diff options
author | Alan Mishchenko <alanmi@berkeley.edu> | 2007-10-01 08:01:00 -0700 |
---|---|---|
committer | Alan Mishchenko <alanmi@berkeley.edu> | 2007-10-01 08:01:00 -0700 |
commit | 4812c90424dfc40d26725244723887a2d16ddfd9 (patch) | |
tree | b32ace96e7e2d84d586e09ba605463b6f49c3271 /src/aig/ivy | |
parent | e54d9691616b9a0326e2fdb3156bb4eeb8abfcd7 (diff) | |
download | abc-4812c90424dfc40d26725244723887a2d16ddfd9.tar.gz abc-4812c90424dfc40d26725244723887a2d16ddfd9.tar.bz2 abc-4812c90424dfc40d26725244723887a2d16ddfd9.zip |
Version abc71001
Diffstat (limited to 'src/aig/ivy')
-rw-r--r-- | src/aig/ivy/attr.h | 414 | ||||
-rw-r--r-- | src/aig/ivy/ivy.h | 557 | ||||
-rw-r--r-- | src/aig/ivy/ivyBalance.c | 404 | ||||
-rw-r--r-- | src/aig/ivy/ivyCanon.c | 144 | ||||
-rw-r--r-- | src/aig/ivy/ivyCheck.c | 273 | ||||
-rw-r--r-- | src/aig/ivy/ivyCut.c | 989 | ||||
-rw-r--r-- | src/aig/ivy/ivyCutTrav.c | 473 | ||||
-rw-r--r-- | src/aig/ivy/ivyDfs.c | 493 | ||||
-rw-r--r-- | src/aig/ivy/ivyDsd.c | 819 | ||||
-rw-r--r-- | src/aig/ivy/ivyFanout.c | 309 | ||||
-rw-r--r-- | src/aig/ivy/ivyFastMap.c | 1593 | ||||
-rw-r--r-- | src/aig/ivy/ivyFraig.c | 2760 | ||||
-rw-r--r-- | src/aig/ivy/ivyHaig.c | 530 | ||||
-rw-r--r-- | src/aig/ivy/ivyMan.c | 546 | ||||
-rw-r--r-- | src/aig/ivy/ivyMem.c | 116 | ||||
-rw-r--r-- | src/aig/ivy/ivyMulti.c | 301 | ||||
-rw-r--r-- | src/aig/ivy/ivyMulti8.c | 427 | ||||
-rw-r--r-- | src/aig/ivy/ivyObj.c | 476 | ||||
-rw-r--r-- | src/aig/ivy/ivyOper.c | 293 | ||||
-rw-r--r-- | src/aig/ivy/ivyResyn.c | 196 | ||||
-rw-r--r-- | src/aig/ivy/ivyRwr.c | 609 | ||||
-rw-r--r-- | src/aig/ivy/ivyRwrAlg.c | 408 | ||||
-rw-r--r-- | src/aig/ivy/ivySeq.c | 1134 | ||||
-rw-r--r-- | src/aig/ivy/ivyShow.c | 338 | ||||
-rw-r--r-- | src/aig/ivy/ivyTable.c | 301 | ||||
-rw-r--r-- | src/aig/ivy/ivyUtil.c | 818 | ||||
-rw-r--r-- | src/aig/ivy/ivy_.c | 48 | ||||
-rw-r--r-- | src/aig/ivy/module.make | 22 |
28 files changed, 15791 insertions, 0 deletions
diff --git a/src/aig/ivy/attr.h b/src/aig/ivy/attr.h new file mode 100644 index 00000000..16cf0b84 --- /dev/null +++ b/src/aig/ivy/attr.h @@ -0,0 +1,414 @@ +/**CFile**************************************************************** + + FileName [attr.h] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Network attributes.] + + Synopsis [External declarations.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - June 20, 2005.] + + Revision [$Id: attr.h,v 1.00 2005/06/20 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#ifndef __ATTR_H__ +#define __ATTR_H__ + +#ifdef __cplusplus +extern "C" { +#endif + +//////////////////////////////////////////////////////////////////////// +/// INCLUDES /// +//////////////////////////////////////////////////////////////////////// + +#include "extra.h" + +//////////////////////////////////////////////////////////////////////// +/// PARAMETERS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// BASIC TYPES /// +//////////////////////////////////////////////////////////////////////// + +typedef struct Attr_ManStruct_t_ Attr_Man_t; +struct Attr_ManStruct_t_ +{ + // attribute info + int nAttrSize; // the size of each attribute in bytes + Extra_MmFixed_t * pManMem; // memory manager for attributes + int nAttrs; // the number of attributes allocated + void ** pAttrs; // the array of attributes + int fUseInt; // uses integer attributes + // attribute specific info + void * pManAttr; // the manager for this attribute + void (*pFuncFreeMan) (void *); // the procedure to call to free attribute-specific manager + void (*pFuncFreeObj) (void *, void *); // the procedure to call to free attribute-specific data +}; + +// at any time, an attribute of the given ID can be +// - not available (p->nAttrs < Id) +// - available but not allocated (p->nAttrs >= Id && p->pAttrs[Id] == NULL) +// - available and allocated (p->nAttrs >= Id && p->pAttrs[Id] != NULL) + +//////////////////////////////////////////////////////////////////////// +/// MACRO DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Allocates the attribute manager.] + + Description [The manager is simple if it does not need memory manager.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline Attr_Man_t * Attr_ManAlloc( int nAttrSize, int fManMem ) +{ + Attr_Man_t * p; + p = ALLOC( Attr_Man_t, 1 ); + memset( p, 0, sizeof(Attr_Man_t) ); + p->nAttrSize = nAttrSize; + if ( fManMem ) + p->pManMem = Extra_MmFixedStart( nAttrSize ); + return p; +} + +/**Function************************************************************* + + Synopsis [Start the attribute manager for integers.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline Attr_Man_t * Attr_ManStartInt( int nAttrs ) +{ + Attr_Man_t * p; + p = Attr_ManAlloc( sizeof(int), 0 ); + p->nAttrs = nAttrs; + p->pAttrs = (void **)ALLOC( int, nAttrs ); + memset( (int *)p->pAttrs, 0, sizeof(int) * nAttrs ); + p->fUseInt = 1; + return p; +} + +/**Function************************************************************* + + Synopsis [Start the attribute manager for pointers.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline Attr_Man_t * Attr_ManStartPtr( int nAttrs ) +{ + Attr_Man_t * p; + p = Attr_ManAlloc( sizeof(void *), 0 ); + p->nAttrs = nAttrs; + p->pAttrs = ALLOC( void *, nAttrs ); + memset( p->pAttrs, 0, sizeof(void *) * nAttrs ); + return p; +} + +/**Function************************************************************* + + Synopsis [Start the attribute manager for the fixed entry size.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline Attr_Man_t * Attr_ManStartPtrMem( int nAttrs, int nAttrSize ) +{ + Attr_Man_t * p; + int i; + p = Attr_ManAlloc( nAttrSize, 1 ); + p->nAttrs = nAttrs; + p->pAttrs = ALLOC( void *, nAttrs ); + for ( i = 0; i < p->nAttrs; i++ ) + { + p->pAttrs[i] = Extra_MmFixedEntryFetch( p->pManMem ); + memset( p->pAttrs[i], 0, nAttrSize ); + } + return p; +} + +/**Function************************************************************* + + Synopsis [Stop the attribute manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void Attr_ManStop( Attr_Man_t * p ) +{ + // free the attributes of objects + if ( p->pFuncFreeObj ) + { + int i; + if ( p->fUseInt ) + { + for ( i = 0; i < p->nAttrs; i++ ) + if ( ((int *)p->pAttrs)[i] ) + p->pFuncFreeObj( p->pManAttr, (void *)((int *)p->pAttrs)[i] ); + } + else + { + for ( i = 0; i < p->nAttrs; i++ ) + if ( p->pAttrs[i] ) + p->pFuncFreeObj( p->pManAttr, p->pAttrs[i] ); + } + } + // free the attribute manager + if ( p->pManAttr && p->pFuncFreeMan ) + p->pFuncFreeMan( p->pManAttr ); + // free the memory manager + if ( p->pManMem ) + Extra_MmFixedStop( p->pManMem); + // free the attribute manager + FREE( p->pAttrs ); + free( p ); +} + +/**Function************************************************************* + + Synopsis [Reads the attribute of the given object.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Attr_ManReadAttrInt( Attr_Man_t * p, int Id ) +{ + assert( p->fUseInt ); + if ( Id >= p->nAttrs ) + return 0; + return ((int *)p->pAttrs)[Id]; +} + +/**Function************************************************************* + + Synopsis [Reads the attribute of the given object.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void * Attr_ManReadAttrPtr( Attr_Man_t * p, int Id ) +{ + assert( !p->fUseInt ); + if ( Id >= p->nAttrs ) + return NULL; + return p->pAttrs[Id]; +} + +/**Function************************************************************* + + Synopsis [Writes the attribute of the given object.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void Attr_ManWriteAttrInt( Attr_Man_t * p, int Id, int Attr ) +{ + assert( p->fUseInt ); + ((int *)p->pAttrs)[Id] = Attr; +} + +/**Function************************************************************* + + Synopsis [Writes the attribute of the given object.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void Attr_ManWriteAttrPtr( Attr_Man_t * p, int Id, void * pAttr ) +{ + assert( !p->fUseInt ); + assert( p->pManMem == NULL ); + p->pAttrs[Id] = pAttr; +} + +/**Function************************************************************* + + Synopsis [Returns or creates the pointer to the attribute of the given object.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int * Attr_ManFetchSpotInt( Attr_Man_t * p, int Id ) +{ + assert( p->fUseInt ); + if ( Id >= p->nAttrs ) + { + // save the old size + int i, nAttrsOld = p->nAttrs; + // get the new size + p->nAttrs = p->nAttrs? 2*p->nAttrs : 1024; + p->pAttrs = realloc( p->pAttrs, sizeof(int) * p->nAttrs ); + // fill in the empty spots + for ( i = nAttrsOld; i < p->nAttrs; i++ ) + ((int *)p->pAttrs)[Id] = 0; + } + return ((int *)p->pAttrs) + Id; +} + +/**Function************************************************************* + + Synopsis [Returns or creates the pointer to the attribute of the given object.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void ** Attr_ManFetchSpotPtr( Attr_Man_t * p, int Id ) +{ + assert( !p->fUseInt ); + if ( Id >= p->nAttrs ) + { + // save the old size + int i, nAttrsOld = p->nAttrs; + // get the new size + p->nAttrs = p->nAttrs? 2*p->nAttrs : 1024; + p->pAttrs = realloc( p->pAttrs, sizeof(void *) * p->nAttrs ); + // fill in the empty spots + for ( i = nAttrsOld; i < p->nAttrs; i++ ) + p->pAttrs[Id] = NULL; + } + // if memory manager is available but entry is not created, create it + if ( p->pManMem && p->pAttrs[Id] != NULL ) + { + p->pAttrs[Id] = Extra_MmFixedEntryFetch( p->pManMem ); + memset( p->pAttrs[Id], 0, p->nAttrSize ); + } + return p->pAttrs + Id; +} + + +/**Function************************************************************* + + Synopsis [Returns or creates the attribute of the given object.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Attr_ManFetchAttrInt( Attr_Man_t * p, int Id ) +{ + return *Attr_ManFetchSpotInt( p, Id ); +} + +/**Function************************************************************* + + Synopsis [Returns or creates the attribute of the given object.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void * Attr_ManFetchAttrPtr( Attr_Man_t * p, int Id ) +{ + return *Attr_ManFetchSpotPtr( p, Id ); +} + +/**Function************************************************************* + + Synopsis [Sets the attribute of the given object.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void Attr_ManSetAttrInt( Attr_Man_t * p, int Id, int Attr ) +{ + *Attr_ManFetchSpotInt( p, Id ) = Attr; +} + +/**Function************************************************************* + + Synopsis [Sets the attribute of the given object.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void Attr_ManSetAttrPtr( Attr_Man_t * p, int Id, void * pAttr ) +{ + assert( p->pManMem == NULL ); + *Attr_ManFetchSpotPtr( p, Id ) = pAttr; +} + + + +#ifdef __cplusplus +} +#endif + +#endif + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + diff --git a/src/aig/ivy/ivy.h b/src/aig/ivy/ivy.h new file mode 100644 index 00000000..c7435a63 --- /dev/null +++ b/src/aig/ivy/ivy.h @@ -0,0 +1,557 @@ +/**CFile**************************************************************** + + FileName [ivy.h] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [External declarations.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivy.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#ifndef __IVY_H__ +#define __IVY_H__ + +#ifdef __cplusplus +extern "C" { +#endif + +//////////////////////////////////////////////////////////////////////// +/// INCLUDES /// +//////////////////////////////////////////////////////////////////////// + +#include <stdio.h> +#include "extra.h" +#include "vec.h" + +//////////////////////////////////////////////////////////////////////// +/// PARAMETERS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// BASIC TYPES /// +//////////////////////////////////////////////////////////////////////// + +typedef struct Ivy_Man_t_ Ivy_Man_t; +typedef struct Ivy_Obj_t_ Ivy_Obj_t; +typedef int Ivy_Edge_t; +typedef struct Ivy_FraigParams_t_ Ivy_FraigParams_t; + +// object types +typedef enum { + IVY_NONE, // 0: non-existent object + IVY_PI, // 1: primary input (and constant 1 node) + IVY_PO, // 2: primary output + IVY_ASSERT, // 3: assertion + IVY_LATCH, // 4: sequential element + IVY_AND, // 5: AND node + IVY_EXOR, // 6: EXOR node + IVY_BUF, // 7: buffer (temporary) + IVY_VOID // 8: unused object +} Ivy_Type_t; + +// latch initial values +typedef enum { + IVY_INIT_NONE, // 0: not a latch + IVY_INIT_0, // 1: zero + IVY_INIT_1, // 2: one + IVY_INIT_DC // 3: don't-care +} Ivy_Init_t; + +// the AIG node +struct Ivy_Obj_t_ // 24 bytes (32-bit) or 32 bytes (64-bit) // 10 words - 16 words +{ + int Id; // integer ID + int TravId; // traversal ID + unsigned Type : 4; // object type + unsigned fMarkA : 1; // multipurpose mask + unsigned fMarkB : 1; // multipurpose mask + unsigned fExFan : 1; // set to 1 if last fanout added is EXOR + unsigned fPhase : 1; // value under 000...0 pattern + unsigned fFailTfo : 1; // the TFO of the failed node + unsigned Init : 2; // latch initial value + unsigned Level : 21; // logic level + int nRefs; // reference counter + Ivy_Obj_t * pFanin0; // fanin + Ivy_Obj_t * pFanin1; // fanin + Ivy_Obj_t * pFanout; // fanout + Ivy_Obj_t * pNextFan0; // next fanout of the first fanin + Ivy_Obj_t * pNextFan1; // next fanout of the second fanin + Ivy_Obj_t * pPrevFan0; // prev fanout of the first fanin + Ivy_Obj_t * pPrevFan1; // prev fanout of the second fanin + Ivy_Obj_t * pEquiv; // equivalent node +}; + +// the AIG manager +struct Ivy_Man_t_ +{ + // AIG nodes + Vec_Ptr_t * vPis; // the array of PIs + Vec_Ptr_t * vPos; // the array of POs + Vec_Ptr_t * vBufs; // the array of buffers + Vec_Ptr_t * vObjs; // the array of objects + Ivy_Obj_t * pConst1; // the constant 1 node + Ivy_Obj_t Ghost; // the ghost node + // AIG node counters + int nObjs[IVY_VOID];// the number of objects by type + int nCreated; // the number of created objects + int nDeleted; // the number of deleted objects + // stuctural hash table + int * pTable; // structural hash table + int nTableSize; // structural hash table size + // various data members + int fCatchExor; // set to 1 to detect EXORs + int nTravIds; // the traversal ID + int nLevelMax; // the maximum level + Vec_Int_t * vRequired; // required times + int fFanout; // fanout is allocated + void * pData; // the temporary data + void * pCopy; // the temporary data + Ivy_Man_t * pHaig; // history AIG if present + int nClassesSkip; // the number of skipped classes + // memory management + Vec_Ptr_t * vChunks; // allocated memory pieces + Vec_Ptr_t * vPages; // memory pages used by nodes + Ivy_Obj_t * pListFree; // the list of free nodes + // timing statistics + int time1; + int time2; +}; + +struct Ivy_FraigParams_t_ +{ + int nSimWords; // the number of words in the simulation info + double dSimSatur; // the ratio of refined classes when saturation is reached + int fPatScores; // enables simulation pattern scoring + int MaxScore; // max score after which resimulation is used + double dActConeRatio; // the ratio of cone to be bumped + double dActConeBumpMax; // the largest bump in activity + int fProve; // prove the miter outputs + int fVerbose; // verbose output + int fDoSparse; // skip sparse functions + int nBTLimitNode; // conflict limit at a node + int nBTLimitMiter; // conflict limit at an output +// int nBTLimitGlobal; // conflict limit global +// int nInsLimitNode; // inspection limit at a node +// int nInsLimitMiter; // inspection limit at an output +// int nInsLimitGlobal; // inspection limit global +}; + + +#define IVY_CUT_LIMIT 256 +#define IVY_CUT_INPUT 6 + +typedef struct Ivy_Cut_t_ Ivy_Cut_t; +struct Ivy_Cut_t_ +{ + int nLatches; + short nSize; + short nSizeMax; + int pArray[IVY_CUT_INPUT]; + unsigned uHash; +}; + +typedef struct Ivy_Store_t_ Ivy_Store_t; +struct Ivy_Store_t_ +{ + int nCuts; + int nCutsM; + int nCutsMax; + int fSatur; + Ivy_Cut_t pCuts[IVY_CUT_LIMIT]; // storage for cuts +}; + +#define IVY_LEAF_MASK 255 +#define IVY_LEAF_BITS 8 + +//////////////////////////////////////////////////////////////////////// +/// MACRO DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +#define IVY_MIN(a,b) (((a) < (b))? (a) : (b)) +#define IVY_MAX(a,b) (((a) > (b))? (a) : (b)) + +static inline int Ivy_BitWordNum( int nBits ) { return (nBits>>5) + ((nBits&31) > 0); } +static inline int Ivy_TruthWordNum( int nVars ) { return nVars <= 5 ? 1 : (1 << (nVars - 5)); } +static inline int Ivy_InfoHasBit( unsigned * p, int i ) { return (p[(i)>>5] & (1<<((i) & 31))) > 0; } +static inline void Ivy_InfoSetBit( unsigned * p, int i ) { p[(i)>>5] |= (1<<((i) & 31)); } +static inline void Ivy_InfoXorBit( unsigned * p, int i ) { p[(i)>>5] ^= (1<<((i) & 31)); } + +static inline Ivy_Obj_t * Ivy_Regular( Ivy_Obj_t * p ) { return (Ivy_Obj_t *)((unsigned long)(p) & ~01); } +static inline Ivy_Obj_t * Ivy_Not( Ivy_Obj_t * p ) { return (Ivy_Obj_t *)((unsigned long)(p) ^ 01); } +static inline Ivy_Obj_t * Ivy_NotCond( Ivy_Obj_t * p, int c ) { return (Ivy_Obj_t *)((unsigned long)(p) ^ (c)); } +static inline int Ivy_IsComplement( Ivy_Obj_t * p ) { return (int)((unsigned long)(p) & 01); } + +static inline Ivy_Obj_t * Ivy_ManConst0( Ivy_Man_t * p ) { return Ivy_Not(p->pConst1); } +static inline Ivy_Obj_t * Ivy_ManConst1( Ivy_Man_t * p ) { return p->pConst1; } +static inline Ivy_Obj_t * Ivy_ManGhost( Ivy_Man_t * p ) { return &p->Ghost; } +static inline Ivy_Obj_t * Ivy_ManPi( Ivy_Man_t * p, int i ) { return (Ivy_Obj_t *)Vec_PtrEntry(p->vPis, i); } +static inline Ivy_Obj_t * Ivy_ManPo( Ivy_Man_t * p, int i ) { return (Ivy_Obj_t *)Vec_PtrEntry(p->vPos, i); } +static inline Ivy_Obj_t * Ivy_ManObj( Ivy_Man_t * p, int i ) { return (Ivy_Obj_t *)Vec_PtrEntry(p->vObjs, i); } + +static inline Ivy_Edge_t Ivy_EdgeCreate( int Id, int fCompl ) { return (Id << 1) | fCompl; } +static inline int Ivy_EdgeId( Ivy_Edge_t Edge ) { return Edge >> 1; } +static inline int Ivy_EdgeIsComplement( Ivy_Edge_t Edge ) { return Edge & 1; } +static inline Ivy_Edge_t Ivy_EdgeRegular( Ivy_Edge_t Edge ) { return (Edge >> 1) << 1; } +static inline Ivy_Edge_t Ivy_EdgeNot( Ivy_Edge_t Edge ) { return Edge ^ 1; } +static inline Ivy_Edge_t Ivy_EdgeNotCond( Ivy_Edge_t Edge, int fCond ) { return Edge ^ fCond; } +static inline Ivy_Edge_t Ivy_EdgeFromNode( Ivy_Obj_t * pNode ) { return Ivy_EdgeCreate( Ivy_Regular(pNode)->Id, Ivy_IsComplement(pNode) ); } +static inline Ivy_Obj_t * Ivy_EdgeToNode( Ivy_Man_t * p, Ivy_Edge_t Edge ){ return Ivy_NotCond( Ivy_ManObj(p, Ivy_EdgeId(Edge)), Ivy_EdgeIsComplement(Edge) ); } + +static inline int Ivy_LeafCreate( int Id, int Lat ) { return (Id << IVY_LEAF_BITS) | Lat; } +static inline int Ivy_LeafId( int Leaf ) { return Leaf >> IVY_LEAF_BITS; } +static inline int Ivy_LeafLat( int Leaf ) { return Leaf & IVY_LEAF_MASK; } + +static inline int Ivy_ManPiNum( Ivy_Man_t * p ) { return p->nObjs[IVY_PI]; } +static inline int Ivy_ManPoNum( Ivy_Man_t * p ) { return p->nObjs[IVY_PO]; } +static inline int Ivy_ManAssertNum( Ivy_Man_t * p ) { return p->nObjs[IVY_ASSERT]; } +static inline int Ivy_ManLatchNum( Ivy_Man_t * p ) { return p->nObjs[IVY_LATCH]; } +static inline int Ivy_ManAndNum( Ivy_Man_t * p ) { return p->nObjs[IVY_AND]; } +static inline int Ivy_ManExorNum( Ivy_Man_t * p ) { return p->nObjs[IVY_EXOR]; } +static inline int Ivy_ManBufNum( Ivy_Man_t * p ) { return p->nObjs[IVY_BUF]; } +static inline int Ivy_ManObjNum( Ivy_Man_t * p ) { return p->nCreated - p->nDeleted; } +static inline int Ivy_ManObjIdMax( Ivy_Man_t * p ) { return Vec_PtrSize(p->vObjs)-1; } +static inline int Ivy_ManNodeNum( Ivy_Man_t * p ) { return p->nObjs[IVY_AND]+p->nObjs[IVY_EXOR];} +static inline int Ivy_ManHashObjNum( Ivy_Man_t * p ) { return p->nObjs[IVY_AND]+p->nObjs[IVY_EXOR]+p->nObjs[IVY_LATCH]; } +static inline int Ivy_ManGetCost( Ivy_Man_t * p ) { return p->nObjs[IVY_AND]+3*p->nObjs[IVY_EXOR]+8*p->nObjs[IVY_LATCH]; } + +static inline Ivy_Type_t Ivy_ObjType( Ivy_Obj_t * pObj ) { return pObj->Type; } +static inline Ivy_Init_t Ivy_ObjInit( Ivy_Obj_t * pObj ) { return pObj->Init; } +static inline int Ivy_ObjIsConst1( Ivy_Obj_t * pObj ) { return pObj->Id == 0; } +static inline int Ivy_ObjIsGhost( Ivy_Obj_t * pObj ) { return pObj->Id < 0; } +static inline int Ivy_ObjIsNone( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_NONE; } +static inline int Ivy_ObjIsPi( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_PI; } +static inline int Ivy_ObjIsPo( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_PO; } +static inline int Ivy_ObjIsCi( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_PI || pObj->Type == IVY_LATCH; } +static inline int Ivy_ObjIsCo( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_PO || pObj->Type == IVY_LATCH; } +static inline int Ivy_ObjIsAssert( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_ASSERT; } +static inline int Ivy_ObjIsLatch( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_LATCH; } +static inline int Ivy_ObjIsAnd( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_AND; } +static inline int Ivy_ObjIsExor( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_EXOR; } +static inline int Ivy_ObjIsBuf( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_BUF; } +static inline int Ivy_ObjIsNode( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_AND || pObj->Type == IVY_EXOR; } +static inline int Ivy_ObjIsTerm( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_PI || pObj->Type == IVY_PO || pObj->Type == IVY_ASSERT; } +static inline int Ivy_ObjIsHash( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_AND || pObj->Type == IVY_EXOR || pObj->Type == IVY_LATCH; } +static inline int Ivy_ObjIsOneFanin( Ivy_Obj_t * pObj ) { return pObj->Type == IVY_PO || pObj->Type == IVY_ASSERT || pObj->Type == IVY_BUF || pObj->Type == IVY_LATCH; } + +static inline int Ivy_ObjIsMarkA( Ivy_Obj_t * pObj ) { return pObj->fMarkA; } +static inline void Ivy_ObjSetMarkA( Ivy_Obj_t * pObj ) { pObj->fMarkA = 1; } +static inline void Ivy_ObjClearMarkA( Ivy_Obj_t * pObj ) { pObj->fMarkA = 0; } + +static inline void Ivy_ObjSetTravId( Ivy_Obj_t * pObj, int TravId ) { pObj->TravId = TravId; } +static inline void Ivy_ObjSetTravIdCurrent( Ivy_Man_t * p, Ivy_Obj_t * pObj ) { pObj->TravId = p->nTravIds; } +static inline void Ivy_ObjSetTravIdPrevious( Ivy_Man_t * p, Ivy_Obj_t * pObj ) { pObj->TravId = p->nTravIds - 1; } +static inline int Ivy_ObjIsTravIdCurrent( Ivy_Man_t * p, Ivy_Obj_t * pObj ) { return (int )((int)pObj->TravId == p->nTravIds); } +static inline int Ivy_ObjIsTravIdPrevious( Ivy_Man_t * p, Ivy_Obj_t * pObj ) { return (int )((int)pObj->TravId == p->nTravIds - 1); } + +static inline int Ivy_ObjId( Ivy_Obj_t * pObj ) { return pObj->Id; } +static inline int Ivy_ObjTravId( Ivy_Obj_t * pObj ) { return pObj->TravId; } +static inline int Ivy_ObjPhase( Ivy_Obj_t * pObj ) { return pObj->fPhase; } +static inline int Ivy_ObjExorFanout( Ivy_Obj_t * pObj ) { return pObj->fExFan; } +static inline int Ivy_ObjRefs( Ivy_Obj_t * pObj ) { return pObj->nRefs; } +static inline void Ivy_ObjRefsInc( Ivy_Obj_t * pObj ) { pObj->nRefs++; } +static inline void Ivy_ObjRefsDec( Ivy_Obj_t * pObj ) { assert( pObj->nRefs > 0 ); pObj->nRefs--; } +static inline int Ivy_ObjFaninId0( Ivy_Obj_t * pObj ) { return pObj->pFanin0? Ivy_ObjId(Ivy_Regular(pObj->pFanin0)) : 0; } +static inline int Ivy_ObjFaninId1( Ivy_Obj_t * pObj ) { return pObj->pFanin1? Ivy_ObjId(Ivy_Regular(pObj->pFanin1)) : 0; } +static inline int Ivy_ObjFaninC0( Ivy_Obj_t * pObj ) { return Ivy_IsComplement(pObj->pFanin0); } +static inline int Ivy_ObjFaninC1( Ivy_Obj_t * pObj ) { return Ivy_IsComplement(pObj->pFanin1); } +static inline Ivy_Obj_t * Ivy_ObjFanin0( Ivy_Obj_t * pObj ) { return Ivy_Regular(pObj->pFanin0); } +static inline Ivy_Obj_t * Ivy_ObjFanin1( Ivy_Obj_t * pObj ) { return Ivy_Regular(pObj->pFanin1); } +static inline Ivy_Obj_t * Ivy_ObjChild0( Ivy_Obj_t * pObj ) { return pObj->pFanin0; } +static inline Ivy_Obj_t * Ivy_ObjChild1( Ivy_Obj_t * pObj ) { return pObj->pFanin1; } +static inline Ivy_Obj_t * Ivy_ObjChild0Equiv( Ivy_Obj_t * pObj ) { assert( !Ivy_IsComplement(pObj) ); return Ivy_ObjFanin0(pObj)? Ivy_NotCond(Ivy_ObjFanin0(pObj)->pEquiv, Ivy_ObjFaninC0(pObj)) : NULL; } +static inline Ivy_Obj_t * Ivy_ObjChild1Equiv( Ivy_Obj_t * pObj ) { assert( !Ivy_IsComplement(pObj) ); return Ivy_ObjFanin1(pObj)? Ivy_NotCond(Ivy_ObjFanin1(pObj)->pEquiv, Ivy_ObjFaninC1(pObj)) : NULL; } +static inline Ivy_Obj_t * Ivy_ObjEquiv( Ivy_Obj_t * pObj ) { return Ivy_Regular(pObj)->pEquiv? Ivy_NotCond(Ivy_Regular(pObj)->pEquiv, Ivy_IsComplement(pObj)) : NULL; } +static inline int Ivy_ObjLevel( Ivy_Obj_t * pObj ) { return pObj->Level; } +static inline int Ivy_ObjLevelNew( Ivy_Obj_t * pObj ) { return 1 + Ivy_ObjIsExor(pObj) + IVY_MAX(Ivy_ObjFanin0(pObj)->Level, Ivy_ObjFanin1(pObj)->Level); } +static inline int Ivy_ObjFaninPhase( Ivy_Obj_t * pObj ) { return Ivy_IsComplement(pObj)? !Ivy_Regular(pObj)->fPhase : pObj->fPhase; } + +static inline void Ivy_ObjClean( Ivy_Obj_t * pObj ) +{ + int IdSaved = pObj->Id; + memset( pObj, 0, sizeof(Ivy_Obj_t) ); + pObj->Id = IdSaved; +} +static inline void Ivy_ObjOverwrite( Ivy_Obj_t * pBase, Ivy_Obj_t * pData ) +{ + int IdSaved = pBase->Id; + memcpy( pBase, pData, sizeof(Ivy_Obj_t) ); + pBase->Id = IdSaved; +} +static inline int Ivy_ObjWhatFanin( Ivy_Obj_t * pObj, Ivy_Obj_t * pFanin ) +{ + if ( Ivy_ObjFanin0(pObj) == pFanin ) return 0; + if ( Ivy_ObjFanin1(pObj) == pFanin ) return 1; + assert(0); return -1; +} +static inline int Ivy_ObjFanoutC( Ivy_Obj_t * pObj, Ivy_Obj_t * pFanout ) +{ + if ( Ivy_ObjFanin0(pFanout) == pObj ) return Ivy_ObjFaninC0(pObj); + if ( Ivy_ObjFanin1(pFanout) == pObj ) return Ivy_ObjFaninC1(pObj); + assert(0); return -1; +} + +// create the ghost of the new node +static inline Ivy_Obj_t * Ivy_ObjCreateGhost( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1, Ivy_Type_t Type, Ivy_Init_t Init ) +{ + Ivy_Obj_t * pGhost, * pTemp; + assert( Type != IVY_AND || !Ivy_ObjIsConst1(Ivy_Regular(p0)) ); + assert( p1 == NULL || !Ivy_ObjIsConst1(Ivy_Regular(p1)) ); + assert( Type == IVY_PI || Ivy_Regular(p0) != Ivy_Regular(p1) ); + assert( Type != IVY_LATCH || !Ivy_IsComplement(p0) ); +// assert( p1 == NULL || (!Ivy_ObjIsLatch(Ivy_Regular(p0)) || !Ivy_ObjIsLatch(Ivy_Regular(p1))) ); + pGhost = Ivy_ManGhost(p); + pGhost->Type = Type; + pGhost->Init = Init; + pGhost->pFanin0 = p0; + pGhost->pFanin1 = p1; + if ( p1 && Ivy_ObjFaninId0(pGhost) > Ivy_ObjFaninId1(pGhost) ) + pTemp = pGhost->pFanin0, pGhost->pFanin0 = pGhost->pFanin1, pGhost->pFanin1 = pTemp; + return pGhost; +} + +// get the complemented initial state +static Ivy_Init_t Ivy_InitNotCond( Ivy_Init_t Init, int fCompl ) +{ + assert( Init != IVY_INIT_NONE ); + if ( fCompl == 0 ) + return Init; + if ( Init == IVY_INIT_0 ) + return IVY_INIT_1; + if ( Init == IVY_INIT_1 ) + return IVY_INIT_0; + return IVY_INIT_DC; +} + +// get the initial state after forward retiming over AND gate +static Ivy_Init_t Ivy_InitAnd( Ivy_Init_t InitA, Ivy_Init_t InitB ) +{ + assert( InitA != IVY_INIT_NONE && InitB != IVY_INIT_NONE ); + if ( InitA == IVY_INIT_0 || InitB == IVY_INIT_0 ) + return IVY_INIT_0; + if ( InitA == IVY_INIT_DC || InitB == IVY_INIT_DC ) + return IVY_INIT_DC; + return IVY_INIT_1; +} + +// get the initial state after forward retiming over EXOR gate +static Ivy_Init_t Ivy_InitExor( Ivy_Init_t InitA, Ivy_Init_t InitB ) +{ + assert( InitA != IVY_INIT_NONE && InitB != IVY_INIT_NONE ); + if ( InitA == IVY_INIT_DC || InitB == IVY_INIT_DC ) + return IVY_INIT_DC; + if ( InitA == IVY_INIT_0 && InitB == IVY_INIT_1 ) + return IVY_INIT_1; + if ( InitA == IVY_INIT_1 && InitB == IVY_INIT_0 ) + return IVY_INIT_1; + return IVY_INIT_0; +} + +// internal memory manager +static inline Ivy_Obj_t * Ivy_ManFetchMemory( Ivy_Man_t * p ) +{ + extern void Ivy_ManAddMemory( Ivy_Man_t * p ); + Ivy_Obj_t * pTemp; + if ( p->pListFree == NULL ) + Ivy_ManAddMemory( p ); + pTemp = p->pListFree; + p->pListFree = *((Ivy_Obj_t **)pTemp); + memset( pTemp, 0, sizeof(Ivy_Obj_t) ); + return pTemp; +} +static inline void Ivy_ManRecycleMemory( Ivy_Man_t * p, Ivy_Obj_t * pEntry ) +{ + pEntry->Type = IVY_NONE; // distinquishes dead node from live node + *((Ivy_Obj_t **)pEntry) = p->pListFree; + p->pListFree = pEntry; +} + + +//////////////////////////////////////////////////////////////////////// +/// ITERATORS /// +//////////////////////////////////////////////////////////////////////// + +// iterator over the primary inputs +#define Ivy_ManForEachPi( p, pObj, i ) \ + Vec_PtrForEachEntry( p->vPis, pObj, i ) +// iterator over the primary outputs +#define Ivy_ManForEachPo( p, pObj, i ) \ + Vec_PtrForEachEntry( p->vPos, pObj, i ) +// iterator over all objects, including those currently not used +#define Ivy_ManForEachObj( p, pObj, i ) \ + Vec_PtrForEachEntry( p->vObjs, pObj, i ) if ( (pObj) == NULL ) {} else +// iterator over the combinational inputs +#define Ivy_ManForEachCi( p, pObj, i ) \ + Ivy_ManForEachObj( p, pObj, i ) if ( !Ivy_ObjIsCi(pObj) ) {} else +// iterator over the combinational outputs +#define Ivy_ManForEachCo( p, pObj, i ) \ + Ivy_ManForEachObj( p, pObj, i ) if ( !Ivy_ObjIsCo(pObj) ) {} else +// iterator over logic nodes (AND and EXOR gates) +#define Ivy_ManForEachNode( p, pObj, i ) \ + Ivy_ManForEachObj( p, pObj, i ) if ( !Ivy_ObjIsNode(pObj) ) {} else +// iterator over logic latches +#define Ivy_ManForEachLatch( p, pObj, i ) \ + Ivy_ManForEachObj( p, pObj, i ) if ( !Ivy_ObjIsLatch(pObj) ) {} else +// iterator over the nodes whose IDs are stored in the array +#define Ivy_ManForEachNodeVec( p, vIds, pObj, i ) \ + for ( i = 0; i < Vec_IntSize(vIds) && ((pObj) = Ivy_ManObj(p, Vec_IntEntry(vIds,i))); i++ ) +// iterator over the fanouts of an object +#define Ivy_ObjForEachFanout( p, pObj, vArray, pFanout, i ) \ + for ( i = 0, Ivy_ObjCollectFanouts(p, pObj, vArray); \ + i < Vec_PtrSize(vArray) && ((pFanout) = Vec_PtrEntry(vArray,i)); i++ ) + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +/*=== ivyBalance.c ========================================================*/ +extern Ivy_Man_t * Ivy_ManBalance( Ivy_Man_t * p, int fUpdateLevel ); +extern Ivy_Obj_t * Ivy_NodeBalanceBuildSuper( Ivy_Man_t * p, Vec_Ptr_t * vSuper, Ivy_Type_t Type, int fUpdateLevel ); +/*=== ivyCanon.c ========================================================*/ +extern Ivy_Obj_t * Ivy_CanonAnd( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 ); +extern Ivy_Obj_t * Ivy_CanonExor( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 ); +extern Ivy_Obj_t * Ivy_CanonLatch( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Init_t Init ); +/*=== ivyCheck.c ========================================================*/ +extern int Ivy_ManCheck( Ivy_Man_t * p ); +extern int Ivy_ManCheckFanoutNums( Ivy_Man_t * p ); +extern int Ivy_ManCheckFanouts( Ivy_Man_t * p ); +extern int Ivy_ManCheckChoices( Ivy_Man_t * p ); +/*=== ivyCut.c ==========================================================*/ +extern void Ivy_ManSeqFindCut( Ivy_Man_t * p, Ivy_Obj_t * pNode, Vec_Int_t * vFront, Vec_Int_t * vInside, int nSize ); +extern Ivy_Store_t * Ivy_NodeFindCutsAll( Ivy_Man_t * p, Ivy_Obj_t * pObj, int nLeaves ); +/*=== ivyDfs.c ==========================================================*/ +extern Vec_Int_t * Ivy_ManDfs( Ivy_Man_t * p ); +extern Vec_Int_t * Ivy_ManDfsSeq( Ivy_Man_t * p, Vec_Int_t ** pvLatches ); +extern void Ivy_ManCollectCone( Ivy_Obj_t * pObj, Vec_Ptr_t * vFront, Vec_Ptr_t * vCone ); +extern Vec_Vec_t * Ivy_ManLevelize( Ivy_Man_t * p ); +extern Vec_Int_t * Ivy_ManRequiredLevels( Ivy_Man_t * p ); +extern int Ivy_ManIsAcyclic( Ivy_Man_t * p ); +extern int Ivy_ManSetLevels( Ivy_Man_t * p, int fHaig ); +/*=== ivyDsd.c ==========================================================*/ +extern int Ivy_TruthDsd( unsigned uTruth, Vec_Int_t * vTree ); +extern void Ivy_TruthDsdPrint( FILE * pFile, Vec_Int_t * vTree ); +extern unsigned Ivy_TruthDsdCompute( Vec_Int_t * vTree ); +extern void Ivy_TruthDsdComputePrint( unsigned uTruth ); +extern Ivy_Obj_t * Ivy_ManDsdConstruct( Ivy_Man_t * p, Vec_Int_t * vFront, Vec_Int_t * vTree ); +/*=== ivyFanout.c ==========================================================*/ +extern void Ivy_ManStartFanout( Ivy_Man_t * p ); +extern void Ivy_ManStopFanout( Ivy_Man_t * p ); +extern void Ivy_ObjAddFanout( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Obj_t * pFanout ); +extern void Ivy_ObjDeleteFanout( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Obj_t * pFanout ); +extern void Ivy_ObjPatchFanout( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Obj_t * pFanoutOld, Ivy_Obj_t * pFanoutNew ); +extern void Ivy_ObjCollectFanouts( Ivy_Man_t * p, Ivy_Obj_t * pObj, Vec_Ptr_t * vArray ); +extern Ivy_Obj_t * Ivy_ObjReadFirstFanout( Ivy_Man_t * p, Ivy_Obj_t * pObj ); +extern int Ivy_ObjFanoutNum( Ivy_Man_t * p, Ivy_Obj_t * pObj ); +/*=== ivyFastMap.c =============================================================*/ +extern void Ivy_FastMapPerform( Ivy_Man_t * pAig, int nLimit, int fRecovery, int fVerbose ); +extern void Ivy_FastMapStop( Ivy_Man_t * pAig ); +extern void Ivy_FastMapReadSupp( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, Vec_Int_t * vLeaves ); +extern void Ivy_FastMapReverseLevel( Ivy_Man_t * pAig ); +/*=== ivyFraig.c ==========================================================*/ +extern int Ivy_FraigProve( Ivy_Man_t ** ppManAig, void * pPars ); +extern Ivy_Man_t * Ivy_FraigPerform( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams ); +extern Ivy_Man_t * Ivy_FraigMiter( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams ); +extern void Ivy_FraigParamsDefault( Ivy_FraigParams_t * pParams ); +/*=== ivyHaig.c ==========================================================*/ +extern void Ivy_ManHaigStart( Ivy_Man_t * p, int fVerbose ); +extern void Ivy_ManHaigTrasfer( Ivy_Man_t * p, Ivy_Man_t * pNew ); +extern void Ivy_ManHaigStop( Ivy_Man_t * p ); +extern void Ivy_ManHaigPostprocess( Ivy_Man_t * p, int fVerbose ); +extern void Ivy_ManHaigCreateObj( Ivy_Man_t * p, Ivy_Obj_t * pObj ); +extern void Ivy_ManHaigCreateChoice( Ivy_Man_t * p, Ivy_Obj_t * pObjOld, Ivy_Obj_t * pObjNew ); +extern void Ivy_ManHaigSimulate( Ivy_Man_t * p ); +/*=== ivyMan.c ==========================================================*/ +extern Ivy_Man_t * Ivy_ManStart(); +extern Ivy_Man_t * Ivy_ManStartFrom( Ivy_Man_t * p ); +extern Ivy_Man_t * Ivy_ManDup( Ivy_Man_t * p ); +extern Ivy_Man_t * Ivy_ManFrames( Ivy_Man_t * pMan, int nLatches, int nFrames, int fInit, Vec_Ptr_t ** pvMapping ); +extern void Ivy_ManStop( Ivy_Man_t * p ); +extern int Ivy_ManCleanup( Ivy_Man_t * p ); +extern int Ivy_ManPropagateBuffers( Ivy_Man_t * p, int fUpdateLevel ); +extern void Ivy_ManPrintStats( Ivy_Man_t * p ); +extern void Ivy_ManMakeSeq( Ivy_Man_t * p, int nLatches, int * pInits ); +/*=== ivyMem.c ==========================================================*/ +extern void Ivy_ManStartMemory( Ivy_Man_t * p ); +extern void Ivy_ManStopMemory( Ivy_Man_t * p ); +/*=== ivyMulti.c ==========================================================*/ +extern Ivy_Obj_t * Ivy_Multi( Ivy_Man_t * p, Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ); +extern Ivy_Obj_t * Ivy_Multi1( Ivy_Man_t * p, Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ); +extern Ivy_Obj_t * Ivy_Multi_rec( Ivy_Man_t * p, Ivy_Obj_t ** ppObjs, int nObjs, Ivy_Type_t Type ); +extern Ivy_Obj_t * Ivy_MultiBalance_rec( Ivy_Man_t * p, Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ); +extern int Ivy_MultiPlus( Ivy_Man_t * p, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, Ivy_Type_t Type, int nLimit, Vec_Ptr_t * vSol ); +/*=== ivyObj.c ==========================================================*/ +extern Ivy_Obj_t * Ivy_ObjCreatePi( Ivy_Man_t * p ); +extern Ivy_Obj_t * Ivy_ObjCreatePo( Ivy_Man_t * p, Ivy_Obj_t * pDriver ); +extern Ivy_Obj_t * Ivy_ObjCreate( Ivy_Man_t * p, Ivy_Obj_t * pGhost ); +extern void Ivy_ObjConnect( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Obj_t * pFan0, Ivy_Obj_t * pFan1 ); +extern void Ivy_ObjDisconnect( Ivy_Man_t * p, Ivy_Obj_t * pObj ); +extern void Ivy_ObjPatchFanin0( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Obj_t * pFaninNew ); +extern void Ivy_ObjDelete( Ivy_Man_t * p, Ivy_Obj_t * pObj, int fFreeTop ); +extern void Ivy_ObjDelete_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj, int fFreeTop ); +extern void Ivy_ObjReplace( Ivy_Man_t * p, Ivy_Obj_t * pObjOld, Ivy_Obj_t * pObjNew, int fDeleteOld, int fFreeTop, int fUpdateLevel ); +extern void Ivy_NodeFixBufferFanins( Ivy_Man_t * p, Ivy_Obj_t * pNode, int fUpdateLevel ); +/*=== ivyOper.c =========================================================*/ +extern Ivy_Obj_t * Ivy_Oper( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1, Ivy_Type_t Type ); +extern Ivy_Obj_t * Ivy_And( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 ); +extern Ivy_Obj_t * Ivy_Or( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 ); +extern Ivy_Obj_t * Ivy_Exor( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 ); +extern Ivy_Obj_t * Ivy_Mux( Ivy_Man_t * p, Ivy_Obj_t * pC, Ivy_Obj_t * p1, Ivy_Obj_t * p0 ); +extern Ivy_Obj_t * Ivy_Maj( Ivy_Man_t * p, Ivy_Obj_t * pA, Ivy_Obj_t * pB, Ivy_Obj_t * pC ); +extern Ivy_Obj_t * Ivy_Miter( Ivy_Man_t * p, Vec_Ptr_t * vPairs ); +extern Ivy_Obj_t * Ivy_Latch( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Init_t Init ); +/*=== ivyResyn.c =========================================================*/ +extern Ivy_Man_t * Ivy_ManResyn0( Ivy_Man_t * p, int fUpdateLevel, int fVerbose ); +extern Ivy_Man_t * Ivy_ManResyn( Ivy_Man_t * p, int fUpdateLevel, int fVerbose ); +extern Ivy_Man_t * Ivy_ManRwsat( Ivy_Man_t * pMan, int fVerbose ); +/*=== ivyRewrite.c =========================================================*/ +extern int Ivy_ManSeqRewrite( Ivy_Man_t * p, int fUpdateLevel, int fUseZeroCost ); +extern int Ivy_ManRewriteAlg( Ivy_Man_t * p, int fUpdateLevel, int fUseZeroCost ); +extern int Ivy_ManRewritePre( Ivy_Man_t * p, int fUpdateLevel, int fUseZeroCost, int fVerbose ); +/*=== ivySeq.c =========================================================*/ +extern int Ivy_ManRewriteSeq( Ivy_Man_t * p, int fUseZeroCost, int fVerbose ); +/*=== ivyShow.c =========================================================*/ +extern void Ivy_ManShow( Ivy_Man_t * pMan, int fHaig, Vec_Ptr_t * vBold ); +/*=== ivyTable.c ========================================================*/ +extern Ivy_Obj_t * Ivy_TableLookup( Ivy_Man_t * p, Ivy_Obj_t * pObj ); +extern void Ivy_TableInsert( Ivy_Man_t * p, Ivy_Obj_t * pObj ); +extern void Ivy_TableDelete( Ivy_Man_t * p, Ivy_Obj_t * pObj ); +extern void Ivy_TableUpdate( Ivy_Man_t * p, Ivy_Obj_t * pObj, int ObjIdNew ); +extern int Ivy_TableCountEntries( Ivy_Man_t * p ); +extern void Ivy_TableProfile( Ivy_Man_t * p ); +/*=== ivyUtil.c =========================================================*/ +extern void Ivy_ManIncrementTravId( Ivy_Man_t * p ); +extern void Ivy_ManCleanTravId( Ivy_Man_t * p ); +extern unsigned * Ivy_ManCutTruth( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Vec_Int_t * vLeaves, Vec_Int_t * vNodes, Vec_Int_t * vTruth ); +extern void Ivy_ManCollectCut( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Vec_Int_t * vLeaves, Vec_Int_t * vNodes ); +extern Vec_Int_t * Ivy_ManLatches( Ivy_Man_t * p ); +extern int Ivy_ManLevels( Ivy_Man_t * p ); +extern void Ivy_ManResetLevels( Ivy_Man_t * p ); +extern int Ivy_ObjMffcLabel( Ivy_Man_t * p, Ivy_Obj_t * pObj ); +extern void Ivy_ObjUpdateLevel_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj ); +extern void Ivy_ObjUpdateLevelR_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj, int ReqNew ); +extern int Ivy_ObjIsMuxType( Ivy_Obj_t * pObj ); +extern Ivy_Obj_t * Ivy_ObjRecognizeMux( Ivy_Obj_t * pObj, Ivy_Obj_t ** ppObjT, Ivy_Obj_t ** ppObjE ); +extern Ivy_Obj_t * Ivy_ObjReal( Ivy_Obj_t * pObj ); +extern void Ivy_ObjPrintVerbose( Ivy_Man_t * p, Ivy_Obj_t * pObj, int fHaig ); +extern void Ivy_ManPrintVerbose( Ivy_Man_t * p, int fHaig ); +extern int Ivy_CutTruthPrint( Ivy_Man_t * p, Ivy_Cut_t * pCut, unsigned uTruth ); + +#ifdef __cplusplus +} +#endif + +#endif + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + diff --git a/src/aig/ivy/ivyBalance.c b/src/aig/ivy/ivyBalance.c new file mode 100644 index 00000000..5627039a --- /dev/null +++ b/src/aig/ivy/ivyBalance.c @@ -0,0 +1,404 @@ +/**CFile**************************************************************** + + FileName [ivyBalance.