pObj, i )
+ {
+ AFlow = Abc_Int2Float( (int)pObj->pNext );
+ pObj->pNext = NULL;
+ Seq_NodeSetFlow( pObj, AFlow );
+
+// printf( "%5d : %6.1f\n", pObj->Id, Seq_NodeGetFlow(pObj) );
+ }
+// printf( "\n" );
+ }
+ return 1;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Collects all the internal nodes reachable from POs.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkReachNodesFromPos_rec( Abc_Obj_t * pAnd, Vec_Ptr_t * vNodes )
+{
+ // skip if this is a non-PI node
+ if ( !Abc_AigNodeIsAnd(pAnd) )
+ return;
+ // skip a visited node
+ if ( Abc_NodeIsTravIdCurrent(pAnd) )
+ return;
+ Abc_NodeSetTravIdCurrent(pAnd);
+ // visit the fanin nodes
+ Seq_NtkReachNodesFromPos_rec( Abc_ObjFanin0(pAnd), vNodes );
+ Seq_NtkReachNodesFromPos_rec( Abc_ObjFanin1(pAnd), vNodes );
+ // add this node
+ Vec_PtrPush( vNodes, pAnd );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collects all the internal nodes reachable from POs.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Seq_NtkReachNodesFromPis_rec( Abc_Obj_t * pAnd, Vec_Ptr_t * vNodes )
+{
+ Abc_Obj_t * pFanout;
+ int k;
+ // skip if this is a non-PI node
+ if ( !Abc_AigNodeIsAnd(pAnd) )
+ return;
+ // skip a visited node
+ if ( Abc_NodeIsTravIdCurrent(pAnd) )
+ return;
+ Abc_NodeSetTravIdCurrent(pAnd);
+ // visit the fanin nodes
+ Abc_ObjForEachFanout( pAnd, pFanout, k )
+ Seq_NtkReachNodesFromPis_rec( pFanout, vNodes );
+ // add this node
+ Vec_PtrPush( vNodes, pAnd );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collects all the internal nodes reachable from POs.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Vec_Ptr_t * Seq_NtkReachNodes( Abc_Ntk_t * pNtk, int fFromPos )
+{
+ Vec_Ptr_t * vNodes;
+ Abc_Obj_t * pObj, * pFanout;
+ int i, k;
+ assert( Abc_NtkIsSeq(pNtk) );
+ vNodes = Vec_PtrAlloc( 1000 );
+ Abc_NtkIncrementTravId( pNtk );
+ if ( fFromPos )
+ {
+ // traverse the cone of each PO
+ Abc_NtkForEachPo( pNtk, pObj, i )
+ Seq_NtkReachNodesFromPos_rec( Abc_ObjFanin0(pObj), vNodes );
+ }
+ else
+ {
+ // tranvers the reverse cone of the constant node
+ pObj = Abc_AigConst1( pNtk );
+ Abc_ObjForEachFanout( pObj, pFanout, k )
+ Seq_NtkReachNodesFromPis_rec( pFanout, vNodes );
+ // tranvers the reverse cone of the PIs
+ Abc_NtkForEachPi( pNtk, pObj, i )
+ Abc_ObjForEachFanout( pObj, pFanout, k )
+ Seq_NtkReachNodesFromPis_rec( pFanout, vNodes );
+ }
+ return vNodes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Perform sequential cleanup.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Seq_NtkCleanup( Abc_Ntk_t * pNtk, int fVerbose )
+{
+ Vec_Ptr_t * vNodesPo, * vNodesPi;
+ int Counter = 0;
+ assert( Abc_NtkIsSeq(pNtk) );
+ // collect the nodes reachable from POs and PIs
+ vNodesPo = Seq_NtkReachNodes( pNtk, 1 );
+ vNodesPi = Seq_NtkReachNodes( pNtk, 0 );
+ printf( "Total nodes = %6d. Reachable from POs = %6d. Reachable from PIs = %6d.\n",
+ Abc_NtkNodeNum(pNtk), Vec_PtrSize(vNodesPo), Vec_PtrSize(vNodesPi) );
+ if ( Abc_NtkNodeNum(pNtk) > Vec_PtrSize(vNodesPo) )
+ {
+// Counter = Abc_NtkReduceNodes( pNtk, vNodesPo );
+ Counter = 0;
+ if ( fVerbose )
+ printf( "Cleanup removed %d nodes that are not reachable from the POs.\n", Counter );
+ }
+ Vec_PtrFree( vNodesPo );
+ Vec_PtrFree( vNodesPi );
+ return Counter;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+