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Algebraic AIG balancing.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyBalance.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +static int Ivy_NodeBalance_rec( Ivy_Man_t * pNew, Ivy_Obj_t * pObj, Vec_Vec_t * vStore, int Level, int fUpdateLevel ); +static Vec_Ptr_t * Ivy_NodeBalanceCone( Ivy_Obj_t * pObj, Vec_Vec_t * vStore, int Level ); +static int Ivy_NodeBalanceFindLeft( Vec_Ptr_t * vSuper ); +static void Ivy_NodeBalancePermute( Ivy_Man_t * p, Vec_Ptr_t * vSuper, int LeftBound, int fExor ); +static void Ivy_NodeBalancePushUniqueOrderByLevel( Vec_Ptr_t * vStore, Ivy_Obj_t * pObj ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Performs algebraic balancing of the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_ManBalance( Ivy_Man_t * p, int fUpdateLevel ) +{ + Ivy_Man_t * pNew; + Ivy_Obj_t * pObj, * pDriver; + Vec_Vec_t * vStore; + int i, NewNodeId; + // clean the old manager + Ivy_ManCleanTravId( p ); + // create the new manager + pNew = Ivy_ManStart(); + // map the nodes + Ivy_ManConst1(p)->TravId = Ivy_EdgeFromNode( Ivy_ManConst1(pNew) ); + Ivy_ManForEachPi( p, pObj, i ) + pObj->TravId = Ivy_EdgeFromNode( Ivy_ObjCreatePi(pNew) ); + // if HAIG is defined, trasfer the pointers to the PIs/latches +// if ( p->pHaig ) +// Ivy_ManHaigTrasfer( p, pNew ); + // balance the AIG + vStore = Vec_VecAlloc( 50 ); + Ivy_ManForEachPo( p, pObj, i ) + { + pDriver = Ivy_ObjReal( Ivy_ObjChild0(pObj) ); + NewNodeId = Ivy_NodeBalance_rec( pNew, Ivy_Regular(pDriver), vStore, 0, fUpdateLevel ); + NewNodeId = Ivy_EdgeNotCond( NewNodeId, Ivy_IsComplement(pDriver) ); + Ivy_ObjCreatePo( pNew, Ivy_EdgeToNode(pNew, NewNodeId) ); + } + Vec_VecFree( vStore ); + if ( i = Ivy_ManCleanup( pNew ) ) + { +// printf( "Cleanup after balancing removed %d dangling nodes.\n", i ); + } + // check the resulting AIG + if ( !Ivy_ManCheck(pNew) ) + printf( "Ivy_ManBalance(): The check has failed.\n" ); + return pNew; +} + +/**Function************************************************************* + + Synopsis [Procedure used for sorting the nodes in decreasing order of levels.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeCompareLevelsDecrease( Ivy_Obj_t ** pp1, Ivy_Obj_t ** pp2 ) +{ + int Diff = Ivy_Regular(*pp1)->Level - Ivy_Regular(*pp2)->Level; + if ( Diff > 0 ) + return -1; + if ( Diff < 0 ) + return 1; + return 0; +} + +/**Function************************************************************* + + Synopsis [Returns the ID of new node constructed.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeBalance_rec( Ivy_Man_t * pNew, Ivy_Obj_t * pObjOld, Vec_Vec_t * vStore, int Level, int fUpdateLevel ) +{ + Ivy_Obj_t * pObjNew; + Vec_Ptr_t * vSuper; + int i, NewNodeId; + assert( !Ivy_IsComplement(pObjOld) ); + assert( !Ivy_ObjIsBuf(pObjOld) ); + // return if the result is known + if ( Ivy_ObjIsConst1(pObjOld) ) + return pObjOld->TravId; + if ( pObjOld->TravId ) + return pObjOld->TravId; + assert( Ivy_ObjIsNode(pObjOld) ); + // get the implication supergate + vSuper = Ivy_NodeBalanceCone( pObjOld, vStore, Level ); + if ( vSuper->nSize == 0 ) + { // it means that the supergate contains two nodes in the opposite polarity + pObjOld->TravId = Ivy_EdgeFromNode( Ivy_ManConst0(pNew) ); + return pObjOld->TravId; + } + if ( vSuper->nSize < 2 ) + printf( "BUG!\n" ); + // for each old node, derive the new well-balanced node + for ( i = 0; i < vSuper->nSize; i++ ) + { + NewNodeId = Ivy_NodeBalance_rec( pNew, Ivy_Regular(vSuper->pArray[i]), vStore, Level + 1, fUpdateLevel ); + NewNodeId = Ivy_EdgeNotCond( NewNodeId, Ivy_IsComplement(vSuper->pArray[i]) ); + vSuper->pArray[i] = Ivy_EdgeToNode( pNew, NewNodeId ); + } + // build the supergate + pObjNew = Ivy_NodeBalanceBuildSuper( pNew, vSuper, Ivy_ObjType(pObjOld), fUpdateLevel ); + vSuper->nSize = 0; + // make sure the balanced node is not assigned + assert( pObjOld->TravId == 0 ); + pObjOld->TravId = Ivy_EdgeFromNode( pObjNew ); +// assert( pObjOld->Level >= Ivy_Regular(pObjNew)->Level ); + return pObjOld->TravId; +} + +/**Function************************************************************* + + Synopsis [Builds implication supergate.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_NodeBalanceBuildSuper( Ivy_Man_t * p, Vec_Ptr_t * vSuper, Ivy_Type_t Type, int fUpdateLevel ) +{ + Ivy_Obj_t * pObj1, * pObj2; + int LeftBound; + assert( vSuper->nSize > 1 ); + // sort the new nodes by level in the decreasing order + Vec_PtrSort( vSuper, Ivy_NodeCompareLevelsDecrease ); + // balance the nodes + while ( vSuper->nSize > 1 ) + { + // find the left bound on the node to be paired + LeftBound = (!fUpdateLevel)? 0 : Ivy_NodeBalanceFindLeft( vSuper ); + // find the node that can be shared (if no such node, randomize choice) + Ivy_NodeBalancePermute( p, vSuper, LeftBound, Type == IVY_EXOR ); + // pull out the last two nodes + pObj1 = Vec_PtrPop(vSuper); + pObj2 = Vec_PtrPop(vSuper); + Ivy_NodeBalancePushUniqueOrderByLevel( vSuper, Ivy_Oper(p, pObj1, pObj2, Type) ); + } + return Vec_PtrEntry(vSuper, 0); +} + +/**Function************************************************************* + + Synopsis [Collects the nodes of the supergate.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeBalanceCone_rec( Ivy_Obj_t * pRoot, Ivy_Obj_t * pObj, Vec_Ptr_t * vSuper ) +{ + int RetValue1, RetValue2, i; + // check if the node is visited + if ( Ivy_Regular(pObj)->fMarkB ) + { + // check if the node occurs in the same polarity + for ( i = 0; i < vSuper->nSize; i++ ) + if ( vSuper->pArray[i] == pObj ) + return 1; + // check if the node is present in the opposite polarity + for ( i = 0; i < vSuper->nSize; i++ ) + if ( vSuper->pArray[i] == Ivy_Not(pObj) ) + return -1; + assert( 0 ); + return 0; + } + // if the new node is complemented or a PI, another gate begins + if ( pObj != pRoot && (Ivy_IsComplement(pObj) || Ivy_ObjType(pObj) != Ivy_ObjType(pRoot) || Ivy_ObjRefs(pObj) > 1) ) + { + Vec_PtrPush( vSuper, pObj ); + Ivy_Regular(pObj)->fMarkB = 1; + return 0; + } + assert( !Ivy_IsComplement(pObj) ); + assert( Ivy_ObjIsNode(pObj) ); + // go through the branches + RetValue1 = Ivy_NodeBalanceCone_rec( pRoot, Ivy_ObjReal( Ivy_ObjChild0(pObj) ), vSuper ); + RetValue2 = Ivy_NodeBalanceCone_rec( pRoot, Ivy_ObjReal( Ivy_ObjChild1(pObj) ), vSuper ); + if ( RetValue1 == -1 || RetValue2 == -1 ) + return -1; + // return 1 if at least one branch has a duplicate + return RetValue1 || RetValue2; +} + +/**Function************************************************************* + + Synopsis [Collects the nodes of the supergate.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Ptr_t * Ivy_NodeBalanceCone( Ivy_Obj_t * pObj, Vec_Vec_t * vStore, int Level ) +{ + Vec_Ptr_t * vNodes; + int RetValue, i; + assert( !Ivy_IsComplement(pObj) ); + // extend the storage + if ( Vec_VecSize( vStore ) <= Level ) + Vec_VecPush( vStore, Level, 0 ); + // get the temporary array of nodes + vNodes = Vec_VecEntry( vStore, Level ); + Vec_PtrClear( vNodes ); + // collect the nodes in the implication supergate + RetValue = Ivy_NodeBalanceCone_rec( pObj, pObj, vNodes ); + assert( vNodes->nSize > 1 ); + // unmark the visited nodes + Vec_PtrForEachEntry( vNodes, pObj, i ) + Ivy_Regular(pObj)->fMarkB = 0; + // if we found the node and its complement in the same implication supergate, + // return empty set of nodes (meaning that we should use constant-0 node) + if ( RetValue == -1 ) + vNodes->nSize = 0; + return vNodes; +} + +/**Function************************************************************* + + Synopsis [Finds the left bound on the next candidate to be paired.] + + Description [The nodes in the array are in the decreasing order of levels. + The last node in the array has the smallest level. By default it would be paired + with the next node on the left. However, it may be possible to pair it with some + other node on the left, in such a way that the new node is shared. This procedure + finds the index of the left-most node, which can be paired with the last node.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeBalanceFindLeft( Vec_Ptr_t * vSuper ) +{ + Ivy_Obj_t * pObjRight, * pObjLeft; + int Current; + // if two or less nodes, pair with the first + if ( Vec_PtrSize(vSuper) < 3 ) + return 0; + // set the pointer to the one before the last + Current = Vec_PtrSize(vSuper) - 2; + pObjRight = Vec_PtrEntry( vSuper, Current ); + // go through the nodes to the left of this one + for ( Current--; Current >= 0; Current-- ) + { + // get the next node on the left + pObjLeft = Vec_PtrEntry( vSuper, Current ); + // if the level of this node is different, quit the loop + if ( Ivy_Regular(pObjLeft)->Level != Ivy_Regular(pObjRight)->Level ) + break; + } + Current++; + // get the node, for which the equality holds + pObjLeft = Vec_PtrEntry( vSuper, Current ); + assert( Ivy_Regular(pObjLeft)->Level == Ivy_Regular(pObjRight)->Level ); + return Current; +} + +/**Function************************************************************* + + Synopsis [Moves closer to the end the node that is best for sharing.] + + Description [If there is no node with sharing, randomly chooses one of + the legal nodes.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeBalancePermute( Ivy_Man_t * p, Vec_Ptr_t * vSuper, int LeftBound, int fExor ) +{ + Ivy_Obj_t * pObj1, * pObj2, * pObj3, * pGhost; + int RightBound, i; + // get the right bound + RightBound = Vec_PtrSize(vSuper) - 2; + assert( LeftBound <= RightBound ); + if ( LeftBound == RightBound ) + return; + // get the two last nodes + pObj1 = Vec_PtrEntry( vSuper, RightBound + 1 ); + pObj2 = Vec_PtrEntry( vSuper, RightBound ); + if ( Ivy_Regular(pObj1) == p->pConst1 || Ivy_Regular(pObj2) == p->pConst1 ) + return; + // find the first node that can be shared + for ( i = RightBound; i >= LeftBound; i-- ) + { + pObj3 = Vec_PtrEntry( vSuper, i ); + if ( Ivy_Regular(pObj3) == p->pConst1 ) + { + Vec_PtrWriteEntry( vSuper, i, pObj2 ); + Vec_PtrWriteEntry( vSuper, RightBound, pObj3 ); + return; + } + pGhost = Ivy_ObjCreateGhost( p, pObj1, pObj3, fExor? IVY_EXOR : IVY_AND, IVY_INIT_NONE ); + if ( Ivy_TableLookup( p, pGhost ) ) + { + if ( pObj3 == pObj2 ) + return; + Vec_PtrWriteEntry( vSuper, i, pObj2 ); + Vec_PtrWriteEntry( vSuper, RightBound, pObj3 ); + return; + } + } +/* + // we did not find the node to share, randomize choice + { + int Choice = rand() % (RightBound - LeftBound + 1); + pObj3 = Vec_PtrEntry( vSuper, LeftBound + Choice ); + if ( pObj3 == pObj2 ) + return; + Vec_PtrWriteEntry( vSuper, LeftBound + Choice, pObj2 ); + Vec_PtrWriteEntry( vSuper, RightBound, pObj3 ); + } +*/ +} + +/**Function************************************************************* + + Synopsis [Inserts a new node in the order by levels.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeBalancePushUniqueOrderByLevel( Vec_Ptr_t * vStore, Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pObj1, * pObj2; + int i; + if ( Vec_PtrPushUnique(vStore, pObj) ) + return; + // find the p of the node + for ( i = vStore->nSize-1; i > 0; i-- ) + { + pObj1 = vStore->pArray[i ]; + pObj2 = vStore->pArray[i-1]; + if ( Ivy_Regular(pObj1)->Level <= Ivy_Regular(pObj2)->Level ) + break; + vStore->pArray[i ] = pObj2; + vStore->pArray[i-1] = pObj1; + } +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyCanon.c b/src/aig/ivy/ivyCanon.c new file mode 100644 index 00000000..5768b87e --- /dev/null +++ b/src/aig/ivy/ivyCanon.c @@ -0,0 +1,144 @@ +/**CFile**************************************************************** + + FileName [ivyCanon.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Finding canonical form of objects.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyCanon.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +static Ivy_Obj_t * Ivy_TableLookupPair_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj0, Ivy_Obj_t * pObj1, int fCompl0, int fCompl1, Ivy_Type_t Type ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Creates the canonical form of the node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_CanonPair_rec( Ivy_Man_t * p, Ivy_Obj_t * pGhost ) +{ + Ivy_Obj_t * pResult, * pLat0, * pLat1; + Ivy_Init_t Init, Init0, Init1; + int fCompl0, fCompl1; + Ivy_Type_t Type; + assert( Ivy_ObjIsNode(pGhost) ); + assert( Ivy_ObjIsAnd(pGhost) || (!Ivy_ObjFaninC0(pGhost) && !Ivy_ObjFaninC1(pGhost)) ); + assert( Ivy_ObjFaninId0(pGhost) != 0 && Ivy_ObjFaninId1(pGhost) != 0 ); + // consider the case when the pair is canonical + if ( !Ivy_ObjIsLatch(Ivy_ObjFanin0(pGhost)) || !Ivy_ObjIsLatch(Ivy_ObjFanin1(pGhost)) ) + { + if ( pResult = Ivy_TableLookup( p, pGhost ) ) + return pResult; + return Ivy_ObjCreate( p, pGhost ); + } + /// remember the latches + pLat0 = Ivy_ObjFanin0(pGhost); + pLat1 = Ivy_ObjFanin1(pGhost); + // remember type and compls + Type = Ivy_ObjType(pGhost); + fCompl0 = Ivy_ObjFaninC0(pGhost); + fCompl1 = Ivy_ObjFaninC1(pGhost); + // call recursively + pResult = Ivy_Oper( p, Ivy_NotCond(Ivy_ObjFanin0(pLat0), fCompl0), Ivy_NotCond(Ivy_ObjFanin0(pLat1), fCompl1), Type ); + // build latch on top of this + Init0 = Ivy_InitNotCond( Ivy_ObjInit(pLat0), fCompl0 ); + Init1 = Ivy_InitNotCond( Ivy_ObjInit(pLat1), fCompl1 ); + Init = (Type == IVY_AND)? Ivy_InitAnd(Init0, Init1) : Ivy_InitExor(Init0, Init1); + return Ivy_Latch( p, pResult, Init ); +} + +/**Function************************************************************* + + Synopsis [Creates the canonical form of the node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_CanonAnd( Ivy_Man_t * p, Ivy_Obj_t * pObj0, Ivy_Obj_t * pObj1 ) +{ + Ivy_Obj_t * pGhost, * pResult; + pGhost = Ivy_ObjCreateGhost( p, pObj0, pObj1, IVY_AND, IVY_INIT_NONE ); + pResult = Ivy_CanonPair_rec( p, pGhost ); + return pResult; +} + +/**Function************************************************************* + + Synopsis [Creates the canonical form of the node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_CanonExor( Ivy_Man_t * p, Ivy_Obj_t * pObj0, Ivy_Obj_t * pObj1 ) +{ + Ivy_Obj_t * pGhost, * pResult; + int fCompl = Ivy_IsComplement(pObj0) ^ Ivy_IsComplement(pObj1); + pObj0 = Ivy_Regular(pObj0); + pObj1 = Ivy_Regular(pObj1); + pGhost = Ivy_ObjCreateGhost( p, pObj0, pObj1, IVY_EXOR, IVY_INIT_NONE ); + pResult = Ivy_CanonPair_rec( p, pGhost ); + return Ivy_NotCond( pResult, fCompl ); +} + +/**Function************************************************************* + + Synopsis [Creates the canonical form of the node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_CanonLatch( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Init_t Init ) +{ + Ivy_Obj_t * pGhost, * pResult; + int fCompl = Ivy_IsComplement(pObj); + pObj = Ivy_Regular(pObj); + pGhost = Ivy_ObjCreateGhost( p, pObj, NULL, IVY_LATCH, Ivy_InitNotCond(Init, fCompl) ); + pResult = Ivy_TableLookup( p, pGhost ); + if ( pResult == NULL ) + pResult = Ivy_ObjCreate( p, pGhost ); + return Ivy_NotCond( pResult, fCompl ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyCheck.c b/src/aig/ivy/ivyCheck.c new file mode 100644 index 00000000..55448f19 --- /dev/null +++ b/src/aig/ivy/ivyCheck.c @@ -0,0 +1,273 @@ +/**CFile**************************************************************** + + FileName [ivyCheck.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [AIG checking procedures.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyCheck.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Checks the consistency of the AIG manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManCheck( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj, * pObj2; + int i; + Ivy_ManForEachObj( p, pObj, i ) + { + // skip deleted nodes + if ( Ivy_ObjId(pObj) != i ) + { + printf( "Ivy_ManCheck: Node with ID %d is listed as number %d in the array of objects.\n", pObj->Id, i ); + return 0; + } + // consider the constant node and PIs + if ( i == 0 || Ivy_ObjIsPi(pObj) ) + { + if ( Ivy_ObjFaninId0(pObj) || Ivy_ObjFaninId1(pObj) || Ivy_ObjLevel(pObj) ) + { + printf( "Ivy_ManCheck: The AIG has non-standard constant or PI node with ID \"%d\".\n", pObj->Id ); + return 0; + } + continue; + } + if ( Ivy_ObjIsPo(pObj) ) + { + if ( Ivy_ObjFaninId1(pObj) ) + { + printf( "Ivy_ManCheck: The AIG has non-standard PO node with ID \"%d\".\n", pObj->Id ); + return 0; + } + continue; + } + if ( Ivy_ObjIsBuf(pObj) ) + { + if ( Ivy_ObjFanin1(pObj) ) + { + printf( "Ivy_ManCheck: The buffer with ID \"%d\" contains second fanin.\n", pObj->Id ); + return 0; + } + continue; + } + if ( Ivy_ObjIsLatch(pObj) ) + { + if ( Ivy_ObjFanin1(pObj) ) + { + printf( "Ivy_ManCheck: The latch with ID \"%d\" contains second fanin.\n", pObj->Id ); + return 0; + } + if ( Ivy_ObjInit(pObj) == IVY_INIT_NONE ) + { + printf( "Ivy_ManCheck: The latch with ID \"%d\" does not have initial state.\n", pObj->Id ); + return 0; + } + pObj2 = Ivy_TableLookup( p, pObj ); + if ( pObj2 != pObj ) + printf( "Ivy_ManCheck: Latch with ID \"%d\" is not in the structural hashing table.\n", pObj->Id ); + continue; + } + // consider the AND node + if ( !Ivy_ObjFanin0(pObj) || !Ivy_ObjFanin1(pObj) ) + { + printf( "Ivy_ManCheck: The AIG has internal node \"%d\" with a NULL fanin.\n", pObj->Id ); + return 0; + } + if ( Ivy_ObjFaninId0(pObj) >= Ivy_ObjFaninId1(pObj) ) + { + printf( "Ivy_ManCheck: The AIG has node \"%d\" with a wrong ordering of fanins.\n", pObj->Id ); + return 0; + } + if ( Ivy_ObjLevel(pObj) != Ivy_ObjLevelNew(pObj) ) + printf( "Ivy_ManCheck: Node with ID \"%d\" has level %d but should have level %d.\n", pObj->Id, Ivy_ObjLevel(pObj), Ivy_ObjLevelNew(pObj) ); + pObj2 = Ivy_TableLookup( p, pObj ); + if ( pObj2 != pObj ) + printf( "Ivy_ManCheck: Node with ID \"%d\" is not in the structural hashing table.\n", pObj->Id ); + if ( Ivy_ObjRefs(pObj) == 0 ) + printf( "Ivy_ManCheck: Node with ID \"%d\" has no fanouts.\n", pObj->Id ); + // check fanouts + if ( p->fFanout && Ivy_ObjRefs(pObj) != Ivy_ObjFanoutNum(p, pObj) ) + printf( "Ivy_ManCheck: Node with ID \"%d\" has mismatch between the number of fanouts and refs.\n", pObj->Id ); + } + // count the number of nodes in the table + if ( Ivy_TableCountEntries(p) != Ivy_ManAndNum(p) + Ivy_ManExorNum(p) + Ivy_ManLatchNum(p) ) + { + printf( "Ivy_ManCheck: The number of nodes in the structural hashing table is wrong.\n" ); + return 0; + } +// if ( !Ivy_ManCheckFanouts(p) ) +// return 0; + if ( !Ivy_ManIsAcyclic(p) ) + return 0; + return 1; +} + +/**Function************************************************************* + + Synopsis [Verifies the fanouts.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManCheckFanoutNums( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj; + int i, Counter = 0; + Ivy_ManForEachObj( p, pObj, i ) + if ( Ivy_ObjIsNode(pObj) ) + Counter += (Ivy_ObjRefs(pObj) == 0); + if ( Counter ) + printf( "Sequential AIG has %d dangling nodes.\n", Counter ); + return Counter; +} + +/**Function************************************************************* + + Synopsis [Verifies the fanouts.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManCheckFanouts( Ivy_Man_t * p ) +{ + Vec_Ptr_t * vFanouts; + Ivy_Obj_t * pObj, * pFanout, * pFanin; + int i, k, RetValue = 1; + if ( !p->fFanout ) + return 1; + vFanouts = Vec_PtrAlloc( 100 ); + // make sure every fanin is a fanout + Ivy_ManForEachObj( p, pObj, i ) + { + pFanin = Ivy_ObjFanin0(pObj); + if ( pFanin == NULL ) + continue; + Ivy_ObjForEachFanout( p, pFanin, vFanouts, pFanout, k ) + if ( pFanout == pObj ) + break; + if ( k == Vec_PtrSize(vFanouts) ) + { + printf( "Node %d is a fanin of node %d but the fanout is not there.\n", pFanin->Id, pObj->Id ); + RetValue = 0; + } + + pFanin = Ivy_ObjFanin1(pObj); + if ( pFanin == NULL ) + continue; + Ivy_ObjForEachFanout( p, pFanin, vFanouts, pFanout, k ) + if ( pFanout == pObj ) + break; + if ( k == Vec_PtrSize(vFanouts) ) + { + printf( "Node %d is a fanin of node %d but the fanout is not there.\n", pFanin->Id, pObj->Id ); + RetValue = 0; + } + // check that the previous fanout has the same fanin + if ( pObj->pPrevFan0 ) + { + if ( Ivy_ObjFanin0(pObj->pPrevFan0) != Ivy_ObjFanin0(pObj) && + Ivy_ObjFanin0(pObj->pPrevFan0) != Ivy_ObjFanin1(pObj) && + Ivy_ObjFanin1(pObj->pPrevFan0) != Ivy_ObjFanin0(pObj) && + Ivy_ObjFanin1(pObj->pPrevFan0) != Ivy_ObjFanin1(pObj) ) + { + printf( "Node %d has prev %d without common fanin.\n", pObj->Id, pObj->pPrevFan0->Id ); + RetValue = 0; + } + } + // check that the previous fanout has the same fanin + if ( pObj->pPrevFan1 ) + { + if ( Ivy_ObjFanin0(pObj->pPrevFan1) != Ivy_ObjFanin0(pObj) && + Ivy_ObjFanin0(pObj->pPrevFan1) != Ivy_ObjFanin1(pObj) && + Ivy_ObjFanin1(pObj->pPrevFan1) != Ivy_ObjFanin0(pObj) && + Ivy_ObjFanin1(pObj->pPrevFan1) != Ivy_ObjFanin1(pObj) ) + { + printf( "Node %d has prev %d without common fanin.\n", pObj->Id, pObj->pPrevFan1->Id ); + RetValue = 0; + } + } + } + // make sure every fanout is a fanin + Ivy_ManForEachObj( p, pObj, i ) + { + Ivy_ObjForEachFanout( p, pObj, vFanouts, pFanout, k ) + if ( Ivy_ObjFanin0(pFanout) != pObj && Ivy_ObjFanin1(pFanout) != pObj ) + { + printf( "Node %d is a fanout of node %d but the fanin is not there.\n", pFanout->Id, pObj->Id ); + RetValue = 0; + } + } + Vec_PtrFree( vFanouts ); + return RetValue; +} + +/**Function************************************************************* + + Synopsis [Checks that each choice node has exactly one node with fanouts.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManCheckChoices( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj, * pTemp; + int i; + Ivy_ManForEachObj( p->pHaig, pObj, i ) + { + if ( Ivy_ObjRefs(pObj) == 0 ) + continue; + // count the number of nodes in the loop + assert( !Ivy_IsComplement(pObj->pEquiv) ); + for ( pTemp = pObj->pEquiv; pTemp && pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) + if ( Ivy_ObjRefs(pTemp) > 1 ) + printf( "Node %d has member %d in its equiv class with %d fanouts.\n", pObj->Id, pTemp->Id, Ivy_ObjRefs(pTemp) ); + } + return 1; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyCut.c b/src/aig/ivy/ivyCut.c new file mode 100644 index 00000000..e257d8a6 --- /dev/null +++ b/src/aig/ivy/ivyCut.c @@ -0,0 +1,989 @@ +/**CFile**************************************************************** + + FileName [ivyCut.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Computes reconvergence driven sequential cut.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyCut.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +static inline int Ivy_NodeCutHashValue( int NodeId ) { return 1 << (NodeId % 31); } + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Evaluate the cost of removing the node from the set of leaves.] + + Description [Returns the number of new leaves that will be brought in. + Returns large number if the node cannot be removed from the set of leaves.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_NodeGetLeafCostOne( Ivy_Man_t * p, int Leaf, Vec_Int_t * vInside ) +{ + Ivy_Obj_t * pNode; + int nLatches, FaninLeaf, Cost; + // make sure leaf is not a contant node + assert( Leaf > 0 ); + // get the node + pNode = Ivy_ManObj( p, Ivy_LeafId(Leaf) ); + // cannot expand over the PI node + if ( Ivy_ObjIsPi(pNode) || Ivy_ObjIsConst1(pNode) ) + return 999; + // get the number of latches + nLatches = Ivy_LeafLat(Leaf) + Ivy_ObjIsLatch(pNode); + if ( nLatches > 15 ) + return 999; + // get the first fanin + FaninLeaf = Ivy_LeafCreate( Ivy_ObjFaninId0(pNode), nLatches ); + Cost = FaninLeaf && (Vec_IntFind(vInside, FaninLeaf) == -1); + // quit if this is the one fanin node + if ( Ivy_ObjIsLatch(pNode) || Ivy_ObjIsBuf(pNode) ) + return Cost; + assert( Ivy_ObjIsNode(pNode) ); + // get the second fanin + FaninLeaf = Ivy_LeafCreate( Ivy_ObjFaninId1(pNode), nLatches ); + Cost += FaninLeaf && (Vec_IntFind(vInside, FaninLeaf) == -1); + return Cost; +} + +/**Function************************************************************* + + Synopsis [Builds reconvergence-driven cut by changing one leaf at a time.] + + Description [This procedure looks at the current leaves and tries to change + one leaf at a time in such a way that the cut grows as little as possible. + In evaluating the fanins, this procedure looks only at their immediate + predecessors (this is why it is called a one-level construction procedure).] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManSeqFindCut_int( Ivy_Man_t * p, Vec_Int_t * vFront, Vec_Int_t * vInside, int nSizeLimit ) +{ + Ivy_Obj_t * pNode; + int CostBest, CostCur, Leaf, LeafBest, Next, nLatches, i; + int LeavesBest[10]; + int Counter; + + // add random selection of the best fanin!!! + + // find the best fanin + CostBest = 99; + LeafBest = -1; + Counter = -1; +//printf( "Evaluating fanins of the cut:\n" ); + Vec_IntForEachEntry( vFront, Leaf, i ) + { + CostCur = Ivy_NodeGetLeafCostOne( p, Leaf, vInside ); +//printf( " Fanin %s has cost %d.\n", Ivy_ObjName(pNode), CostCur ); + if ( CostBest > CostCur ) + { + CostBest = CostCur; + LeafBest = Leaf; + LeavesBest[0] = Leaf; + Counter = 1; + } + else if ( CostBest == CostCur ) + LeavesBest[Counter++] = Leaf; + + if ( CostBest <= 1 ) // can be if ( CostBest <= 1 ) + break; + } + if ( CostBest == 99 ) + return 0; +// return Ivy_NodeBuildCutLevelTwo_int( vInside, vFront, nFaninLimit ); + + assert( CostBest < 3 ); + if ( Vec_IntSize(vFront) - 1 + CostBest > nSizeLimit ) + return 0; +// return Ivy_NodeBuildCutLevelTwo_int( vInside, vFront, nFaninLimit ); + + assert( Counter > 0 ); +printf( "%d", Counter ); + + LeafBest = LeavesBest[rand() % Counter]; + + // remove the node from the array + assert( LeafBest >= 0 ); + Vec_IntRemove( vFront, LeafBest ); +//printf( "Removing fanin %s.\n", Ivy_ObjName(pNode) ); + + // get the node and its latches + pNode = Ivy_ManObj( p, Ivy_LeafId(LeafBest) ); + nLatches = Ivy_LeafLat(LeafBest) + Ivy_ObjIsLatch(pNode); + assert( Ivy_ObjIsNode(pNode) || Ivy_ObjIsLatch(pNode) || Ivy_ObjIsBuf(pNode) ); + + // add the left child to the fanins + Next = Ivy_LeafCreate( Ivy_ObjFaninId0(pNode), nLatches ); + if ( Next && Vec_IntFind(vInside, Next) == -1 ) + { +//printf( "Adding fanin %s.\n", Ivy_ObjName(pNext) ); + Vec_IntPush( vFront, Next ); + Vec_IntPush( vInside, Next ); + } + + // quit if this is the one fanin node + if ( Ivy_ObjIsLatch(pNode) || Ivy_ObjIsBuf(pNode) ) + return 1; + assert( Ivy_ObjIsNode(pNode) ); + + // add the right child to the fanins + Next = Ivy_LeafCreate( Ivy_ObjFaninId1(pNode), nLatches ); + if ( Next && Vec_IntFind(vInside, Next) == -1 ) + { +//printf( "Adding fanin %s.\n", Ivy_ObjName(pNext) ); + Vec_IntPush( vFront, Next ); + Vec_IntPush( vInside, Next ); + } + assert( Vec_IntSize(vFront) <= nSizeLimit ); + // keep doing this + return 1; +} + +/**Function************************************************************* + + Synopsis [Computes one sequential cut of the given size.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManSeqFindCut( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Vec_Int_t * vFront, Vec_Int_t * vInside, int nSize ) +{ + assert( !Ivy_IsComplement(pRoot) ); + assert( Ivy_ObjIsNode(pRoot) ); + assert( Ivy_ObjFaninId0(pRoot) ); + assert( Ivy_ObjFaninId1(pRoot) ); + + // start the cut + Vec_IntClear( vFront ); + Vec_IntPush( vFront, Ivy_LeafCreate(Ivy_ObjFaninId0(pRoot), 0) ); + Vec_IntPush( vFront, Ivy_LeafCreate(Ivy_ObjFaninId1(pRoot), 0) ); + + // start the visited nodes + Vec_IntClear( vInside ); + Vec_IntPush( vInside, Ivy_LeafCreate(pRoot->Id, 0) ); + Vec_IntPush( vInside, Ivy_LeafCreate(Ivy_ObjFaninId0(pRoot), 0) ); + Vec_IntPush( vInside, Ivy_LeafCreate(Ivy_ObjFaninId1(pRoot), 0) ); + + // compute the cut + while ( Ivy_ManSeqFindCut_int( p, vFront, vInside, nSize ) ); + assert( Vec_IntSize(vFront) <= nSize ); +} + + + + + +/**Function************************************************************* + + Synopsis [Computing Boolean cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManFindBoolCut_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vVolume, Ivy_Obj_t * pPivot ) +{ + int RetValue0, RetValue1; + if ( pObj == pPivot ) + { + Vec_PtrPushUnique( vLeaves, pObj ); + Vec_PtrPushUnique( vVolume, pObj ); + return 1; + } + if ( pObj->fMarkA ) + return 0; + +// assert( !Ivy_ObjIsCi(pObj) ); + if ( Ivy_ObjIsCi(pObj) ) + return 0; + + if ( Ivy_ObjIsBuf(pObj) ) + { + RetValue0 = Ivy_ManFindBoolCut_rec( p, Ivy_ObjFanin0(pObj), vLeaves, vVolume, pPivot ); + if ( !RetValue0 ) + return 0; + Vec_PtrPushUnique( vVolume, pObj ); + return 1; + } + assert( Ivy_ObjIsNode(pObj) ); + RetValue0 = Ivy_ManFindBoolCut_rec( p, Ivy_ObjFanin0(pObj), vLeaves, vVolume, pPivot ); + RetValue1 = Ivy_ManFindBoolCut_rec( p, Ivy_ObjFanin1(pObj), vLeaves, vVolume, pPivot ); + if ( !RetValue0 && !RetValue1 ) + return 0; + // add new leaves + if ( !RetValue0 ) + { + Vec_PtrPushUnique( vLeaves, Ivy_ObjFanin0(pObj) ); + Vec_PtrPushUnique( vVolume, Ivy_ObjFanin0(pObj) ); + } + if ( !RetValue1 ) + { + Vec_PtrPushUnique( vLeaves, Ivy_ObjFanin1(pObj) ); + Vec_PtrPushUnique( vVolume, Ivy_ObjFanin1(pObj) ); + } + Vec_PtrPushUnique( vVolume, pObj ); + return 1; +} + +/**Function************************************************************* + + Synopsis [Returns the cost of one node (how many new nodes are added.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManFindBoolCutCost( Ivy_Obj_t * pObj ) +{ + int Cost; + // make sure the node is in the construction zone + assert( pObj->fMarkA == 1 ); + // cannot expand over the PI node + if ( Ivy_ObjIsCi(pObj) ) + return 999; + // always expand over the buffer + if ( Ivy_ObjIsBuf(pObj) ) + return !Ivy_ObjFanin0(pObj)->fMarkA; + // get the cost of the cone + Cost = (!Ivy_ObjFanin0(pObj)->fMarkA) + (!Ivy_ObjFanin1(pObj)->fMarkA); + // return the number of nodes to be added to the leaves if this node is removed + return Cost; +} + +/**Function************************************************************* + + Synopsis [Computing Boolean cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManFindBoolCut( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Vec_Ptr_t * vFront, Vec_Ptr_t * vVolume, Vec_Ptr_t * vLeaves ) +{ + Ivy_Obj_t * pObj, * pFaninC, * pFanin0, * pFanin1, * pPivot; + int RetValue, LevelLimit, Lev, k; + assert( !Ivy_IsComplement(pRoot) ); + // clear the frontier and collect the nodes + Vec_PtrClear( vFront ); + Vec_PtrClear( vVolume ); + if ( Ivy_ObjIsMuxType(pRoot) ) + pFaninC = Ivy_ObjRecognizeMux( pRoot, &pFanin0, &pFanin1 ); + else + { + pFaninC = NULL; + pFanin0 = Ivy_ObjFanin0(pRoot); + pFanin1 = Ivy_ObjFanin1(pRoot); + } + // start cone A + pFanin0->fMarkA = 1; + Vec_PtrPush( vFront, pFanin0 ); + Vec_PtrPush( vVolume, pFanin0 ); + // start cone B + pFanin1->fMarkB = 1; + Vec_PtrPush( vFront, pFanin1 ); + Vec_PtrPush( vVolume, pFanin1 ); + // iteratively expand until the common node (pPivot) is found or limit is reached + assert( Ivy_ObjLevel(pRoot) == Ivy_ObjLevelNew(pRoot) ); + pPivot = NULL; + LevelLimit = IVY_MAX( Ivy_ObjLevel(pRoot) - 10, 1 ); + for ( Lev = Ivy_ObjLevel(pRoot) - 1; Lev >= LevelLimit; Lev-- ) + { + while ( 1 ) + { + // find the next node to expand on this level + Vec_PtrForEachEntry( vFront, pObj, k ) + if ( (int)pObj->Level == Lev ) + break; + if ( k == Vec_PtrSize(vFront) ) + break; + assert( (int)pObj->Level <= Lev ); + assert( pObj->fMarkA ^ pObj->fMarkB ); + // remove the old node + Vec_PtrRemove( vFront, pObj ); + + // expand this node + pFanin0 = Ivy_ObjFanin0(pObj); + if ( !pFanin0->fMarkA && !pFanin0->fMarkB ) + { + Vec_PtrPush( vFront, pFanin0 ); + Vec_PtrPush( vVolume, pFanin0 ); + } + // mark the new nodes + if ( pObj->fMarkA ) + pFanin0->fMarkA = 1; + if ( pObj->fMarkB ) + pFanin0->fMarkB = 1; + + if ( Ivy_ObjIsBuf(pObj) ) + { + if ( pFanin0->fMarkA && pFanin0->fMarkB ) + { + pPivot = pFanin0; + break; + } + continue; + } + + // expand this node + pFanin1 = Ivy_ObjFanin1(pObj); + if ( !pFanin1->fMarkA && !pFanin1->fMarkB ) + { + Vec_PtrPush( vFront, pFanin1 ); + Vec_PtrPush( vVolume, pFanin1 ); + } + // mark the new nodes + if ( pObj->fMarkA ) + pFanin1->fMarkA = 1; + if ( pObj->fMarkB ) + pFanin1->fMarkB = 1; + + // consider if it is time to quit + if ( pFanin0->fMarkA && pFanin0->fMarkB ) + { + pPivot = pFanin0; + break; + } + if ( pFanin1->fMarkA && pFanin1->fMarkB ) + { + pPivot = pFanin1; + break; + } + } + if ( pPivot != NULL ) + break; + } + if ( pPivot == NULL ) + return 0; + // if the MUX control is defined, it should not be + if ( pFaninC && !pFaninC->fMarkA && !pFaninC->fMarkB ) + Vec_PtrPush( vFront, pFaninC ); + // clean the markings + Vec_PtrForEachEntry( vVolume, pObj, k ) + pObj->fMarkA = pObj->fMarkB = 0; + + // mark the nodes on the frontier (including the pivot) + Vec_PtrForEachEntry( vFront, pObj, k ) + pObj->fMarkA = 1; + // cut exists, collect all the nodes on the shortest path to the pivot + Vec_PtrClear( vLeaves ); + Vec_PtrClear( vVolume ); + RetValue = Ivy_ManFindBoolCut_rec( p, pRoot, vLeaves, vVolume, pPivot ); + assert( RetValue == 1 ); + // unmark the nodes on the frontier (including the pivot) + Vec_PtrForEachEntry( vFront, pObj, k ) + pObj->fMarkA = 0; + + // mark the nodes in the volume + Vec_PtrForEachEntry( vVolume, pObj, k ) + pObj->fMarkA = 1; + // expand the cut without increasing its size + while ( 1 ) + { + Vec_PtrForEachEntry( vLeaves, pObj, k ) + if ( Ivy_ManFindBoolCutCost(pObj) < 2 ) + break; + if ( k == Vec_PtrSize(vLeaves) ) + break; + // the node can be expanded + // remove the old node + Vec_PtrRemove( vLeaves, pObj ); + // expand this node + pFanin0 = Ivy_ObjFanin0(pObj); + if ( !pFanin0->fMarkA ) + { + pFanin0->fMarkA = 1; + Vec_PtrPush( vVolume, pFanin0 ); + Vec_PtrPush( vLeaves, pFanin0 ); + } + if ( Ivy_ObjIsBuf(pObj) ) + continue; + // expand this node + pFanin1 = Ivy_ObjFanin1(pObj); + if ( !pFanin1->fMarkA ) + { + pFanin1->fMarkA = 1; + Vec_PtrPush( vVolume, pFanin1 ); + Vec_PtrPush( vLeaves, pFanin1 ); + } + } + // unmark the nodes in the volume + Vec_PtrForEachEntry( vVolume, pObj, k ) + pObj->fMarkA = 0; + return 1; +} + + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManTestCutsBool( Ivy_Man_t * p ) +{ + Vec_Ptr_t * vFront, * vVolume, * vLeaves; + Ivy_Obj_t * pObj;//, * pTemp; + int i, RetValue;//, k; + vFront = Vec_PtrAlloc( 100 ); + vVolume = Vec_PtrAlloc( 100 ); + vLeaves = Vec_PtrAlloc( 100 ); + Ivy_ManForEachObj( p, pObj, i ) + { + if ( !Ivy_ObjIsNode(pObj) ) + continue; + if ( Ivy_ObjIsMuxType(pObj) ) + { + printf( "m" ); + continue; + } + if ( Ivy_ObjIsExor(pObj) ) + printf( "x" ); + RetValue = Ivy_ManFindBoolCut( p, pObj, vFront, vVolume, vLeaves ); + if ( RetValue == 0 ) + printf( "- " ); + else + printf( "%d ", Vec_PtrSize(vLeaves) ); +/* + printf( "( " ); + Vec_PtrForEachEntry( vFront, pTemp, k ) + printf( "%d ", Ivy_ObjRefs(Ivy_Regular(pTemp)) ); + printf( ")\n" ); +*/ + } + printf( "\n" ); + Vec_PtrFree( vFront ); + Vec_PtrFree( vVolume ); + Vec_PtrFree( vLeaves ); +} + + + +/**Function************************************************************* + + Synopsis [Find the hash value of the cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline unsigned Ivy_NodeCutHash( Ivy_Cut_t * pCut ) +{ + int i; +// for ( i = 1; i < pCut->nSize; i++ ) +// assert( pCut->pArray[i-1] < pCut->pArray[i] ); + pCut->uHash = 0; + for ( i = 0; i < pCut->nSize; i++ ) + pCut->uHash |= (1 << (pCut->pArray[i] % 31)); + return pCut->uHash; +} + +/**Function************************************************************* + + Synopsis [Removes one node to the cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void Ivy_NodeCutShrink( Ivy_Cut_t * pCut, int iOld ) +{ + int i, k; + for ( i = k = 0; i < pCut->nSize; i++ ) + if ( pCut->pArray[i] != iOld ) + pCut->pArray[k++] = pCut->pArray[i]; + assert( k == pCut->nSize - 1 ); + pCut->nSize--; +} + +/**Function************************************************************* + + Synopsis [Adds one node to the cut.] + + Description [Returns 1 if the cuts is still okay.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_NodeCutExtend( Ivy_Cut_t * pCut, int iNew ) +{ + int i; + for ( i = 0; i < pCut->nSize; i++ ) + if ( pCut->pArray[i] == iNew ) + return 1; + // check if there is room + if ( pCut->nSize == pCut->nSizeMax ) + return 0; + // add the new one + for ( i = pCut->nSize - 1; i >= 0; i-- ) + if ( pCut->pArray[i] > iNew ) + pCut->pArray[i+1] = pCut->pArray[i]; + else + { + assert( pCut->pArray[i] < iNew ); + break; + } + pCut->pArray[i+1] = iNew; + pCut->nSize++; + return 1; +} + +/**Function************************************************************* + + Synopsis [Returns 1 if the cut can be constructed; 0 otherwise.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_NodeCutPrescreen( Ivy_Cut_t * pCut, int Id0, int Id1 ) +{ + int i; + if ( pCut->nSize < pCut->nSizeMax ) + return 1; + for ( i = 0; i < pCut->nSize; i++ ) + if ( pCut->pArray[i] == Id0 || pCut->pArray[i] == Id1 ) + return 1; + return 0; +} + +/**Function************************************************************* + + Synopsis [Derives new cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_NodeCutDeriveNew( Ivy_Cut_t * pCut, Ivy_Cut_t * pCutNew, int IdOld, int IdNew0, int IdNew1 ) +{ + unsigned uHash = 0; + int i, k; + assert( pCut->nSize > 0 ); + assert( IdNew0 < IdNew1 ); + for ( i = k = 0; i < pCut->nSize; i++ ) + { + if ( pCut->pArray[i] == IdOld ) + continue; + if ( IdNew0 <= pCut->pArray[i] ) + { + if ( IdNew0 < pCut->pArray[i] ) + { + pCutNew->pArray[ k++ ] = IdNew0; + uHash |= Ivy_NodeCutHashValue( IdNew0 ); + } + IdNew0 = 0x7FFFFFFF; + } + if ( IdNew1 <= pCut->pArray[i] ) + { + if ( IdNew1 < pCut->pArray[i] ) + { + pCutNew->pArray[ k++ ] = IdNew1; + uHash |= Ivy_NodeCutHashValue( IdNew1 ); + } + IdNew1 = 0x7FFFFFFF; + } + pCutNew->pArray[ k++ ] = pCut->pArray[i]; + uHash |= Ivy_NodeCutHashValue( pCut->pArray[i] ); + } + if ( IdNew0 < 0x7FFFFFFF ) + { + pCutNew->pArray[ k++ ] = IdNew0; + uHash |= Ivy_NodeCutHashValue( IdNew0 ); + } + if ( IdNew1 < 0x7FFFFFFF ) + { + pCutNew->pArray[ k++ ] = IdNew1; + uHash |= Ivy_NodeCutHashValue( IdNew1 ); + } + pCutNew->nSize = k; + pCutNew->uHash = uHash; + assert( pCutNew->nSize <= pCut->nSizeMax ); +// for ( i = 1; i < pCutNew->nSize; i++ ) +// assert( pCutNew->pArray[i-1] < pCutNew->pArray[i] ); + return 1; +} + +/**Function************************************************************* + + Synopsis [Check if the cut exists.] + + Description [Returns 1 if the cut exists.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeCutFindOrAdd( Ivy_Store_t * pCutStore, Ivy_Cut_t * pCutNew ) +{ + Ivy_Cut_t * pCut; + int i, k; + assert( pCutNew->uHash ); + // try to find the cut + for ( i = 0; i < pCutStore->nCuts; i++ ) + { + pCut = pCutStore->pCuts + i; + if ( pCut->uHash == pCutNew->uHash && pCut->nSize == pCutNew->nSize ) + { + for ( k = 0; k < pCutNew->nSize; k++ ) + if ( pCut->pArray[k] != pCutNew->pArray[k] ) + break; + if ( k == pCutNew->nSize ) + return 1; + } + } + assert( pCutStore->nCuts < pCutStore->nCutsMax ); + // add the cut + pCut = pCutStore->pCuts + pCutStore->nCuts++; + *pCut = *pCutNew; + return 0; +} + +/**Function************************************************************* + + Synopsis [Returns 1 if pDom is contained in pCut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_CutCheckDominance( Ivy_Cut_t * pDom, Ivy_Cut_t * pCut ) +{ + int i, k; + for ( i = 0; i < pDom->nSize; i++ ) + { + for ( k = 0; k < pCut->nSize; k++ ) + if ( pDom->pArray[i] == pCut->pArray[k] ) + break; + if ( k == pCut->nSize ) // node i in pDom is not contained in pCut + return 0; + } + // every node in pDom is contained in pCut + return 1; +} + +/**Function************************************************************* + + Synopsis [Check if the cut exists.] + + Description [Returns 1 if the cut exists.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeCutFindOrAddFilter( Ivy_Store_t * pCutStore, Ivy_Cut_t * pCutNew ) +{ + Ivy_Cut_t * pCut; + int i, k; + assert( pCutNew->uHash ); + // try to find the cut + for ( i = 0; i < pCutStore->nCuts; i++ ) + { + pCut = pCutStore->pCuts + i; + if ( pCut->nSize == 0 ) + continue; + if ( pCut->nSize == pCutNew->nSize ) + { + if ( pCut->uHash == pCutNew->uHash ) + { + for ( k = 0; k < pCutNew->nSize; k++ ) + if ( pCut->pArray[k] != pCutNew->pArray[k] ) + break; + if ( k == pCutNew->nSize ) + return 1; + } + continue; + } + if ( pCut->nSize < pCutNew->nSize ) + { + // skip the non-contained cuts + if ( (pCut->uHash & pCutNew->uHash) != pCut->uHash ) + continue; + // check containment seriously + if ( Ivy_CutCheckDominance( pCut, pCutNew ) ) + return 1; + continue; + } + // check potential containment of other cut + + // skip the non-contained cuts + if ( (pCut->uHash & pCutNew->uHash) != pCutNew->uHash ) + continue; + // check containment seriously + if ( Ivy_CutCheckDominance( pCutNew, pCut ) ) + { + // remove the current cut +// --pCutStore->nCuts; +// for ( k = i; k < pCutStore->nCuts; k++ ) +// pCutStore->pCuts[k] = pCutStore->pCuts[k+1]; +// i--; + pCut->nSize = 0; + } + } + assert( pCutStore->nCuts < pCutStore->nCutsMax ); + // add the cut + pCut = pCutStore->pCuts + pCutStore->nCuts++; + *pCut = *pCutNew; + return 0; +} + +/**Function************************************************************* + + Synopsis [Print the cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeCompactCuts( Ivy_Store_t * pCutStore ) +{ + Ivy_Cut_t * pCut; + int i, k; + for ( i = k = 0; i < pCutStore->nCuts; i++ ) + { + pCut = pCutStore->pCuts + i; + if ( pCut->nSize == 0 ) + continue; + pCutStore->pCuts[k++] = *pCut; + } + pCutStore->nCuts = k; +} + +/**Function************************************************************* + + Synopsis [Print the cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodePrintCut( Ivy_Cut_t * pCut ) +{ + int i; + assert( pCut->nSize > 0 ); + printf( "%d : {", pCut->nSize ); + for ( i = 0; i < pCut->nSize; i++ ) + printf( " %d", pCut->pArray[i] ); + printf( " }\n" ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodePrintCuts( Ivy_Store_t * pCutStore ) +{ + int i; + printf( "Node %d\n", pCutStore->pCuts[0].pArray[0] ); + for ( i = 0; i < pCutStore->nCuts; i++ ) + Ivy_NodePrintCut( pCutStore->pCuts + i ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline Ivy_Obj_t * Ivy_ObjRealFanin( Ivy_Obj_t * pObj ) +{ + if ( !Ivy_ObjIsBuf(pObj) ) + return pObj; + return Ivy_ObjRealFanin( Ivy_ObjFanin0(pObj) ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Store_t * Ivy_NodeFindCutsAll( Ivy_Man_t * p, Ivy_Obj_t * pObj, int nLeaves ) +{ + static Ivy_Store_t CutStore, * pCutStore = &CutStore; + Ivy_Cut_t CutNew, * pCutNew = &CutNew, * pCut; + Ivy_Obj_t * pLeaf; + int i, k, iLeaf0, iLeaf1; + + assert( nLeaves <= IVY_CUT_INPUT ); + + // start the structure + pCutStore->nCuts = 0; + pCutStore->nCutsMax = IVY_CUT_LIMIT; + // start the trivial cut + pCutNew->uHash = 0; + pCutNew->nSize = 1; + pCutNew->nSizeMax = nLeaves; + pCutNew->pArray[0] = pObj->Id; + Ivy_NodeCutHash( pCutNew ); + // add the trivial cut + Ivy_NodeCutFindOrAdd( pCutStore, pCutNew ); + assert( pCutStore->nCuts == 1 ); + + // explore the cuts + for ( i = 0; i < pCutStore->nCuts; i++ ) + { + // expand this cut + pCut = pCutStore->pCuts + i; + if ( pCut->nSize == 0 ) + continue; + for ( k = 0; k < pCut->nSize; k++ ) + { + pLeaf = Ivy_ManObj( p, pCut->pArray[k] ); + if ( Ivy_ObjIsCi(pLeaf) ) + continue; +/* + *pCutNew = *pCut; + Ivy_NodeCutShrink( pCutNew, pLeaf->Id ); + if ( !Ivy_NodeCutExtend( pCutNew, Ivy_ObjFaninId0(pLeaf) ) ) + continue; + if ( Ivy_ObjIsNode(pLeaf) && !Ivy_NodeCutExtend( pCutNew, Ivy_ObjFaninId1(pLeaf) ) ) + continue; + Ivy_NodeCutHash( pCutNew ); +*/ + iLeaf0 = Ivy_ObjId( Ivy_ObjRealFanin(Ivy_ObjFanin0(pLeaf)) ); + iLeaf1 = Ivy_ObjId( Ivy_ObjRealFanin(Ivy_ObjFanin1(pLeaf)) ); +// if ( iLeaf0 == iLeaf1 ) // strange situation observed on Jan 18, 2007 +// continue; + if ( !Ivy_NodeCutPrescreen( pCut, iLeaf0, iLeaf1 ) ) + continue; + if ( iLeaf0 > iLeaf1 ) + Ivy_NodeCutDeriveNew( pCut, pCutNew, pCut->pArray[k], iLeaf1, iLeaf0 ); + else + Ivy_NodeCutDeriveNew( pCut, pCutNew, pCut->pArray[k], iLeaf0, iLeaf1 ); + Ivy_NodeCutFindOrAddFilter( pCutStore, pCutNew ); + if ( pCutStore->nCuts == IVY_CUT_LIMIT ) + break; + } + if ( pCutStore->nCuts == IVY_CUT_LIMIT ) + break; + } + Ivy_NodeCompactCuts( pCutStore ); +// Ivy_NodePrintCuts( pCutStore ); + return pCutStore; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManTestCutsAll( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj; + int i, nCutsCut, nCutsTotal, nNodeTotal, nNodeOver; + int clk = clock(); + nNodeTotal = nNodeOver = 0; + nCutsTotal = -Ivy_ManNodeNum(p); + Ivy_ManForEachObj( p, pObj, i ) + { + if ( !Ivy_ObjIsNode(pObj) ) + continue; + nCutsCut = Ivy_NodeFindCutsAll( p, pObj, 5 )->nCuts; + nCutsTotal += nCutsCut; + nNodeOver += (nCutsCut == IVY_CUT_LIMIT); + nNodeTotal++; + } + printf( "Total cuts = %6d. Trivial = %6d. Nodes = %6d. Satur = %6d. ", + nCutsTotal, Ivy_ManPiNum(p) + Ivy_ManNodeNum(p), nNodeTotal, nNodeOver ); + PRT( "Time", clock() - clk ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyCutTrav.c b/src/aig/ivy/ivyCutTrav.c new file mode 100644 index 00000000..ea57c9f5 --- /dev/null +++ b/src/aig/ivy/ivyCutTrav.c @@ -0,0 +1,473 @@ +/**CFile**************************************************************** + + FileName [ivyCutTrav.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyCutTrav.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +static unsigned * Ivy_NodeCutElementary( Vec_Int_t * vStore, int nWords, int NodeId ); +static void Ivy_NodeComputeVolume( Ivy_Obj_t * pObj, int nNodeLimit, Vec_Ptr_t * vNodes, Vec_Ptr_t * vFront ); +static void Ivy_NodeFindCutsMerge( Vec_Ptr_t * vCuts0, Vec_Ptr_t * vCuts1, Vec_Ptr_t * vCuts, int nLeaves, int nWords, Vec_Int_t * vStore ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Computes cuts for one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Store_t * Ivy_NodeFindCutsTravAll( Ivy_Man_t * p, Ivy_Obj_t * pObj, int nLeaves, int nNodeLimit, + Vec_Ptr_t * vNodes, Vec_Ptr_t * vFront, Vec_Int_t * vStore, Vec_Vec_t * vBitCuts ) +{ + static Ivy_Store_t CutStore, * pCutStore = &CutStore; + Vec_Ptr_t * vCuts, * vCuts0, * vCuts1; + unsigned * pBitCut; + Ivy_Obj_t * pLeaf; + Ivy_Cut_t * pCut; + int i, k, nWords, nNodes; + + assert( nLeaves <= IVY_CUT_INPUT ); + + // find the given number of nodes in the TFI + Ivy_NodeComputeVolume( pObj, nNodeLimit - 1, vNodes, vFront ); + nNodes = Vec_PtrSize(vNodes); +// assert( nNodes <= nNodeLimit ); + + // make sure vBitCuts has enough room + Vec_VecExpand( vBitCuts, nNodes-1 ); + Vec_VecClear( vBitCuts ); + + // prepare the memory manager + Vec_IntClear( vStore ); + Vec_IntGrow( vStore, 64000 ); + + // set elementary cuts for the leaves + nWords = Extra_BitWordNum( nNodes ); + Vec_PtrForEachEntry( vFront, pLeaf, i ) + { + assert( Ivy_ObjTravId(pLeaf) < nNodes ); + // get the new bitcut + pBitCut = Ivy_NodeCutElementary( vStore, nWords, Ivy_ObjTravId(pLeaf) ); + // set it as the cut of this leaf + Vec_VecPush( vBitCuts, Ivy_ObjTravId(pLeaf), pBitCut ); + } + + // compute the cuts for each node + Vec_PtrForEachEntry( vNodes, pLeaf, i ) + { + // skip the leaves + vCuts = Vec_VecEntry( vBitCuts, Ivy_ObjTravId(pLeaf) ); + if ( Vec_PtrSize(vCuts) > 0 ) + continue; + // add elementary cut + pBitCut = Ivy_NodeCutElementary( vStore, nWords, Ivy_ObjTravId(pLeaf) ); + // set it as the cut of this leaf + Vec_VecPush( vBitCuts, Ivy_ObjTravId(pLeaf), pBitCut ); + // get the fanin cuts + vCuts0 = Vec_VecEntry( vBitCuts, Ivy_ObjTravId( Ivy_ObjFanin0(pLeaf) ) ); + vCuts1 = Vec_VecEntry( vBitCuts, Ivy_ObjTravId( Ivy_ObjFanin1(pLeaf) ) ); + assert( Vec_PtrSize(vCuts0) > 0 ); + assert( Vec_PtrSize(vCuts1) > 0 ); + // merge the cuts + Ivy_NodeFindCutsMerge( vCuts0, vCuts1, vCuts, nLeaves, nWords, vStore ); + } + + // start the structure + pCutStore->nCuts = 0; + pCutStore->nCutsMax = IVY_CUT_LIMIT; + // collect the cuts of the root node + vCuts = Vec_VecEntry( vBitCuts, Ivy_ObjTravId(pObj) ); + Vec_PtrForEachEntry( vCuts, pBitCut, i ) + { + pCut = pCutStore->pCuts + pCutStore->nCuts++; + pCut->nSize = 0; + pCut->nSizeMax = nLeaves; + pCut->uHash = 0; + for ( k = 0; k < nNodes; k++ ) + if ( Extra_TruthHasBit(pBitCut, k) ) + pCut->pArray[ pCut->nSize++ ] = Ivy_ObjId( Vec_PtrEntry(vNodes, k) ); + assert( pCut->nSize <= nLeaves ); + if ( pCutStore->nCuts == pCutStore->nCutsMax ) + break; + } + + // clean the travIds + Vec_PtrForEachEntry( vNodes, pLeaf, i ) + pLeaf->TravId = 0; + return pCutStore; +} + +/**Function************************************************************* + + Synopsis [Creates elementary bit-cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Ivy_NodeCutElementary( Vec_Int_t * vStore, int nWords, int NodeId ) +{ + unsigned * pBitCut; + pBitCut = Vec_IntFetch( vStore, nWords ); + memset( pBitCut, 0, 4 * nWords ); + Extra_TruthSetBit( pBitCut, NodeId ); + return pBitCut; +} + +/**Function************************************************************* + + Synopsis [Compares the node by level.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_CompareNodesByLevel( Ivy_Obj_t ** ppObj1, Ivy_Obj_t ** ppObj2 ) +{ + Ivy_Obj_t * pObj1 = *ppObj1; + Ivy_Obj_t * pObj2 = *ppObj2; + if ( pObj1->Level < pObj2->Level ) + return -1; + if ( pObj1->Level > pObj2->Level ) + return 1; + return 0; +} + +/**Function************************************************************* + + Synopsis [Mark all nodes up to the given depth.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeComputeVolumeTrav1_rec( Ivy_Obj_t * pObj, int Depth ) +{ + if ( Ivy_ObjIsCi(pObj) || Depth == 0 ) + return; + Ivy_NodeComputeVolumeTrav1_rec( Ivy_ObjFanin0(pObj), Depth - 1 ); + Ivy_NodeComputeVolumeTrav1_rec( Ivy_ObjFanin1(pObj), Depth - 1 ); + pObj->fMarkA = 1; +} + +/**Function************************************************************* + + Synopsis [Collect the marked nodes.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeComputeVolumeTrav2_rec( Ivy_Obj_t * pObj, Vec_Ptr_t * vNodes ) +{ + if ( !pObj->fMarkA ) + return; + Ivy_NodeComputeVolumeTrav2_rec( Ivy_ObjFanin0(pObj), vNodes ); + Ivy_NodeComputeVolumeTrav2_rec( Ivy_ObjFanin1(pObj), vNodes ); + Vec_PtrPush( vNodes, pObj ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeComputeVolume( Ivy_Obj_t * pObj, int nNodeLimit, Vec_Ptr_t * vNodes, Vec_Ptr_t * vFront ) +{ + Ivy_Obj_t * pTemp, * pFanin; + int i, nNodes; + // mark nodes up to the given depth + Ivy_NodeComputeVolumeTrav1_rec( pObj, 6 ); + // collect the marked nodes + Vec_PtrClear( vFront ); + Ivy_NodeComputeVolumeTrav2_rec( pObj, vFront ); + // find the fanins that are not marked + Vec_PtrClear( vNodes ); + Vec_PtrForEachEntry( vFront, pTemp, i ) + { + pFanin = Ivy_ObjFanin0(pTemp); + if ( !pFanin->fMarkA ) + { + pFanin->fMarkA = 1; + Vec_PtrPush( vNodes, pFanin ); + } + pFanin = Ivy_ObjFanin1(pTemp); + if ( !pFanin->fMarkA ) + { + pFanin->fMarkA = 1; + Vec_PtrPush( vNodes, pFanin ); + } + } + // remember the number of nodes in the frontier + nNodes = Vec_PtrSize( vNodes ); + // add the remaining nodes + Vec_PtrForEachEntry( vFront, pTemp, i ) + Vec_PtrPush( vNodes, pTemp ); + // unmark the nodes + Vec_PtrForEachEntry( vNodes, pTemp, i ) + { + pTemp->fMarkA = 0; + pTemp->TravId = i; + } + // collect the frontier nodes + Vec_PtrClear( vFront ); + Vec_PtrForEachEntryStop( vNodes, pTemp, i, nNodes ) + Vec_PtrPush( vFront, pTemp ); +// printf( "%d ", Vec_PtrSize(vNodes) ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeComputeVolume2( Ivy_Obj_t * pObj, int nNodeLimit, Vec_Ptr_t * vNodes, Vec_Ptr_t * vFront ) +{ + Ivy_Obj_t * pLeaf, * pPivot, * pFanin; + int LevelMax, i; + assert( Ivy_ObjIsNode(pObj) ); + // clear arrays + Vec_PtrClear( vNodes ); + Vec_PtrClear( vFront ); + // add the root + pObj->fMarkA = 1; + Vec_PtrPush( vNodes, pObj ); + Vec_PtrPush( vFront, pObj ); + // expand node with maximum level + LevelMax = pObj->Level; + do { + // get the node to expand + pPivot = NULL; + Vec_PtrForEachEntryReverse( vFront, pLeaf, i ) + { + if ( (int)pLeaf->Level == LevelMax ) + { + pPivot = pLeaf; + break; + } + } + // decrease level if we did not find the node + if ( pPivot == NULL ) + { + if ( --LevelMax == 0 ) + break; + continue; + } + // the node to expand is found + // remove it from frontier + Vec_PtrRemove( vFront, pPivot ); + // add fanins + pFanin = Ivy_ObjFanin0(pPivot); + if ( !pFanin->fMarkA ) + { + pFanin->fMarkA = 1; + Vec_PtrPush( vNodes, pFanin ); + Vec_PtrPush( vFront, pFanin ); + } + pFanin = Ivy_ObjFanin1(pPivot); + if ( pFanin && !pFanin->fMarkA ) + { + pFanin->fMarkA = 1; + Vec_PtrPush( vNodes, pFanin ); + Vec_PtrPush( vFront, pFanin ); + } + // quit if we collected enough nodes + } while ( Vec_PtrSize(vNodes) < nNodeLimit ); + + // sort nodes by level + Vec_PtrSort( vNodes, Ivy_CompareNodesByLevel ); + // make sure the nodes are ordered in the increasing number of levels + pFanin = Vec_PtrEntry( vNodes, 0 ); + pPivot = Vec_PtrEntryLast( vNodes ); + assert( pFanin->Level <= pPivot->Level ); + + // clean the marks and remember node numbers in the TravId + Vec_PtrForEachEntry( vNodes, pFanin, i ) + { + pFanin->fMarkA = 0; + pFanin->TravId = i; + } +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void Extra_TruthOrWords( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nWords ) +{ + int w; + for ( w = nWords-1; w >= 0; w-- ) + pOut[w] = pIn0[w] | pIn1[w]; +} +static inline int Extra_TruthIsImplyWords( unsigned * pIn1, unsigned * pIn2, int nWords ) +{ + int w; + for ( w = nWords-1; w >= 0; w-- ) + if ( pIn1[w] & ~pIn2[w] ) + return 0; + return 1; +} + +/**Function************************************************************* + + Synopsis [Merges two sets of bit-cuts at a node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeFindCutsMerge( Vec_Ptr_t * vCuts0, Vec_Ptr_t * vCuts1, Vec_Ptr_t * vCuts, + int nLeaves, int nWords, Vec_Int_t * vStore ) +{ + unsigned * pBitCut, * pBitCut0, * pBitCut1, * pBitCutTest; + int i, k, c, w, Counter; + // iterate through the cut pairs + Vec_PtrForEachEntry( vCuts0, pBitCut0, i ) + Vec_PtrForEachEntry( vCuts1, pBitCut1, k ) + { + // skip infeasible cuts + Counter = 0; + for ( w = 0; w < nWords; w++ ) + { + Counter += Extra_WordCountOnes( pBitCut0[w] | pBitCut1[w] ); + if ( Counter > nLeaves ) + break; + } + if ( Counter > nLeaves ) + continue; + // the new cut is feasible - create it + pBitCutTest = Vec_IntFetch( vStore, nWords ); + Extra_TruthOrWords( pBitCutTest, pBitCut0, pBitCut1, nWords ); + // filter contained cuts; try to find containing cut + w = 0; + Vec_PtrForEachEntry( vCuts, pBitCut, c ) + { + if ( Extra_TruthIsImplyWords( pBitCut, pBitCutTest, nWords ) ) + break; + if ( Extra_TruthIsImplyWords( pBitCutTest, pBitCut, nWords ) ) + continue; + Vec_PtrWriteEntry( vCuts, w++, pBitCut ); + } + if ( c != Vec_PtrSize(vCuts) ) + continue; + Vec_PtrShrink( vCuts, w ); + // add the cut + Vec_PtrPush( vCuts, pBitCutTest ); + } +} + +/**Function************************************************************* + + Synopsis [Compute the set of all cuts.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManTestCutsTravAll( Ivy_Man_t * p ) +{ + Ivy_Store_t * pStore; + Ivy_Obj_t * pObj; + Vec_Ptr_t * vNodes, * vFront; + Vec_Int_t * vStore; + Vec_Vec_t * vBitCuts; + int i, nCutsCut, nCutsTotal, nNodeTotal, nNodeOver; + int clk = clock(); + + vNodes = Vec_PtrAlloc( 100 ); + vFront = Vec_PtrAlloc( 100 ); + vStore = Vec_IntAlloc( 100 ); + vBitCuts = Vec_VecAlloc( 100 ); + + nNodeTotal = nNodeOver = 0; + nCutsTotal = -Ivy_ManNodeNum(p); + Ivy_ManForEachObj( p, pObj, i ) + { + if ( !Ivy_ObjIsNode(pObj) ) + continue; + pStore = Ivy_NodeFindCutsTravAll( p, pObj, 4, 60, vNodes, vFront, vStore, vBitCuts ); + nCutsCut = pStore->nCuts; + nCutsTotal += nCutsCut; + nNodeOver += (nCutsCut == IVY_CUT_LIMIT); + nNodeTotal++; + } + printf( "Total cuts = %6d. Trivial = %6d. Nodes = %6d. Satur = %6d. ", + nCutsTotal, Ivy_ManPiNum(p) + Ivy_ManNodeNum(p), nNodeTotal, nNodeOver ); + PRT( "Time", clock() - clk ); + + Vec_PtrFree( vNodes ); + Vec_PtrFree( vFront ); + Vec_IntFree( vStore ); + Vec_VecFree( vBitCuts ); + +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyDfs.c b/src/aig/ivy/ivyDfs.c new file mode 100644 index 00000000..c27cba31 --- /dev/null +++ b/src/aig/ivy/ivyDfs.c @@ -0,0 +1,493 @@ +/**CFile**************************************************************** + + FileName [ivyDfs.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [DFS collection procedures.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyDfs.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Collects nodes in the DFS order.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManDfs_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj, Vec_Int_t * vNodes ) +{ + if ( Ivy_ObjIsMarkA(pObj) ) + return; + Ivy_ObjSetMarkA(pObj); + if ( Ivy_ObjIsConst1(pObj) || Ivy_ObjIsCi(pObj) ) + { + if ( p->pHaig == NULL && pObj->pEquiv ) + Ivy_ManDfs_rec( p, Ivy_Regular(pObj->pEquiv), vNodes ); + return; + } +//printf( "visiting node %d\n", pObj->Id ); +/* + if ( pObj->Id == 87 || pObj->Id == 90 ) + { + int y = 0; + } +*/ + assert( Ivy_ObjIsBuf(pObj) || Ivy_ObjIsAnd(pObj) || Ivy_ObjIsExor(pObj) ); + Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes ); + if ( !Ivy_ObjIsBuf(pObj) ) + Ivy_ManDfs_rec( p, Ivy_ObjFanin1(pObj), vNodes ); + if ( p->pHaig == NULL && pObj->pEquiv ) + Ivy_ManDfs_rec( p, Ivy_Regular(pObj->pEquiv), vNodes ); + Vec_IntPush( vNodes, pObj->Id ); + +//printf( "adding node %d with fanins %d and %d and equiv %d (refs = %d)\n", +// pObj->Id, Ivy_ObjFanin0(pObj)->Id, Ivy_ObjFanin1(pObj)->Id, +// pObj->pEquiv? Ivy_Regular(pObj->pEquiv)->Id: -1, Ivy_ObjRefs(pObj) ); +} + +/**Function************************************************************* + + Synopsis [Collects AND/EXOR nodes in the DFS order from CIs to COs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Int_t * Ivy_ManDfs( Ivy_Man_t * p ) +{ + Vec_Int_t * vNodes; + Ivy_Obj_t * pObj; + int i; + assert( Ivy_ManLatchNum(p) == 0 ); + // make sure the nodes are not marked + Ivy_ManForEachObj( p, pObj, i ) + assert( !pObj->fMarkA && !pObj->fMarkB ); + // collect the nodes + vNodes = Vec_IntAlloc( Ivy_ManNodeNum(p) ); + Ivy_ManForEachPo( p, pObj, i ) + Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes ); + // unmark the collected nodes +// Ivy_ManForEachNodeVec( p, vNodes, pObj, i ) +// Ivy_ObjClearMarkA(pObj); + Ivy_ManForEachObj( p, pObj, i ) + Ivy_ObjClearMarkA(pObj); + // make sure network does not have dangling nodes + assert( Vec_IntSize(vNodes) == Ivy_ManNodeNum(p) + Ivy_ManBufNum(p) ); + return vNodes; +} + +/**Function************************************************************* + + Synopsis [Collects AND/EXOR nodes in the DFS order from CIs to COs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Int_t * Ivy_ManDfsSeq( Ivy_Man_t * p, Vec_Int_t ** pvLatches ) +{ + Vec_Int_t * vNodes, * vLatches; + Ivy_Obj_t * pObj; + int i; +// assert( Ivy_ManLatchNum(p) > 0 ); + // make sure the nodes are not marked + Ivy_ManForEachObj( p, pObj, i ) + assert( !pObj->fMarkA && !pObj->fMarkB ); + // collect the latches + vLatches = Vec_IntAlloc( Ivy_ManLatchNum(p) ); + Ivy_ManForEachLatch( p, pObj, i ) + Vec_IntPush( vLatches, pObj->Id ); + // collect the nodes + vNodes = Vec_IntAlloc( Ivy_ManNodeNum(p) ); + Ivy_ManForEachPo( p, pObj, i ) + Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes ); + Ivy_ManForEachNodeVec( p, vLatches, pObj, i ) + Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes ); + // unmark the collected nodes +// Ivy_ManForEachNodeVec( p, vNodes, pObj, i ) +// Ivy_ObjClearMarkA(pObj); + Ivy_ManForEachObj( p, pObj, i ) + Ivy_ObjClearMarkA(pObj); + // make sure network does not have dangling nodes +// assert( Vec_IntSize(vNodes) == Ivy_ManNodeNum(p) + Ivy_ManBufNum(p) ); + +// temporary!!! + + if ( pvLatches == NULL ) + Vec_IntFree( vLatches ); + else + *pvLatches = vLatches; + return vNodes; +} + +/**Function************************************************************* + + Synopsis [Collects nodes in the cone.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManCollectCone_rec( Ivy_Obj_t * pObj, Vec_Ptr_t * vCone ) +{ + if ( pObj->fMarkA ) + return; + if ( Ivy_ObjIsBuf(pObj) ) + { + Ivy_ManCollectCone_rec( Ivy_ObjFanin0(pObj), vCone ); + Vec_PtrPush( vCone, pObj ); + return; + } + assert( Ivy_ObjIsNode(pObj) ); + Ivy_ManCollectCone_rec( Ivy_ObjFanin0(pObj), vCone ); + Ivy_ManCollectCone_rec( Ivy_ObjFanin1(pObj), vCone ); + Vec_PtrPushUnique( vCone, pObj ); +} + +/**Function************************************************************* + + Synopsis [Collects nodes in the cone.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManCollectCone( Ivy_Obj_t * pObj, Vec_Ptr_t * vFront, Vec_Ptr_t * vCone ) +{ + Ivy_Obj_t * pTemp; + int i; + assert( !Ivy_IsComplement(pObj) ); + assert( Ivy_ObjIsNode(pObj) ); + // mark the nodes + Vec_PtrForEachEntry( vFront, pTemp, i ) + Ivy_Regular(pTemp)->fMarkA = 1; + assert( pObj->fMarkA == 0 ); + // collect the cone + Vec_PtrClear( vCone ); + Ivy_ManCollectCone_rec( pObj, vCone ); + // unmark the nodes + Vec_PtrForEachEntry( vFront, pTemp, i ) + Ivy_Regular(pTemp)->fMarkA = 0; +} + +/**Function************************************************************* + + Synopsis [Returns the nodes by level.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Vec_t * Ivy_ManLevelize( Ivy_Man_t * p ) +{ + Vec_Vec_t * vNodes; + Ivy_Obj_t * pObj; + int i; + vNodes = Vec_VecAlloc( 100 ); + Ivy_ManForEachObj( p, pObj, i ) + { + assert( !Ivy_ObjIsBuf(pObj) ); + if ( Ivy_ObjIsNode(pObj) ) + Vec_VecPush( vNodes, pObj->Level, pObj ); + } + return vNodes; +} + +/**Function************************************************************* + + Synopsis [Computes required levels for each node.] + + Description [Assumes topological ordering of the nodes.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Int_t * Ivy_ManRequiredLevels( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj; + Vec_Int_t * vLevelsR; + Vec_Vec_t * vNodes; + int i, k, Level, LevelMax; + assert( p->vRequired == NULL ); + // start the required times + vLevelsR = Vec_IntStart( Ivy_ManObjIdMax(p) + 1 ); + // iterate through the nodes in the reverse order + vNodes = Ivy_ManLevelize( p ); + Vec_VecForEachEntryReverseReverse( vNodes, pObj, i, k ) + { + Level = Vec_IntEntry( vLevelsR, pObj->Id ) + 1 + Ivy_ObjIsExor(pObj); + if ( Vec_IntEntry( vLevelsR, Ivy_ObjFaninId0(pObj) ) < Level ) + Vec_IntWriteEntry( vLevelsR, Ivy_ObjFaninId0(pObj), Level ); + if ( Vec_IntEntry( vLevelsR, Ivy_ObjFaninId1(pObj) ) < Level ) + Vec_IntWriteEntry( vLevelsR, Ivy_ObjFaninId1(pObj), Level ); + } + Vec_VecFree( vNodes ); + // convert it into the required times + LevelMax = Ivy_ManLevels( p ); +//printf( "max %5d\n",LevelMax ); + Ivy_ManForEachObj( p, pObj, i ) + { + Level = Vec_IntEntry( vLevelsR, pObj->Id ); + Vec_IntWriteEntry( vLevelsR, pObj->Id, LevelMax - Level ); +//printf( "%5d : %5d %5d\n", pObj->Id, Level, LevelMax - Level ); + } + p->vRequired = vLevelsR; + return vLevelsR; +} + +/**Function************************************************************* + + Synopsis [Recursively detects combinational loops.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManIsAcyclic_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + // skip the node if it is already visited + if ( Ivy_ObjIsTravIdPrevious(p, pObj) ) + return 1; + // check if the node is part of the combinational loop + if ( Ivy_ObjIsTravIdCurrent(p, pObj) ) + { + fprintf( stdout, "Manager contains combinational loop!\n" ); + fprintf( stdout, "Node \"%d\" is encountered twice on the following path:\n", Ivy_ObjId(pObj) ); + fprintf( stdout, " %d", Ivy_ObjId(pObj) ); + return 0; + } + // mark this node as a node on the current path + Ivy_ObjSetTravIdCurrent( p, pObj ); + // explore equivalent nodes if pObj is the main node + if ( p->pHaig == NULL && pObj->pEquiv && Ivy_ObjRefs(pObj) > 0 ) + { + Ivy_Obj_t * pTemp; + assert( !Ivy_IsComplement(pObj->pEquiv) ); + for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) + { + // traverse the fanin's cone searching for the loop + if ( !Ivy_ManIsAcyclic_rec(p, pTemp) ) + { + // return as soon as the loop is detected + fprintf( stdout, " -> (%d", Ivy_ObjId(pObj) ); + for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) + fprintf( stdout, " %d", Ivy_ObjId(pTemp) ); + fprintf( stdout, ")" ); + return 0; + } + } + } + // quite if it is a CI node + if ( Ivy_ObjIsCi(pObj) || Ivy_ObjIsConst1(pObj) ) + { + // mark this node as a visited node + Ivy_ObjSetTravIdPrevious( p, pObj ); + return 1; + } + assert( Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj) ); + // traverse the fanin's cone searching for the loop + if ( !Ivy_ManIsAcyclic_rec(p, Ivy_ObjFanin0(pObj)) ) + { + // return as soon as the loop is detected + fprintf( stdout, " -> %d", Ivy_ObjId(pObj) ); + return 0; + } + // traverse the fanin's cone searching for the loop + if ( Ivy_ObjIsNode(pObj) && !Ivy_ManIsAcyclic_rec(p, Ivy_ObjFanin1(pObj)) ) + { + // return as soon as the loop is detected + fprintf( stdout, " -> %d", Ivy_ObjId(pObj) ); + return 0; + } + // mark this node as a visited node + Ivy_ObjSetTravIdPrevious( p, pObj ); + return 1; +} + +/**Function************************************************************* + + Synopsis [Detects combinational loops.] + + Description [This procedure is based on the idea suggested by Donald Chai. + As we traverse the network and visit the nodes, we need to distinquish + three types of nodes: (1) those that are visited for the first time, + (2) those that have been visited in this traversal but are currently not + on the traversal path, (3) those that have been visited and are currently + on the travesal path. When the node of type (3) is encountered, it means + that there is a combinational loop. To mark the three types of nodes, + two new values of the traversal IDs are used.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManIsAcyclic( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj; + int fAcyclic, i; + // set the traversal ID for this DFS ordering + Ivy_ManIncrementTravId( p ); + Ivy_ManIncrementTravId( p ); + // pObj->TravId == pNet->nTravIds means "pObj is on the path" + // pObj->TravId == pNet->nTravIds - 1 means "pObj is visited but is not on the path" + // pObj->TravId < pNet->nTravIds - 1 means "pObj is not visited" + // traverse the network to detect cycles + fAcyclic = 1; + Ivy_ManForEachCo( p, pObj, i ) + { + // traverse the output logic cone + if ( fAcyclic = Ivy_ManIsAcyclic_rec(p, Ivy_ObjFanin0(pObj)) ) + continue; + // stop as soon as the first loop is detected + fprintf( stdout, " (cone of %s \"%d\")\n", Ivy_ObjIsLatch(pObj)? "latch" : "PO", Ivy_ObjId(pObj) ); + break; + } + return fAcyclic; +} + +/**Function************************************************************* + + Synopsis [Sets the levels of the nodes.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManSetLevels_rec( Ivy_Obj_t * pObj, int fHaig ) +{ + // quit if the node is visited + if ( Ivy_ObjIsMarkA(pObj) ) + return pObj->Level; + Ivy_ObjSetMarkA(pObj); + // quit if this is a CI + if ( Ivy_ObjIsConst1(pObj) || Ivy_ObjIsCi(pObj) ) + return 0; + assert( Ivy_ObjIsBuf(pObj) || Ivy_ObjIsAnd(pObj) || Ivy_ObjIsExor(pObj) ); + // get levels of the fanins + Ivy_ManSetLevels_rec( Ivy_ObjFanin0(pObj), fHaig ); + if ( !Ivy_ObjIsBuf(pObj) ) + Ivy_ManSetLevels_rec( Ivy_ObjFanin1(pObj), fHaig ); + // get level of the node + if ( Ivy_ObjIsBuf(pObj) ) + pObj->Level = 1 + Ivy_ObjFanin0(pObj)->Level; + else if ( Ivy_ObjIsNode(pObj) ) + pObj->Level = Ivy_ObjLevelNew( pObj ); + else assert( 0 ); + // get level of other choices + if ( fHaig && pObj->pEquiv && Ivy_ObjRefs(pObj) > 0 ) + { + Ivy_Obj_t * pTemp; + unsigned LevelMax = pObj->Level; + for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) + { + Ivy_ManSetLevels_rec( pTemp, fHaig ); + LevelMax = IVY_MAX( LevelMax, pTemp->Level ); + } + // get this level + pObj->Level = LevelMax; + for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) + pTemp->Level = LevelMax; + } + return pObj->Level; +} + +/**Function************************************************************* + + Synopsis [Sets the levels of the nodes.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManSetLevels( Ivy_Man_t * p, int fHaig ) +{ + Ivy_Obj_t * pObj; + int i, LevelMax; + // check if CIs have choices + if ( fHaig ) + { + Ivy_ManForEachCi( p, pObj, i ) + if ( pObj->pEquiv ) + printf( "CI %d has a choice, which will not be visualized.\n", pObj->Id ); + } + // clean the levels + Ivy_ManForEachObj( p, pObj, i ) + pObj->Level = 0; + // compute the levels + LevelMax = 0; + Ivy_ManForEachCo( p, pObj, i ) + { + Ivy_ManSetLevels_rec( Ivy_ObjFanin0(pObj), fHaig ); + LevelMax = IVY_MAX( LevelMax, (int)Ivy_ObjFanin0(pObj)->Level ); + } + // compute levels of nodes without fanout + Ivy_ManForEachObj( p, pObj, i ) + if ( (Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj)) && Ivy_ObjRefs(pObj) == 0 ) + { + Ivy_ManSetLevels_rec( pObj, fHaig ); + LevelMax = IVY_MAX( LevelMax, (int)pObj->Level ); + } + // clean the marks + Ivy_ManForEachObj( p, pObj, i ) + Ivy_ObjClearMarkA(pObj); + return LevelMax; +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyDsd.c b/src/aig/ivy/ivyDsd.c new file mode 100644 index 00000000..3b8a2e68 --- /dev/null +++ b/src/aig/ivy/ivyDsd.c @@ -0,0 +1,819 @@ +/**CFile**************************************************************** + + FileName [ivyDsd.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Disjoint-support decomposition.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyDsd.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +// decomposition types +typedef enum { + IVY_DEC_PI, // 0: var + IVY_DEC_CONST1, // 1: CONST1 + IVY_DEC_BUF, // 2: BUF + IVY_DEC_AND, // 3: AND + IVY_DEC_EXOR, // 4: EXOR + IVY_DEC_MUX, // 5: MUX + IVY_DEC_MAJ, // 6: MAJ + IVY_DEC_PRIME // 7: undecomposable +} Ivy_DecType_t; + +typedef struct Ivy_Dec_t_ Ivy_Dec_t; +struct Ivy_Dec_t_ +{ + unsigned Type : 4; // the node type (PI, CONST1, AND, EXOR, MUX, PRIME) + unsigned fCompl : 1; // shows if node is complemented (root node only) + unsigned nFans : 3; // the number of fanins + unsigned Fan0 : 4; // fanin 0 + unsigned Fan1 : 4; // fanin 1 + unsigned Fan2 : 4; // fanin 2 + unsigned Fan3 : 4; // fanin 3 + unsigned Fan4 : 4; // fanin 4 + unsigned Fan5 : 4; // fanin 5 +}; + +static inline int Ivy_DecToInt( Ivy_Dec_t Node ) { return *((int *)&Node); } +static inline Ivy_Dec_t Ivy_IntToDec( int Node ) { return *((Ivy_Dec_t *)&Node); } +static inline void Ivy_DecClear( Ivy_Dec_t * pNode ) { *((int *)pNode) = 0; } + + +static unsigned s_Masks[6][2] = { + { 0x55555555, 0xAAAAAAAA }, + { 0x33333333, 0xCCCCCCCC }, + { 0x0F0F0F0F, 0xF0F0F0F0 }, + { 0x00FF00FF, 0xFF00FF00 }, + { 0x0000FFFF, 0xFFFF0000 }, + { 0x00000000, 0xFFFFFFFF } +}; + +static inline int Ivy_TruthWordCountOnes( unsigned uWord ) +{ + uWord = (uWord & 0x55555555) + ((uWord>>1) & 0x55555555); + uWord = (uWord & 0x33333333) + ((uWord>>2) & 0x33333333); + uWord = (uWord & 0x0F0F0F0F) + ((uWord>>4) & 0x0F0F0F0F); + uWord = (uWord & 0x00FF00FF) + ((uWord>>8) & 0x00FF00FF); + return (uWord & 0x0000FFFF) + (uWord>>16); +} + +static inline int Ivy_TruthCofactorIsConst( unsigned uTruth, int Var, int Cof, int Const ) +{ + if ( Const == 0 ) + return (uTruth & s_Masks[Var][Cof]) == 0; + else + return (uTruth & s_Masks[Var][Cof]) == s_Masks[Var][Cof]; +} + +static inline int Ivy_TruthCofactorIsOne( unsigned uTruth, int Var ) +{ + return (uTruth & s_Masks[Var][0]) == 0; +} + +static inline unsigned Ivy_TruthCofactor( unsigned uTruth, int Var ) +{ + unsigned uCofactor = uTruth & s_Masks[Var >> 1][(Var & 1) == 0]; + int Shift = (1 << (Var >> 1)); + if ( Var & 1 ) + return uCofactor | (uCofactor << Shift); + return uCofactor | (uCofactor >> Shift); +} + +static inline unsigned Ivy_TruthCofactor2( unsigned uTruth, int Var0, int Var1 ) +{ + return Ivy_TruthCofactor( Ivy_TruthCofactor(uTruth, Var0), Var1 ); +} + +// returns 1 if the truth table depends on this var (var is regular interger var) +static inline int Ivy_TruthDepends( unsigned uTruth, int Var ) +{ + return Ivy_TruthCofactor(uTruth, Var << 1) != Ivy_TruthCofactor(uTruth, (Var << 1) | 1); +} + +static inline void Ivy_DecSetVar( Ivy_Dec_t * pNode, int iNum, unsigned Var ) +{ + assert( iNum >= 0 && iNum <= 5 ); + switch( iNum ) + { + case 0: pNode->Fan0 = Var; break; + case 1: pNode->Fan1 = Var; break; + case 2: pNode->Fan2 = Var; break; + case 3: pNode->Fan3 = Var; break; + case 4: pNode->Fan4 = Var; break; + case 5: pNode->Fan5 = Var; break; + } +} + +static inline unsigned Ivy_DecGetVar( Ivy_Dec_t * pNode, int iNum ) +{ + assert( iNum >= 0 && iNum <= 5 ); + switch( iNum ) + { + case 0: return pNode->Fan0; + case 1: return pNode->Fan1; + case 2: return pNode->Fan2; + case 3: return pNode->Fan3; + case 4: return pNode->Fan4; + case 5: return pNode->Fan5; + } + return ~0; +} + +static int Ivy_TruthDecompose_rec( unsigned uTruth, Vec_Int_t * vTree ); +static int Ivy_TruthRecognizeMuxMaj( unsigned uTruth, int * pSupp, int nSupp, Vec_Int_t * vTree ); + +//int nTruthDsd; + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Computes DSD of truth table of 5 variables or less.] + + Description [Returns 1 if the function is a constant or is fully + DSD decomposable using AND/EXOR/MUX gates.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_TruthDsd( unsigned uTruth, Vec_Int_t * vTree ) +{ + Ivy_Dec_t Node; + int i, RetValue; + // set the PI variables + Vec_IntClear( vTree ); + for ( i = 0; i < 5; i++ ) + Vec_IntPush( vTree, 0 ); + // check if it is a constant + if ( uTruth == 0 || ~uTruth == 0 ) + { + Ivy_DecClear( &Node ); + Node.Type = IVY_DEC_CONST1; + Node.fCompl = (uTruth == 0); + Vec_IntPush( vTree, Ivy_DecToInt(Node) ); + return 1; + } + // perform the decomposition + RetValue = Ivy_TruthDecompose_rec( uTruth, vTree ); + if ( RetValue == -1 ) + return 0; + // get the topmost node + if ( (RetValue >> 1) < 5 ) + { // add buffer + Ivy_DecClear( &Node ); + Node.Type = IVY_DEC_BUF; + Node.fCompl = (RetValue & 1); + Node.Fan0 = ((RetValue >> 1) << 1); + Vec_IntPush( vTree, Ivy_DecToInt(Node) ); + } + else if ( RetValue & 1 ) + { // check if the topmost node has to be complemented + Node = Ivy_IntToDec( Vec_IntPop(vTree) ); + assert( Node.fCompl == 0 ); + Node.fCompl = (RetValue & 1); + Vec_IntPush( vTree, Ivy_DecToInt(Node) ); + } + if ( uTruth != Ivy_TruthDsdCompute(vTree) ) + printf( "Verification failed.\n" ); + return 1; +} + +/**Function************************************************************* + + Synopsis [Computes DSD of truth table.] + + Description [Returns the number of topmost decomposition node.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_TruthDecompose_rec( unsigned uTruth, Vec_Int_t * vTree ) +{ + Ivy_Dec_t Node; + int Supp[5], Vars0[5], Vars1[5], Vars2[5], * pVars; + int nSupp, Count0, Count1, Count2, nVars, RetValue, fCompl, i; + unsigned uTruthCof, uCof0, uCof1; + + // get constant confactors + Count0 = Count1 = Count2 = nSupp = 0; + for ( i = 0; i < 5; i++ ) + { + if ( Ivy_TruthCofactorIsConst(uTruth, i, 0, 0) ) + Vars0[Count0++] = (i << 1) | 0; + else if ( Ivy_TruthCofactorIsConst(uTruth, i, 1, 0) ) + Vars0[Count0++] = (i << 1) | 1; + else if ( Ivy_TruthCofactorIsConst(uTruth, i, 0, 1) ) + Vars1[Count1++] = (i << 1) | 0; + else if ( Ivy_TruthCofactorIsConst(uTruth, i, 1, 1) ) + Vars1[Count1++] = (i << 1) | 1; + else + { + uCof0 = Ivy_TruthCofactor( uTruth, (i << 1) | 1 ); + uCof1 = Ivy_TruthCofactor( uTruth, (i << 1) | 0 ); + if ( uCof0 == ~uCof1 ) + Vars2[Count2++] = (i << 1) | 0; + else if ( uCof0 != uCof1 ) + Supp[nSupp++] = i; + } + } + assert( Count0 == 0 || Count1 == 0 ); + assert( Count0 == 0 || Count2 == 0 ); + assert( Count1 == 0 || Count2 == 0 ); + + // consider the case of a single variable + if ( Count0 == 1 && nSupp == 0 ) + return Vars0[0]; + + // consider more complex decompositions + if ( Count0 == 0 && Count1 == 0 && Count2 == 0 ) + return Ivy_TruthRecognizeMuxMaj( uTruth, Supp, nSupp, vTree ); + + // extract the nodes + Ivy_DecClear( &Node ); + if ( Count0 > 0 ) + nVars = Count0, pVars = Vars0, Node.Type = IVY_DEC_AND, fCompl = 0; + else if ( Count1 > 0 ) + nVars = Count1, pVars = Vars1, Node.Type = IVY_DEC_AND, fCompl = 1, uTruth = ~uTruth; + else if ( Count2 > 0 ) + nVars = Count2, pVars = Vars2, Node.Type = IVY_DEC_EXOR, fCompl = 0; + else + assert( 0 ); + Node.nFans = nVars+(nSupp>0); + + // compute cofactor + uTruthCof = uTruth; + for ( i = 0; i < nVars; i++ ) + { + uTruthCof = Ivy_TruthCofactor( uTruthCof, pVars[i] ); + Ivy_DecSetVar( &Node, i, pVars[i] ); + } + + if ( Node.Type == IVY_DEC_EXOR ) + fCompl ^= ((Node.nFans & 1) == 0); + + if ( nSupp > 0 ) + { + assert( uTruthCof != 0 && ~uTruthCof != 0 ); + // call recursively + RetValue = Ivy_TruthDecompose_rec( uTruthCof, vTree ); + // quit if non-decomposable + if ( RetValue == -1 ) + return -1; + // remove the complement from the child if the node is EXOR + if ( Node.Type == IVY_DEC_EXOR && (RetValue & 1) ) + { + fCompl ^= 1; + RetValue ^= 1; + } + // set the new decomposition + Ivy_DecSetVar( &Node, nVars, RetValue ); + } + else if ( Node.Type == IVY_DEC_EXOR ) + fCompl ^= (uTruthCof == 0); + + Vec_IntPush( vTree, Ivy_DecToInt(Node) ); + return ((Vec_IntSize(vTree)-1) << 1) | fCompl; +} + +/**Function************************************************************* + + Synopsis [Returns a non-negative number if the truth table is a MUX.] + + Description [If the truth table is a MUX, returns the variable as follows: + first, control variable; second, positive cofactor; third, negative cofactor.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_TruthRecognizeMuxMaj( unsigned uTruth, int * pSupp, int nSupp, Vec_Int_t * vTree ) +{ + Ivy_Dec_t Node; + int i, k, RetValue0, RetValue1; + unsigned uCof0, uCof1, Num; + char Count[3]; + assert( nSupp >= 3 ); + // start the node + Ivy_DecClear( &Node ); + Node.Type = IVY_DEC_MUX; + Node.nFans = 3; + // try each of the variables + for ( i = 0; i < nSupp; i++ ) + { + // get the cofactors with respect to these variables + uCof0 = Ivy_TruthCofactor( uTruth, (pSupp[i] << 1) | 1 ); + uCof1 = Ivy_TruthCofactor( uTruth, pSupp[i] << 1 ); + // go through all other variables and make sure + // each of them belongs to the support of one cofactor + for ( k = 0; k < nSupp; k++ ) + { + if ( k == i ) + continue; + if ( Ivy_TruthDepends(uCof0, pSupp[k]) && Ivy_TruthDepends(uCof1, pSupp[k]) ) + break; + } + if ( k < nSupp ) + continue; + // MUX decomposition exists + RetValue0 = Ivy_TruthDecompose_rec( uCof0, vTree ); + if ( RetValue0 == -1 ) + break; + RetValue1 = Ivy_TruthDecompose_rec( uCof1, vTree ); + if ( RetValue1 == -1 ) + break; + // both of them exist; create the node + Ivy_DecSetVar( &Node, 0, pSupp[i] << 1 ); + Ivy_DecSetVar( &Node, 1, RetValue1 ); + Ivy_DecSetVar( &Node, 2, RetValue0 ); + Vec_IntPush( vTree, Ivy_DecToInt(Node) ); + return ((Vec_IntSize(vTree)-1) << 1) | 0; + } + // check majority gate + if ( nSupp > 3 ) + return -1; + if ( Ivy_TruthWordCountOnes(uTruth) != 16 ) + return -1; + // this is a majority gate; determine polarity + Node.Type = IVY_DEC_MAJ; + Count[0] = Count[1] = Count[2] = 0; + for ( i = 0; i < 8; i++ ) + { + Num = 0; + for ( k = 0; k < 3; k++ ) + if ( i & (1 << k) ) + Num |= (1 << pSupp[k]); + assert( Num < 32 ); + if ( (uTruth & (1 << Num)) == 0 ) + continue; + for ( k = 0; k < 3; k++ ) + if ( i & (1 << k) ) + Count[k]++; + } + assert( Count[0] == 1 || Count[0] == 3 ); + assert( Count[1] == 1 || Count[1] == 3 ); + assert( Count[2] == 1 || Count[2] == 3 ); + Ivy_DecSetVar( &Node, 0, (pSupp[0] << 1)|(Count[0] == 1) ); + Ivy_DecSetVar( &Node, 1, (pSupp[1] << 1)|(Count[1] == 1) ); + Ivy_DecSetVar( &Node, 2, (pSupp[2] << 1)|(Count[2] == 1) ); + Vec_IntPush( vTree, Ivy_DecToInt(Node) ); + return ((Vec_IntSize(vTree)-1) << 1) | 0; +} + + +/**Function************************************************************* + + Synopsis [Computes truth table of decomposition tree for verification.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Ivy_TruthDsdCompute_rec( int iNode, Vec_Int_t * vTree ) +{ + unsigned uTruthChild, uTruthTotal; + int Var, i; + // get the node + Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) ); + // compute the node function + if ( Node.Type == IVY_DEC_CONST1 ) + return s_Masks[5][ !Node.fCompl ]; + if ( Node.Type == IVY_DEC_PI ) + return s_Masks[iNode][ !Node.fCompl ]; + if ( Node.Type == IVY_DEC_BUF ) + { + uTruthTotal = Ivy_TruthDsdCompute_rec( Node.Fan0 >> 1, vTree ); + return Node.fCompl? ~uTruthTotal : uTruthTotal; + } + if ( Node.Type == IVY_DEC_AND ) + { + uTruthTotal = s_Masks[5][1]; + for ( i = 0; i < (int)Node.nFans; i++ ) + { + Var = Ivy_DecGetVar( &Node, i ); + uTruthChild = Ivy_TruthDsdCompute_rec( Var >> 1, vTree ); + uTruthTotal = (Var & 1)? uTruthTotal & ~uTruthChild : uTruthTotal & uTruthChild; + } + return Node.fCompl? ~uTruthTotal : uTruthTotal; + } + if ( Node.Type == IVY_DEC_EXOR ) + { + uTruthTotal = 0; + for ( i = 0; i < (int)Node.nFans; i++ ) + { + Var = Ivy_DecGetVar( &Node, i ); + uTruthTotal ^= Ivy_TruthDsdCompute_rec( Var >> 1, vTree ); + assert( (Var & 1) == 0 ); + } + return Node.fCompl? ~uTruthTotal : uTruthTotal; + } + assert( Node.fCompl == 0 ); + if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ ) + { + unsigned uTruthChildC, uTruthChild1, uTruthChild0; + int VarC, Var1, Var0; + VarC = Ivy_DecGetVar( &Node, 0 ); + Var1 = Ivy_DecGetVar( &Node, 1 ); + Var0 = Ivy_DecGetVar( &Node, 2 ); + uTruthChildC = Ivy_TruthDsdCompute_rec( VarC >> 1, vTree ); + uTruthChild1 = Ivy_TruthDsdCompute_rec( Var1 >> 1, vTree ); + uTruthChild0 = Ivy_TruthDsdCompute_rec( Var0 >> 1, vTree ); + assert( Node.Type == IVY_DEC_MAJ || (VarC & 1) == 0 ); + uTruthChildC = (VarC & 1)? ~uTruthChildC : uTruthChildC; + uTruthChild1 = (Var1 & 1)? ~uTruthChild1 : uTruthChild1; + uTruthChild0 = (Var0 & 1)? ~uTruthChild0 : uTruthChild0; + if ( Node.Type == IVY_DEC_MUX ) + return (uTruthChildC & uTruthChild1) | (~uTruthChildC & uTruthChild0); + else + return (uTruthChildC & uTruthChild1) | (uTruthChildC & uTruthChild0) | (uTruthChild1 & uTruthChild0); + } + assert( 0 ); + return 0; +} + + +/**Function************************************************************* + + Synopsis [Computes truth table of decomposition tree for verification.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Ivy_TruthDsdCompute( Vec_Int_t * vTree ) +{ + return Ivy_TruthDsdCompute_rec( Vec_IntSize(vTree)-1, vTree ); +} + +/**Function************************************************************* + + Synopsis [Prints the decomposition tree.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TruthDsdPrint_rec( FILE * pFile, int iNode, Vec_Int_t * vTree ) +{ + int Var, i; + // get the node + Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) ); + // compute the node function + if ( Node.Type == IVY_DEC_CONST1 ) + fprintf( pFile, "Const1%s", (Node.fCompl? "\'" : "") ); + else if ( Node.Type == IVY_DEC_PI ) + fprintf( pFile, "%c%s", 'a' + iNode, (Node.fCompl? "\'" : "") ); + else if ( Node.Type == IVY_DEC_BUF ) + { + Ivy_TruthDsdPrint_rec( pFile, Node.Fan0 >> 1, vTree ); + fprintf( pFile, "%s", (Node.fCompl? "\'" : "") ); + } + else if ( Node.Type == IVY_DEC_AND ) + { + fprintf( pFile, "AND(" ); + for ( i = 0; i < (int)Node.nFans; i++ ) + { + Var = Ivy_DecGetVar( &Node, i ); + Ivy_TruthDsdPrint_rec( pFile, Var >> 1, vTree ); + fprintf( pFile, "%s", (Var & 1)? "\'" : "" ); + if ( i != (int)Node.nFans-1 ) + fprintf( pFile, "," ); + } + fprintf( pFile, ")%s", (Node.fCompl? "\'" : "") ); + } + else if ( Node.Type == IVY_DEC_EXOR ) + { + fprintf( pFile, "EXOR(" ); + for ( i = 0; i < (int)Node.nFans; i++ ) + { + Var = Ivy_DecGetVar( &Node, i ); + Ivy_TruthDsdPrint_rec( pFile, Var >> 1, vTree ); + if ( i != (int)Node.nFans-1 ) + fprintf( pFile, "," ); + assert( (Var & 1) == 0 ); + } + fprintf( pFile, ")%s", (Node.fCompl? "\'" : "") ); + } + else if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ ) + { + int VarC, Var1, Var0; + assert( Node.fCompl == 0 ); + VarC = Ivy_DecGetVar( &Node, 0 ); + Var1 = Ivy_DecGetVar( &Node, 1 ); + Var0 = Ivy_DecGetVar( &Node, 2 ); + fprintf( pFile, "%s", (Node.Type == IVY_DEC_MUX)? "MUX(" : "MAJ(" ); + Ivy_TruthDsdPrint_rec( pFile, VarC >> 1, vTree ); + fprintf( pFile, "%s", (VarC & 1)? "\'" : "" ); + fprintf( pFile, "," ); + Ivy_TruthDsdPrint_rec( pFile, Var1 >> 1, vTree ); + fprintf( pFile, "%s", (Var1 & 1)? "\'" : "" ); + fprintf( pFile, "," ); + Ivy_TruthDsdPrint_rec( pFile, Var0 >> 1, vTree ); + fprintf( pFile, "%s", (Var0 & 1)? "\'" : "" ); + fprintf( pFile, ")" ); + } + else assert( 0 ); +} + + +/**Function************************************************************* + + Synopsis [Prints the decomposition tree.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TruthDsdPrint( FILE * pFile, Vec_Int_t * vTree ) +{ + fprintf( pFile, "F = " ); + Ivy_TruthDsdPrint_rec( pFile, Vec_IntSize(vTree)-1, vTree ); + fprintf( pFile, "\n" ); +} + +/**Function************************************************************* + + Synopsis [Implement DSD in the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_ManDsdConstruct_rec( Ivy_Man_t * p, Vec_Int_t * vFront, int iNode, Vec_Int_t * vTree ) +{ + Ivy_Obj_t * pResult, * pChild, * pNodes[16]; + int Var, i; + // get the node + Ivy_Dec_t Node = Ivy_IntToDec( Vec_IntEntry(vTree, iNode) ); + // compute the node function + if ( Node.Type == IVY_DEC_CONST1 ) + return Ivy_NotCond( Ivy_ManConst1(p), Node.fCompl ); + if ( Node.Type == IVY_DEC_PI ) + { + pResult = Ivy_ManObj( p, Vec_IntEntry(vFront, iNode) ); + return Ivy_NotCond( pResult, Node.fCompl ); + } + if ( Node.Type == IVY_DEC_BUF ) + { + pResult = Ivy_ManDsdConstruct_rec( p, vFront, Node.Fan0 >> 1, vTree ); + return Ivy_NotCond( pResult, Node.fCompl ); + } + if ( Node.Type == IVY_DEC_AND || Node.Type == IVY_DEC_EXOR ) + { + for ( i = 0; i < (int)Node.nFans; i++ ) + { + Var = Ivy_DecGetVar( &Node, i ); + assert( Node.Type == IVY_DEC_AND || (Var & 1) == 0 ); + pChild = Ivy_ManDsdConstruct_rec( p, vFront, Var >> 1, vTree ); + pChild = Ivy_NotCond( pChild, (Var & 1) ); + pNodes[i] = pChild; + } + +// Ivy_MultiEval( pNodes, Node.nFans, Node.Type == IVY_DEC_AND ? IVY_AND : IVY_EXOR ); + + pResult = Ivy_Multi( p, pNodes, Node.nFans, Node.Type == IVY_DEC_AND ? IVY_AND : IVY_EXOR ); + return Ivy_NotCond( pResult, Node.fCompl ); + } + assert( Node.fCompl == 0 ); + if ( Node.Type == IVY_DEC_MUX || Node.Type == IVY_DEC_MAJ ) + { + int VarC, Var1, Var0; + VarC = Ivy_DecGetVar( &Node, 0 ); + Var1 = Ivy_DecGetVar( &Node, 1 ); + Var0 = Ivy_DecGetVar( &Node, 2 ); + pNodes[0] = Ivy_ManDsdConstruct_rec( p, vFront, VarC >> 1, vTree ); + pNodes[1] = Ivy_ManDsdConstruct_rec( p, vFront, Var1 >> 1, vTree ); + pNodes[2] = Ivy_ManDsdConstruct_rec( p, vFront, Var0 >> 1, vTree ); + assert( Node.Type == IVY_DEC_MAJ || (VarC & 1) == 0 ); + pNodes[0] = Ivy_NotCond( pNodes[0], (VarC & 1) ); + pNodes[1] = Ivy_NotCond( pNodes[1], (Var1 & 1) ); + pNodes[2] = Ivy_NotCond( pNodes[2], (Var0 & 1) ); + if ( Node.Type == IVY_DEC_MUX ) + return Ivy_Mux( p, pNodes[0], pNodes[1], pNodes[2] ); + else + return Ivy_Maj( p, pNodes[0], pNodes[1], pNodes[2] ); + } + assert( 0 ); + return 0; +} + +/**Function************************************************************* + + Synopsis [Implement DSD in the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_ManDsdConstruct( Ivy_Man_t * p, Vec_Int_t * vFront, Vec_Int_t * vTree ) +{ + int Entry, i; + // implement latches on the frontier (TEMPORARY!!!) + Vec_IntForEachEntry( vFront, Entry, i ) + Vec_IntWriteEntry( vFront, i, Ivy_LeafId(Entry) ); + // recursively construct the tree + return Ivy_ManDsdConstruct_rec( p, vFront, Vec_IntSize(vTree)-1, vTree ); +} + + + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TruthDsdComputePrint( unsigned uTruth ) +{ + static Vec_Int_t * vTree = NULL; + if ( vTree == NULL ) + vTree = Vec_IntAlloc( 12 ); + if ( Ivy_TruthDsd( uTruth, vTree ) ) + Ivy_TruthDsdPrint( stdout, vTree ); + else + printf( "Undecomposable\n" ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TruthTestOne( unsigned uTruth ) +{ + static int Counter = 0; + static Vec_Int_t * vTree = NULL; + // decompose + if ( vTree == NULL ) + vTree = Vec_IntAlloc( 12 ); + + if ( !Ivy_TruthDsd( uTruth, vTree ) ) + { +// printf( "Undecomposable\n" ); + } + else + { +// nTruthDsd++; + printf( "%5d : ", Counter++ ); + Extra_PrintBinary( stdout, &uTruth, 32 ); + printf( " " ); + Ivy_TruthDsdPrint( stdout, vTree ); + if ( uTruth != Ivy_TruthDsdCompute(vTree) ) + printf( "Verification failed.\n" ); + } +// Vec_IntFree( vTree ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TruthTest() +{ + FILE * pFile; + char Buffer[100]; + unsigned uTruth; + int i; + + pFile = fopen( "npn4.txt", "r" ); + for ( i = 0; i < 222; i++ ) +// pFile = fopen( "npn5.txt", "r" ); +// for ( i = 0; i < 616126; i++ ) + { + fscanf( pFile, "%s", Buffer ); + Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 ); +// Extra_ReadHexadecimal( &uTruth, Buffer+2, 5 ); + uTruth |= (uTruth << 16); +// uTruth = ~uTruth; + Ivy_TruthTestOne( uTruth ); + } + fclose( pFile ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TruthTest3() +{ + FILE * pFile; + char Buffer[100]; + unsigned uTruth; + int i; + + pFile = fopen( "npn3.txt", "r" ); + for ( i = 0; i < 14; i++ ) + { + fscanf( pFile, "%s", Buffer ); + Extra_ReadHexadecimal( &uTruth, Buffer+2, 3 ); + uTruth = uTruth | (uTruth << 8) | (uTruth << 16) | (uTruth << 24); + Ivy_TruthTestOne( uTruth ); + } + fclose( pFile ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TruthTest5() +{ + FILE * pFile; + char Buffer[100]; + unsigned uTruth; + int i; + +// pFile = fopen( "npn4.txt", "r" ); +// for ( i = 0; i < 222; i++ ) + pFile = fopen( "npn5.txt", "r" ); + for ( i = 0; i < 616126; i++ ) + { + fscanf( pFile, "%s", Buffer ); +// Extra_ReadHexadecimal( &uTruth, Buffer+2, 4 ); + Extra_ReadHexadecimal( &uTruth, Buffer+2, 5 ); +// uTruth |= (uTruth << 16); +// uTruth = ~uTruth; + Ivy_TruthTestOne( uTruth ); + } + fclose( pFile ); +} + + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyFanout.c b/src/aig/ivy/ivyFanout.c new file mode 100644 index 00000000..3930186a --- /dev/null +++ b/src/aig/ivy/ivyFanout.c @@ -0,0 +1,309 @@ +/**CFile**************************************************************** + + FileName [ivyFanout.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Representation of the fanouts.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyFanout.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +// getting hold of the next fanout of the node +static inline Ivy_Obj_t * Ivy_ObjNextFanout( Ivy_Obj_t * pObj, Ivy_Obj_t * pFanout ) +{ + assert( !Ivy_IsComplement(pObj) ); + assert( !Ivy_IsComplement(pFanout) ); + if ( pFanout == NULL ) + return NULL; + if ( Ivy_ObjFanin0(pFanout) == pObj ) + return pFanout->pNextFan0; + assert( Ivy_ObjFanin1(pFanout) == pObj ); + return pFanout->pNextFan1; +} + +// getting hold of the previous fanout of the node +static inline Ivy_Obj_t * Ivy_ObjPrevFanout( Ivy_Obj_t * pObj, Ivy_Obj_t * pFanout ) +{ + assert( !Ivy_IsComplement(pObj) ); + assert( !Ivy_IsComplement(pFanout) ); + if ( pFanout == NULL ) + return NULL; + if ( Ivy_ObjFanin0(pFanout) == pObj ) + return pFanout->pPrevFan0; + assert( Ivy_ObjFanin1(pFanout) == pObj ); + return pFanout->pPrevFan1; +} + +// getting hold of the place where the next fanout will be attached +static inline Ivy_Obj_t ** Ivy_ObjNextFanoutPlace( Ivy_Obj_t * pObj, Ivy_Obj_t * pFanout ) +{ + assert( !Ivy_IsComplement(pObj) ); + assert( !Ivy_IsComplement(pFanout) ); + if ( Ivy_ObjFanin0(pFanout) == pObj ) + return &pFanout->pNextFan0; + assert( Ivy_ObjFanin1(pFanout) == pObj ); + return &pFanout->pNextFan1; +} + +// getting hold of the place where the next fanout will be attached +static inline Ivy_Obj_t ** Ivy_ObjPrevFanoutPlace( Ivy_Obj_t * pObj, Ivy_Obj_t * pFanout ) +{ + assert( !Ivy_IsComplement(pObj) ); + assert( !Ivy_IsComplement(pFanout) ); + if ( Ivy_ObjFanin0(pFanout) == pObj ) + return &pFanout->pPrevFan0; + assert( Ivy_ObjFanin1(pFanout) == pObj ); + return &pFanout->pPrevFan1; +} + +// getting hold of the place where the next fanout will be attached +static inline Ivy_Obj_t ** Ivy_ObjPrevNextFanoutPlace( Ivy_Obj_t * pObj, Ivy_Obj_t * pFanout ) +{ + Ivy_Obj_t * pTemp; + assert( !Ivy_IsComplement(pObj) ); + assert( !Ivy_IsComplement(pFanout) ); + pTemp = Ivy_ObjPrevFanout(pObj, pFanout); + if ( pTemp == NULL ) + return &pObj->pFanout; + if ( Ivy_ObjFanin0(pTemp) == pObj ) + return &pTemp->pNextFan0; + assert( Ivy_ObjFanin1(pTemp) == pObj ); + return &pTemp->pNextFan1; +} + +// getting hold of the place where the next fanout will be attached +static inline Ivy_Obj_t ** Ivy_ObjNextPrevFanoutPlace( Ivy_Obj_t * pObj, Ivy_Obj_t * pFanout ) +{ + Ivy_Obj_t * pTemp; + assert( !Ivy_IsComplement(pObj) ); + assert( !Ivy_IsComplement(pFanout) ); + pTemp = Ivy_ObjNextFanout(pObj, pFanout); + if ( pTemp == NULL ) + return NULL; + if ( Ivy_ObjFanin0(pTemp) == pObj ) + return &pTemp->pPrevFan0; + assert( Ivy_ObjFanin1(pTemp) == pObj ); + return &pTemp->pPrevFan1; +} + +// iterator through the fanouts of the node +#define Ivy_ObjForEachFanoutInt( pObj, pFanout ) \ + for ( pFanout = (pObj)->pFanout; pFanout; \ + pFanout = Ivy_ObjNextFanout(pObj, pFanout) ) + +// safe iterator through the fanouts of the node +#define Ivy_ObjForEachFanoutIntSafe( pObj, pFanout, pFanout2 ) \ + for ( pFanout = (pObj)->pFanout, \ + pFanout2 = Ivy_ObjNextFanout(pObj, pFanout); \ + pFanout; \ + pFanout = pFanout2, \ + pFanout2 = Ivy_ObjNextFanout(pObj, pFanout) ) + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Starts the fanout representation.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManStartFanout( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj; + int i; + assert( !p->fFanout ); + p->fFanout = 1; + Ivy_ManForEachObj( p, pObj, i ) + { + if ( Ivy_ObjFanin0(pObj) ) + Ivy_ObjAddFanout( p, Ivy_ObjFanin0(pObj), pObj ); + if ( Ivy_ObjFanin1(pObj) ) + Ivy_ObjAddFanout( p, Ivy_ObjFanin1(pObj), pObj ); + } +} + +/**Function************************************************************* + + Synopsis [Stops the fanout representation.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManStopFanout( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj; + int i; + assert( p->fFanout ); + p->fFanout = 0; + Ivy_ManForEachObj( p, pObj, i ) + pObj->pFanout = pObj->pNextFan0 = pObj->pNextFan1 = pObj->pPrevFan0 = pObj->pPrevFan1 = NULL; +} + +/**Function************************************************************* + + Synopsis [Add the fanout.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjAddFanout( Ivy_Man_t * p, Ivy_Obj_t * pFanin, Ivy_Obj_t * pFanout ) +{ + assert( p->fFanout ); + if ( pFanin->pFanout ) + { + *Ivy_ObjNextFanoutPlace(pFanin, pFanout) = pFanin->pFanout; + *Ivy_ObjPrevFanoutPlace(pFanin, pFanin->pFanout) = pFanout; + } + pFanin->pFanout = pFanout; +} + +/**Function************************************************************* + + Synopsis [Removes the fanout.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjDeleteFanout( Ivy_Man_t * p, Ivy_Obj_t * pFanin, Ivy_Obj_t * pFanout ) +{ + Ivy_Obj_t ** ppPlace1, ** ppPlace2, ** ppPlaceN; + assert( pFanin->pFanout != NULL ); + + ppPlace1 = Ivy_ObjNextFanoutPlace(pFanin, pFanout); + ppPlaceN = Ivy_ObjPrevNextFanoutPlace(pFanin, pFanout); + assert( *ppPlaceN == pFanout ); + if ( ppPlaceN ) + *ppPlaceN = *ppPlace1; + + ppPlace2 = Ivy_ObjPrevFanoutPlace(pFanin, pFanout); + ppPlaceN = Ivy_ObjNextPrevFanoutPlace(pFanin, pFanout); + assert( ppPlaceN == NULL || *ppPlaceN == pFanout ); + if ( ppPlaceN ) + *ppPlaceN = *ppPlace2; + + *ppPlace1 = NULL; + *ppPlace2 = NULL; +} + +/**Function************************************************************* + + Synopsis [Replaces the fanout of pOld to be pFanoutNew.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjPatchFanout( Ivy_Man_t * p, Ivy_Obj_t * pFanin, Ivy_Obj_t * pFanoutOld, Ivy_Obj_t * pFanoutNew ) +{ + Ivy_Obj_t ** ppPlace; + ppPlace = Ivy_ObjPrevNextFanoutPlace(pFanin, pFanoutOld); + assert( *ppPlace == pFanoutOld ); + if ( ppPlace ) + *ppPlace = pFanoutNew; + ppPlace = Ivy_ObjNextPrevFanoutPlace(pFanin, pFanoutOld); + assert( ppPlace == NULL || *ppPlace == pFanoutOld ); + if ( ppPlace ) + *ppPlace = pFanoutNew; + // assuming that pFanoutNew already points to the next fanout +} + +/**Function************************************************************* + + Synopsis [Starts iteration through the fanouts.] + + Description [Copies the currently available fanouts into the array.] + + SideEffects [Can be used while the fanouts are being removed.] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjCollectFanouts( Ivy_Man_t * p, Ivy_Obj_t * pObj, Vec_Ptr_t * vArray ) +{ + Ivy_Obj_t * pFanout; + assert( p->fFanout ); + assert( !Ivy_IsComplement(pObj) ); + Vec_PtrClear( vArray ); + Ivy_ObjForEachFanoutInt( pObj, pFanout ) + Vec_PtrPush( vArray, pFanout ); +} + +/**Function************************************************************* + + Synopsis [Reads one fanout.] + + Description [Returns fanout if there is only one fanout.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_ObjReadFirstFanout( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + return pObj->pFanout; +} + +/**Function************************************************************* + + Synopsis [Reads one fanout.] + + Description [Returns fanout if there is only one fanout.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ObjFanoutNum( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pFanout; + int Counter = 0; + Ivy_ObjForEachFanoutInt( pObj, pFanout ) + Counter++; + return Counter; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyFastMap.c b/src/aig/ivy/ivyFastMap.c new file mode 100644 index 00000000..c4a043f2 --- /dev/null +++ b/src/aig/ivy/ivyFastMap.c @@ -0,0 +1,1593 @@ +/**CFile**************************************************************** + + FileName [ivyFastMap.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Fast FPGA mapping.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyFastMap.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +#define IVY_INFINITY 10000 + +typedef struct Ivy_SuppMan_t_ Ivy_SuppMan_t; +struct Ivy_SuppMan_t_ +{ + int nLimit; // the limit on the number of inputs + int nObjs; // the number of entries + int nSize; // size of each entry in bytes + char * pMem; // memory allocated + Vec_Vec_t * vLuts; // the array of nodes used in the mapping +}; + +typedef struct Ivy_Supp_t_ Ivy_Supp_t; +struct Ivy_Supp_t_ +{ + char nSize; // the number of support nodes + char fMark; // multipurpose mask + char fMark2; // multipurpose mask + char fMark3; // multipurpose mask + int nRefs; // the number of references + short Delay; // the delay of the node + short DelayR; // the reverse delay of the node + int pArray[0]; // the support nodes +}; + +static inline Ivy_Supp_t * Ivy_ObjSupp( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ) +{ + return (Ivy_Supp_t *)(((Ivy_SuppMan_t*)pAig->pData)->pMem + pObj->Id * ((Ivy_SuppMan_t*)pAig->pData)->nSize); +} +static inline Ivy_Supp_t * Ivy_ObjSuppStart( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ) +{ + Ivy_Supp_t * pSupp; + pSupp = Ivy_ObjSupp( pAig, pObj ); + pSupp->fMark = 0; + pSupp->Delay = 0; + pSupp->nSize = 1; + pSupp->pArray[0] = pObj->Id; + return pSupp; +} + +static void Ivy_FastMapPrint( Ivy_Man_t * pAig, int Delay, int Area, int Time, char * pStr ); +static int Ivy_FastMapDelay( Ivy_Man_t * pAig ); +static int Ivy_FastMapArea( Ivy_Man_t * pAig ); +static void Ivy_FastMapNode( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit ); +static void Ivy_FastMapNodeArea( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit ); +static int Ivy_FastMapMerge( Ivy_Supp_t * pSupp0, Ivy_Supp_t * pSupp1, Ivy_Supp_t * pSupp, int nLimit ); +static void Ivy_FastMapRequired( Ivy_Man_t * pAig, int Delay, int fSetInter ); +static void Ivy_FastMapRecover( Ivy_Man_t * pAig, int nLimit ); +static int Ivy_FastMapNodeDelay( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ); +static int Ivy_FastMapNodeAreaRefed( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ); +static int Ivy_FastMapNodeAreaDerefed( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ); +static void Ivy_FastMapNodeRecover( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit, Vec_Ptr_t * vFront, Vec_Ptr_t * vFrontOld ); +static int Ivy_FastMapNodeRef( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ); +static int Ivy_FastMapNodeDeref( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ); + + +extern int s_MappingTime; +extern int s_MappingMem; + + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Performs fast K-LUT mapping of the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapPerform( Ivy_Man_t * pAig, int nLimit, int fRecovery, int fVerbose ) +{ + Ivy_SuppMan_t * pMan; + Ivy_Obj_t * pObj; + int i, Delay, Area, clk, clkTotal = clock(); + // start the memory for supports + pMan = ALLOC( Ivy_SuppMan_t, 1 ); + memset( pMan, 0, sizeof(Ivy_SuppMan_t) ); + pMan->nLimit = nLimit; + pMan->nObjs = Ivy_ManObjIdMax(pAig) + 1; + pMan->nSize = sizeof(Ivy_Supp_t) + nLimit * sizeof(int); + pMan->pMem = (char *)malloc( pMan->nObjs * pMan->nSize ); + memset( pMan->pMem, 0, pMan->nObjs * pMan->nSize ); + pMan->vLuts = Vec_VecAlloc( 100 ); + pAig->pData = pMan; +clk = clock(); + // set the PI mapping + Ivy_ObjSuppStart( pAig, Ivy_ManConst1(pAig) ); + Ivy_ManForEachPi( pAig, pObj, i ) + Ivy_ObjSuppStart( pAig, pObj ); + // iterate through all nodes in the topological order + Ivy_ManForEachNode( pAig, pObj, i ) + Ivy_FastMapNode( pAig, pObj, nLimit ); + // find the best arrival time and area + Delay = Ivy_FastMapDelay( pAig ); + Area = Ivy_FastMapArea(pAig); + if ( fVerbose ) + Ivy_FastMapPrint( pAig, Delay, Area, clock() - clk, "Delay oriented mapping: " ); + +// 2-1-2 (doing 2-1-2-1-2 improves 0.5%) + + if ( fRecovery ) + { +clk = clock(); + Ivy_FastMapRequired( pAig, Delay, 0 ); + // remap the nodes + Ivy_FastMapRecover( pAig, nLimit ); + Delay = Ivy_FastMapDelay( pAig ); + Area = Ivy_FastMapArea(pAig); + if ( fVerbose ) + Ivy_FastMapPrint( pAig, Delay, Area, clock() - clk, "Area recovery 2 : " ); + +clk = clock(); + Ivy_FastMapRequired( pAig, Delay, 0 ); + // iterate through all nodes in the topological order + Ivy_ManForEachNode( pAig, pObj, i ) + Ivy_FastMapNodeArea( pAig, pObj, nLimit ); + Delay = Ivy_FastMapDelay( pAig ); + Area = Ivy_FastMapArea(pAig); + if ( fVerbose ) + Ivy_FastMapPrint( pAig, Delay, Area, clock() - clk, "Area recovery 1 : " ); + +clk = clock(); + Ivy_FastMapRequired( pAig, Delay, 0 ); + // remap the nodes + Ivy_FastMapRecover( pAig, nLimit ); + Delay = Ivy_FastMapDelay( pAig ); + Area = Ivy_FastMapArea(pAig); + if ( fVerbose ) + Ivy_FastMapPrint( pAig, Delay, Area, clock() - clk, "Area recovery 2 : " ); + } + + + s_MappingTime = clock() - clkTotal; + s_MappingMem = pMan->nObjs * pMan->nSize; +/* + { + Vec_Ptr_t * vNodes; + vNodes = Vec_PtrAlloc( 100 ); + Vec_VecForEachEntry( pMan->vLuts, pObj, i, k ) + Vec_PtrPush( vNodes, pObj ); + Ivy_ManShow( pAig, 0, vNodes ); + Vec_PtrFree( vNodes ); + } +*/ +} + +/**Function************************************************************* + + Synopsis [Cleans memory used for decomposition.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapStop( Ivy_Man_t * pAig ) +{ + Ivy_SuppMan_t * p = pAig->pData; + Vec_VecFree( p->vLuts ); + free( p->pMem ); + free( p ); + pAig->pData = NULL; +} + +/**Function************************************************************* + + Synopsis [Prints statistics.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapPrint( Ivy_Man_t * pAig, int Delay, int Area, int Time, char * pStr ) +{ + printf( "%s : Delay = %3d. Area = %6d. ", pStr, Delay, Area ); + PRT( "Time", Time ); +} + +/**Function************************************************************* + + Synopsis [Computes delay after LUT mapping.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapDelay( Ivy_Man_t * pAig ) +{ + Ivy_Supp_t * pSupp; + Ivy_Obj_t * pObj; + int i, DelayMax = 0; + Ivy_ManForEachPo( pAig, pObj, i ) + { + pObj = Ivy_ObjFanin0(pObj); + if ( !Ivy_ObjIsNode(pObj) ) + continue; + pSupp = Ivy_ObjSupp( pAig, pObj ); + if ( DelayMax < pSupp->Delay ) + DelayMax = pSupp->Delay; + } + return DelayMax; +} + +/**Function************************************************************* + + Synopsis [Computes area after mapping.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapArea_rec( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, Vec_Vec_t * vLuts ) +{ + Ivy_Supp_t * pSupp; + int i, Counter; + pSupp = Ivy_ObjSupp( pAig, pObj ); + // skip visited nodes and PIs + if ( pSupp->fMark || pSupp->nSize == 1 ) + return 0; + pSupp->fMark = 1; + // compute the area of this node + Counter = 0; + for ( i = 0; i < pSupp->nSize; i++ ) + Counter += Ivy_FastMapArea_rec( pAig, Ivy_ManObj(pAig, pSupp->pArray[i]), vLuts ); + // add the node to the array of LUTs + Vec_VecPush( vLuts, pSupp->Delay, pObj ); + return 1 + Counter; +} + +/**Function************************************************************* + + Synopsis [Computes area after mapping.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapArea( Ivy_Man_t * pAig ) +{ + Vec_Vec_t * vLuts; + Ivy_Obj_t * pObj; + int i, Counter = 0; + // get the array to store the nodes + vLuts = ((Ivy_SuppMan_t *)pAig->pData)->vLuts; + Vec_VecClear( vLuts ); + // explore starting from each node + Ivy_ManForEachPo( pAig, pObj, i ) + Counter += Ivy_FastMapArea_rec( pAig, Ivy_ObjFanin0(pObj), vLuts ); + // clean the marks + Ivy_ManForEachNode( pAig, pObj, i ) + Ivy_ObjSupp( pAig, pObj )->fMark = 0; + return Counter; +} + +/**Function************************************************************* + + Synopsis [Performs fast mapping for one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline Ivy_ObjIsNodeInt1( Ivy_Obj_t * pObj ) +{ + return Ivy_ObjIsNode(pObj) && Ivy_ObjRefs(pObj) == 1; +} + +/**Function************************************************************* + + Synopsis [Performs fast mapping for one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline Ivy_ObjIsNodeInt2( Ivy_Obj_t * pObj ) +{ + return Ivy_ObjIsNode(pObj) && Ivy_ObjRefs(pObj) <= 2; +} + +/**Function************************************************************* + + Synopsis [Performs fast mapping for one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline void Vec_IntSelectSort( int * pArray, int nSize ) +{ + int temp, i, j, best_i; + for ( i = 0; i < nSize-1; i++ ) + { + best_i = i; + for ( j = i+1; j < nSize; j++ ) + if ( pArray[j] < pArray[best_i] ) + best_i = j; + temp = pArray[i]; + pArray[i] = pArray[best_i]; + pArray[best_i] = temp; + } +} + +/**Function************************************************************* + + Synopsis [Performs fast mapping for one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Vec_IntRemoveDup( int * pArray, int nSize ) +{ + int i, k; + if ( nSize < 2 ) + return nSize; + for ( i = k = 1; i < nSize; i++ ) + if ( pArray[i] != pArray[i-1] ) + pArray[k++] = pArray[i]; + return k; +} + +/**Function************************************************************* + + Synopsis [Performs fast mapping for one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapNodeArea2( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit ) +{ + static int Store[32], StoreSize; + static char Supp0[16], Supp1[16]; + static Ivy_Supp_t * pTemp0 = (Ivy_Supp_t *)Supp0; + static Ivy_Supp_t * pTemp1 = (Ivy_Supp_t *)Supp1; + Ivy_Obj_t * pFanin0, * pFanin1; + Ivy_Supp_t * pSupp0, * pSupp1, * pSupp; + int RetValue, DelayOld; + assert( nLimit <= 32 ); + assert( Ivy_ObjIsNode(pObj) ); + // get the fanins + pFanin0 = Ivy_ObjFanin0(pObj); + pFanin1 = Ivy_ObjFanin1(pObj); + // get the supports + pSupp0 = Ivy_ObjSupp( pAig, pFanin0 ); + pSupp1 = Ivy_ObjSupp( pAig, pFanin1 ); + pSupp = Ivy_ObjSupp( pAig, pObj ); + assert( pSupp->fMark == 0 ); + // get the old delay of the node + DelayOld = Ivy_FastMapNodeDelay(pAig, pObj); + assert( DelayOld <= pSupp->DelayR ); + // copy the current cut + memcpy( Store, pSupp->pArray, sizeof(int) * pSupp->nSize ); + StoreSize = pSupp->nSize; + // get the fanin support + if ( Ivy_ObjRefs(pFanin0) > 1 && pSupp0->Delay < pSupp->DelayR ) + { + pSupp0 = pTemp0; + pSupp0->nSize = 1; + pSupp0->pArray[0] = Ivy_ObjFaninId0(pObj); + } + // get the fanin support + if ( Ivy_ObjRefs(pFanin1) > 1 && pSupp1->Delay < pSupp->DelayR ) + { + pSupp1 = pTemp1; + pSupp1->nSize = 1; + pSupp1->pArray[0] = Ivy_ObjFaninId1(pObj); + } + // merge the cuts + if ( pSupp0->nSize < pSupp1->nSize ) + RetValue = Ivy_FastMapMerge( pSupp1, pSupp0, pSupp, nLimit ); + else + RetValue = Ivy_FastMapMerge( pSupp0, pSupp1, pSupp, nLimit ); + if ( !RetValue ) + { + pSupp->nSize = 2; + pSupp->pArray[0] = Ivy_ObjFaninId0(pObj); + pSupp->pArray[1] = Ivy_ObjFaninId1(pObj); + } + // check the resulting delay + pSupp->Delay = Ivy_FastMapNodeDelay(pAig, pObj); + if ( pSupp->Delay > pSupp->DelayR ) + { + pSupp->nSize = StoreSize; + memcpy( pSupp->pArray, Store, sizeof(int) * pSupp->nSize ); + pSupp->Delay = DelayOld; + } +} + +/**Function************************************************************* + + Synopsis [Performs fast mapping for one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapNodeArea( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit ) +{ + static int Store[32], StoreSize; + static char Supp0[16], Supp1[16]; + static Ivy_Supp_t * pTemp0 = (Ivy_Supp_t *)Supp0; + static Ivy_Supp_t * pTemp1 = (Ivy_Supp_t *)Supp1; + Ivy_Obj_t * pFanin0, * pFanin1; + Ivy_Supp_t * pSupp0, * pSupp1, * pSupp; + int RetValue, DelayOld, RefsOld; + int AreaBef, AreaAft; + assert( nLimit <= 32 ); + assert( Ivy_ObjIsNode(pObj) ); + // get the fanins + pFanin0 = Ivy_ObjFanin0(pObj); + pFanin1 = Ivy_ObjFanin1(pObj); + // get the supports + pSupp0 = Ivy_ObjSupp( pAig, pFanin0 ); + pSupp1 = Ivy_ObjSupp( pAig, pFanin1 ); + pSupp = Ivy_ObjSupp( pAig, pObj ); + assert( pSupp->fMark == 0 ); + + // get the area + if ( pSupp->nRefs == 0 ) + AreaBef = Ivy_FastMapNodeAreaDerefed( pAig, pObj ); + else + AreaBef = Ivy_FastMapNodeAreaRefed( pAig, pObj ); +// if ( AreaBef == 1 ) +// return; + + // deref the cut if the node is refed + if ( pSupp->nRefs != 0 ) + Ivy_FastMapNodeDeref( pAig, pObj ); + + // get the old delay of the node + DelayOld = Ivy_FastMapNodeDelay(pAig, pObj); + assert( DelayOld <= pSupp->DelayR ); + // copy the current cut + memcpy( Store, pSupp->pArray, sizeof(int) * pSupp->nSize ); + StoreSize = pSupp->nSize; + // get the fanin support + if ( Ivy_ObjRefs(pFanin0) > 2 && pSupp0->Delay < pSupp->DelayR ) +// if ( pSupp0->nRefs > 0 && pSupp0->Delay < pSupp->DelayR ) // this leads to 2% worse results + { + pSupp0 = pTemp0; + pSupp0->nSize = 1; + pSupp0->pArray[0] = Ivy_ObjFaninId0(pObj); + } + // get the fanin support + if ( Ivy_ObjRefs(pFanin1) > 2 && pSupp1->Delay < pSupp->DelayR ) +// if ( pSupp1->nRefs > 0 && pSupp1->Delay < pSupp->DelayR ) + { + pSupp1 = pTemp1; + pSupp1->nSize = 1; + pSupp1->pArray[0] = Ivy_ObjFaninId1(pObj); + } + // merge the cuts + if ( pSupp0->nSize < pSupp1->nSize ) + RetValue = Ivy_FastMapMerge( pSupp1, pSupp0, pSupp, nLimit ); + else + RetValue = Ivy_FastMapMerge( pSupp0, pSupp1, pSupp, nLimit ); + if ( !RetValue ) + { + pSupp->nSize = 2; + pSupp->pArray[0] = Ivy_ObjFaninId0(pObj); + pSupp->pArray[1] = Ivy_ObjFaninId1(pObj); + } + + // check the resulting delay + pSupp->Delay = Ivy_FastMapNodeDelay(pAig, pObj); + + RefsOld = pSupp->nRefs; pSupp->nRefs = 0; + AreaAft = Ivy_FastMapNodeAreaDerefed( pAig, pObj ); + pSupp->nRefs = RefsOld; + + if ( AreaAft > AreaBef || pSupp->Delay > pSupp->DelayR ) +// if ( pSupp->Delay > pSupp->DelayR ) + { + pSupp->nSize = StoreSize; + memcpy( pSupp->pArray, Store, sizeof(int) * pSupp->nSize ); + pSupp->Delay = DelayOld; +// printf( "-" ); + } +// else +// printf( "+" ); + + if ( pSupp->nRefs != 0 ) + Ivy_FastMapNodeRef( pAig, pObj ); +} + +/**Function************************************************************* + + Synopsis [Performs fast mapping for one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapNode( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit ) +{ + Ivy_Supp_t * pSupp0, * pSupp1, * pSupp; + int fFaninParam = 2; + int RetValue; + assert( Ivy_ObjIsNode(pObj) ); + // get the supports + pSupp0 = Ivy_ObjSupp( pAig, Ivy_ObjFanin0(pObj) ); + pSupp1 = Ivy_ObjSupp( pAig, Ivy_ObjFanin1(pObj) ); + pSupp = Ivy_ObjSupp( pAig, pObj ); + pSupp->fMark = 0; + // get the delays + if ( pSupp0->Delay == pSupp1->Delay ) + pSupp->Delay = (pSupp0->Delay == 0) ? pSupp0->Delay + 1: pSupp0->Delay; + else if ( pSupp0->Delay > pSupp1->Delay ) + { + pSupp->Delay = pSupp0->Delay; + pSupp1 = Ivy_ObjSupp( pAig, Ivy_ManConst1(pAig) ); + pSupp1->pArray[0] = Ivy_ObjFaninId1(pObj); + } + else // if ( pSupp0->Delay < pSupp1->Delay ) + { + pSupp->Delay = pSupp1->Delay; + pSupp0 = Ivy_ObjSupp( pAig, Ivy_ManConst1(pAig) ); + pSupp0->pArray[0] = Ivy_ObjFaninId0(pObj); + } + // merge the cuts + if ( pSupp0->nSize < pSupp1->nSize ) + RetValue = Ivy_FastMapMerge( pSupp1, pSupp0, pSupp, nLimit ); + else + RetValue = Ivy_FastMapMerge( pSupp0, pSupp1, pSupp, nLimit ); + if ( !RetValue ) + { + pSupp->Delay++; + if ( fFaninParam == 2 ) + { + pSupp->nSize = 2; + pSupp->pArray[0] = Ivy_ObjFaninId0(pObj); + pSupp->pArray[1] = Ivy_ObjFaninId1(pObj); + } + else if ( fFaninParam == 3 ) + { + Ivy_Obj_t * pFanin0, * pFanin1, * pFaninA, * pFaninB; + pFanin0 = Ivy_ObjFanin0(pObj); + pFanin1 = Ivy_ObjFanin1(pObj); + pSupp->nSize = 0; + // process the first fanin + if ( Ivy_ObjIsNodeInt1(pFanin0) ) + { + pFaninA = Ivy_ObjFanin0(pFanin0); + pFaninB = Ivy_ObjFanin1(pFanin0); + if ( Ivy_ObjIsNodeInt1(pFaninA) && Ivy_ObjIsNodeInt1(pFaninB) ) + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFanin0); + else + { + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFaninA); + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFaninB); + } + } + else + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFanin0); + // process the second fanin + if ( Ivy_ObjIsNodeInt1(pFanin1) ) + { + pFaninA = Ivy_ObjFanin0(pFanin1); + pFaninB = Ivy_ObjFanin1(pFanin1); + if ( Ivy_ObjIsNodeInt1(pFaninA) && Ivy_ObjIsNodeInt1(pFaninB) ) + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFanin1); + else + { + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFaninA); + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFaninB); + } + } + else + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFanin1); + // sort the fanins + Vec_IntSelectSort( pSupp->pArray, pSupp->nSize ); + pSupp->nSize = Vec_IntRemoveDup( pSupp->pArray, pSupp->nSize ); + assert( pSupp->pArray[0] < pSupp->pArray[1] ); + } + else if ( fFaninParam == 4 ) + { + Ivy_Obj_t * pFanin0, * pFanin1, * pFaninA, * pFaninB; + pFanin0 = Ivy_ObjFanin0(pObj); + pFanin1 = Ivy_ObjFanin1(pObj); + pSupp->nSize = 0; + // consider the case when exactly one of them is internal + if ( Ivy_ObjIsNodeInt1(pFanin0) ^ Ivy_ObjIsNodeInt1(pFanin1) ) + { + pSupp0 = Ivy_ObjSupp( pAig, Ivy_ObjFanin0(pObj) ); + pSupp1 = Ivy_ObjSupp( pAig, Ivy_ObjFanin1(pObj) ); + if ( Ivy_ObjIsNodeInt1(pFanin0) && pSupp0->nSize < nLimit ) + { + pSupp->Delay = IVY_MAX( pSupp0->Delay, pSupp1->Delay + 1 ); + pSupp1 = Ivy_ObjSupp( pAig, Ivy_ManConst1(pAig) ); + pSupp1->pArray[0] = Ivy_ObjId(pFanin1); + // merge the cuts + RetValue = Ivy_FastMapMerge( pSupp0, pSupp1, pSupp, nLimit ); + assert( RetValue ); + assert( pSupp->nSize > 1 ); + return; + } + if ( Ivy_ObjIsNodeInt1(pFanin1) && pSupp1->nSize < nLimit ) + { + pSupp->Delay = IVY_MAX( pSupp1->Delay, pSupp0->Delay + 1 ); + pSupp0 = Ivy_ObjSupp( pAig, Ivy_ManConst1(pAig) ); + pSupp0->pArray[0] = Ivy_ObjId(pFanin0); + // merge the cuts + RetValue = Ivy_FastMapMerge( pSupp1, pSupp0, pSupp, nLimit ); + assert( RetValue ); + assert( pSupp->nSize > 1 ); + return; + } + } + // process the first fanin + if ( Ivy_ObjIsNodeInt1(pFanin0) ) + { + pFaninA = Ivy_ObjFanin0(pFanin0); + pFaninB = Ivy_ObjFanin1(pFanin0); + if ( Ivy_ObjIsNodeInt1(pFaninA) && Ivy_ObjIsNodeInt1(pFaninB) ) + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFanin0); + else + { + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFaninA); + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFaninB); + } + } + else + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFanin0); + // process the second fanin + if ( Ivy_ObjIsNodeInt1(pFanin1) ) + { + pFaninA = Ivy_ObjFanin0(pFanin1); + pFaninB = Ivy_ObjFanin1(pFanin1); + if ( Ivy_ObjIsNodeInt1(pFaninA) && Ivy_ObjIsNodeInt1(pFaninB) ) + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFanin1); + else + { + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFaninA); + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFaninB); + } + } + else + pSupp->pArray[pSupp->nSize++] = Ivy_ObjId(pFanin1); + // sort the fanins + Vec_IntSelectSort( pSupp->pArray, pSupp->nSize ); + pSupp->nSize = Vec_IntRemoveDup( pSupp->pArray, pSupp->nSize ); + assert( pSupp->pArray[0] < pSupp->pArray[1] ); + assert( pSupp->nSize > 1 ); + } + } + assert( pSupp->Delay > 0 ); +} + +/**Function************************************************************* + + Synopsis [Merges two supports] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapMerge( Ivy_Supp_t * pSupp0, Ivy_Supp_t * pSupp1, Ivy_Supp_t * pSupp, int nLimit ) +{ + int i, k, c; + assert( pSupp0->nSize >= pSupp1->nSize ); + // the case of the largest cut sizes + if ( pSupp0->nSize == nLimit && pSupp1->nSize == nLimit ) + { + for ( i = 0; i < pSupp0->nSize; i++ ) + if ( pSupp0->pArray[i] != pSupp1->pArray[i] ) + return 0; + for ( i = 0; i < pSupp0->nSize; i++ ) + pSupp->pArray[i] = pSupp0->pArray[i]; + pSupp->nSize = pSupp0->nSize; + return 1; + } + // the case when one of the cuts is the largest + if ( pSupp0->nSize == nLimit ) + { + for ( i = 0; i < pSupp1->nSize; i++ ) + { + for ( k = pSupp0->nSize - 1; k >= 0; k-- ) + if ( pSupp0->pArray[k] == pSupp1->pArray[i] ) + break; + if ( k == -1 ) // did not find + return 0; + } + for ( i = 0; i < pSupp0->nSize; i++ ) + pSupp->pArray[i] = pSupp0->pArray[i]; + pSupp->nSize = pSupp0->nSize; + return 1; + } + + // compare two cuts with different numbers + i = k = 0; + for ( c = 0; c < nLimit; c++ ) + { + if ( k == pSupp1->nSize ) + { + if ( i == pSupp0->nSize ) + { + pSupp->nSize = c; + return 1; + } + pSupp->pArray[c] = pSupp0->pArray[i++]; + continue; + } + if ( i == pSupp0->nSize ) + { + if ( k == pSupp1->nSize ) + { + pSupp->nSize = c; + return 1; + } + pSupp->pArray[c] = pSupp1->pArray[k++]; + continue; + } + if ( pSupp0->pArray[i] < pSupp1->pArray[k] ) + { + pSupp->pArray[c] = pSupp0->pArray[i++]; + continue; + } + if ( pSupp0->pArray[i] > pSupp1->pArray[k] ) + { + pSupp->pArray[c] = pSupp1->pArray[k++]; + continue; + } + pSupp->pArray[c] = pSupp0->pArray[i++]; + k++; + } + if ( i < pSupp0->nSize || k < pSupp1->nSize ) + return 0; + pSupp->nSize = c; + return 1; +} + +/**Function************************************************************* + + Synopsis [Creates integer vector with the support of the node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapReadSupp( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, Vec_Int_t * vLeaves ) +{ + Ivy_Supp_t * pSupp; + pSupp = Ivy_ObjSupp( pAig, pObj ); + vLeaves->nCap = 8; + vLeaves->nSize = pSupp->nSize; + vLeaves->pArray = pSupp->pArray; +} + +/**Function************************************************************* + + Synopsis [Sets the required times of the intermediate nodes.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapRequired_rec( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, Ivy_Obj_t * pRoot, int DelayR ) +{ + Ivy_Supp_t * pSupp; + pSupp = Ivy_ObjSupp( pAig, pObj ); + if ( pObj != pRoot && (pSupp->nRefs > 0 || Ivy_ObjIsCi(pObj)) ) + return; + Ivy_FastMapRequired_rec( pAig, Ivy_ObjFanin0(pObj), pRoot, DelayR ); + Ivy_FastMapRequired_rec( pAig, Ivy_ObjFanin1(pObj), pRoot, DelayR ); +// assert( pObj == pRoot || pSupp->DelayR == IVY_INFINITY ); + pSupp->DelayR = DelayR; +} + +/**Function************************************************************* + + Synopsis [Computes the required times for each node.] + + Description [Sets reference counters for each node.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapRequired( Ivy_Man_t * pAig, int Delay, int fSetInter ) +{ + Vec_Vec_t * vLuts; + Vec_Ptr_t * vNodes; + Ivy_Obj_t * pObj; + Ivy_Supp_t * pSupp, * pSuppF; + int i, k, c; + // clean the required times + Ivy_ManForEachPi( pAig, pObj, i ) + { + pSupp = Ivy_ObjSupp( pAig, pObj ); + pSupp->DelayR = IVY_INFINITY; + pSupp->nRefs = 0; + } + Ivy_ManForEachNode( pAig, pObj, i ) + { + pSupp = Ivy_ObjSupp( pAig, pObj ); + pSupp->DelayR = IVY_INFINITY; + pSupp->nRefs = 0; + } + // set the required times of the POs + Ivy_ManForEachPo( pAig, pObj, i ) + { + pSupp = Ivy_ObjSupp( pAig, Ivy_ObjFanin0(pObj) ); + pSupp->DelayR = Delay; + pSupp->nRefs++; + } + // get the levelized nodes used in the mapping + vLuts = ((Ivy_SuppMan_t *)pAig->pData)->vLuts; + // propagate the required times + Vec_VecForEachLevelReverse( vLuts, vNodes, i ) + Vec_PtrForEachEntry( vNodes, pObj, k ) + { + pSupp = Ivy_ObjSupp( pAig, pObj ); + assert( pSupp->nRefs > 0 ); + for ( c = 0; c < pSupp->nSize; c++ ) + { + pSuppF = Ivy_ObjSupp( pAig, Ivy_ManObj(pAig, pSupp->pArray[c]) ); + pSuppF->DelayR = IVY_MIN( pSuppF->DelayR, pSupp->DelayR - 1 ); + pSuppF->nRefs++; + } + } +/* + // print out some of the required times + Ivy_ManForEachPi( pAig, pObj, i ) + { + pSupp = Ivy_ObjSupp( pAig, pObj ); + printf( "%d ", pSupp->DelayR ); + } + printf( "\n" ); +*/ + + if ( fSetInter ) + { + // set the required times of the intermediate nodes + Vec_VecForEachLevelReverse( vLuts, vNodes, i ) + Vec_PtrForEachEntry( vNodes, pObj, k ) + { + pSupp = Ivy_ObjSupp( pAig, pObj ); + Ivy_FastMapRequired_rec( pAig, pObj, pObj, pSupp->DelayR ); + } + // make sure that all required times are assigned + Ivy_ManForEachNode( pAig, pObj, i ) + { + pSupp = Ivy_ObjSupp( pAig, pObj ); + assert( pSupp->DelayR < IVY_INFINITY ); + } + } +} + +/**Function************************************************************* + + Synopsis [Performs area recovery for each node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapRecover( Ivy_Man_t * pAig, int nLimit ) +{ + Vec_Ptr_t * vFront, * vFrontOld; + Ivy_Obj_t * pObj; + int i; + vFront = Vec_PtrAlloc( nLimit ); + vFrontOld = Vec_PtrAlloc( nLimit ); + Ivy_ManCleanTravId( pAig ); + // iterate through all nodes in the topological order + Ivy_ManForEachNode( pAig, pObj, i ) + Ivy_FastMapNodeRecover( pAig, pObj, nLimit, vFront, vFrontOld ); + Vec_PtrFree( vFrontOld ); + Vec_PtrFree( vFront ); +} + +/**Function************************************************************* + + Synopsis [Computes the delay of the cut rooted at this node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapNodeDelay( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ) +{ + Ivy_Supp_t * pSupp, * pSuppF; + int c, Delay = 0; + pSupp = Ivy_ObjSupp( pAig, pObj ); + for ( c = 0; c < pSupp->nSize; c++ ) + { + pSuppF = Ivy_ObjSupp( pAig, Ivy_ManObj(pAig, pSupp->pArray[c]) ); + Delay = IVY_MAX( Delay, pSuppF->Delay ); + } + return 1 + Delay; +} + + +/**function************************************************************* + + synopsis [References the cut.] + + description [This procedure is similar to the procedure NodeReclaim.] + + sideeffects [] + + seealso [] + +***********************************************************************/ +int Ivy_FastMapNodeRef( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ) +{ + Ivy_Supp_t * pSupp, * pSuppF; + Ivy_Obj_t * pNodeChild; + int aArea, i; + // start the area of this cut + aArea = 1; + // go through the children + pSupp = Ivy_ObjSupp( pAig, pObj ); + assert( pSupp->nSize > 1 ); + for ( i = 0; i < pSupp->nSize; i++ ) + { + pNodeChild = Ivy_ManObj(pAig, pSupp->pArray[i]); + pSuppF = Ivy_ObjSupp( pAig, pNodeChild ); + assert( pSuppF->nRefs >= 0 ); + if ( pSuppF->nRefs++ > 0 ) + continue; + if ( pSuppF->nSize == 1 ) + continue; + aArea += Ivy_FastMapNodeRef( pAig, pNodeChild ); + } + return aArea; +} + +/**function************************************************************* + + synopsis [Dereferences the cut.] + + description [This procedure is similar to the procedure NodeRecusiveDeref.] + + sideeffects [] + + seealso [] + +***********************************************************************/ +int Ivy_FastMapNodeDeref( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ) +{ + Ivy_Supp_t * pSupp, * pSuppF; + Ivy_Obj_t * pNodeChild; + int aArea, i; + // start the area of this cut + aArea = 1; + // go through the children + pSupp = Ivy_ObjSupp( pAig, pObj ); + assert( pSupp->nSize > 1 ); + for ( i = 0; i < pSupp->nSize; i++ ) + { + pNodeChild = Ivy_ManObj(pAig, pSupp->pArray[i]); + pSuppF = Ivy_ObjSupp( pAig, pNodeChild ); + assert( pSuppF->nRefs > 0 ); + if ( --pSuppF->nRefs > 0 ) + continue; + if ( pSuppF->nSize == 1 ) + continue; + aArea += Ivy_FastMapNodeDeref( pAig, pNodeChild ); + } + return aArea; +} + +/**function************************************************************* + + synopsis [Computes the exact area associated with the cut.] + + description [] + + sideeffects [] + + seealso [] + +***********************************************************************/ +int Ivy_FastMapNodeAreaRefed( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ) +{ + Ivy_Supp_t * pSupp; + int aResult, aResult2; + if ( Ivy_ObjIsCi(pObj) ) + return 0; + assert( Ivy_ObjIsNode(pObj) ); + pSupp = Ivy_ObjSupp( pAig, pObj ); + assert( pSupp->nRefs > 0 ); + aResult = Ivy_FastMapNodeDeref( pAig, pObj ); + aResult2 = Ivy_FastMapNodeRef( pAig, pObj ); + assert( aResult == aResult2 ); + return aResult; +} + +/**function************************************************************* + + synopsis [Computes the exact area associated with the cut.] + + description [] + + sideeffects [] + + seealso [] + +***********************************************************************/ +int Ivy_FastMapNodeAreaDerefed( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ) +{ + Ivy_Supp_t * pSupp; + int aResult, aResult2; + if ( Ivy_ObjIsCi(pObj) ) + return 0; + assert( Ivy_ObjIsNode(pObj) ); + pSupp = Ivy_ObjSupp( pAig, pObj ); + assert( pSupp->nRefs == 0 ); + aResult2 = Ivy_FastMapNodeRef( pAig, pObj ); + aResult = Ivy_FastMapNodeDeref( pAig, pObj ); + assert( aResult == aResult2 ); + return aResult; +} + + + + +/**Function************************************************************* + + Synopsis [Counts the number of nodes with no external fanout.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapCutCost( Ivy_Man_t * pAig, Vec_Ptr_t * vFront ) +{ + Ivy_Supp_t * pSuppF; + Ivy_Obj_t * pFanin; + int i, Counter = 0; + Vec_PtrForEachEntry( vFront, pFanin, i ) + { + pSuppF = Ivy_ObjSupp( pAig, pFanin ); + if ( pSuppF->nRefs == 0 ) + Counter++; + } + return Counter; +} + +/**Function************************************************************* + + Synopsis [Performs area recovery for each node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapMark_rec( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ) +{ + if ( Ivy_ObjIsTravIdCurrent(pAig, pObj) ) + return; + assert( Ivy_ObjIsNode(pObj) ); + Ivy_FastMapMark_rec( pAig, Ivy_ObjFanin0(pObj) ); + Ivy_FastMapMark_rec( pAig, Ivy_ObjFanin1(pObj) ); + Ivy_ObjSetTravIdCurrent(pAig, pObj); +} + +/**Function************************************************************* + + Synopsis [Returns 1 if the number of fanins will grow.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapNodeWillGrow( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pFanin0, * pFanin1; + assert( Ivy_ObjIsNode(pObj) ); + pFanin0 = Ivy_ObjFanin0(pObj); + pFanin1 = Ivy_ObjFanin1(pObj); + return !Ivy_ObjIsTravIdCurrent(pAig, pFanin0) && !Ivy_ObjIsTravIdCurrent(pAig, pFanin1); +} + +/**Function************************************************************* + + Synopsis [Returns the increase in the number of fanins with no external refs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapNodeFaninCost( Ivy_Man_t * pAig, Ivy_Obj_t * pObj ) +{ + Ivy_Supp_t * pSuppF; + Ivy_Obj_t * pFanin; + int Counter = 0; + assert( Ivy_ObjIsNode(pObj) ); + // check if the node has external refs + pSuppF = Ivy_ObjSupp( pAig, pObj ); + if ( pSuppF->nRefs == 0 ) + Counter--; + // increment the number of fanins without external refs + pFanin = Ivy_ObjFanin0(pObj); + pSuppF = Ivy_ObjSupp( pAig, pFanin ); + if ( !Ivy_ObjIsTravIdCurrent(pAig, pFanin) && pSuppF->nRefs == 0 ) + Counter++; + // increment the number of fanins without external refs + pFanin = Ivy_ObjFanin1(pObj); + pSuppF = Ivy_ObjSupp( pAig, pFanin ); + if ( !Ivy_ObjIsTravIdCurrent(pAig, pFanin) && pSuppF->nRefs == 0 ) + Counter++; + return Counter; +} + +/**Function************************************************************* + + Synopsis [Updates the frontier.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapNodeFaninUpdate( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, Vec_Ptr_t * vFront ) +{ + Ivy_Obj_t * pFanin; + assert( Ivy_ObjIsNode(pObj) ); + Vec_PtrRemove( vFront, pObj ); + pFanin = Ivy_ObjFanin0(pObj); + if ( !Ivy_ObjIsTravIdCurrent(pAig, pFanin) ) + { + Ivy_ObjSetTravIdCurrent(pAig, pFanin); + Vec_PtrPush( vFront, pFanin ); + } + pFanin = Ivy_ObjFanin1(pObj); + if ( !Ivy_ObjIsTravIdCurrent(pAig, pFanin) ) + { + Ivy_ObjSetTravIdCurrent(pAig, pFanin); + Vec_PtrPush( vFront, pFanin ); + } +} + +/**Function************************************************************* + + Synopsis [Compacts the number of external refs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapNodeFaninCompact0( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit, Vec_Ptr_t * vFront ) +{ + Ivy_Obj_t * pFanin; + int i; + Vec_PtrForEachEntry( vFront, pFanin, i ) + { + if ( Ivy_ObjIsCi(pFanin) ) + continue; + if ( Ivy_FastMapNodeWillGrow(pAig, pFanin) ) + continue; + if ( Ivy_FastMapNodeFaninCost(pAig, pFanin) <= 0 ) + { + Ivy_FastMapNodeFaninUpdate( pAig, pFanin, vFront ); + return 1; + } + } + return 0; +} + +/**Function************************************************************* + + Synopsis [Compacts the number of external refs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapNodeFaninCompact1( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit, Vec_Ptr_t * vFront ) +{ + Ivy_Obj_t * pFanin; + int i; + Vec_PtrForEachEntry( vFront, pFanin, i ) + { + if ( Ivy_ObjIsCi(pFanin) ) + continue; + if ( Ivy_FastMapNodeFaninCost(pAig, pFanin) < 0 ) + { + Ivy_FastMapNodeFaninUpdate( pAig, pFanin, vFront ); + return 1; + } + } + return 0; +} + +/**Function************************************************************* + + Synopsis [Compacts the number of external refs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapNodeFaninCompact2( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit, Vec_Ptr_t * vFront ) +{ + Ivy_Obj_t * pFanin; + int i; + Vec_PtrForEachEntry( vFront, pFanin, i ) + { + if ( Ivy_ObjIsCi(pFanin) ) + continue; + if ( Ivy_FastMapNodeFaninCost(pAig, pFanin) <= 0 ) + { + Ivy_FastMapNodeFaninUpdate( pAig, pFanin, vFront ); + return 1; + } + } + return 0; +} + +/**Function************************************************************* + + Synopsis [Compacts the number of external refs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FastMapNodeFaninCompact_int( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit, Vec_Ptr_t * vFront ) +{ + if ( Ivy_FastMapNodeFaninCompact0(pAig, pObj, nLimit, vFront) ) + return 1; + if ( Vec_PtrSize(vFront) < nLimit && Ivy_FastMapNodeFaninCompact1(pAig, pObj, nLimit, vFront) ) + return 1; + if ( Vec_PtrSize(vFront) < nLimit && Ivy_FastMapNodeFaninCompact2(pAig, pObj, nLimit, vFront) ) + return 1; + assert( Vec_PtrSize(vFront) <= nLimit ); + return 0; +} + +/**Function************************************************************* + + Synopsis [Compacts the number of external refs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapNodeFaninCompact( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit, Vec_Ptr_t * vFront ) +{ + while ( Ivy_FastMapNodeFaninCompact_int( pAig, pObj, nLimit, vFront ) ); +} + +/**Function************************************************************* + + Synopsis [Prepares node mapping.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapNodePrepare( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit, Vec_Ptr_t * vFront, Vec_Ptr_t * vFrontOld ) +{ + Ivy_Supp_t * pSupp; + Ivy_Obj_t * pFanin; + int i; + pSupp = Ivy_ObjSupp( pAig, pObj ); + // expand the cut downwards from the given place + Vec_PtrClear( vFront ); + Vec_PtrClear( vFrontOld ); + Ivy_ManIncrementTravId( pAig ); + for ( i = 0; i < pSupp->nSize; i++ ) + { + pFanin = Ivy_ManObj(pAig, pSupp->pArray[i]); + Vec_PtrPush( vFront, pFanin ); + Vec_PtrPush( vFrontOld, pFanin ); + Ivy_ObjSetTravIdCurrent( pAig, pFanin ); + } + // mark the nodes in the cone + Ivy_FastMapMark_rec( pAig, pObj ); +} + +/**Function************************************************************* + + Synopsis [Updates the frontier.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapNodeUpdate( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, Vec_Ptr_t * vFront ) +{ + Ivy_Supp_t * pSupp; + Ivy_Obj_t * pFanin; + int i; + pSupp = Ivy_ObjSupp( pAig, pObj ); + // deref node's cut + Ivy_FastMapNodeDeref( pAig, pObj ); + // update the node's cut + pSupp->nSize = Vec_PtrSize(vFront); + Vec_PtrForEachEntry( vFront, pFanin, i ) + pSupp->pArray[i] = pFanin->Id; + // ref the new cut + Ivy_FastMapNodeRef( pAig, pObj ); +} + +/**Function************************************************************* + + Synopsis [Performs area recovery for each node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapNodeRecover2( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit, Vec_Ptr_t * vFront, Vec_Ptr_t * vFrontOld ) +{ + Ivy_Supp_t * pSupp; + int CostBef, CostAft; + int AreaBef, AreaAft; + pSupp = Ivy_ObjSupp( pAig, pObj ); +// if ( pSupp->nRefs == 0 ) +// return; + if ( pSupp->nRefs == 0 ) + AreaBef = Ivy_FastMapNodeAreaDerefed( pAig, pObj ); + else + AreaBef = Ivy_FastMapNodeAreaRefed( pAig, pObj ); + // get the area + if ( AreaBef == 1 ) + return; + + if ( pSupp->nRefs == 0 ) + { + pSupp->nRefs = 1000000; + Ivy_FastMapNodeRef( pAig, pObj ); + } + // the cut is non-trivial + Ivy_FastMapNodePrepare( pAig, pObj, nLimit, vFront, vFrontOld ); + // iteratively modify the cut + CostBef = Ivy_FastMapCutCost( pAig, vFront ); + Ivy_FastMapNodeFaninCompact( pAig, pObj, nLimit, vFront ); + CostAft = Ivy_FastMapCutCost( pAig, vFront ); + assert( CostBef >= CostAft ); + // update the node + Ivy_FastMapNodeUpdate( pAig, pObj, vFront ); + // get the new area + AreaAft = Ivy_FastMapNodeAreaRefed( pAig, pObj ); + if ( AreaAft > AreaBef ) + { + Ivy_FastMapNodeUpdate( pAig, pObj, vFrontOld ); + AreaAft = Ivy_FastMapNodeAreaRefed( pAig, pObj ); + assert( AreaAft == AreaBef ); + } + if ( pSupp->nRefs == 1000000 ) + { + pSupp->nRefs = 0; + Ivy_FastMapNodeDeref( pAig, pObj ); + } +} + +/**Function************************************************************* + + Synopsis [Performs area recovery for each node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapNodeRecover( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit, Vec_Ptr_t * vFront, Vec_Ptr_t * vFrontOld ) +{ + Ivy_Supp_t * pSupp; + int CostBef, CostAft; + int AreaBef, AreaAft; + int DelayOld; + pSupp = Ivy_ObjSupp( pAig, pObj ); + DelayOld = pSupp->Delay = Ivy_FastMapNodeDelay( pAig, pObj ); + assert( pSupp->Delay <= pSupp->DelayR ); + if ( pSupp->nRefs == 0 ) + return; + // get the area + AreaBef = Ivy_FastMapNodeAreaRefed( pAig, pObj ); +// if ( AreaBef == 1 ) +// return; + if ( pObj->Id == 102 ) + { + int x = 0; + } + // the cut is non-trivial + Ivy_FastMapNodePrepare( pAig, pObj, nLimit, vFront, vFrontOld ); + // iteratively modify the cut + Ivy_FastMapNodeDeref( pAig, pObj ); + CostBef = Ivy_FastMapCutCost( pAig, vFront ); + Ivy_FastMapNodeFaninCompact( pAig, pObj, nLimit, vFront ); + CostAft = Ivy_FastMapCutCost( pAig, vFront ); + Ivy_FastMapNodeRef( pAig, pObj ); + assert( CostBef >= CostAft ); + // update the node + Ivy_FastMapNodeUpdate( pAig, pObj, vFront ); + pSupp->Delay = Ivy_FastMapNodeDelay( pAig, pObj ); + // get the new area + AreaAft = Ivy_FastMapNodeAreaRefed( pAig, pObj ); + if ( AreaAft > AreaBef || pSupp->Delay > pSupp->DelayR ) + { + Ivy_FastMapNodeUpdate( pAig, pObj, vFrontOld ); + AreaAft = Ivy_FastMapNodeAreaRefed( pAig, pObj ); + assert( AreaAft == AreaBef ); + pSupp->Delay = DelayOld; + } +} + +/**Function************************************************************* + + Synopsis [Performs area recovery for each node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FastMapNodeRecover4( Ivy_Man_t * pAig, Ivy_Obj_t * pObj, int nLimit, Vec_Ptr_t * vFront, Vec_Ptr_t * vFrontOld ) +{ + Ivy_Supp_t * pSupp; + int CostBef, CostAft; + int AreaBef, AreaAft; + int DelayOld; + pSupp = Ivy_ObjSupp( pAig, pObj ); + DelayOld = pSupp->Delay = Ivy_FastMapNodeDelay( pAig, pObj ); + assert( pSupp->Delay <= pSupp->DelayR ); +// if ( pSupp->nRefs == 0 ) +// return; +// AreaBef = Ivy_FastMapNodeAreaRefed( pAig, pObj ); + // get the area + if ( pSupp->nRefs == 0 ) + AreaBef = Ivy_FastMapNodeAreaDerefed( pAig, pObj ); + else + AreaBef = Ivy_FastMapNodeAreaRefed( pAig, pObj ); + if ( AreaBef == 1 ) + return; + + if ( pSupp->nRefs == 0 ) + { + pSupp->nRefs = 1000000; + Ivy_FastMapNodeRef( pAig, pObj ); + } + // the cut is non-trivial + Ivy_FastMapNodePrepare( pAig, pObj, nLimit, vFront, vFrontOld ); + // iteratively modify the cut + CostBef = Ivy_FastMapCutCost( pAig, vFront ); + Ivy_FastMapNodeFaninCompact( pAig, pObj, nLimit, vFront ); + CostAft = Ivy_FastMapCutCost( pAig, vFront ); + assert( CostBef >= CostAft ); + // update the node + Ivy_FastMapNodeUpdate( pAig, pObj, vFront ); + pSupp->Delay = Ivy_FastMapNodeDelay( pAig, pObj ); + // get the new area + AreaAft = Ivy_FastMapNodeAreaRefed( pAig, pObj ); + if ( AreaAft > AreaBef || pSupp->Delay > pSupp->DelayR ) + { + Ivy_FastMapNodeUpdate( pAig, pObj, vFrontOld ); + AreaAft = Ivy_FastMapNodeAreaRefed( pAig, pObj ); + assert( AreaAft == AreaBef ); + pSupp->Delay = DelayOld; + } + if ( pSupp->nRefs == 1000000 ) + { + pSupp->nRefs = 0; + Ivy_FastMapNodeDeref( pAig, pObj ); + } +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyFraig.c b/src/aig/ivy/ivyFraig.c new file mode 100644 index 00000000..4079b6ed --- /dev/null +++ b/src/aig/ivy/ivyFraig.c @@ -0,0 +1,2760 @@ +/**CFile**************************************************************** + + FileName [ivyFraig.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Functional reduction of AIGs] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyFraig.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "satSolver.h" +#include "extra.h" +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +typedef struct Ivy_FraigMan_t_ Ivy_FraigMan_t; +typedef struct Ivy_FraigSim_t_ Ivy_FraigSim_t; +typedef struct Ivy_FraigList_t_ Ivy_FraigList_t; + +struct Ivy_FraigList_t_ +{ + Ivy_Obj_t * pHead; + Ivy_Obj_t * pTail; + int nItems; +}; + +struct Ivy_FraigSim_t_ +{ + int Type; + Ivy_FraigSim_t * pNext; + Ivy_FraigSim_t * pFanin0; + Ivy_FraigSim_t * pFanin1; + unsigned pData[0]; +}; + +struct Ivy_FraigMan_t_ +{ + // general info + Ivy_FraigParams_t * pParams; // various parameters + // temporary backtrack limits because "sint64" cannot be defined in Ivy_FraigParams_t ... + sint64 nBTLimitGlobal; // global limit on the number of backtracks + sint64 nInsLimitGlobal;// global limit on the number of clause inspects + // AIG manager + Ivy_Man_t * pManAig; // the starting AIG manager + Ivy_Man_t * pManFraig; // the final AIG manager + // simulation information + int nSimWords; // the number of words + char * pSimWords; // the simulation info + Ivy_FraigSim_t * pSimStart; // the list of simulation info for internal nodes + // counter example storage + int nPatWords; // the number of words in the counter example + unsigned * pPatWords; // the counter example + int * pPatScores; // the scores of each pattern + // equivalence classes + Ivy_FraigList_t lClasses; // equivalence classes + Ivy_FraigList_t lCand; // candidatates + int nPairs; // the number of pairs of nodes + // equivalence checking + sat_solver * pSat; // SAT solver + int nSatVars; // the number of variables currently used + Vec_Ptr_t * vPiVars; // the PIs of the cone used + // other + ProgressBar * pProgress; + // statistics + int nSimRounds; + int nNodesMiter; + int nClassesZero; + int nClassesBeg; + int nClassesEnd; + int nPairsBeg; + int nPairsEnd; + int nSatCalls; + int nSatCallsSat; + int nSatCallsUnsat; + int nSatProof; + int nSatFails; + int nSatFailsReal; + // runtime + int timeSim; + int timeTrav; + int timeSat; + int timeSatUnsat; + int timeSatSat; + int timeSatFail; + int timeRef; + int timeTotal; + int time1; + int time2; +}; + +typedef struct Prove_ParamsStruct_t_ Prove_Params_t; +struct Prove_ParamsStruct_t_ +{ + // general parameters + int fUseFraiging; // enables fraiging + int fUseRewriting; // enables rewriting + int fUseBdds; // enables BDD construction when other methods fail + int fVerbose; // prints verbose stats + // iterations + int nItersMax; // the number of iterations + // mitering + int nMiteringLimitStart; // starting mitering limit + float nMiteringLimitMulti; // multiplicative coefficient to increase the limit in each iteration + // rewriting + int nRewritingLimitStart; // the number of rewriting iterations + float nRewritingLimitMulti; // multiplicative coefficient to increase the limit in each iteration + // fraiging + int nFraigingLimitStart; // starting backtrack(conflict) limit + float nFraigingLimitMulti; // multiplicative coefficient to increase the limit in each iteration + // last-gasp BDD construction + int nBddSizeLimit; // the number of BDD nodes when construction is aborted + int fBddReorder; // enables dynamic BDD variable reordering + // last-gasp mitering + int nMiteringLimitLast; // final mitering limit + // global SAT solver limits + sint64 nTotalBacktrackLimit; // global limit on the number of backtracks + sint64 nTotalInspectLimit; // global limit on the number of clause inspects + // global resources applied + sint64 nTotalBacktracksMade; // the total number of backtracks made + sint64 nTotalInspectsMade; // the total number of inspects made +}; + +static inline Ivy_FraigSim_t * Ivy_ObjSim( Ivy_Obj_t * pObj ) { return (Ivy_FraigSim_t *)pObj->pFanout; } +static inline Ivy_Obj_t * Ivy_ObjClassNodeLast( Ivy_Obj_t * pObj ) { return pObj->pNextFan0; } +static inline Ivy_Obj_t * Ivy_ObjClassNodeRepr( Ivy_Obj_t * pObj ) { return pObj->pNextFan0; } +static inline Ivy_Obj_t * Ivy_ObjClassNodeNext( Ivy_Obj_t * pObj ) { return pObj->pNextFan1; } +static inline Ivy_Obj_t * Ivy_ObjNodeHashNext( Ivy_Obj_t * pObj ) { return pObj->pPrevFan0; } +static inline Ivy_Obj_t * Ivy_ObjEquivListNext( Ivy_Obj_t * pObj ) { return pObj->pPrevFan0; } +static inline Ivy_Obj_t * Ivy_ObjEquivListPrev( Ivy_Obj_t * pObj ) { return pObj->pPrevFan1; } +static inline Ivy_Obj_t * Ivy_ObjFraig( Ivy_Obj_t * pObj ) { return pObj->pEquiv; } +static inline int Ivy_ObjSatNum( Ivy_Obj_t * pObj ) { return (int)pObj->pNextFan0; } +static inline Vec_Ptr_t * Ivy_ObjFaninVec( Ivy_Obj_t * pObj ) { return (Vec_Ptr_t *)pObj->pNextFan1; } + +static inline void Ivy_ObjSetSim( Ivy_Obj_t * pObj, Ivy_FraigSim_t * pSim ) { pObj->pFanout = (Ivy_Obj_t *)pSim; } +static inline void Ivy_ObjSetClassNodeLast( Ivy_Obj_t * pObj, Ivy_Obj_t * pLast ) { pObj->pNextFan0 = pLast; } +static inline void Ivy_ObjSetClassNodeRepr( Ivy_Obj_t * pObj, Ivy_Obj_t * pRepr ) { pObj->pNextFan0 = pRepr; } +static inline void Ivy_ObjSetClassNodeNext( Ivy_Obj_t * pObj, Ivy_Obj_t * pNext ) { pObj->pNextFan1 = pNext; } +static inline void Ivy_ObjSetNodeHashNext( Ivy_Obj_t * pObj, Ivy_Obj_t * pNext ) { pObj->pPrevFan0 = pNext; } +static inline void Ivy_ObjSetEquivListNext( Ivy_Obj_t * pObj, Ivy_Obj_t * pNext ) { pObj->pPrevFan0 = pNext; } +static inline void Ivy_ObjSetEquivListPrev( Ivy_Obj_t * pObj, Ivy_Obj_t * pPrev ) { pObj->pPrevFan1 = pPrev; } +static inline void Ivy_ObjSetFraig( Ivy_Obj_t * pObj, Ivy_Obj_t * pNode ) { pObj->pEquiv = pNode; } +static inline void Ivy_ObjSetSatNum( Ivy_Obj_t * pObj, int Num ) { pObj->pNextFan0 = (Ivy_Obj_t *)Num; } +static inline void Ivy_ObjSetFaninVec( Ivy_Obj_t * pObj, Vec_Ptr_t * vFanins ) { pObj->pNextFan1 = (Ivy_Obj_t *)vFanins; } + +static inline unsigned Ivy_ObjRandomSim() { return (rand() << 24) ^ (rand() << 12) ^ rand(); } + +// iterate through equivalence classes +#define Ivy_FraigForEachEquivClass( pList, pEnt ) \ + for ( pEnt = pList; \ + pEnt; \ + pEnt = Ivy_ObjEquivListNext(pEnt) ) +#define Ivy_FraigForEachEquivClassSafe( pList, pEnt, pEnt2 ) \ + for ( pEnt = pList, \ + pEnt2 = pEnt? Ivy_ObjEquivListNext(pEnt): NULL; \ + pEnt; \ + pEnt = pEnt2, \ + pEnt2 = pEnt? Ivy_ObjEquivListNext(pEnt): NULL ) +// iterate through nodes in one class +#define Ivy_FraigForEachClassNode( pClass, pEnt ) \ + for ( pEnt = pClass; \ + pEnt; \ + pEnt = Ivy_ObjClassNodeNext(pEnt) ) +// iterate through nodes in the hash table +#define Ivy_FraigForEachBinNode( pBin, pEnt ) \ + for ( pEnt = pBin; \ + pEnt; \ + pEnt = Ivy_ObjNodeHashNext(pEnt) ) + +static Ivy_FraigMan_t * Ivy_FraigStart( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams ); +static Ivy_FraigMan_t * Ivy_FraigStartSimple( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams ); +static Ivy_Man_t * Ivy_FraigPerform_int( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams, sint64 nBTLimitGlobal, sint64 nInsLimitGlobal, sint64 * pnSatConfs, sint64 * pnSatInspects ); +static void Ivy_FraigPrint( Ivy_FraigMan_t * p ); +static void Ivy_FraigStop( Ivy_FraigMan_t * p ); +static void Ivy_FraigSimulate( Ivy_FraigMan_t * p ); +static void Ivy_FraigSweep( Ivy_FraigMan_t * p ); +static Ivy_Obj_t * Ivy_FraigAnd( Ivy_FraigMan_t * p, Ivy_Obj_t * pObjOld ); +static int Ivy_FraigNodesAreEquiv( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj0, Ivy_Obj_t * pObj1 ); +static int Ivy_FraigNodeIsConst( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj ); +static void Ivy_FraigNodeAddToSolver( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj0, Ivy_Obj_t * pObj1 ); +static int Ivy_FraigSetActivityFactors( Ivy_FraigMan_t * p, Ivy_Obj_t * pOld, Ivy_Obj_t * pNew ); +static void Ivy_FraigAddToPatScores( Ivy_FraigMan_t * p, Ivy_Obj_t * pClass, Ivy_Obj_t * pClassNew ); +static int Ivy_FraigMiterStatus( Ivy_Man_t * pMan ); +static void Ivy_FraigMiterProve( Ivy_FraigMan_t * p ); +static void Ivy_FraigMiterPrint( Ivy_Man_t * pNtk, char * pString, int clk, int fVerbose ); +static int * Ivy_FraigCreateModel( Ivy_FraigMan_t * p ); + +static int Ivy_FraigNodesAreEquivBdd( Ivy_Obj_t * pObj1, Ivy_Obj_t * pObj2 ); + +static sint64 s_nBTLimitGlobal = 0; +static sint64 s_nInsLimitGlobal = 0; + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Sets the default solving parameters.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigParamsDefault( Ivy_FraigParams_t * pParams ) +{ + memset( pParams, 0, sizeof(Ivy_FraigParams_t) ); + pParams->nSimWords = 32; // the number of words in the simulation info + pParams->dSimSatur = 0.005; // the ratio of refined classes when saturation is reached + pParams->fPatScores = 0; // enables simulation pattern scoring + pParams->MaxScore = 25; // max score after which resimulation is used + pParams->fDoSparse = 1; // skips sparse functions +// pParams->dActConeRatio = 0.05; // the ratio of cone to be bumped +// pParams->dActConeBumpMax = 5.0; // the largest bump of activity + pParams->dActConeRatio = 0.3; // the ratio of cone to be bumped + pParams->dActConeBumpMax = 10.0; // the largest bump of activity + + pParams->nBTLimitNode = 100; // conflict limit at a node + pParams->nBTLimitMiter = 500000; // conflict limit at an output +// pParams->nBTLimitGlobal = 0; // conflict limit global +// pParams->nInsLimitGlobal = 0; // inspection limit global +} + +/**Function************************************************************* + + Synopsis [Performs combinational equivalence checking for the miter.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigProve( Ivy_Man_t ** ppManAig, void * pPars ) +{ + Prove_Params_t * pParams = pPars; + Ivy_FraigParams_t Params, * pIvyParams = &Params; + Ivy_Man_t * pManAig, * pManTemp; + int RetValue, nIter, clk, timeStart = clock();//, Counter; + sint64 nSatConfs, nSatInspects; + + // start the network and parameters + pManAig = *ppManAig; + Ivy_FraigParamsDefault( pIvyParams ); + pIvyParams->fVerbose = pParams->fVerbose; + pIvyParams->fProve = 1; + + if ( pParams->fVerbose ) + { + printf( "RESOURCE LIMITS: Iterations = %d. Rewriting = %s. Fraiging = %s.\n", + pParams->nItersMax, pParams->fUseRewriting? "yes":"no", pParams->fUseFraiging? "yes":"no" ); + printf( "Miter = %d (%3.1f). Rwr = %d (%3.1f). Fraig = %d (%3.1f). Last = %d.\n", + pParams->nMiteringLimitStart, pParams->nMiteringLimitMulti, + pParams->nRewritingLimitStart, pParams->nRewritingLimitMulti, + pParams->nFraigingLimitStart, pParams->nFraigingLimitMulti, pParams->nMiteringLimitLast ); + } + + // if SAT only, solve without iteration + if ( !pParams->fUseRewriting && !pParams->fUseFraiging ) + { + clk = clock(); + pIvyParams->nBTLimitMiter = pParams->nMiteringLimitLast / Ivy_ManPoNum(pManAig); + pManAig = Ivy_FraigMiter( pManTemp = pManAig, pIvyParams ); Ivy_ManStop( pManTemp ); + RetValue = Ivy_FraigMiterStatus( pManAig ); + Ivy_FraigMiterPrint( pManAig, "SAT solving", clk, pParams->fVerbose ); + *ppManAig = pManAig; + return RetValue; + } + + if ( Ivy_ManNodeNum(pManAig) < 500 ) + { + // run the first mitering + clk = clock(); + pIvyParams->nBTLimitMiter = pParams->nMiteringLimitStart / Ivy_ManPoNum(pManAig); + pManAig = Ivy_FraigMiter( pManTemp = pManAig, pIvyParams ); Ivy_ManStop( pManTemp ); + RetValue = Ivy_FraigMiterStatus( pManAig ); + Ivy_FraigMiterPrint( pManAig, "SAT solving", clk, pParams->fVerbose ); + if ( RetValue >= 0 ) + { + *ppManAig = pManAig; + return RetValue; + } + } + + // check the current resource limits + RetValue = -1; + for ( nIter = 0; nIter < pParams->nItersMax; nIter++ ) + { + if ( pParams->fVerbose ) + { + printf( "ITERATION %2d : Confs = %6d. FraigBTL = %3d. \n", nIter+1, + (int)(pParams->nMiteringLimitStart * pow(pParams->nMiteringLimitMulti,nIter)), + (int)(pParams->nFraigingLimitStart * pow(pParams->nFraigingLimitMulti,nIter)) ); + fflush( stdout ); + } + + // try rewriting + if ( pParams->fUseRewriting ) + { // bug in Ivy_NodeFindCutsAll() when leaves are identical! +/* + clk = clock(); + Counter = (int)(pParams->nRewritingLimitStart * pow(pParams->nRewritingLimitMulti,nIter)); + pManAig = Ivy_ManRwsat( pManAig, 0 ); + RetValue = Ivy_FraigMiterStatus( pManAig ); + Ivy_FraigMiterPrint( pManAig, "Rewriting ", clk, pParams->fVerbose ); +*/ + } + if ( RetValue >= 0 ) + break; + + // try fraiging followed by mitering + if ( pParams->fUseFraiging ) + { + clk = clock(); + pIvyParams->nBTLimitNode = (int)(pParams->nFraigingLimitStart * pow(pParams->nFraigingLimitMulti,nIter)); + pIvyParams->nBTLimitMiter = (int)(pParams->nMiteringLimitStart * pow(pParams->nMiteringLimitMulti,nIter)) / Ivy_ManPoNum(pManAig); + pManAig = Ivy_FraigPerform_int( pManTemp = pManAig, pIvyParams, pParams->nTotalBacktrackLimit, pParams->nTotalInspectLimit, &nSatConfs, &nSatInspects ); Ivy_ManStop( pManTemp ); + RetValue = Ivy_FraigMiterStatus( pManAig ); + Ivy_FraigMiterPrint( pManAig, "Fraiging ", clk, pParams->fVerbose ); + } + if ( RetValue >= 0 ) + break; + + // add to the number of backtracks and inspects + pParams->nTotalBacktracksMade += nSatConfs; + pParams->nTotalInspectsMade += nSatInspects; + // check if global resource limit is reached + if ( (pParams->nTotalBacktrackLimit && pParams->nTotalBacktracksMade >= pParams->nTotalBacktrackLimit) || + (pParams->nTotalInspectLimit && pParams->nTotalInspectsMade >= pParams->nTotalInspectLimit) ) + { + printf( "Reached global limit on conflicts/inspects. Quitting.\n" ); + *ppManAig = pManAig; + return -1; + } + } + + if ( RetValue < 0 ) + { + if ( pParams->fVerbose ) + { + printf( "Attempting SAT with conflict limit %d ...\n", pParams->nMiteringLimitLast ); + fflush( stdout ); + } + clk = clock(); + pIvyParams->nBTLimitMiter = pParams->nMiteringLimitLast / Ivy_ManPoNum(pManAig); + if ( pParams->nTotalBacktrackLimit ) + s_nBTLimitGlobal = pParams->nTotalBacktrackLimit - pParams->nTotalBacktracksMade; + if ( pParams->nTotalInspectLimit ) + s_nInsLimitGlobal = pParams->nTotalInspectLimit - pParams->nTotalInspectsMade; + pManAig = Ivy_FraigMiter( pManTemp = pManAig, pIvyParams ); Ivy_ManStop( pManTemp ); + s_nBTLimitGlobal = 0; + s_nInsLimitGlobal = 0; + RetValue = Ivy_FraigMiterStatus( pManAig ); + Ivy_FraigMiterPrint( pManAig, "SAT solving", clk, pParams->fVerbose ); + // make sure that the sover never returns "undecided" when infinite resource limits are set + if( RetValue == -1 && pParams->nTotalInspectLimit == 0 && + pParams->nTotalBacktrackLimit == 0 ) + { + extern void Prove_ParamsPrint( Prove_Params_t * pParams ); + Prove_ParamsPrint( pParams ); + printf("ERROR: ABC has returned \"undecided\" in spite of no limits...\n"); + exit(1); + } + } + + // assign the model if it was proved by rewriting (const 1 miter) + if ( RetValue == 0 && pManAig->pData == NULL ) + { + pManAig->pData = ALLOC( int, Ivy_ManPiNum(pManAig) ); + memset( pManAig->pData, 0, sizeof(int) * Ivy_ManPiNum(pManAig) ); + } + *ppManAig = pManAig; + return RetValue; +} + +/**Function************************************************************* + + Synopsis [Performs fraiging of the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_FraigPerform_int( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams, sint64 nBTLimitGlobal, sint64 nInsLimitGlobal, sint64 * pnSatConfs, sint64 * pnSatInspects ) +{ + Ivy_FraigMan_t * p; + Ivy_Man_t * pManAigNew; + int clk; + if ( Ivy_ManNodeNum(pManAig) == 0 ) + return Ivy_ManDup(pManAig); +clk = clock(); + assert( Ivy_ManLatchNum(pManAig) == 0 ); + p = Ivy_FraigStart( pManAig, pParams ); + // set global limits + p->nBTLimitGlobal = nBTLimitGlobal; + p->nInsLimitGlobal = nInsLimitGlobal; + + Ivy_FraigSimulate( p ); + Ivy_FraigSweep( p ); + pManAigNew = p->pManFraig; +p->timeTotal = clock() - clk; + if ( pnSatConfs ) + *pnSatConfs = p->pSat? p->pSat->stats.conflicts : 0; + if ( pnSatInspects ) + *pnSatInspects = p->pSat? p->pSat->stats.inspects : 0; + Ivy_FraigStop( p ); + return pManAigNew; +} + +/**Function************************************************************* + + Synopsis [Performs fraiging of the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_FraigPerform( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams ) +{ + Ivy_FraigMan_t * p; + Ivy_Man_t * pManAigNew; + int clk; + if ( Ivy_ManNodeNum(pManAig) == 0 ) + return Ivy_ManDup(pManAig); +clk = clock(); + assert( Ivy_ManLatchNum(pManAig) == 0 ); + p = Ivy_FraigStart( pManAig, pParams ); + Ivy_FraigSimulate( p ); + Ivy_FraigSweep( p ); + pManAigNew = p->pManFraig; +p->timeTotal = clock() - clk; + Ivy_FraigStop( p ); + return pManAigNew; +} + +/**Function************************************************************* + + Synopsis [Applies brute-force SAT to the miter.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_FraigMiter( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams ) +{ + Ivy_FraigMan_t * p; + Ivy_Man_t * pManAigNew; + Ivy_Obj_t * pObj; + int i, clk; +clk = clock(); + assert( Ivy_ManLatchNum(pManAig) == 0 ); + p = Ivy_FraigStartSimple( pManAig, pParams ); + // set global limits + p->nBTLimitGlobal = s_nBTLimitGlobal; + p->nInsLimitGlobal = s_nInsLimitGlobal; + // duplicate internal nodes + Ivy_ManForEachNode( p->pManAig, pObj, i ) + pObj->pEquiv = Ivy_And( p->pManFraig, Ivy_ObjChild0Equiv(pObj), Ivy_ObjChild1Equiv(pObj) ); + // try to prove each output of the miter + Ivy_FraigMiterProve( p ); + // add the POs + Ivy_ManForEachPo( p->pManAig, pObj, i ) + Ivy_ObjCreatePo( p->pManFraig, Ivy_ObjChild0Equiv(pObj) ); + // clean the new manager + Ivy_ManForEachObj( p->pManFraig, pObj, i ) + { + if ( Ivy_ObjFaninVec(pObj) ) + Vec_PtrFree( Ivy_ObjFaninVec(pObj) ); + pObj->pNextFan0 = pObj->pNextFan1 = NULL; + } + // remove dangling nodes + Ivy_ManCleanup( p->pManFraig ); + pManAigNew = p->pManFraig; +p->timeTotal = clock() - clk; + +//printf( "Final nodes = %6d. ", Ivy_ManNodeNum(pManAigNew) ); +//PRT( "Time", p->timeTotal ); + Ivy_FraigStop( p ); + return pManAigNew; +} + +/**Function************************************************************* + + Synopsis [Starts the fraiging manager without simulation info.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_FraigMan_t * Ivy_FraigStartSimple( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams ) +{ + Ivy_FraigMan_t * p; + // allocat the fraiging manager + p = ALLOC( Ivy_FraigMan_t, 1 ); + memset( p, 0, sizeof(Ivy_FraigMan_t) ); + p->pParams = pParams; + p->pManAig = pManAig; + p->pManFraig = Ivy_ManStartFrom( pManAig ); + p->vPiVars = Vec_PtrAlloc( 100 ); + return p; +} + +/**Function************************************************************* + + Synopsis [Starts the fraiging manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_FraigMan_t * Ivy_FraigStart( Ivy_Man_t * pManAig, Ivy_FraigParams_t * pParams ) +{ + Ivy_FraigMan_t * p; + Ivy_FraigSim_t * pSims; + Ivy_Obj_t * pObj; + int i, k, EntrySize; + // clean the fanout representation + Ivy_ManForEachObj( pManAig, pObj, i ) +// pObj->pEquiv = pObj->pFanout = pObj->pNextFan0 = pObj->pNextFan1 = pObj->pPrevFan0 = pObj->pPrevFan1 = NULL; + assert( !pObj->pEquiv && !pObj->pFanout ); + // allocat the fraiging manager + p = ALLOC( Ivy_FraigMan_t, 1 ); + memset( p, 0, sizeof(Ivy_FraigMan_t) ); + p->pParams = pParams; + p->pManAig = pManAig; + p->pManFraig = Ivy_ManStartFrom( pManAig ); + // allocate simulation info + p->nSimWords = pParams->nSimWords; +// p->pSimWords = ALLOC( unsigned, Ivy_ManObjNum(pManAig) * p->nSimWords ); + EntrySize = sizeof(Ivy_FraigSim_t) + sizeof(unsigned) * p->nSimWords; + p->pSimWords = (char *)malloc( Ivy_ManObjNum(pManAig) * EntrySize ); + memset( p->pSimWords, 0, EntrySize ); + k = 0; + Ivy_ManForEachObj( pManAig, pObj, i ) + { + pSims = (Ivy_FraigSim_t *)(p->pSimWords + EntrySize * k++); + pSims->pNext = NULL; + if ( Ivy_ObjIsNode(pObj) ) + { + if ( p->pSimStart == NULL ) + p->pSimStart = pSims; + else + ((Ivy_FraigSim_t *)(p->pSimWords + EntrySize * (k-2)))->pNext = pSims; + pSims->pFanin0 = Ivy_ObjSim( Ivy_ObjFanin0(pObj) ); + pSims->pFanin1 = Ivy_ObjSim( Ivy_ObjFanin1(pObj) ); + pSims->Type = (Ivy_ObjFaninPhase(Ivy_ObjChild0(pObj)) << 2) | (Ivy_ObjFaninPhase(Ivy_ObjChild1(pObj)) << 1) | pObj->fPhase; + } + else + { + pSims->pFanin0 = NULL; + pSims->pFanin1 = NULL; + pSims->Type = 0; + } + Ivy_ObjSetSim( pObj, pSims ); + } + assert( k == Ivy_ManObjNum(pManAig) ); + // allocate storage for sim pattern + p->nPatWords = Ivy_BitWordNum( Ivy_ManPiNum(pManAig) ); + p->pPatWords = ALLOC( unsigned, p->nPatWords ); + p->pPatScores = ALLOC( int, 32 * p->nSimWords ); + p->vPiVars = Vec_PtrAlloc( 100 ); + // set random number generator + srand( 0xABCABC ); + return p; +} + +/**Function************************************************************* + + Synopsis [Stops the fraiging manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigStop( Ivy_FraigMan_t * p ) +{ + if ( p->pParams->fVerbose ) + Ivy_FraigPrint( p ); + if ( p->vPiVars ) Vec_PtrFree( p->vPiVars ); + if ( p->pSat ) sat_solver_delete( p->pSat ); + FREE( p->pPatScores ); + FREE( p->pPatWords ); + FREE( p->pSimWords ); + free( p ); +} + +/**Function************************************************************* + + Synopsis [Prints stats for the fraiging manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigPrint( Ivy_FraigMan_t * p ) +{ + double nMemory; + nMemory = (double)Ivy_ManObjNum(p->pManAig)*p->nSimWords*sizeof(unsigned)/(1<<20); + printf( "SimWords = %d. Rounds = %d. Mem = %0.2f Mb. ", p->nSimWords, p->nSimRounds, nMemory ); + printf( "Classes: Beg = %d. End = %d.\n", p->nClassesBeg, p->nClassesEnd ); +// printf( "Limits: BTNode = %d. BTMiter = %d.\n", p->pParams->nBTLimitNode, p->pParams->nBTLimitMiter ); + printf( "Proof = %d. Counter-example = %d. Fail = %d. FailReal = %d. Zero = %d.\n", + p->nSatProof, p->nSatCallsSat, p->nSatFails, p->nSatFailsReal, p->nClassesZero ); + printf( "Final = %d. Miter = %d. Total = %d. Mux = %d. (Exor = %d.) SatVars = %d.\n", + Ivy_ManNodeNum(p->pManFraig), p->nNodesMiter, Ivy_ManNodeNum(p->pManAig), 0, 0, p->nSatVars ); + if ( p->pSat ) Sat_SolverPrintStats( stdout, p->pSat ); + PRT( "AIG simulation ", p->timeSim ); + PRT( "AIG traversal ", p->timeTrav ); + PRT( "SAT solving ", p->timeSat ); + PRT( " Unsat ", p->timeSatUnsat ); + PRT( " Sat ", p->timeSatSat ); + PRT( " Fail ", p->timeSatFail ); + PRT( "Class refining ", p->timeRef ); + PRT( "TOTAL RUNTIME ", p->timeTotal ); + if ( p->time1 ) { PRT( "time1 ", p->time1 ); } +} + + + +/**Function************************************************************* + + Synopsis [Assigns random patterns to the PI node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeAssignRandom( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_FraigSim_t * pSims; + int i; + assert( Ivy_ObjIsPi(pObj) ); + pSims = Ivy_ObjSim(pObj); + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = Ivy_ObjRandomSim(); +} + +/**Function************************************************************* + + Synopsis [Assigns constant patterns to the PI node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeAssignConst( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj, int fConst1 ) +{ + Ivy_FraigSim_t * pSims; + int i; + assert( Ivy_ObjIsPi(pObj) ); + pSims = Ivy_ObjSim(pObj); + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = fConst1? ~(unsigned)0 : 0; +} + +/**Function************************************************************* + + Synopsis [Assings random simulation info for the PIs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigAssignRandom( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pObj; + int i; + Ivy_ManForEachPi( p->pManAig, pObj, i ) + Ivy_NodeAssignRandom( p, pObj ); +} + +/**Function************************************************************* + + Synopsis [Assings distance-1 simulation info for the PIs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigAssignDist1( Ivy_FraigMan_t * p, unsigned * pPat ) +{ + Ivy_Obj_t * pObj; + int i, Limit; + Ivy_ManForEachPi( p->pManAig, pObj, i ) + { + Ivy_NodeAssignConst( p, pObj, Ivy_InfoHasBit(pPat, i) ); +// printf( "%d", Ivy_InfoHasBit(pPat, i) ); + } +// printf( "\n" ); + + Limit = IVY_MIN( Ivy_ManPiNum(p->pManAig), p->nSimWords * 32 - 1 ); + for ( i = 0; i < Limit; i++ ) + Ivy_InfoXorBit( Ivy_ObjSim( Ivy_ManPi(p->pManAig,i) )->pData, i+1 ); +} + +/**Function************************************************************* + + Synopsis [Returns 1 if simulation info is composed of all zeros.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeHasZeroSim( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_FraigSim_t * pSims; + int i; + pSims = Ivy_ObjSim(pObj); + for ( i = 0; i < p->nSimWords; i++ ) + if ( pSims->pData[i] ) + return 0; + return 1; +} + +/**Function************************************************************* + + Synopsis [Returns 1 if simulation info is composed of all zeros.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeComplementSim( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_FraigSim_t * pSims; + int i; + pSims = Ivy_ObjSim(pObj); + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = ~pSims->pData[i]; +} + +/**Function************************************************************* + + Synopsis [Returns 1 if simulation infos are equal.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeCompareSims( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj0, Ivy_Obj_t * pObj1 ) +{ + Ivy_FraigSim_t * pSims0, * pSims1; + int i; + pSims0 = Ivy_ObjSim(pObj0); + pSims1 = Ivy_ObjSim(pObj1); + for ( i = 0; i < p->nSimWords; i++ ) + if ( pSims0->pData[i] != pSims1->pData[i] ) + return 0; + return 1; +} + +/**Function************************************************************* + + Synopsis [Simulates one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeSimulateSim( Ivy_FraigMan_t * p, Ivy_FraigSim_t * pSims ) +{ + unsigned * pData, * pData0, * pData1; + int i; + pData = pSims->pData; + pData0 = pSims->pFanin0->pData; + pData1 = pSims->pFanin1->pData; + switch( pSims->Type ) + { + case 0: + for ( i = 0; i < p->nSimWords; i++ ) + pData[i] = (pData0[i] & pData1[i]); + break; + case 1: + for ( i = 0; i < p->nSimWords; i++ ) + pData[i] = ~(pData0[i] & pData1[i]); + break; + case 2: + for ( i = 0; i < p->nSimWords; i++ ) + pData[i] = (pData0[i] & ~pData1[i]); + break; + case 3: + for ( i = 0; i < p->nSimWords; i++ ) + pData[i] = (~pData0[i] | pData1[i]); + break; + case 4: + for ( i = 0; i < p->nSimWords; i++ ) + pData[i] = (~pData0[i] & pData1[i]); + break; + case 5: + for ( i = 0; i < p->nSimWords; i++ ) + pData[i] = (pData0[i] | ~pData1[i]); + break; + case 6: + for ( i = 0; i < p->nSimWords; i++ ) + pData[i] = ~(pData0[i] | pData1[i]); + break; + case 7: + for ( i = 0; i < p->nSimWords; i++ ) + pData[i] = (pData0[i] | pData1[i]); + break; + } +} + +/**Function************************************************************* + + Synopsis [Simulates one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeSimulate( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_FraigSim_t * pSims, * pSims0, * pSims1; + int fCompl, fCompl0, fCompl1, i; + assert( !Ivy_IsComplement(pObj) ); + // get hold of the simulation information + pSims = Ivy_ObjSim(pObj); + pSims0 = Ivy_ObjSim(Ivy_ObjFanin0(pObj)); + pSims1 = Ivy_ObjSim(Ivy_ObjFanin1(pObj)); + // get complemented attributes of the children using their random info + fCompl = pObj->fPhase; + fCompl0 = Ivy_ObjFaninPhase(Ivy_ObjChild0(pObj)); + fCompl1 = Ivy_ObjFaninPhase(Ivy_ObjChild1(pObj)); + // simulate + if ( fCompl0 && fCompl1 ) + { + if ( fCompl ) + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = (pSims0->pData[i] | pSims1->pData[i]); + else + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = ~(pSims0->pData[i] | pSims1->pData[i]); + } + else if ( fCompl0 && !fCompl1 ) + { + if ( fCompl ) + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = (pSims0->pData[i] | ~pSims1->pData[i]); + else + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = (~pSims0->pData[i] & pSims1->pData[i]); + } + else if ( !fCompl0 && fCompl1 ) + { + if ( fCompl ) + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = (~pSims0->pData[i] | pSims1->pData[i]); + else + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = (pSims0->pData[i] & ~pSims1->pData[i]); + } + else // if ( !fCompl0 && !fCompl1 ) + { + if ( fCompl ) + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = ~(pSims0->pData[i] & pSims1->pData[i]); + else + for ( i = 0; i < p->nSimWords; i++ ) + pSims->pData[i] = (pSims0->pData[i] & pSims1->pData[i]); + } +} + +/**Function************************************************************* + + Synopsis [Computes hash value using simulation info.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Ivy_NodeHash( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj ) +{ + static int s_FPrimes[128] = { + 1009, 1049, 1093, 1151, 1201, 1249, 1297, 1361, 1427, 1459, + 1499, 1559, 1607, 1657, 1709, 1759, 1823, 1877, 1933, 1997, + 2039, 2089, 2141, 2213, 2269, 2311, 2371, 2411, 2467, 2543, + 2609, 2663, 2699, 2741, 2797, 2851, 2909, 2969, 3037, 3089, + 3169, 3221, 3299, 3331, 3389, 3461, 3517, 3557, 3613, 3671, + 3719, 3779, 3847, 3907, 3943, 4013, 4073, 4129, 4201, 4243, + 4289, 4363, 4441, 4493, 4549, 4621, 4663, 4729, 4793, 4871, + 4933, 4973, 5021, 5087, 5153, 5227, 5281, 5351, 5417, 5471, + 5519, 5573, 5651, 5693, 5749, 5821, 5861, 5923, 6011, 6073, + 6131, 6199, 6257, 6301, 6353, 6397, 6481, 6563, 6619, 6689, + 6737, 6803, 6863, 6917, 6977, 7027, 7109, 7187, 7237, 7309, + 7393, 7477, 7523, 7561, 7607, 7681, 7727, 7817, 7877, 7933, + 8011, 8039, 8059, 8081, 8093, 8111, 8123, 8147 + }; + Ivy_FraigSim_t * pSims; + unsigned uHash; + int i; + assert( p->nSimWords <= 128 ); + uHash = 0; + pSims = Ivy_ObjSim(pObj); + for ( i = 0; i < p->nSimWords; i++ ) + uHash ^= pSims->pData[i] * s_FPrimes[i]; + return uHash; +} + +/**Function************************************************************* + + Synopsis [Simulates AIG manager.] + + Description [Assumes that the PI simulation info is attached.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigSimulateOne( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pObj; + int i, clk; +clk = clock(); + Ivy_ManForEachNode( p->pManAig, pObj, i ) + { + Ivy_NodeSimulate( p, pObj ); +/* + if ( Ivy_ObjFraig(pObj) == NULL ) + printf( "%3d --- -- %d : ", pObj->Id, pObj->fPhase ); + else + printf( "%3d %3d %2d %d : ", pObj->Id, Ivy_Regular(Ivy_ObjFraig(pObj))->Id, Ivy_ObjSatNum(Ivy_Regular(Ivy_ObjFraig(pObj))), pObj->fPhase ); + Extra_PrintBinary( stdout, Ivy_ObjSim(pObj), 30 ); + printf( "\n" ); +*/ + } +p->timeSim += clock() - clk; +p->nSimRounds++; +} + +/**Function************************************************************* + + Synopsis [Simulates AIG manager.] + + Description [Assumes that the PI simulation info is attached.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigSimulateOneSim( Ivy_FraigMan_t * p ) +{ + Ivy_FraigSim_t * pSims; + int clk; +clk = clock(); + for ( pSims = p->pSimStart; pSims; pSims = pSims->pNext ) + Ivy_NodeSimulateSim( p, pSims ); +p->timeSim += clock() - clk; +p->nSimRounds++; +} + +/**Function************************************************************* + + Synopsis [Adds one node to the equivalence class.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeAddToClass( Ivy_Obj_t * pClass, Ivy_Obj_t * pObj ) +{ + if ( Ivy_ObjClassNodeNext(pClass) == NULL ) + Ivy_ObjSetClassNodeNext( pClass, pObj ); + else + Ivy_ObjSetClassNodeNext( Ivy_ObjClassNodeLast(pClass), pObj ); + Ivy_ObjSetClassNodeLast( pClass, pObj ); + Ivy_ObjSetClassNodeRepr( pObj, pClass ); + Ivy_ObjSetClassNodeNext( pObj, NULL ); +} + +/**Function************************************************************* + + Synopsis [Adds equivalence class to the list of classes.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigAddClass( Ivy_FraigList_t * pList, Ivy_Obj_t * pClass ) +{ + if ( pList->pHead == NULL ) + { + pList->pHead = pClass; + pList->pTail = pClass; + Ivy_ObjSetEquivListPrev( pClass, NULL ); + Ivy_ObjSetEquivListNext( pClass, NULL ); + } + else + { + Ivy_ObjSetEquivListNext( pList->pTail, pClass ); + Ivy_ObjSetEquivListPrev( pClass, pList->pTail ); + Ivy_ObjSetEquivListNext( pClass, NULL ); + pList->pTail = pClass; + } + pList->nItems++; +} + +/**Function************************************************************* + + Synopsis [Updates the list of classes after base class has split.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigInsertClass( Ivy_FraigList_t * pList, Ivy_Obj_t * pBase, Ivy_Obj_t * pClass ) +{ + Ivy_ObjSetEquivListPrev( pClass, pBase ); + Ivy_ObjSetEquivListNext( pClass, Ivy_ObjEquivListNext(pBase) ); + if ( Ivy_ObjEquivListNext(pBase) ) + Ivy_ObjSetEquivListPrev( Ivy_ObjEquivListNext(pBase), pClass ); + Ivy_ObjSetEquivListNext( pBase, pClass ); + if ( pList->pTail == pBase ) + pList->pTail = pClass; + pList->nItems++; +} + +/**Function************************************************************* + + Synopsis [Removes equivalence class from the list of classes.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigRemoveClass( Ivy_FraigList_t * pList, Ivy_Obj_t * pClass ) +{ + if ( pList->pHead == pClass ) + pList->pHead = Ivy_ObjEquivListNext(pClass); + if ( pList->pTail == pClass ) + pList->pTail = Ivy_ObjEquivListPrev(pClass); + if ( Ivy_ObjEquivListPrev(pClass) ) + Ivy_ObjSetEquivListNext( Ivy_ObjEquivListPrev(pClass), Ivy_ObjEquivListNext(pClass) ); + if ( Ivy_ObjEquivListNext(pClass) ) + Ivy_ObjSetEquivListPrev( Ivy_ObjEquivListNext(pClass), Ivy_ObjEquivListPrev(pClass) ); + Ivy_ObjSetEquivListNext( pClass, NULL ); + Ivy_ObjSetEquivListPrev( pClass, NULL ); + pClass->fMarkA = 0; + pList->nItems--; +} + +/**Function************************************************************* + + Synopsis [Count the number of pairs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigCountPairsClasses( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pClass, * pNode; + int nPairs = 0, nNodes; + return nPairs; + + Ivy_FraigForEachEquivClass( p->lClasses.pHead, pClass ) + { + nNodes = 0; + Ivy_FraigForEachClassNode( pClass, pNode ) + nNodes++; + nPairs += nNodes * (nNodes - 1) / 2; + } + return nPairs; +} + +/**Function************************************************************* + + Synopsis [Creates initial simulation classes.] + + Description [Assumes that simulation info is assigned.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigCreateClasses( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t ** pTable; + Ivy_Obj_t * pObj, * pConst1, * pBin, * pEntry; + int i, nTableSize; + unsigned Hash; + pConst1 = Ivy_ManConst1(p->pManAig); + // allocate the table + nTableSize = Ivy_ManObjNum(p->pManAig) / 2 + 13; + pTable = ALLOC( Ivy_Obj_t *, nTableSize ); + memset( pTable, 0, sizeof(Ivy_Obj_t *) * nTableSize ); + // collect nodes into the table + Ivy_ManForEachObj( p->pManAig, pObj, i ) + { + if ( !Ivy_ObjIsPi(pObj) && !Ivy_ObjIsNode(pObj) ) + continue; + Hash = Ivy_NodeHash( p, pObj ); + if ( Hash == 0 && Ivy_NodeHasZeroSim( p, pObj ) ) + { + Ivy_NodeAddToClass( pConst1, pObj ); + continue; + } + // add the node to the table + pBin = pTable[Hash % nTableSize]; + Ivy_FraigForEachBinNode( pBin, pEntry ) + if ( Ivy_NodeCompareSims( p, pEntry, pObj ) ) + { + Ivy_NodeAddToClass( pEntry, pObj ); + break; + } + // check if the entry was added + if ( pEntry ) + continue; + Ivy_ObjSetNodeHashNext( pObj, pBin ); + pTable[Hash % nTableSize] = pObj; + } + // collect non-trivial classes + assert( p->lClasses.pHead == NULL ); + Ivy_ManForEachObj( p->pManAig, pObj, i ) + { + if ( !Ivy_ObjIsConst1(pObj) && !Ivy_ObjIsPi(pObj) && !Ivy_ObjIsNode(pObj) ) + continue; + Ivy_ObjSetNodeHashNext( pObj, NULL ); + if ( Ivy_ObjClassNodeRepr(pObj) == NULL ) + { + assert( Ivy_ObjClassNodeNext(pObj) == NULL ); + continue; + } + // recognize the head of the class + if ( Ivy_ObjClassNodeNext( Ivy_ObjClassNodeRepr(pObj) ) != NULL ) + continue; + // clean the class representative and add it to the list + Ivy_ObjSetClassNodeRepr( pObj, NULL ); + Ivy_FraigAddClass( &p->lClasses, pObj ); + } + // free the table + free( pTable ); +} + +/**Function************************************************************* + + Synopsis [Recursively refines the class after simulation.] + + Description [Returns 1 if the class has changed.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigRefineClass_rec( Ivy_FraigMan_t * p, Ivy_Obj_t * pClass ) +{ + Ivy_Obj_t * pClassNew, * pListOld, * pListNew, * pNode; + int RetValue = 0; + // check if there is refinement + pListOld = pClass; + Ivy_FraigForEachClassNode( Ivy_ObjClassNodeNext(pClass), pClassNew ) + { + if ( !Ivy_NodeCompareSims(p, pClass, pClassNew) ) + { + if ( p->pParams->fPatScores ) + Ivy_FraigAddToPatScores( p, pClass, pClassNew ); + break; + } + pListOld = pClassNew; + } + if ( pClassNew == NULL ) + return 0; + // set representative of the new class + Ivy_ObjSetClassNodeRepr( pClassNew, NULL ); + // start the new list + pListNew = pClassNew; + // go through the remaining nodes and sort them into two groups: + // (1) matches of the old node; (2) non-matches of the old node + Ivy_FraigForEachClassNode( Ivy_ObjClassNodeNext(pClassNew), pNode ) + if ( Ivy_NodeCompareSims( p, pClass, pNode ) ) + { + Ivy_ObjSetClassNodeNext( pListOld, pNode ); + pListOld = pNode; + } + else + { + Ivy_ObjSetClassNodeNext( pListNew, pNode ); + Ivy_ObjSetClassNodeRepr( pNode, pClassNew ); + pListNew = pNode; + } + // finish both lists + Ivy_ObjSetClassNodeNext( pListNew, NULL ); + Ivy_ObjSetClassNodeNext( pListOld, NULL ); + // update the list of classes + Ivy_FraigInsertClass( &p->lClasses, pClass, pClassNew ); + // if the old class is trivial, remove it + if ( Ivy_ObjClassNodeNext(pClass) == NULL ) + Ivy_FraigRemoveClass( &p->lClasses, pClass ); + // if the new class is trivial, remove it; otherwise, try to refine it + if ( Ivy_ObjClassNodeNext(pClassNew) == NULL ) + Ivy_FraigRemoveClass( &p->lClasses, pClassNew ); + else + RetValue = Ivy_FraigRefineClass_rec( p, pClassNew ); + return RetValue + 1; +} + +/**Function************************************************************* + + Synopsis [Creates the counter-example from the successful pattern.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigCheckOutputSimsSavePattern( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_FraigSim_t * pSims; + int i, k, BestPat, * pModel; + // find the word of the pattern + pSims = Ivy_ObjSim(pObj); + for ( i = 0; i < p->nSimWords; i++ ) + if ( pSims->pData[i] ) + break; + assert( i < p->nSimWords ); + // find the bit of the pattern + for ( k = 0; k < 32; k++ ) + if ( pSims->pData[i] & (1 << k) ) + break; + assert( k < 32 ); + // determine the best pattern + BestPat = i * 32 + k; + // fill in the counter-example data + pModel = ALLOC( int, Ivy_ManPiNum(p->pManFraig) ); + Ivy_ManForEachPi( p->pManAig, pObj, i ) + { + pModel[i] = Ivy_InfoHasBit(Ivy_ObjSim(pObj)->pData, BestPat); +// printf( "%d", pModel[i] ); + } +// printf( "\n" ); + // set the model + assert( p->pManFraig->pData == NULL ); + p->pManFraig->pData = pModel; + return; +} + +/**Function************************************************************* + + Synopsis [Returns 1 if the one of the output is already non-constant 0.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigCheckOutputSims( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pObj; + int i; + // make sure the reference simulation pattern does not detect the bug + pObj = Ivy_ManPo( p->pManAig, 0 ); + assert( Ivy_ObjFanin0(pObj)->fPhase == (unsigned)Ivy_ObjFaninC0(pObj) ); // Ivy_ObjFaninPhase(Ivy_ObjChild0(pObj)) == 0 + Ivy_ManForEachPo( p->pManAig, pObj, i ) + { + // complement simulation info +// if ( Ivy_ObjFanin0(pObj)->fPhase ^ Ivy_ObjFaninC0(pObj) ) // Ivy_ObjFaninPhase(Ivy_ObjChild0(pObj)) +// Ivy_NodeComplementSim( p, Ivy_ObjFanin0(pObj) ); + // check + if ( !Ivy_NodeHasZeroSim( p, Ivy_ObjFanin0(pObj) ) ) + { + // create the counter-example from this pattern + Ivy_FraigCheckOutputSimsSavePattern( p, Ivy_ObjFanin0(pObj) ); + return 1; + } + // complement simulation info +// if ( Ivy_ObjFanin0(pObj)->fPhase ^ Ivy_ObjFaninC0(pObj) ) +// Ivy_NodeComplementSim( p, Ivy_ObjFanin0(pObj) ); + } + return 0; +} + +/**Function************************************************************* + + Synopsis [Refines the classes after simulation.] + + Description [Assumes that simulation info is assigned. Returns the + number of classes refined.] + + SideEffects [Large equivalence class of constant 0 may cause problems.] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigRefineClasses( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pClass, * pClass2; + int clk, RetValue, Counter = 0; + // check if some outputs already became non-constant + // this is a special case when computation can be stopped!!! + if ( p->pParams->fProve ) + Ivy_FraigCheckOutputSims( p ); + if ( p->pManFraig->pData ) + return 0; + // refine the classed +clk = clock(); + Ivy_FraigForEachEquivClassSafe( p->lClasses.pHead, pClass, pClass2 ) + { + if ( pClass->fMarkA ) + continue; + RetValue = Ivy_FraigRefineClass_rec( p, pClass ); + Counter += ( RetValue > 0 ); +//if ( Ivy_ObjIsConst1(pClass) ) +//printf( "%d ", RetValue ); +//if ( Ivy_ObjIsConst1(pClass) ) +// p->time1 += clock() - clk; + } +p->timeRef += clock() - clk; + return Counter; +} + +/**Function************************************************************* + + Synopsis [Print the class.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigPrintClass( Ivy_Obj_t * pClass ) +{ + Ivy_Obj_t * pObj; + printf( "Class {" ); + Ivy_FraigForEachClassNode( pClass, pObj ) + printf( " %d(%d)%c", pObj->Id, pObj->Level, pObj->fPhase? '+' : '-' ); + printf( " }\n" ); +} + +/**Function************************************************************* + + Synopsis [Count the number of elements in the class.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigCountClassNodes( Ivy_Obj_t * pClass ) +{ + Ivy_Obj_t * pObj; + int Counter = 0; + Ivy_FraigForEachClassNode( pClass, pObj ) + Counter++; + return Counter; +} + +/**Function************************************************************* + + Synopsis [Prints simulation classes.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigPrintSimClasses( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pClass; + Ivy_FraigForEachEquivClass( p->lClasses.pHead, pClass ) + { +// Ivy_FraigPrintClass( pClass ); + printf( "%d ", Ivy_FraigCountClassNodes( pClass ) ); + } +// printf( "\n" ); +} + +/**Function************************************************************* + + Synopsis [Generated const 0 pattern.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigSavePattern0( Ivy_FraigMan_t * p ) +{ + memset( p->pPatWords, 0, sizeof(unsigned) * p->nPatWords ); +} + +/**Function************************************************************* + + Synopsis [[Generated const 1 pattern.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigSavePattern1( Ivy_FraigMan_t * p ) +{ + memset( p->pPatWords, 0xff, sizeof(unsigned) * p->nPatWords ); +} + +/**Function************************************************************* + + Synopsis [Generates the counter-example satisfying the miter.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int * Ivy_FraigCreateModel( Ivy_FraigMan_t * p ) +{ + int * pModel; + Ivy_Obj_t * pObj; + int i; + pModel = ALLOC( int, Ivy_ManPiNum(p->pManFraig) ); + Ivy_ManForEachPi( p->pManFraig, pObj, i ) + pModel[i] = ( p->pSat->model.ptr[Ivy_ObjSatNum(pObj)] == l_True ); + return pModel; +} + +/**Function************************************************************* + + Synopsis [Copy pattern from the solver into the internal storage.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigSavePattern( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pObj; + int i; + memset( p->pPatWords, 0, sizeof(unsigned) * p->nPatWords ); + Ivy_ManForEachPi( p->pManFraig, pObj, i ) +// Vec_PtrForEachEntry( p->vPiVars, pObj, i ) + if ( p->pSat->model.ptr[Ivy_ObjSatNum(pObj)] == l_True ) + Ivy_InfoSetBit( p->pPatWords, i ); +// Ivy_InfoSetBit( p->pPatWords, pObj->Id - 1 ); +} + +/**Function************************************************************* + + Synopsis [Copy pattern from the solver into the internal storage.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigSavePattern2( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pObj; + int i; + memset( p->pPatWords, 0, sizeof(unsigned) * p->nPatWords ); +// Ivy_ManForEachPi( p->pManFraig, pObj, i ) + Vec_PtrForEachEntry( p->vPiVars, pObj, i ) + if ( p->pSat->model.ptr[Ivy_ObjSatNum(pObj)] == l_True ) +// Ivy_InfoSetBit( p->pPatWords, i ); + Ivy_InfoSetBit( p->pPatWords, pObj->Id - 1 ); +} + +/**Function************************************************************* + + Synopsis [Copy pattern from the solver into the internal storage.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigSavePattern3( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pObj; + int i; + for ( i = 0; i < p->nPatWords; i++ ) + p->pPatWords[i] = Ivy_ObjRandomSim(); + Vec_PtrForEachEntry( p->vPiVars, pObj, i ) + if ( Ivy_InfoHasBit( p->pPatWords, pObj->Id - 1 ) ^ (p->pSat->model.ptr[Ivy_ObjSatNum(pObj)] == l_True) ) + Ivy_InfoXorBit( p->pPatWords, pObj->Id - 1 ); +} + + +/**Function************************************************************* + + Synopsis [Performs simulation of the manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigSimulate( Ivy_FraigMan_t * p ) +{ + int nChanges, nClasses; + // start the classes + Ivy_FraigAssignRandom( p ); + Ivy_FraigSimulateOne( p ); + Ivy_FraigCreateClasses( p ); +//printf( "Starting classes = %5d. Pairs = %6d.\n", p->lClasses.nItems, Ivy_FraigCountPairsClasses(p) ); + // refine classes by walking 0/1 patterns + Ivy_FraigSavePattern0( p ); + Ivy_FraigAssignDist1( p, p->pPatWords ); + Ivy_FraigSimulateOne( p ); + nChanges = Ivy_FraigRefineClasses( p ); + if ( p->pManFraig->pData ) + return; +//printf( "Refined classes = %5d. Changes = %4d. Pairs = %6d.\n", p->lClasses.nItems, nChanges, Ivy_FraigCountPairsClasses(p) ); + Ivy_FraigSavePattern1( p ); + Ivy_FraigAssignDist1( p, p->pPatWords ); + Ivy_FraigSimulateOne( p ); + nChanges = Ivy_FraigRefineClasses( p ); + if ( p->pManFraig->pData ) + return; +//printf( "Refined classes = %5d. Changes = %4d. Pairs = %6d.\n", p->lClasses.nItems, nChanges, Ivy_FraigCountPairsClasses(p) ); + // refine classes by random simulation + do { + Ivy_FraigAssignRandom( p ); + Ivy_FraigSimulateOne( p ); + nClasses = p->lClasses.nItems; + nChanges = Ivy_FraigRefineClasses( p ); + if ( p->pManFraig->pData ) + return; +//printf( "Refined classes = %5d. Changes = %4d. Pairs = %6d.\n", p->lClasses.nItems, nChanges, Ivy_FraigCountPairsClasses(p) ); + } while ( (double)nChanges / nClasses > p->pParams->dSimSatur ); +// Ivy_FraigPrintSimClasses( p ); +} + + + +/**Function************************************************************* + + Synopsis [Cleans pattern scores.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigCleanPatScores( Ivy_FraigMan_t * p ) +{ + int i, nLimit = p->nSimWords * 32; + for ( i = 0; i < nLimit; i++ ) + p->pPatScores[i] = 0; +} + +/**Function************************************************************* + + Synopsis [Adds to pattern scores.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigAddToPatScores( Ivy_FraigMan_t * p, Ivy_Obj_t * pClass, Ivy_Obj_t * pClassNew ) +{ + Ivy_FraigSim_t * pSims0, * pSims1; + unsigned uDiff; + int i, w; + // get hold of the simulation information + pSims0 = Ivy_ObjSim(pClass); + pSims1 = Ivy_ObjSim(pClassNew); + // iterate through the differences and record the score + for ( w = 0; w < p->nSimWords; w++ ) + { + uDiff = pSims0->pData[w] ^ pSims1->pData[w]; + if ( uDiff == 0 ) + continue; + for ( i = 0; i < 32; i++ ) + if ( uDiff & ( 1 << i ) ) + p->pPatScores[w*32+i]++; + } +} + +/**Function************************************************************* + + Synopsis [Selects the best pattern.] + + Description [Returns 1 if such pattern is found.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigSelectBestPat( Ivy_FraigMan_t * p ) +{ + Ivy_FraigSim_t * pSims; + Ivy_Obj_t * pObj; + int i, nLimit = p->nSimWords * 32, MaxScore = 0, BestPat = -1; + for ( i = 1; i < nLimit; i++ ) + { + if ( MaxScore < p->pPatScores[i] ) + { + MaxScore = p->pPatScores[i]; + BestPat = i; + } + } + if ( MaxScore == 0 ) + return 0; +// if ( MaxScore > p->pParams->MaxScore ) +// printf( "Max score is %3d. ", MaxScore ); + // copy the best pattern into the selected pattern + memset( p->pPatWords, 0, sizeof(unsigned) * p->nPatWords ); + Ivy_ManForEachPi( p->pManAig, pObj, i ) + { + pSims = Ivy_ObjSim(pObj); + if ( Ivy_InfoHasBit(pSims->pData, BestPat) ) + Ivy_InfoSetBit(p->pPatWords, i); + } + return MaxScore; +} + +/**Function************************************************************* + + Synopsis [Resimulates fraiging manager after finding a counter-example.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigResimulate( Ivy_FraigMan_t * p ) +{ + int nChanges; + Ivy_FraigAssignDist1( p, p->pPatWords ); + Ivy_FraigSimulateOne( p ); + if ( p->pParams->fPatScores ) + Ivy_FraigCleanPatScores( p ); + nChanges = Ivy_FraigRefineClasses( p ); + if ( p->pManFraig->pData ) + return; + if ( nChanges < 1 ) + printf( "Error: A counter-example did not refine classes!\n" ); + assert( nChanges >= 1 ); +//printf( "Refined classes! = %5d. Changes = %4d.\n", p->lClasses.nItems, nChanges ); + if ( !p->pParams->fPatScores ) + return; + + // perform additional simulation using dist1 patterns derived from successful patterns + while ( Ivy_FraigSelectBestPat(p) > p->pParams->MaxScore ) + { + Ivy_FraigAssignDist1( p, p->pPatWords ); + Ivy_FraigSimulateOne( p ); + Ivy_FraigCleanPatScores( p ); + nChanges = Ivy_FraigRefineClasses( p ); + if ( p->pManFraig->pData ) + return; +//printf( "Refined class!!! = %5d. Changes = %4d. Pairs = %6d.\n", p->lClasses.nItems, nChanges, Ivy_FraigCountPairsClasses(p) ); + if ( nChanges == 0 ) + break; + } +} + + +/**Function************************************************************* + + Synopsis [Prints the status of the miter.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigMiterPrint( Ivy_Man_t * pNtk, char * pString, int clk, int fVerbose ) +{ + if ( !fVerbose ) + return; + printf( "Nodes = %7d. Levels = %4d. ", Ivy_ManNodeNum(pNtk), Ivy_ManLevels(pNtk) ); + PRT( pString, clock() - clk ); +} + +/**Function************************************************************* + + Synopsis [Reports the status of the miter.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigMiterStatus( Ivy_Man_t * pMan ) +{ + Ivy_Obj_t * pObj, * pObjNew; + int i, CountConst0 = 0, CountNonConst0 = 0, CountUndecided = 0; + if ( pMan->pData ) + return 0; + Ivy_ManForEachPo( pMan, pObj, i ) + { + pObjNew = Ivy_ObjChild0(pObj); + // check if the output is constant 1 + if ( pObjNew == pMan->pConst1 ) + { + CountNonConst0++; + continue; + } + // check if the output is constant 0 + if ( pObjNew == Ivy_Not(pMan->pConst1) ) + { + CountConst0++; + continue; + } + // check if the output can be constant 0 + if ( Ivy_Regular(pObjNew)->fPhase != (unsigned)Ivy_IsComplement(pObjNew) ) + { + CountNonConst0++; + continue; + } + CountUndecided++; + } +/* + if ( p->pParams->fVerbose ) + { + printf( "Miter has %d outputs. ", Ivy_ManPoNum(p->pManAig) ); + printf( "Const0 = %d. ", CountConst0 ); + printf( "NonConst0 = %d. ", CountNonConst0 ); + printf( "Undecided = %d. ", CountUndecided ); + printf( "\n" ); + } +*/ + if ( CountNonConst0 ) + return 0; + if ( CountUndecided ) + return -1; + return 1; +} + +/**Function************************************************************* + + Synopsis [Tries to prove each output of the miter until encountering a sat output.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigMiterProve( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pObj, * pObjNew; + int i, RetValue, clk = clock(); + int fVerbose = 0; + Ivy_ManForEachPo( p->pManAig, pObj, i ) + { + if ( i && fVerbose ) + { + PRT( "Time", clock() -clk ); + } + pObjNew = Ivy_ObjChild0Equiv(pObj); + // check if the output is constant 1 + if ( pObjNew == p->pManFraig->pConst1 ) + { + if ( fVerbose ) + printf( "Output %2d (out of %2d) is constant 1. ", i, Ivy_ManPoNum(p->pManAig) ); + // assing constant 0 model + p->pManFraig->pData = ALLOC( int, Ivy_ManPiNum(p->pManFraig) ); + memset( p->pManFraig->pData, 0, sizeof(int) * Ivy_ManPiNum(p->pManFraig) ); + break; + } + // check if the output is constant 0 + if ( pObjNew == Ivy_Not(p->pManFraig->pConst1) ) + { + if ( fVerbose ) + printf( "Output %2d (out of %2d) is already constant 0. ", i, Ivy_ManPoNum(p->pManAig) ); + continue; + } + // check if the output can be constant 0 + if ( Ivy_Regular(pObjNew)->fPhase != (unsigned)Ivy_IsComplement(pObjNew) ) + { + if ( fVerbose ) + printf( "Output %2d (out of %2d) cannot be constant 0. ", i, Ivy_ManPoNum(p->pManAig) ); + // assing constant 0 model + p->pManFraig->pData = ALLOC( int, Ivy_ManPiNum(p->pManFraig) ); + memset( p->pManFraig->pData, 0, sizeof(int) * Ivy_ManPiNum(p->pManFraig) ); + break; + } +/* + // check the representative of this node + pRepr = Ivy_ObjClassNodeRepr(Ivy_ObjFanin0(pObj)); + if ( Ivy_Regular(pRepr) != p->pManAig->pConst1 ) + printf( "Representative is not constant 1.\n" ); + else + printf( "Representative is constant 1.\n" ); +*/ + // try to prove the output constant 0 + RetValue = Ivy_FraigNodeIsConst( p, Ivy_Regular(pObjNew) ); + if ( RetValue == 1 ) // proved equivalent + { + if ( fVerbose ) + printf( "Output %2d (out of %2d) was proved constant 0. ", i, Ivy_ManPoNum(p->pManAig) ); + // set the constant miter + Ivy_ObjFanin0(pObj)->pEquiv = Ivy_NotCond( p->pManFraig->pConst1, !Ivy_ObjFaninC0(pObj) ); + continue; + } + if ( RetValue == -1 ) // failed + { + if ( fVerbose ) + printf( "Output %2d (out of %2d) has timed out at %d backtracks. ", i, Ivy_ManPoNum(p->pManAig), p->pParams->nBTLimitMiter ); + continue; + } + // proved satisfiable + if ( fVerbose ) + printf( "Output %2d (out of %2d) was proved NOT a constant 0. ", i, Ivy_ManPoNum(p->pManAig) ); + // create the model + p->pManFraig->pData = Ivy_FraigCreateModel(p); + break; + } + if ( fVerbose ) + { + PRT( "Time", clock() -clk ); + } +} + +/**Function************************************************************* + + Synopsis [Performs fraiging for the internal nodes.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigSweep( Ivy_FraigMan_t * p ) +{ + Ivy_Obj_t * pObj;//, * pTemp; + int i, k = 0; +p->nClassesZero = p->lClasses.pHead? (Ivy_ObjIsConst1(p->lClasses.pHead) ? Ivy_FraigCountClassNodes(p->lClasses.pHead) : 0) : 0; +p->nClassesBeg = p->lClasses.nItems; + // duplicate internal nodes + p->pProgress = Extra_ProgressBarStart( stdout, Ivy_ManNodeNum(p->pManAig) ); + Ivy_ManForEachNode( p->pManAig, pObj, i ) + { + Extra_ProgressBarUpdate( p->pProgress, k++, NULL ); + // default to simple strashing if simulation detected a counter-example for a PO + if ( p->pManFraig->pData ) + pObj->pEquiv = Ivy_And( p->pManFraig, Ivy_ObjChild0Equiv(pObj), Ivy_ObjChild1Equiv(pObj) ); + else + pObj->pEquiv = Ivy_FraigAnd( p, pObj ); + assert( pObj->pEquiv != NULL ); +// pTemp = Ivy_Regular(pObj->pEquiv); +// assert( Ivy_Regular(pObj->pEquiv)->Type ); + } + Extra_ProgressBarStop( p->pProgress ); +p->nClassesEnd = p->lClasses.nItems; + // try to prove the outputs of the miter + p->nNodesMiter = Ivy_ManNodeNum(p->pManFraig); +// Ivy_FraigMiterStatus( p->pManFraig ); + if ( p->pParams->fProve && p->pManFraig->pData == NULL ) + Ivy_FraigMiterProve( p ); + // add the POs + Ivy_ManForEachPo( p->pManAig, pObj, i ) + Ivy_ObjCreatePo( p->pManFraig, Ivy_ObjChild0Equiv(pObj) ); + // clean the old manager + Ivy_ManForEachObj( p->pManAig, pObj, i ) + pObj->pFanout = pObj->pNextFan0 = pObj->pNextFan1 = pObj->pPrevFan0 = pObj->pPrevFan1 = NULL; + // clean the new manager + Ivy_ManForEachObj( p->pManFraig, pObj, i ) + { + if ( Ivy_ObjFaninVec(pObj) ) + Vec_PtrFree( Ivy_ObjFaninVec(pObj) ); + pObj->pNextFan0 = pObj->pNextFan1 = NULL; + } + // remove dangling nodes + Ivy_ManCleanup( p->pManFraig ); + // clean up the class marks + Ivy_FraigForEachEquivClass( p->lClasses.pHead, pObj ) + pObj->fMarkA = 0; +} + +/**Function************************************************************* + + Synopsis [Performs fraiging for one node.] + + Description [Returns the fraiged node.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_FraigAnd( Ivy_FraigMan_t * p, Ivy_Obj_t * pObjOld ) +{ + Ivy_Obj_t * pObjNew, * pFanin0New, * pFanin1New, * pObjReprNew; + int RetValue; + // get the fraiged fanins + pFanin0New = Ivy_ObjChild0Equiv(pObjOld); + pFanin1New = Ivy_ObjChild1Equiv(pObjOld); + // get the candidate fraig node + pObjNew = Ivy_And( p->pManFraig, pFanin0New, pFanin1New ); + // get representative of this class + if ( Ivy_ObjClassNodeRepr(pObjOld) == NULL || // this is a unique node + (!p->pParams->fDoSparse && Ivy_ObjClassNodeRepr(pObjOld) == p->pManAig->pConst1) ) // this is a sparse node + { + assert( Ivy_Regular(pFanin0New) != Ivy_Regular(pFanin1New) ); + assert( pObjNew != Ivy_Regular(pFanin0New) ); + assert( pObjNew != Ivy_Regular(pFanin1New) ); + return pObjNew; + } + // get the fraiged representative + pObjReprNew = Ivy_ObjFraig(Ivy_ObjClassNodeRepr(pObjOld)); + // if the fraiged nodes are the same return + if ( Ivy_Regular(pObjNew) == Ivy_Regular(pObjReprNew) ) + return pObjNew; + assert( Ivy_Regular(pObjNew) != Ivy_ManConst1(p->pManFraig) ); +// printf( "Node = %d. Repr = %d.\n", pObjOld->Id, Ivy_ObjClassNodeRepr(pObjOld)->Id ); + + // they are different (the counter-example is in p->pPatWords) + RetValue = Ivy_FraigNodesAreEquiv( p, Ivy_Regular(pObjReprNew), Ivy_Regular(pObjNew) ); + if ( RetValue == 1 ) // proved equivalent + { + // mark the class as proved + if ( Ivy_ObjClassNodeNext(pObjOld) == NULL ) + Ivy_ObjClassNodeRepr(pObjOld)->fMarkA = 1; + return Ivy_NotCond( pObjReprNew, pObjOld->fPhase ^ Ivy_ObjClassNodeRepr(pObjOld)->fPhase ); + } + if ( RetValue == -1 ) // failed + return pObjNew; + // simulate the counter-example and return the new node + Ivy_FraigResimulate( p ); + return pObjNew; +} + +/**Function************************************************************* + + Synopsis [Prints variable activity.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigPrintActivity( Ivy_FraigMan_t * p ) +{ + int i; + for ( i = 0; i < p->nSatVars; i++ ) + printf( "%d %.3f ", i, p->pSat->activity[i] ); + printf( "\n" ); +} + +/**Function************************************************************* + + Synopsis [Runs equivalence test for the two nodes.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigNodesAreEquiv( Ivy_FraigMan_t * p, Ivy_Obj_t * pOld, Ivy_Obj_t * pNew ) +{ + int pLits[4], RetValue, RetValue1, nBTLimit, clk, clk2 = clock(); + + // make sure the nodes are not complemented + assert( !Ivy_IsComplement(pNew) ); + assert( !Ivy_IsComplement(pOld) ); + assert( pNew != pOld ); + + // if at least one of the nodes is a failed node, perform adjustments: + // if the backtrack limit is small, simply skip this node + // if the backtrack limit is > 10, take the quare root of the limit + nBTLimit = p->pParams->nBTLimitNode; + if ( nBTLimit > 0 && (pOld->fFailTfo || pNew->fFailTfo) ) + { + p->nSatFails++; + // fail immediately +// return -1; + if ( nBTLimit <= 10 ) + return -1; + nBTLimit = (int)pow(nBTLimit, 0.7); + } + p->nSatCalls++; + + // make sure the solver is allocated and has enough variables + if ( p->pSat == NULL ) + { + p->pSat = sat_solver_new(); + p->nSatVars = 1; + sat_solver_setnvars( p->pSat, 1000 ); + // var 0 is reserved for const1 node - add the clause +// pLits[0] = toLit( 0 ); +// sat_solver_addclause( p->pSat, pLits, pLits + 1 ); + } + + // if the nodes do not have SAT variables, allocate them + Ivy_FraigNodeAddToSolver( p, pOld, pNew ); + + // prepare variable activity + Ivy_FraigSetActivityFactors( p, pOld, pNew ); + + // solve under assumptions + // A = 1; B = 0 OR A = 1; B = 1 +clk = clock(); + pLits[0] = toLitCond( Ivy_ObjSatNum(pOld), 0 ); + pLits[1] = toLitCond( Ivy_ObjSatNum(pNew), pOld->fPhase == pNew->fPhase ); +//Sat_SolverWriteDimacs( p->pSat, "temp.cnf", pLits, pLits + 2, 1 ); + RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2, + (sint64)nBTLimit, (sint64)0, + p->nBTLimitGlobal, p->nInsLimitGlobal ); +p->timeSat += clock() - clk; + if ( RetValue1 == l_False ) + { +p->timeSatUnsat += clock() - clk; + pLits[0] = lit_neg( pLits[0] ); + pLits[1] = lit_neg( pLits[1] ); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 ); + assert( RetValue ); + // continue solving the other implication + p->nSatCallsUnsat++; + } + else if ( RetValue1 == l_True ) + { +p->timeSatSat += clock() - clk; + Ivy_FraigSavePattern( p ); + p->nSatCallsSat++; + return 0; + } + else // if ( RetValue1 == l_Undef ) + { +p->timeSatFail += clock() - clk; + // mark the node as the failed node + if ( pOld != p->pManFraig->pConst1 ) + pOld->fFailTfo = 1; + pNew->fFailTfo = 1; + p->nSatFailsReal++; + return -1; + } + + // if the old node was constant 0, we already know the answer + if ( pOld == p->pManFraig->pConst1 ) + { + p->nSatProof++; + return 1; + } + + // solve under assumptions + // A = 0; B = 1 OR A = 0; B = 0 +clk = clock(); + pLits[0] = toLitCond( Ivy_ObjSatNum(pOld), 1 ); + pLits[1] = toLitCond( Ivy_ObjSatNum(pNew), pOld->fPhase ^ pNew->fPhase ); + RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2, + (sint64)nBTLimit, (sint64)0, + p->nBTLimitGlobal, p->nInsLimitGlobal ); +p->timeSat += clock() - clk; + if ( RetValue1 == l_False ) + { +p->timeSatUnsat += clock() - clk; + pLits[0] = lit_neg( pLits[0] ); + pLits[1] = lit_neg( pLits[1] ); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 ); + assert( RetValue ); + p->nSatCallsUnsat++; + } + else if ( RetValue1 == l_True ) + { +p->timeSatSat += clock() - clk; + Ivy_FraigSavePattern( p ); + p->nSatCallsSat++; + return 0; + } + else // if ( RetValue1 == l_Undef ) + { +p->timeSatFail += clock() - clk; + // mark the node as the failed node + pOld->fFailTfo = 1; + pNew->fFailTfo = 1; + p->nSatFailsReal++; + return -1; + } +/* + // check BDD proof + { + int RetVal; + PRT( "Sat", clock() - clk2 ); + clk2 = clock(); + RetVal = Ivy_FraigNodesAreEquivBdd( pOld, pNew ); +// printf( "%d ", RetVal ); + assert( RetVal ); + PRT( "Bdd", clock() - clk2 ); + printf( "\n" ); + } +*/ + // return SAT proof + p->nSatProof++; + return 1; +} + +/**Function************************************************************* + + Synopsis [Runs equivalence test for one node.] + + Description [Returns the fraiged node.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigNodeIsConst( Ivy_FraigMan_t * p, Ivy_Obj_t * pNew ) +{ + int pLits[2], RetValue1, RetValue, clk; + + // make sure the nodes are not complemented + assert( !Ivy_IsComplement(pNew) ); + assert( pNew != p->pManFraig->pConst1 ); + p->nSatCalls++; + + // make sure the solver is allocated and has enough variables + if ( p->pSat == NULL ) + { + p->pSat = sat_solver_new(); + p->nSatVars = 1; + sat_solver_setnvars( p->pSat, 1000 ); + // var 0 is reserved for const1 node - add the clause +// pLits[0] = toLit( 0 ); +// sat_solver_addclause( p->pSat, pLits, pLits + 1 ); + } + + // if the nodes do not have SAT variables, allocate them + Ivy_FraigNodeAddToSolver( p, NULL, pNew ); + + // prepare variable activity + Ivy_FraigSetActivityFactors( p, NULL, pNew ); + + // solve under assumptions +clk = clock(); + pLits[0] = toLitCond( Ivy_ObjSatNum(pNew), pNew->fPhase ); + RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 1, + (sint64)p->pParams->nBTLimitMiter, (sint64)0, + p->nBTLimitGlobal, p->nInsLimitGlobal ); +p->timeSat += clock() - clk; + if ( RetValue1 == l_False ) + { +p->timeSatUnsat += clock() - clk; + pLits[0] = lit_neg( pLits[0] ); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 1 ); + assert( RetValue ); + // continue solving the other implication + p->nSatCallsUnsat++; + } + else if ( RetValue1 == l_True ) + { +p->timeSatSat += clock() - clk; + if ( p->pPatWords ) + Ivy_FraigSavePattern( p ); + p->nSatCallsSat++; + return 0; + } + else // if ( RetValue1 == l_Undef ) + { +p->timeSatFail += clock() - clk; + // mark the node as the failed node + pNew->fFailTfo = 1; + p->nSatFailsReal++; + return -1; + } + + // return SAT proof + p->nSatProof++; + return 1; +} + +/**Function************************************************************* + + Synopsis [Addes clauses to the solver.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigAddClausesMux( Ivy_FraigMan_t * p, Ivy_Obj_t * pNode ) +{ + Ivy_Obj_t * pNodeI, * pNodeT, * pNodeE; + int pLits[4], RetValue, VarF, VarI, VarT, VarE, fCompT, fCompE; + + assert( !Ivy_IsComplement( pNode ) ); + assert( Ivy_ObjIsMuxType( pNode ) ); + // get nodes (I = if, T = then, E = else) + pNodeI = Ivy_ObjRecognizeMux( pNode, &pNodeT, &pNodeE ); + // get the variable numbers + VarF = Ivy_ObjSatNum(pNode); + VarI = Ivy_ObjSatNum(pNodeI); + VarT = Ivy_ObjSatNum(Ivy_Regular(pNodeT)); + VarE = Ivy_ObjSatNum(Ivy_Regular(pNodeE)); + // get the complementation flags + fCompT = Ivy_IsComplement(pNodeT); + fCompE = Ivy_IsComplement(pNodeE); + + // f = ITE(i, t, e) + + // i' + t' + f + // i' + t + f' + // i + e' + f + // i + e + f' + + // create four clauses + pLits[0] = toLitCond(VarI, 1); + pLits[1] = toLitCond(VarT, 1^fCompT); + pLits[2] = toLitCond(VarF, 0); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 ); + assert( RetValue ); + pLits[0] = toLitCond(VarI, 1); + pLits[1] = toLitCond(VarT, 0^fCompT); + pLits[2] = toLitCond(VarF, 1); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 ); + assert( RetValue ); + pLits[0] = toLitCond(VarI, 0); + pLits[1] = toLitCond(VarE, 1^fCompE); + pLits[2] = toLitCond(VarF, 0); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 ); + assert( RetValue ); + pLits[0] = toLitCond(VarI, 0); + pLits[1] = toLitCond(VarE, 0^fCompE); + pLits[2] = toLitCond(VarF, 1); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 ); + assert( RetValue ); + + // two additional clauses + // t' & e' -> f' + // t & e -> f + + // t + e + f' + // t' + e' + f + + if ( VarT == VarE ) + { +// assert( fCompT == !fCompE ); + return; + } + + pLits[0] = toLitCond(VarT, 0^fCompT); + pLits[1] = toLitCond(VarE, 0^fCompE); + pLits[2] = toLitCond(VarF, 1); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 ); + assert( RetValue ); + pLits[0] = toLitCond(VarT, 1^fCompT); + pLits[1] = toLitCond(VarE, 1^fCompE); + pLits[2] = toLitCond(VarF, 0); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 3 ); + assert( RetValue ); +} + +/**Function************************************************************* + + Synopsis [Addes clauses to the solver.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigAddClausesSuper( Ivy_FraigMan_t * p, Ivy_Obj_t * pNode, Vec_Ptr_t * vSuper ) +{ + Ivy_Obj_t * pFanin; + int * pLits, nLits, RetValue, i; + assert( !Ivy_IsComplement(pNode) ); + assert( Ivy_ObjIsNode( pNode ) ); + // create storage for literals + nLits = Vec_PtrSize(vSuper) + 1; + pLits = ALLOC( int, nLits ); + // suppose AND-gate is A & B = C + // add !A => !C or A + !C + Vec_PtrForEachEntry( vSuper, pFanin, i ) + { + pLits[0] = toLitCond(Ivy_ObjSatNum(Ivy_Regular(pFanin)), Ivy_IsComplement(pFanin)); + pLits[1] = toLitCond(Ivy_ObjSatNum(pNode), 1); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 ); + assert( RetValue ); + } + // add A & B => C or !A + !B + C + Vec_PtrForEachEntry( vSuper, pFanin, i ) + pLits[i] = toLitCond(Ivy_ObjSatNum(Ivy_Regular(pFanin)), !Ivy_IsComplement(pFanin)); + pLits[nLits-1] = toLitCond(Ivy_ObjSatNum(pNode), 0); + RetValue = sat_solver_addclause( p->pSat, pLits, pLits + nLits ); + assert( RetValue ); + free( pLits ); +} + +/**Function************************************************************* + + Synopsis [Collects the supergate.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigCollectSuper_rec( Ivy_Obj_t * pObj, Vec_Ptr_t * vSuper, int fFirst, int fUseMuxes ) +{ + // if the new node is complemented or a PI, another gate begins + if ( Ivy_IsComplement(pObj) || Ivy_ObjIsPi(pObj) || (!fFirst && Ivy_ObjRefs(pObj) > 1) || + (fUseMuxes && Ivy_ObjIsMuxType(pObj)) ) + { + Vec_PtrPushUnique( vSuper, pObj ); + return; + } + // go through the branches + Ivy_FraigCollectSuper_rec( Ivy_ObjChild0(pObj), vSuper, 0, fUseMuxes ); + Ivy_FraigCollectSuper_rec( Ivy_ObjChild1(pObj), vSuper, 0, fUseMuxes ); +} + +/**Function************************************************************* + + Synopsis [Collects the supergate.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Ptr_t * Ivy_FraigCollectSuper( Ivy_Obj_t * pObj, int fUseMuxes ) +{ + Vec_Ptr_t * vSuper; + assert( !Ivy_IsComplement(pObj) ); + assert( !Ivy_ObjIsPi(pObj) ); + vSuper = Vec_PtrAlloc( 4 ); + Ivy_FraigCollectSuper_rec( pObj, vSuper, 1, fUseMuxes ); + return vSuper; +} + +/**Function************************************************************* + + Synopsis [Updates the solver clause database.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigObjAddToFrontier( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj, Vec_Ptr_t * vFrontier ) +{ + assert( !Ivy_IsComplement(pObj) ); + if ( Ivy_ObjSatNum(pObj) ) + return; + assert( Ivy_ObjSatNum(pObj) == 0 ); + assert( Ivy_ObjFaninVec(pObj) == NULL ); + if ( Ivy_ObjIsConst1(pObj) ) + return; +//printf( "Assigning node %d number %d\n", pObj->Id, p->nSatVars ); + Ivy_ObjSetSatNum( pObj, p->nSatVars++ ); + if ( Ivy_ObjIsNode(pObj) ) + Vec_PtrPush( vFrontier, pObj ); +} + +/**Function************************************************************* + + Synopsis [Updates the solver clause database.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_FraigNodeAddToSolver( Ivy_FraigMan_t * p, Ivy_Obj_t * pOld, Ivy_Obj_t * pNew ) +{ + Vec_Ptr_t * vFrontier, * vFanins; + Ivy_Obj_t * pNode, * pFanin; + int i, k, fUseMuxes = 1; + assert( pOld || pNew ); + // quit if CNF is ready + if ( (!pOld || Ivy_ObjFaninVec(pOld)) && (!pNew || Ivy_ObjFaninVec(pNew)) ) + return; + // start the frontier + vFrontier = Vec_PtrAlloc( 100 ); + if ( pOld ) Ivy_FraigObjAddToFrontier( p, pOld, vFrontier ); + if ( pNew ) Ivy_FraigObjAddToFrontier( p, pNew, vFrontier ); + // explore nodes in the frontier + Vec_PtrForEachEntry( vFrontier, pNode, i ) + { + // create the supergate + assert( Ivy_ObjSatNum(pNode) ); + assert( Ivy_ObjFaninVec(pNode) == NULL ); + if ( fUseMuxes && Ivy_ObjIsMuxType(pNode) ) + { + vFanins = Vec_PtrAlloc( 4 ); + Vec_PtrPushUnique( vFanins, Ivy_ObjFanin0( Ivy_ObjFanin0(pNode) ) ); + Vec_PtrPushUnique( vFanins, Ivy_ObjFanin0( Ivy_ObjFanin1(pNode) ) ); + Vec_PtrPushUnique( vFanins, Ivy_ObjFanin1( Ivy_ObjFanin0(pNode) ) ); + Vec_PtrPushUnique( vFanins, Ivy_ObjFanin1( Ivy_ObjFanin1(pNode) ) ); + Vec_PtrForEachEntry( vFanins, pFanin, k ) + Ivy_FraigObjAddToFrontier( p, Ivy_Regular(pFanin), vFrontier ); + Ivy_FraigAddClausesMux( p, pNode ); + } + else + { + vFanins = Ivy_FraigCollectSuper( pNode, fUseMuxes ); + Vec_PtrForEachEntry( vFanins, pFanin, k ) + Ivy_FraigObjAddToFrontier( p, Ivy_Regular(pFanin), vFrontier ); + Ivy_FraigAddClausesSuper( p, pNode, vFanins ); + } + assert( Vec_PtrSize(vFanins) > 1 ); + Ivy_ObjSetFaninVec( pNode, vFanins ); + } + Vec_PtrFree( vFrontier ); +} + +/**Function************************************************************* + + Synopsis [Sets variable activities in the cone.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigSetActivityFactors_rec( Ivy_FraigMan_t * p, Ivy_Obj_t * pObj, int LevelMin, int LevelMax ) +{ + Vec_Ptr_t * vFanins; + Ivy_Obj_t * pFanin; + int i, Counter = 0; + assert( !Ivy_IsComplement(pObj) ); + assert( Ivy_ObjSatNum(pObj) ); + // skip visited variables + if ( Ivy_ObjIsTravIdCurrent(p->pManFraig, pObj) ) + return 0; + Ivy_ObjSetTravIdCurrent(p->pManFraig, pObj); + // add the PI to the list + if ( pObj->Level <= (unsigned)LevelMin || Ivy_ObjIsPi(pObj) ) + return 0; + // set the factor of this variable + // (LevelMax-LevelMin) / (pObj->Level-LevelMin) = p->pParams->dActConeBumpMax / ThisBump + p->pSat->factors[Ivy_ObjSatNum(pObj)] = p->pParams->dActConeBumpMax * (pObj->Level - LevelMin)/(LevelMax - LevelMin); + veci_push(&p->pSat->act_vars, Ivy_ObjSatNum(pObj)); + // explore the fanins + vFanins = Ivy_ObjFaninVec( pObj ); + Vec_PtrForEachEntry( vFanins, pFanin, i ) + Counter += Ivy_FraigSetActivityFactors_rec( p, Ivy_Regular(pFanin), LevelMin, LevelMax ); + return 1 + Counter; +} + +/**Function************************************************************* + + Synopsis [Sets variable activities in the cone.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigSetActivityFactors( Ivy_FraigMan_t * p, Ivy_Obj_t * pOld, Ivy_Obj_t * pNew ) +{ + int clk, LevelMin, LevelMax; + assert( pOld || pNew ); +clk = clock(); + // reset the active variables + veci_resize(&p->pSat->act_vars, 0); + // prepare for traversal + Ivy_ManIncrementTravId( p->pManFraig ); + // determine the min and max level to visit + assert( p->pParams->dActConeRatio > 0 && p->pParams->dActConeRatio < 1 ); + LevelMax = IVY_MAX( (pNew ? pNew->Level : 0), (pOld ? pOld->Level : 0) ); + LevelMin = (int)(LevelMax * (1.0 - p->pParams->dActConeRatio)); + // traverse + if ( pOld && !Ivy_ObjIsConst1(pOld) ) + Ivy_FraigSetActivityFactors_rec( p, pOld, LevelMin, LevelMax ); + if ( pNew && !Ivy_ObjIsConst1(pNew) ) + Ivy_FraigSetActivityFactors_rec( p, pNew, LevelMin, LevelMax ); +//Ivy_FraigPrintActivity( p ); +p->timeTrav += clock() - clk; + return 1; +} + + + +#include "cuddInt.h" + +/**Function************************************************************* + + Synopsis [Checks equivalence using BDDs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +DdNode * Ivy_FraigNodesAreEquivBdd_int( DdManager * dd, DdNode * bFunc, Vec_Ptr_t * vFront, int Level ) +{ + DdNode ** pFuncs; + DdNode * bFuncNew; + Vec_Ptr_t * vTemp; + Ivy_Obj_t * pObj, * pFanin; + int i, NewSize; + // create new frontier + vTemp = Vec_PtrAlloc( 100 ); + Vec_PtrForEachEntry( vFront, pObj, i ) + { + if ( (int)pObj->Level != Level ) + { + pObj->fMarkB = 1; + pObj->TravId = Vec_PtrSize(vTemp); + Vec_PtrPush( vTemp, pObj ); + continue; + } + + pFanin = Ivy_ObjFanin0(pObj); + if ( pFanin->fMarkB == 0 ) + { + pFanin->fMarkB = 1; + pFanin->TravId = Vec_PtrSize(vTemp); + Vec_PtrPush( vTemp, pFanin ); + } + + pFanin = Ivy_ObjFanin1(pObj); + if ( pFanin->fMarkB == 0 ) + { + pFanin->fMarkB = 1; + pFanin->TravId = Vec_PtrSize(vTemp); + Vec_PtrPush( vTemp, pFanin ); + } + } + // collect the permutation + NewSize = IVY_MAX(dd->size, Vec_PtrSize(vTemp)); + pFuncs = ALLOC( DdNode *, NewSize ); + Vec_PtrForEachEntry( vFront, pObj, i ) + { + if ( (int)pObj->Level != Level ) + pFuncs[i] = Cudd_bddIthVar( dd, pObj->TravId ); + else + pFuncs[i] = Cudd_bddAnd( dd, + Cudd_NotCond( Cudd_bddIthVar(dd, Ivy_ObjFanin0(pObj)->TravId), Ivy_ObjFaninC0(pObj) ), + Cudd_NotCond( Cudd_bddIthVar(dd, Ivy_ObjFanin1(pObj)->TravId), Ivy_ObjFaninC1(pObj) ) ); + Cudd_Ref( pFuncs[i] ); + } + // add the remaining vars + assert( NewSize == dd->size ); + for ( i = Vec_PtrSize(vFront); i < dd->size; i++ ) + { + pFuncs[i] = Cudd_bddIthVar( dd, i ); + Cudd_Ref( pFuncs[i] ); + } + + // create new + bFuncNew = Cudd_bddVectorCompose( dd, bFunc, pFuncs ); Cudd_Ref( bFuncNew ); + // clean trav Id + Vec_PtrForEachEntry( vTemp, pObj, i ) + { + pObj->fMarkB = 0; + pObj->TravId = 0; + } + // deref + for ( i = 0; i < dd->size; i++ ) + Cudd_RecursiveDeref( dd, pFuncs[i] ); + free( pFuncs ); + + free( vFront->pArray ); + *vFront = *vTemp; + + vTemp->nCap = vTemp->nSize = 0; + vTemp->pArray = NULL; + Vec_PtrFree( vTemp ); + + Cudd_Deref( bFuncNew ); + return bFuncNew; +} + +/**Function************************************************************* + + Synopsis [Checks equivalence using BDDs.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_FraigNodesAreEquivBdd( Ivy_Obj_t * pObj1, Ivy_Obj_t * pObj2 ) +{ + static DdManager * dd = NULL; + DdNode * bFunc, * bTemp; + Vec_Ptr_t * vFront; + Ivy_Obj_t * pObj; + int i, RetValue, Iter, Level; + // start the manager + if ( dd == NULL ) + dd = Cudd_Init( 50, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); + // create front + vFront = Vec_PtrAlloc( 100 ); + Vec_PtrPush( vFront, pObj1 ); + Vec_PtrPush( vFront, pObj2 ); + // get the function + bFunc = Cudd_bddXor( dd, Cudd_bddIthVar(dd,0), Cudd_bddIthVar(dd,1) ); Cudd_Ref( bFunc ); + bFunc = Cudd_NotCond( bFunc, pObj1->fPhase != pObj2->fPhase ); + // try running BDDs + for ( Iter = 0; ; Iter++ ) + { + // find max level + Level = 0; + Vec_PtrForEachEntry( vFront, pObj, i ) + if ( Level < (int)pObj->Level ) + Level = (int)pObj->Level; + if ( Level == 0 ) + break; + bFunc = Ivy_FraigNodesAreEquivBdd_int( dd, bTemp = bFunc, vFront, Level ); Cudd_Ref( bFunc ); + Cudd_RecursiveDeref( dd, bTemp ); + if ( bFunc == Cudd_ReadLogicZero(dd) ) // proved + {printf( "%d", Iter ); break;} + if ( Cudd_DagSize(bFunc) > 1000 ) + {printf( "b" ); break;} + if ( dd->size > 120 ) + {printf( "s" ); break;} + if ( Iter > 50 ) + {printf( "i" ); break;} + } + if ( bFunc == Cudd_ReadLogicZero(dd) ) // unsat + RetValue = 1; + else if ( Level == 0 ) // sat + RetValue = 0; + else + RetValue = -1; // spaceout/timeout + Cudd_RecursiveDeref( dd, bFunc ); + Vec_PtrFree( vFront ); + return RetValue; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyHaig.c b/src/aig/ivy/ivyHaig.c new file mode 100644 index 00000000..87021600 --- /dev/null +++ b/src/aig/ivy/ivyHaig.c @@ -0,0 +1,530 @@ +/**CFile**************************************************************** + + FileName [ivyHaig.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [HAIG management procedures.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyHaig.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +/* + HAIGing rules in working AIG: + - Each node in the working AIG has a pointer to the corresponding node in HAIG + (this node is not necessarily the representative of the equivalence class of HAIG nodes) + - This pointer is complemented if the AIG node and its corresponding HAIG node have different phase + + Choice node rules in HAIG: + - Equivalent nodes are linked into a ring + - Exactly one node in the ring has fanouts (this node is called the representative) + - The pointer going from a node to the next node in the ring is complemented + if the first node is complemented, compared to the representative node of the equivalence class + - (consequence of the above) The representative node always has non-complemented pointer to the next node + - New nodes are inserted into the ring immediately after the representative node +*/ + +// returns the representative node of the given HAIG node +static inline Ivy_Obj_t * Ivy_HaigObjRepr( Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pTemp; + assert( !Ivy_IsComplement(pObj) ); + // if the node has no equivalent node or has fanout, it is representative + if ( pObj->pEquiv == NULL || Ivy_ObjRefs(pObj) > 0 ) + return pObj; + // the node belongs to a class and is not a representative + // complemented edge (pObj->pEquiv) tells if it is complemented w.r.t. the repr + for ( pTemp = Ivy_Regular(pObj->pEquiv); pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) + if ( Ivy_ObjRefs(pTemp) > 0 ) + break; + // return the representative node + assert( Ivy_ObjRefs(pTemp) > 0 ); + return Ivy_NotCond( pTemp, Ivy_IsComplement(pObj->pEquiv) ); +} + +// counts the number of nodes in the equivalence class +static inline int Ivy_HaigObjCountClass( Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pTemp; + int Counter; + assert( !Ivy_IsComplement(pObj) ); + assert( Ivy_ObjRefs(pObj) > 0 ); + if ( pObj->pEquiv == NULL ) + return 1; + assert( !Ivy_IsComplement(pObj->pEquiv) ); + Counter = 1; + for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) + Counter++; + return Counter; +} + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Starts HAIG for the manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManHaigStart( Ivy_Man_t * p, int fVerbose ) +{ + Vec_Int_t * vLatches; + Ivy_Obj_t * pObj; + int i; + assert( p->pHaig == NULL ); + p->pHaig = Ivy_ManDup( p ); + + if ( fVerbose ) + { + printf( "Starting : " ); + Ivy_ManPrintStats( p->pHaig ); + } + + // collect latches of design D and set their values to be DC + vLatches = Vec_IntAlloc( 100 ); + Ivy_ManForEachLatch( p->pHaig, pObj, i ) + { + pObj->Init = IVY_INIT_DC; + Vec_IntPush( vLatches, pObj->Id ); + } + p->pHaig->pData = vLatches; +/* + { + int x; + Ivy_ManShow( p, 0, NULL ); + Ivy_ManShow( p->pHaig, 1, NULL ); + x = 0; + } +*/ +} + +/**Function************************************************************* + + Synopsis [Transfers the HAIG to the newly created manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManHaigTrasfer( Ivy_Man_t * p, Ivy_Man_t * pNew ) +{ + Ivy_Obj_t * pObj; + int i; + assert( p->pHaig != NULL ); + Ivy_ManConst1(pNew)->pEquiv = Ivy_ManConst1(p)->pEquiv; + Ivy_ManForEachPi( pNew, pObj, i ) + pObj->pEquiv = Ivy_ManPi( p, i )->pEquiv; + pNew->pHaig = p->pHaig; +} + +/**Function************************************************************* + + Synopsis [Stops HAIG for the manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManHaigStop( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj; + int i; + assert( p->pHaig != NULL ); + Vec_IntFree( p->pHaig->pData ); + Ivy_ManStop( p->pHaig ); + p->pHaig = NULL; + // remove dangling pointers to the HAIG objects + Ivy_ManForEachObj( p, pObj, i ) + pObj->pEquiv = NULL; +} + +/**Function************************************************************* + + Synopsis [Creates a new node in HAIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManHaigCreateObj( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pEquiv0, * pEquiv1; + assert( p->pHaig != NULL ); + assert( !Ivy_IsComplement(pObj) ); + if ( Ivy_ObjType(pObj) == IVY_BUF ) + pObj->pEquiv = Ivy_ObjChild0Equiv(pObj); + else if ( Ivy_ObjType(pObj) == IVY_LATCH ) + { +// pObj->pEquiv = Ivy_Latch( p->pHaig, Ivy_ObjChild0Equiv(pObj), pObj->Init ); + pEquiv0 = Ivy_ObjChild0Equiv(pObj); + pEquiv0 = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pEquiv0)), Ivy_IsComplement(pEquiv0) ); + pObj->pEquiv = Ivy_Latch( p->pHaig, pEquiv0, pObj->Init ); + } + else if ( Ivy_ObjType(pObj) == IVY_AND ) + { +// pObj->pEquiv = Ivy_And( p->pHaig, Ivy_ObjChild0Equiv(pObj), Ivy_ObjChild1Equiv(pObj) ); + pEquiv0 = Ivy_ObjChild0Equiv(pObj); + pEquiv0 = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pEquiv0)), Ivy_IsComplement(pEquiv0) ); + pEquiv1 = Ivy_ObjChild1Equiv(pObj); + pEquiv1 = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pEquiv1)), Ivy_IsComplement(pEquiv1) ); + pObj->pEquiv = Ivy_And( p->pHaig, pEquiv0, pEquiv1 ); + } + else assert( 0 ); + // make sure the node points to the representative +// pObj->pEquiv = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pObj->pEquiv)), Ivy_IsComplement(pObj->pEquiv) ); +} + +/**Function************************************************************* + + Synopsis [Checks if the old node is in the TFI of the new node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ObjIsInTfi_rec( Ivy_Obj_t * pObjNew, Ivy_Obj_t * pObjOld, int Levels ) +{ + if ( pObjNew == pObjOld ) + return 1; + if ( Levels == 0 || Ivy_ObjIsCi(pObjNew) || Ivy_ObjIsConst1(pObjNew) ) + return 0; + if ( Ivy_ObjIsInTfi_rec( Ivy_ObjFanin0(pObjNew), pObjOld, Levels - 1 ) ) + return 1; + if ( Ivy_ObjIsNode(pObjNew) && Ivy_ObjIsInTfi_rec( Ivy_ObjFanin1(pObjNew), pObjOld, Levels - 1 ) ) + return 1; + return 0; +} + +/**Function************************************************************* + + Synopsis [Sets the pair of equivalent nodes in HAIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManHaigCreateChoice( Ivy_Man_t * p, Ivy_Obj_t * pObjOld, Ivy_Obj_t * pObjNew ) +{ + Ivy_Obj_t * pObjOldHaig, * pObjNewHaig; + Ivy_Obj_t * pObjOldHaigR, * pObjNewHaigR; + int fCompl; +//printf( "\nCreating choice for %d and %d in AIG\n", pObjOld->Id, Ivy_Regular(pObjNew)->Id ); + + assert( p->pHaig != NULL ); + assert( !Ivy_IsComplement(pObjOld) ); + // get pointers to the representatives of pObjOld and pObjNew + pObjOldHaig = pObjOld->pEquiv; + pObjNewHaig = Ivy_NotCond( Ivy_Regular(pObjNew)->pEquiv, Ivy_IsComplement(pObjNew) ); + // get the classes + pObjOldHaig = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pObjOldHaig)), Ivy_IsComplement(pObjOldHaig) ); + pObjNewHaig = Ivy_NotCond( Ivy_HaigObjRepr(Ivy_Regular(pObjNewHaig)), Ivy_IsComplement(pObjNewHaig) ); + // get regular pointers + pObjOldHaigR = Ivy_Regular(pObjOldHaig); + pObjNewHaigR = Ivy_Regular(pObjNewHaig); + // check if there is phase difference between them + fCompl = (Ivy_IsComplement(pObjOldHaig) != Ivy_IsComplement(pObjNewHaig)); + // if the class is the same, nothing to do + if ( pObjOldHaigR == pObjNewHaigR ) + return; + // if the second node belongs to a class, do not merge classes (for the time being) + if ( Ivy_ObjRefs(pObjOldHaigR) == 0 || pObjNewHaigR->pEquiv != NULL || + Ivy_ObjRefs(pObjNewHaigR) > 0 ) //|| Ivy_ObjIsInTfi_rec(pObjNewHaigR, pObjOldHaigR, 10) ) + { +/* + if ( pObjNewHaigR->pEquiv != NULL ) + printf( "c" ); + if ( Ivy_ObjRefs(pObjNewHaigR) > 0 ) + printf( "f" ); + printf( " " ); +*/ + p->pHaig->nClassesSkip++; + return; + } + + // add this node to the class of pObjOldHaig + assert( Ivy_ObjRefs(pObjOldHaigR) > 0 ); + assert( !Ivy_IsComplement(pObjOldHaigR->pEquiv) ); + if ( pObjOldHaigR->pEquiv == NULL ) + pObjNewHaigR->pEquiv = Ivy_NotCond( pObjOldHaigR, fCompl ); + else + pObjNewHaigR->pEquiv = Ivy_NotCond( pObjOldHaigR->pEquiv, fCompl ); + pObjOldHaigR->pEquiv = pObjNewHaigR; +//printf( "Setting choice node %d -> %d.\n", pObjOldHaigR->Id, pObjNewHaigR->Id ); + // update the class of the new node +// Ivy_Regular(pObjNew)->pEquiv = Ivy_NotCond( pObjOldHaigR, fCompl ^ Ivy_IsComplement(pObjNew) ); +//printf( "Creating choice for %d and %d in HAIG\n", pObjOldHaigR->Id, pObjNewHaigR->Id ); + +// if ( pObjOldHaigR->Id == 13 ) +// { +// Ivy_ManShow( p, 0 ); +// Ivy_ManShow( p->pHaig, 1 ); +// } +// if ( !Ivy_ManIsAcyclic( p->pHaig ) ) +// printf( "HAIG contains a cycle\n" ); +} + +/**Function************************************************************* + + Synopsis [Count the number of choices and choice nodes in HAIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManHaigCountChoices( Ivy_Man_t * p, int * pnChoices ) +{ + Ivy_Obj_t * pObj; + int nChoices, nChoiceNodes, Counter, i; + assert( p->pHaig != NULL ); + nChoices = nChoiceNodes = 0; + Ivy_ManForEachObj( p->pHaig, pObj, i ) + { + if ( Ivy_ObjIsTerm(pObj) || i == 0 ) + continue; + if ( Ivy_ObjRefs(pObj) == 0 ) + continue; + Counter = Ivy_HaigObjCountClass( pObj ); + nChoiceNodes += (int)(Counter > 1); + nChoices += Counter - 1; +// if ( Counter > 1 ) +// printf( "Choice node %d %s\n", pObj->Id, Ivy_ObjIsLatch(pObj)? "(latch)": "" ); + } + *pnChoices = nChoices; + return nChoiceNodes; +} + +/**Function************************************************************* + + Synopsis [Prints statistics of the HAIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManHaigPostprocess( Ivy_Man_t * p, int fVerbose ) +{ + int nChoices, nChoiceNodes; + + assert( p->pHaig != NULL ); + + if ( fVerbose ) + { + printf( "Final : " ); + Ivy_ManPrintStats( p ); + printf( "HAIG : " ); + Ivy_ManPrintStats( p->pHaig ); + + // print choice node stats + nChoiceNodes = Ivy_ManHaigCountChoices( p, &nChoices ); + printf( "Total choice nodes = %d. Total choices = %d. Skipped classes = %d.\n", + nChoiceNodes, nChoices, p->pHaig->nClassesSkip ); + } + + if ( Ivy_ManIsAcyclic( p->pHaig ) ) + { + if ( fVerbose ) + printf( "HAIG is acyclic\n" ); + } + else + printf( "HAIG contains a cycle\n" ); + +// if ( fVerbose ) +// Ivy_ManHaigSimulate( p ); +} + + +/**Function************************************************************* + + Synopsis [Applies the simulation rules.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline Ivy_Init_t Ivy_ManHaigSimulateAnd( Ivy_Init_t In0, Ivy_Init_t In1 ) +{ + assert( In0 != IVY_INIT_NONE && In1 != IVY_INIT_NONE ); + if ( In0 == IVY_INIT_DC || In1 == IVY_INIT_DC ) + return IVY_INIT_DC; + if ( In0 == IVY_INIT_1 && In1 == IVY_INIT_1 ) + return IVY_INIT_1; + return IVY_INIT_0; +} + +/**Function************************************************************* + + Synopsis [Applies the simulation rules.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline Ivy_Init_t Ivy_ManHaigSimulateChoice( Ivy_Init_t In0, Ivy_Init_t In1 ) +{ + assert( In0 != IVY_INIT_NONE && In1 != IVY_INIT_NONE ); + if ( (In0 == IVY_INIT_0 && In1 == IVY_INIT_1) || (In0 == IVY_INIT_1 && In1 == IVY_INIT_0) ) + { + printf( "Compatibility fails.\n" ); + return IVY_INIT_0; + } + if ( In0 == IVY_INIT_DC && In1 == IVY_INIT_DC ) + return IVY_INIT_DC; + if ( In0 != IVY_INIT_DC ) + return In0; + return In1; +} + +/**Function************************************************************* + + Synopsis [Simulate HAIG using modified 3-valued simulation.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManHaigSimulate( Ivy_Man_t * p ) +{ + Vec_Int_t * vNodes, * vLatches, * vLatchesD; + Ivy_Obj_t * pObj, * pTemp; + Ivy_Init_t In0, In1; + int i, k, Counter; + int fVerbose = 0; + + // check choices + Ivy_ManCheckChoices( p ); + + // switch to HAIG + assert( p->pHaig != NULL ); + p = p->pHaig; + +if ( fVerbose ) +Ivy_ManForEachPi( p, pObj, i ) +printf( "Setting PI %d\n", pObj->Id ); + + // collect latches and nodes in the DFS order + vNodes = Ivy_ManDfsSeq( p, &vLatches ); + +if ( fVerbose ) +Ivy_ManForEachNodeVec( p, vNodes, pObj, i ) +printf( "Collected node %d with fanins %d and %d\n", pObj->Id, Ivy_ObjFanin0(pObj)->Id, Ivy_ObjFanin1(pObj)->Id ); + + // set the PI values + Ivy_ManConst1(p)->Init = IVY_INIT_1; + Ivy_ManForEachPi( p, pObj, i ) + pObj->Init = IVY_INIT_0; + + // set the latch values + Ivy_ManForEachNodeVec( p, vLatches, pObj, i ) + pObj->Init = IVY_INIT_DC; + // set the latches of D to be determinate + vLatchesD = p->pData; + Ivy_ManForEachNodeVec( p, vLatchesD, pObj, i ) + pObj->Init = IVY_INIT_0; + + // perform several rounds of simulation + for ( k = 0; k < 10; k++ ) + { + // count the number of non-determinate values + Counter = 0; + Ivy_ManForEachNodeVec( p, vLatches, pObj, i ) + Counter += ( pObj->Init == IVY_INIT_DC ); + printf( "Iter %d : Non-determinate = %d\n", k, Counter ); + + // simulate the internal nodes + Ivy_ManForEachNodeVec( p, vNodes, pObj, i ) + { +if ( fVerbose ) +printf( "Processing node %d with fanins %d and %d\n", pObj->Id, Ivy_ObjFanin0(pObj)->Id, Ivy_ObjFanin1(pObj)->Id ); + In0 = Ivy_InitNotCond( Ivy_ObjFanin0(pObj)->Init, Ivy_ObjFaninC0(pObj) ); + In1 = Ivy_InitNotCond( Ivy_ObjFanin1(pObj)->Init, Ivy_ObjFaninC1(pObj) ); + pObj->Init = Ivy_ManHaigSimulateAnd( In0, In1 ); + // simulate the equivalence class if the node is a representative + if ( pObj->pEquiv && Ivy_ObjRefs(pObj) > 0 ) + { +if ( fVerbose ) +printf( "Processing choice node %d\n", pObj->Id ); + In0 = pObj->Init; + assert( !Ivy_IsComplement(pObj->pEquiv) ); + for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) + { +if ( fVerbose ) +printf( "Processing secondary node %d\n", pTemp->Id ); + In1 = Ivy_InitNotCond( pTemp->Init, Ivy_IsComplement(pTemp->pEquiv) ); + In0 = Ivy_ManHaigSimulateChoice( In0, In1 ); + } + pObj->Init = In0; + } + } + + // simulate the latches + Ivy_ManForEachNodeVec( p, vLatches, pObj, i ) + { + pObj->Level = Ivy_ObjFanin0(pObj)->Init; +if ( fVerbose ) +printf( "Using latch %d with fanin %d\n", pObj->Id, Ivy_ObjFanin0(pObj)->Id ); + } + Ivy_ManForEachNodeVec( p, vLatches, pObj, i ) + pObj->Init = pObj->Level, pObj->Level = 0; + } + // free arrays + Vec_IntFree( vNodes ); + Vec_IntFree( vLatches ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyMan.c b/src/aig/ivy/ivyMan.c new file mode 100644 index 00000000..07faef85 --- /dev/null +++ b/src/aig/ivy/ivyMan.c @@ -0,0 +1,546 @@ +/**CFile**************************************************************** + + FileName [ivyMan.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [AIG manager.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivy_.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Starts the AIG manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_ManStart() +{ + Ivy_Man_t * p; + // start the manager + p = ALLOC( Ivy_Man_t, 1 ); + memset( p, 0, sizeof(Ivy_Man_t) ); + // perform initializations + p->Ghost.Id = -1; + p->nTravIds = 1; + p->fCatchExor = 1; + // allocate arrays for nodes + p->vPis = Vec_PtrAlloc( 100 ); + p->vPos = Vec_PtrAlloc( 100 ); + p->vBufs = Vec_PtrAlloc( 100 ); + p->vObjs = Vec_PtrAlloc( 100 ); + // prepare the internal memory manager + Ivy_ManStartMemory( p ); + // create the constant node + p->pConst1 = Ivy_ManFetchMemory( p ); + p->pConst1->fPhase = 1; + Vec_PtrPush( p->vObjs, p->pConst1 ); + p->nCreated = 1; + // start the table + p->nTableSize = 10007; + p->pTable = ALLOC( int, p->nTableSize ); + memset( p->pTable, 0, sizeof(int) * p->nTableSize ); + return p; +} + +/**Function************************************************************* + + Synopsis [Duplicates the AIG manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_ManStartFrom( Ivy_Man_t * p ) +{ + Ivy_Man_t * pNew; + Ivy_Obj_t * pObj; + int i; + // create the new manager + pNew = Ivy_ManStart(); + // create the PIs + Ivy_ManConst1(p)->pEquiv = Ivy_ManConst1(pNew); + Ivy_ManForEachPi( p, pObj, i ) + pObj->pEquiv = Ivy_ObjCreatePi(pNew); + return pNew; +} + +/**Function************************************************************* + + Synopsis [Duplicates the AIG manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_ManDup( Ivy_Man_t * p ) +{ + Vec_Int_t * vNodes, * vLatches; + Ivy_Man_t * pNew; + Ivy_Obj_t * pObj; + int i; + // collect latches and nodes in the DFS order + vNodes = Ivy_ManDfsSeq( p, &vLatches ); + // create the new manager + pNew = Ivy_ManStart(); + // create the PIs + Ivy_ManConst1(p)->pEquiv = Ivy_ManConst1(pNew); + Ivy_ManForEachPi( p, pObj, i ) + pObj->pEquiv = Ivy_ObjCreatePi(pNew); + // create the fake PIs for latches + Ivy_ManForEachNodeVec( p, vLatches, pObj, i ) + pObj->pEquiv = Ivy_ObjCreatePi(pNew); + // duplicate internal nodes + Ivy_ManForEachNodeVec( p, vNodes, pObj, i ) + if ( Ivy_ObjIsBuf(pObj) ) + pObj->pEquiv = Ivy_ObjChild0Equiv(pObj); + else + pObj->pEquiv = Ivy_And( pNew, Ivy_ObjChild0Equiv(pObj), Ivy_ObjChild1Equiv(pObj) ); + // add the POs + Ivy_ManForEachPo( p, pObj, i ) + Ivy_ObjCreatePo( pNew, Ivy_ObjChild0Equiv(pObj) ); + // transform additional PI nodes into latches and connect them + Ivy_ManForEachNodeVec( p, vLatches, pObj, i ) + { + assert( !Ivy_ObjFaninC0(pObj) ); + pObj->pEquiv->Type = IVY_LATCH; + pObj->pEquiv->Init = pObj->Init; + Ivy_ObjConnect( pNew, pObj->pEquiv, Ivy_ObjChild0Equiv(pObj), NULL ); + } + // shrink the arrays + Vec_PtrShrink( pNew->vPis, Ivy_ManPiNum(p) ); + // update the counters of different objects + pNew->nObjs[IVY_PI] -= Ivy_ManLatchNum(p); + pNew->nObjs[IVY_LATCH] += Ivy_ManLatchNum(p); + // free arrays + Vec_IntFree( vNodes ); + Vec_IntFree( vLatches ); + // make sure structural hashing did not change anything + assert( Ivy_ManNodeNum(p) == Ivy_ManNodeNum(pNew) ); + assert( Ivy_ManLatchNum(p) == Ivy_ManLatchNum(pNew) ); + // check the resulting network + if ( !Ivy_ManCheck(pNew) ) + printf( "Ivy_ManMakeSeq(): The check has failed.\n" ); + return pNew; +} + +/**Function************************************************************* + + Synopsis [Stops the AIG manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_ManFrames( Ivy_Man_t * pMan, int nLatches, int nFrames, int fInit, Vec_Ptr_t ** pvMapping ) +{ + Vec_Ptr_t * vMapping; + Ivy_Man_t * pNew; + Ivy_Obj_t * pObj; + int i, f, nPis, nPos, nIdMax; + assert( Ivy_ManLatchNum(pMan) == 0 ); + assert( nFrames > 0 ); + // prepare the mapping + nPis = Ivy_ManPiNum(pMan) - nLatches; + nPos = Ivy_ManPoNum(pMan) - nLatches; + nIdMax = Ivy_ManObjIdMax(pMan); + // create the new manager + pNew = Ivy_ManStart(); + // set the starting values of latch inputs + for ( i = 0; i < nLatches; i++ ) + Ivy_ManPo(pMan, nPos+i)->pEquiv = fInit? Ivy_Not(Ivy_ManConst1(pNew)) : Ivy_ObjCreatePi(pNew); + // add timeframes + vMapping = Vec_PtrStart( nIdMax * nFrames + 1 ); + for ( f = 0; f < nFrames; f++ ) + { + // create PIs + Ivy_ManConst1(pMan)->pEquiv = Ivy_ManConst1(pNew); + for ( i = 0; i < nPis; i++ ) + Ivy_ManPi(pMan, i)->pEquiv = Ivy_ObjCreatePi(pNew); + // transfer values to latch outputs + for ( i = 0; i < nLatches; i++ ) + Ivy_ManPi(pMan, nPis+i)->pEquiv = Ivy_ManPo(pMan, nPos+i)->pEquiv; + // perform strashing + Ivy_ManForEachNode( pMan, pObj, i ) + pObj->pEquiv = Ivy_And( pNew, Ivy_ObjChild0Equiv(pObj), Ivy_ObjChild1Equiv(pObj) ); + // create POs + for ( i = 0; i < nPos; i++ ) + Ivy_ManPo(pMan, i)->pEquiv = Ivy_ObjCreatePo( pNew, Ivy_ObjChild0Equiv(Ivy_ManPo(pMan, i)) ); + // set the results of latch inputs + for ( i = 0; i < nLatches; i++ ) + Ivy_ManPo(pMan, nPos+i)->pEquiv = Ivy_ObjChild0Equiv(Ivy_ManPo(pMan, nPos+i)); + // save the pointers in this frame + Ivy_ManForEachObj( pMan, pObj, i ) + Vec_PtrWriteEntry( vMapping, f * nIdMax + i, pObj->pEquiv ); + } + // connect latches + if ( !fInit ) + for ( i = 0; i < nLatches; i++ ) + Ivy_ObjCreatePo( pNew, Ivy_ManPo(pMan, nPos+i)->pEquiv ); + // remove dangling nodes + Ivy_ManCleanup(pNew); + *pvMapping = vMapping; + // check the resulting network + if ( !Ivy_ManCheck(pNew) ) + printf( "Ivy_ManFrames(): The check has failed.\n" ); + return pNew; +} + + +/**Function************************************************************* + + Synopsis [Stops the AIG manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManStop( Ivy_Man_t * p ) +{ + if ( p->time1 ) { PRT( "Update lev ", p->time1 ); } + if ( p->time2 ) { PRT( "Update levR ", p->time2 ); } +// Ivy_TableProfile( p ); +// if ( p->vFanouts ) Ivy_ManStopFanout( p ); + if ( p->vChunks ) Ivy_ManStopMemory( p ); + if ( p->vRequired ) Vec_IntFree( p->vRequired ); + if ( p->vPis ) Vec_PtrFree( p->vPis ); + if ( p->vPos ) Vec_PtrFree( p->vPos ); + if ( p->vBufs ) Vec_PtrFree( p->vBufs ); + if ( p->vObjs ) Vec_PtrFree( p->vObjs ); + free( p->pTable ); + free( p ); +} + +/**Function************************************************************* + + Synopsis [Removes nodes without fanout.] + + Description [Returns the number of dangling nodes removed.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManCleanup( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pNode; + int i, nNodesOld; + nNodesOld = Ivy_ManNodeNum(p); + Ivy_ManForEachObj( p, pNode, i ) + if ( Ivy_ObjIsNode(pNode) || Ivy_ObjIsLatch(pNode) || Ivy_ObjIsBuf(pNode) ) + if ( Ivy_ObjRefs(pNode) == 0 ) + Ivy_ObjDelete_rec( p, pNode, 1 ); +//printf( "Cleanup removed %d nodes.\n", nNodesOld - Ivy_ManNodeNum(p) ); + return nNodesOld - Ivy_ManNodeNum(p); +} + +/**Function************************************************************* + + Synopsis [Marks nodes reachable from the given one.] + + Description [Returns the number of dangling nodes removed.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManCleanupSeq_rec( Ivy_Obj_t * pObj ) +{ + if ( Ivy_ObjIsMarkA(pObj) ) + return; + Ivy_ObjSetMarkA(pObj); + if ( pObj->pFanin0 != NULL ) + Ivy_ManCleanupSeq_rec( Ivy_ObjFanin0(pObj) ); + if ( pObj->pFanin1 != NULL ) + Ivy_ManCleanupSeq_rec( Ivy_ObjFanin1(pObj) ); +} + +/**Function************************************************************* + + Synopsis [Removes logic that does not feed into POs.] + + Description [Returns the number of dangling nodes removed.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManCleanupSeq( Ivy_Man_t * p ) +{ + Vec_Ptr_t * vNodes; + Ivy_Obj_t * pObj; + int i, RetValue; + // mark the constant and PIs + Ivy_ObjSetMarkA( Ivy_ManConst1(p) ); + Ivy_ManForEachPi( p, pObj, i ) + Ivy_ObjSetMarkA( pObj ); + // mark nodes visited from POs + Ivy_ManForEachPo( p, pObj, i ) + Ivy_ManCleanupSeq_rec( pObj ); + // collect unmarked nodes + vNodes = Vec_PtrAlloc( 100 ); + Ivy_ManForEachObj( p, pObj, i ) + { + if ( Ivy_ObjIsMarkA(pObj) ) + Ivy_ObjClearMarkA(pObj); + else + Vec_PtrPush( vNodes, pObj ); + } + if ( Vec_PtrSize(vNodes) == 0 ) + { + Vec_PtrFree( vNodes ); +//printf( "Sequential sweep cleaned out %d nodes.\n", 0 ); + return 0; + } + // disconnect the marked objects + Vec_PtrForEachEntry( vNodes, pObj, i ) + Ivy_ObjDisconnect( p, pObj ); + // remove the dangling objects + Vec_PtrForEachEntry( vNodes, pObj, i ) + { + assert( Ivy_ObjIsNode(pObj) || Ivy_ObjIsLatch(pObj) || Ivy_ObjIsBuf(pObj) ); + assert( Ivy_ObjRefs(pObj) == 0 ); + // update node counters of the manager + p->nObjs[pObj->Type]--; + p->nDeleted++; + // delete buffer from the array of buffers + if ( p->fFanout && Ivy_ObjIsBuf(pObj) ) + Vec_PtrRemove( p->vBufs, pObj ); + // free the node + Vec_PtrWriteEntry( p->vObjs, pObj->Id, NULL ); + Ivy_ManRecycleMemory( p, pObj ); + } + // return the number of nodes freed + RetValue = Vec_PtrSize(vNodes); + Vec_PtrFree( vNodes ); +//printf( "Sequential sweep cleaned out %d nodes.\n", RetValue ); + return RetValue; +} + + +/**Function************************************************************* + + Synopsis [Checks if latches form self-loop.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManLatchIsSelfFeed_rec( Ivy_Obj_t * pLatch, Ivy_Obj_t * pLatchRoot ) +{ + if ( !Ivy_ObjIsLatch(pLatch) && !Ivy_ObjIsBuf(pLatch) ) + return 0; + if ( pLatch == pLatchRoot ) + return 1; + return Ivy_ManLatchIsSelfFeed_rec( Ivy_ObjFanin0(pLatch), pLatchRoot ); +} + +/**Function************************************************************* + + Synopsis [Checks if latches form self-loop.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManLatchIsSelfFeed( Ivy_Obj_t * pLatch ) +{ + if ( !Ivy_ObjIsLatch(pLatch) ) + return 0; + return Ivy_ManLatchIsSelfFeed_rec( Ivy_ObjFanin0(pLatch), pLatch ); +} + + +/**Function************************************************************* + + Synopsis [Returns the number of dangling nodes removed.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManPropagateBuffers( Ivy_Man_t * p, int fUpdateLevel ) +{ + Ivy_Obj_t * pNode; + int LimitFactor = 100; + int NodeBeg = Ivy_ManNodeNum(p); + int nSteps; + for ( nSteps = 0; Vec_PtrSize(p->vBufs) > 0; nSteps++ ) + { + pNode = Vec_PtrEntryLast(p->vBufs); + while ( Ivy_ObjIsBuf(pNode) ) + pNode = Ivy_ObjReadFirstFanout( p, pNode ); + // check if this buffer should remain + if ( Ivy_ManLatchIsSelfFeed(pNode) ) + { + Vec_PtrPop(p->vBufs); + continue; + } +//printf( "Propagating buffer %d with input %d and output %d\n", Ivy_ObjFaninId0(pNode), Ivy_ObjFaninId0(Ivy_ObjFanin0(pNode)), pNode->Id ); +//printf( "Latch num %d\n", Ivy_ManLatchNum(p) ); + Ivy_NodeFixBufferFanins( p, pNode, fUpdateLevel ); + if ( nSteps > NodeBeg * LimitFactor ) + { + printf( "Structural hashing is not finished after %d forward latch moves.\n", NodeBeg * LimitFactor ); + printf( "This circuit cannot be forward-retimed completely. Quitting.\n" ); + break; + } + } +// printf( "Number of steps = %d. Nodes beg = %d. Nodes end = %d.\n", nSteps, NodeBeg, Ivy_ManNodeNum(p) ); + return nSteps; +} + +/**Function************************************************************* + + Synopsis [Stops the AIG manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManPrintStats( Ivy_Man_t * p ) +{ + printf( "PI/PO = %d/%d ", Ivy_ManPiNum(p), Ivy_ManPoNum(p) ); + printf( "A = %7d. ", Ivy_ManAndNum(p) ); + printf( "L = %5d. ", Ivy_ManLatchNum(p) ); +// printf( "X = %d. ", Ivy_ManExorNum(p) ); +// printf( "B = %3d. ", Ivy_ManBufNum(p) ); + printf( "MaxID = %7d. ", Ivy_ManObjIdMax(p) ); +// printf( "Cre = %d. ", p->nCreated ); +// printf( "Del = %d. ", p->nDeleted ); + printf( "Lev = %3d. ", Ivy_ManLatchNum(p)? -1 : Ivy_ManLevels(p) ); + printf( "\n" ); +} + +/**Function************************************************************* + + Synopsis [Converts a combinational AIG manager into a sequential one.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManMakeSeq( Ivy_Man_t * p, int nLatches, int * pInits ) +{ + Ivy_Obj_t * pObj, * pLatch; + Ivy_Init_t Init; + int i; + if ( nLatches == 0 ) + return; + assert( nLatches < Ivy_ManPiNum(p) && nLatches < Ivy_ManPoNum(p) ); + assert( Ivy_ManPiNum(p) == Vec_PtrSize(p->vPis) ); + assert( Ivy_ManPoNum(p) == Vec_PtrSize(p->vPos) ); + assert( Vec_PtrSize( p->vBufs ) == 0 ); + // create fanouts + if ( p->fFanout == 0 ) + Ivy_ManStartFanout( p ); + // collect the POs to be converted into latches + for ( i = 0; i < nLatches; i++ ) + { + // get the latch value + Init = pInits? pInits[i] : IVY_INIT_0; + // create latch + pObj = Ivy_ManPo( p, Ivy_ManPoNum(p) - nLatches + i ); + pLatch = Ivy_Latch( p, Ivy_ObjChild0(pObj), Init ); + Ivy_ObjDisconnect( p, pObj ); + // recycle the old PO object + Vec_PtrWriteEntry( p->vObjs, pObj->Id, NULL ); + Ivy_ManRecycleMemory( p, pObj ); + // convert the corresponding PI to a buffer and connect it to the latch + pObj = Ivy_ManPi( p, Ivy_ManPiNum(p) - nLatches + i ); + pObj->Type = IVY_BUF; + Ivy_ObjConnect( p, pObj, pLatch, NULL ); + // save the buffer + Vec_PtrPush( p->vBufs, pObj ); + } + // shrink the arrays + Vec_PtrShrink( p->vPis, Ivy_ManPiNum(p) - nLatches ); + Vec_PtrShrink( p->vPos, Ivy_ManPoNum(p) - nLatches ); + // update the counters of different objects + p->nObjs[IVY_PI] -= nLatches; + p->nObjs[IVY_PO] -= nLatches; + p->nObjs[IVY_BUF] += nLatches; + p->nDeleted -= 2 * nLatches; + // remove dangling nodes + Ivy_ManCleanup(p); + Ivy_ManCleanupSeq(p); +/* + // check for dangling nodes + Ivy_ManForEachObj( p, pObj, i ) + if ( !Ivy_ObjIsPi(pObj) && !Ivy_ObjIsPo(pObj) && !Ivy_ObjIsConst1(pObj) ) + { + assert( Ivy_ObjRefs(pObj) > 0 ); + assert( Ivy_ObjRefs(pObj) == Ivy_ObjFanoutNum(p, pObj) ); + } +*/ + // perform hashing by propagating the buffers + Ivy_ManPropagateBuffers( p, 0 ); + if ( Ivy_ManBufNum(p) ) + printf( "The number of remaining buffers is %d.\n", Ivy_ManBufNum(p) ); + // fix the levels + Ivy_ManResetLevels( p ); + // check the resulting network + if ( !Ivy_ManCheck(p) ) + printf( "Ivy_ManMakeSeq(): The check has failed.\n" ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyMem.c b/src/aig/ivy/ivyMem.c new file mode 100644 index 00000000..2a96857c --- /dev/null +++ b/src/aig/ivy/ivyMem.c @@ -0,0 +1,116 @@ +/**CFile**************************************************************** + + FileName [ivyMem.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Memory management for the AIG nodes.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyMem.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +// memory management +#define IVY_PAGE_SIZE 12 // page size containing 2^IVY_PAGE_SIZE nodes +#define IVY_PAGE_MASK 4095 // page bitmask (2^IVY_PAGE_SIZE)-1 + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Starts the internal memory manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManStartMemory( Ivy_Man_t * p ) +{ + p->vChunks = Vec_PtrAlloc( 128 ); + p->vPages = Vec_PtrAlloc( 128 ); +} + +/**Function************************************************************* + + Synopsis [Stops the internal memory manager.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManStopMemory( Ivy_Man_t * p ) +{ + void * pMemory; + int i; + Vec_PtrForEachEntry( p->vChunks, pMemory, i ) + free( pMemory ); + Vec_PtrFree( p->vChunks ); + Vec_PtrFree( p->vPages ); + p->pListFree = NULL; +} + +/**Function************************************************************* + + Synopsis [Allocates additional memory for the nodes.] + + Description [Allocates IVY_PAGE_SIZE nodes. Aligns memory by 32 bytes. + Records the pointer to the AIG manager in the -1 entry.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManAddMemory( Ivy_Man_t * p ) +{ + char * pMemory; + int i, nBytes; + int EntrySizeMax = 128; + assert( sizeof(Ivy_Obj_t) <= EntrySizeMax ); + assert( p->pListFree == NULL ); +// assert( (Ivy_ManObjNum(p) & IVY_PAGE_MASK) == 0 ); + // allocate new memory page + nBytes = sizeof(Ivy_Obj_t) * (1<<IVY_PAGE_SIZE) + EntrySizeMax; + pMemory = ALLOC( char, nBytes ); + Vec_PtrPush( p->vChunks, pMemory ); + // align memory at the 32-byte boundary + pMemory = pMemory + EntrySizeMax - (((int)pMemory) & (EntrySizeMax-1)); + // remember the manager in the first entry + Vec_PtrPush( p->vPages, pMemory ); + // break the memory down into nodes + p->pListFree = (Ivy_Obj_t *)pMemory; + for ( i = 1; i <= IVY_PAGE_MASK; i++ ) + { + *((char **)pMemory) = pMemory + sizeof(Ivy_Obj_t); + pMemory += sizeof(Ivy_Obj_t); + } + *((char **)pMemory) = NULL; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyMulti.c b/src/aig/ivy/ivyMulti.c new file mode 100644 index 00000000..a7970156 --- /dev/null +++ b/src/aig/ivy/ivyMulti.c @@ -0,0 +1,301 @@ +/**CFile**************************************************************** + + FileName [ivyMulti.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Constructing multi-input AND/EXOR gates.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyMulti.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +#define IVY_EVAL_LIMIT 128 + +typedef struct Ivy_Eva_t_ Ivy_Eva_t; +struct Ivy_Eva_t_ +{ + Ivy_Obj_t * pArg; // the argument node + unsigned Mask; // the mask of covered nodes + int Weight; // the number of covered nodes +}; + +static void Ivy_MultiPrint( Ivy_Man_t * p, Ivy_Eva_t * pEvals, int nLeaves, int nEvals ); +static int Ivy_MultiCover( Ivy_Man_t * p, Ivy_Eva_t * pEvals, int nLeaves, int nEvals, int nLimit, Vec_Ptr_t * vSols ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Constructs a balanced tree while taking sharing into account.] + + Description [Returns 1 if the implementation exists.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_MultiPlus( Ivy_Man_t * p, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, Ivy_Type_t Type, int nLimit, Vec_Ptr_t * vSols ) +{ + static Ivy_Eva_t pEvals[IVY_EVAL_LIMIT]; + Ivy_Eva_t * pEval, * pFan0, * pFan1; + Ivy_Obj_t * pObj, * pTemp; + int nEvals, nEvalsOld, i, k, x, nLeaves; + unsigned uMaskAll; + + // consider special cases + nLeaves = Vec_PtrSize(vLeaves); + assert( nLeaves > 2 ); + if ( nLeaves > 32 || nLeaves + Vec_PtrSize(vCone) > IVY_EVAL_LIMIT ) + return 0; +// if ( nLeaves == 1 ) +// return Vec_PtrEntry( vLeaves, 0 ); +// if ( nLeaves == 2 ) +// return Ivy_Oper( Vec_PtrEntry(vLeaves, 0), Vec_PtrEntry(vLeaves, 1), Type ); + + // set the leaf entries + uMaskAll = ((1 << nLeaves) - 1); + nEvals = 0; + Vec_PtrForEachEntry( vLeaves, pObj, i ) + { + pEval = pEvals + nEvals; + pEval->pArg = pObj; + pEval->Mask = (1 << nEvals); + pEval->Weight = 1; + // mark the leaf + Ivy_Regular(pObj)->TravId = nEvals; + nEvals++; + } + + // propagate masks through the cone + Vec_PtrForEachEntry( vCone, pObj, i ) + { + pObj->TravId = nEvals + i; + if ( Ivy_ObjIsBuf(pObj) ) + pEvals[pObj->TravId].Mask = pEvals[Ivy_ObjFanin0(pObj)->TravId].Mask; + else + pEvals[pObj->TravId].Mask = pEvals[Ivy_ObjFanin0(pObj)->TravId].Mask | pEvals[Ivy_ObjFanin1(pObj)->TravId].Mask; + } + + // set the internal entries + Vec_PtrForEachEntry( vCone, pObj, i ) + { + if ( i == Vec_PtrSize(vCone) - 1 ) + break; + // skip buffers + if ( Ivy_ObjIsBuf(pObj) ) + continue; + // skip nodes without external fanout + if ( Ivy_ObjRefs(pObj) == 0 ) + continue; + assert( !Ivy_IsComplement(pObj) ); + pEval = pEvals + nEvals; + pEval->pArg = pObj; + pEval->Mask = pEvals[pObj->TravId].Mask; + pEval->Weight = Extra_WordCountOnes(pEval->Mask); + // mark the node + pObj->TravId = nEvals; + nEvals++; + } + + // find the available nodes + nEvalsOld = nEvals; + for ( i = 1; i < nEvals; i++ ) + for ( k = 0; k < i; k++ ) + { + pFan0 = pEvals + i; + pFan1 = pEvals + k; + pTemp = Ivy_TableLookup(p, Ivy_ObjCreateGhost(p, pFan0->pArg, pFan1->pArg, Type, IVY_INIT_NONE)); + // skip nodes in the cone + if ( pTemp == NULL || pTemp->fMarkB ) + continue; + // skip the leaves + for ( x = 0; x < nLeaves; x++ ) + if ( pTemp == Ivy_Regular(vLeaves->pArray[x]) ) + break; + if ( x < nLeaves ) + continue; + pEval = pEvals + nEvals; + pEval->pArg = pTemp; + pEval->Mask = pFan0->Mask | pFan1->Mask; + pEval->Weight = (pFan0->Mask & pFan1->Mask) ? Extra_WordCountOnes(pEval->Mask) : pFan0->Weight + pFan1->Weight; + // save the argument + pObj->TravId = nEvals; + nEvals++; + // quit if the number of entries exceeded the limit + if ( nEvals == IVY_EVAL_LIMIT ) + goto Outside; + // quit if we found an acceptable implementation + if ( pEval->Mask == uMaskAll ) + goto Outside; + } +Outside: + +// Ivy_MultiPrint( pEvals, nLeaves, nEvals ); + if ( !Ivy_MultiCover( p, pEvals, nLeaves, nEvals, nLimit, vSols ) ) + return 0; + assert( Vec_PtrSize( vSols ) > 0 ); + return 1; +} + +/**Function************************************************************* + + Synopsis [Computes how many uncovered ones this one covers.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_MultiPrint( Ivy_Man_t * p, Ivy_Eva_t * pEvals, int nLeaves, int nEvals ) +{ + Ivy_Eva_t * pEval; + int i, k; + for ( i = nLeaves; i < nEvals; i++ ) + { + pEval = pEvals + i; + printf( "%2d (id = %5d) : |", i-nLeaves, Ivy_ObjId(pEval->pArg) ); + for ( k = 0; k < nLeaves; k++ ) + { + if ( pEval->Mask & (1 << k) ) + printf( "+" ); + else + printf( " " ); + } + printf( "| Lev = %d.\n", Ivy_ObjLevel(pEval->pArg) ); + } +} + +/**Function************************************************************* + + Synopsis [Computes how many uncovered ones this one covers.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_MultiWeight( unsigned uMask, int nMaskOnes, unsigned uFound ) +{ + assert( uMask & ~uFound ); + if ( (uMask & uFound) == 0 ) + return nMaskOnes; + return Extra_WordCountOnes( uMask & ~uFound ); +} + +/**Function************************************************************* + + Synopsis [Finds the cover.] + + Description [Returns 1 if the cover is found.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_MultiCover( Ivy_Man_t * p, Ivy_Eva_t * pEvals, int nLeaves, int nEvals, int nLimit, Vec_Ptr_t * vSols ) +{ + int fVerbose = 0; + Ivy_Eva_t * pEval, * pEvalBest; + unsigned uMaskAll, uFound, uTemp; + int i, k, BestK, WeightBest, WeightCur, LevelBest, LevelCur; + uMaskAll = (nLeaves == 32)? (~(unsigned)0) : ((1 << nLeaves) - 1); + uFound = 0; + // solve the covering problem + if ( fVerbose ) + printf( "Solution: " ); + Vec_PtrClear( vSols ); + for ( i = 0; i < nLimit; i++ ) + { + BestK = -1; + for ( k = nEvals - 1; k >= 0; k-- ) + { + pEval = pEvals + k; + if ( (pEval->Mask & ~uFound) == 0 ) + continue; + if ( BestK == -1 ) + { + BestK = k; + pEvalBest = pEval; + WeightBest = Ivy_MultiWeight( pEvalBest->Mask, pEvalBest->Weight, uFound ); + LevelBest = Ivy_ObjLevel( Ivy_Regular(pEvalBest->pArg) ); + continue; + } + // compare BestK and the new one (k) + WeightCur = Ivy_MultiWeight( pEval->Mask, pEval->Weight, uFound ); + LevelCur = Ivy_ObjLevel( Ivy_Regular(pEval->pArg) ); + if ( WeightBest < WeightCur || + (WeightBest == WeightCur && LevelBest > LevelCur) ) + { + BestK = k; + pEvalBest = pEval; + WeightBest = WeightCur; + LevelBest = LevelCur; + } + } + assert( BestK != -1 ); + // if the cost is only 1, take the leaf + if ( WeightBest == 1 && BestK >= nLeaves ) + { + uTemp = (pEvalBest->Mask & ~uFound); + for ( k = 0; k < nLeaves; k++ ) + if ( uTemp & (1 << k) ) + break; + assert( k < nLeaves ); + BestK = k; + pEvalBest = pEvals + BestK; + } + if ( fVerbose ) + { + if ( BestK < nLeaves ) + printf( "L(%d) ", BestK ); + else + printf( "%d ", BestK - nLeaves ); + } + // update the found set + Vec_PtrPush( vSols, pEvalBest->pArg ); + uFound |= pEvalBest->Mask; + if ( uFound == uMaskAll ) + break; + } + if ( uFound == uMaskAll ) + { + if ( fVerbose ) + printf( " Found \n\n" ); + return 1; + } + else + { + if ( fVerbose ) + printf( " Not found \n\n" ); + return 0; + } +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyMulti8.c b/src/aig/ivy/ivyMulti8.c new file mode 100644 index 00000000..059d1500 --- /dev/null +++ b/src/aig/ivy/ivyMulti8.c @@ -0,0 +1,427 @@ +/**CFile**************************************************************** + + FileName [ivyMulti.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Constructing multi-input AND/EXOR gates.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyMulti.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +typedef struct Ivy_Eval_t_ Ivy_Eval_t; +struct Ivy_Eval_t_ +{ + unsigned Mask : 5; // the mask of covered nodes + unsigned Weight : 3; // the number of covered nodes + unsigned Cost : 4; // the number of overlapping nodes + unsigned Level : 12; // the level of this node + unsigned Fan0 : 4; // the first fanin + unsigned Fan1 : 4; // the second fanin +}; + +static Ivy_Obj_t * Ivy_MultiBuild_rec( Ivy_Eval_t * pEvals, int iNum, Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ); +static void Ivy_MultiSort( Ivy_Obj_t ** pArgs, int nArgs ); +static int Ivy_MultiPushUniqueOrderByLevel( Ivy_Obj_t ** pArray, int nArgs, Ivy_Obj_t * pNode ); +static Ivy_Obj_t * Ivy_MultiEval( Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ); + + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Constructs the well-balanced tree of gates.] + + Description [Disregards levels and possible logic sharing.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Multi_rec( Ivy_Obj_t ** ppObjs, int nObjs, Ivy_Type_t Type ) +{ + Ivy_Obj_t * pObj1, * pObj2; + if ( nObjs == 1 ) + return ppObjs[0]; + pObj1 = Ivy_Multi_rec( ppObjs, nObjs/2, Type ); + pObj2 = Ivy_Multi_rec( ppObjs + nObjs/2, nObjs - nObjs/2, Type ); + return Ivy_Oper( pObj1, pObj2, Type ); +} + +/**Function************************************************************* + + Synopsis [Constructs a balanced tree while taking sharing into account.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Multi( Ivy_Obj_t ** pArgsInit, int nArgs, Ivy_Type_t Type ) +{ + static char NumBits[32] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5}; + static Ivy_Eval_t pEvals[15+15*14/2]; + static Ivy_Obj_t * pArgs[16]; + Ivy_Eval_t * pEva, * pEvaBest; + int nArgsNew, nEvals, i, k; + Ivy_Obj_t * pTemp; + + // consider the case of one argument + assert( nArgs > 0 ); + if ( nArgs == 1 ) + return pArgsInit[0]; + // consider the case of two arguments + if ( nArgs == 2 ) + return Ivy_Oper( pArgsInit[0], pArgsInit[1], Type ); + +//Ivy_MultiEval( pArgsInit, nArgs, Type ); printf( "\n" ); + + // set the initial ones + for ( i = 0; i < nArgs; i++ ) + { + pArgs[i] = pArgsInit[i]; + pEva = pEvals + i; + pEva->Mask = (1 << i); + pEva->Weight = 1; + pEva->Cost = 0; + pEva->Level = Ivy_Regular(pArgs[i])->Level; + pEva->Fan0 = 0; + pEva->Fan1 = 0; + } + + // find the available nodes + pEvaBest = pEvals; + nArgsNew = nArgs; + for ( i = 1; i < nArgsNew; i++ ) + for ( k = 0; k < i; k++ ) + if ( pTemp = Ivy_TableLookup(Ivy_ObjCreateGhost(pArgs[k], pArgs[i], Type, IVY_INIT_NONE)) ) + { + pEva = pEvals + nArgsNew; + pEva->Mask = pEvals[k].Mask | pEvals[i].Mask; + pEva->Weight = NumBits[pEva->Mask]; + pEva->Cost = pEvals[k].Cost + pEvals[i].Cost + NumBits[pEvals[k].Mask & pEvals[i].Mask]; + pEva->Level = 1 + IVY_MAX(pEvals[k].Level, pEvals[i].Level); + pEva->Fan0 = k; + pEva->Fan1 = i; +// assert( pEva->Level == (unsigned)Ivy_ObjLevel(pTemp) ); + // compare + if ( pEvaBest->Weight < pEva->Weight || + pEvaBest->Weight == pEva->Weight && pEvaBest->Cost > pEva->Cost || + pEvaBest->Weight == pEva->Weight && pEvaBest->Cost == pEva->Cost && pEvaBest->Level > pEva->Level ) + pEvaBest = pEva; + // save the argument + pArgs[nArgsNew++] = pTemp; + if ( nArgsNew == 15 ) + goto Outside; + } +Outside: + +// printf( "Best = %d.\n", pEvaBest - pEvals ); + + // the case of no common nodes + if ( nArgsNew == nArgs ) + { + Ivy_MultiSort( pArgs, nArgs ); + return Ivy_MultiBalance_rec( pArgs, nArgs, Type ); + } + // the case of one common node + if ( nArgsNew == nArgs + 1 ) + { + assert( pEvaBest - pEvals == nArgs ); + k = 0; + for ( i = 0; i < nArgs; i++ ) + if ( i != (int)pEvaBest->Fan0 && i != (int)pEvaBest->Fan1 ) + pArgs[k++] = pArgs[i]; + pArgs[k++] = pArgs[nArgs]; + assert( k == nArgs - 1 ); + nArgs = k; + Ivy_MultiSort( pArgs, nArgs ); + return Ivy_MultiBalance_rec( pArgs, nArgs, Type ); + } + // the case when there is a node that covers everything + if ( (int)pEvaBest->Mask == ((1 << nArgs) - 1) ) + return Ivy_MultiBuild_rec( pEvals, pEvaBest - pEvals, pArgs, nArgsNew, Type ); + + // evaluate node pairs + nEvals = nArgsNew; + for ( i = 1; i < nArgsNew; i++ ) + for ( k = 0; k < i; k++ ) + { + pEva = pEvals + nEvals; + pEva->Mask = pEvals[k].Mask | pEvals[i].Mask; + pEva->Weight = NumBits[pEva->Mask]; + pEva->Cost = pEvals[k].Cost + pEvals[i].Cost + NumBits[pEvals[k].Mask & pEvals[i].Mask]; + pEva->Level = 1 + IVY_MAX(pEvals[k].Level, pEvals[i].Level); + pEva->Fan0 = k; + pEva->Fan1 = i; + // compare + if ( pEvaBest->Weight < pEva->Weight || + pEvaBest->Weight == pEva->Weight && pEvaBest->Cost > pEva->Cost || + pEvaBest->Weight == pEva->Weight && pEvaBest->Cost == pEva->Cost && pEvaBest->Level > pEva->Level ) + pEvaBest = pEva; + // save the argument + nEvals++; + } + assert( pEvaBest - pEvals >= nArgsNew ); + +// printf( "Used (%d, %d).\n", pEvaBest->Fan0, pEvaBest->Fan1 ); + + // get the best implementation + pTemp = Ivy_MultiBuild_rec( pEvals, pEvaBest - pEvals, pArgs, nArgsNew, Type ); + + // collect those not covered by EvaBest + k = 0; + for ( i = 0; i < nArgs; i++ ) + if ( (pEvaBest->Mask & (1 << i)) == 0 ) + pArgs[k++] = pArgs[i]; + pArgs[k++] = pTemp; + assert( k == nArgs - (int)pEvaBest->Weight + 1 ); + nArgs = k; + Ivy_MultiSort( pArgs, nArgs ); + return Ivy_MultiBalance_rec( pArgs, nArgs, Type ); +} + +/**Function************************************************************* + + Synopsis [Implements multi-input AND/EXOR operation.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_MultiBuild_rec( Ivy_Eval_t * pEvals, int iNum, Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ) +{ + Ivy_Obj_t * pNode0, * pNode1; + if ( iNum < nArgs ) + return pArgs[iNum]; + pNode0 = Ivy_MultiBuild_rec( pEvals, pEvals[iNum].Fan0, pArgs, nArgs, Type ); + pNode1 = Ivy_MultiBuild_rec( pEvals, pEvals[iNum].Fan1, pArgs, nArgs, Type ); + return Ivy_Oper( pNode0, pNode1, Type ); +} + +/**Function************************************************************* + + Synopsis [Selection-sorts the nodes in the decreasing over of level.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_MultiSort( Ivy_Obj_t ** pArgs, int nArgs ) +{ + Ivy_Obj_t * pTemp; + int i, j, iBest; + + for ( i = 0; i < nArgs-1; i++ ) + { + iBest = i; + for ( j = i+1; j < nArgs; j++ ) + if ( Ivy_Regular(pArgs[j])->Level > Ivy_Regular(pArgs[iBest])->Level ) + iBest = j; + pTemp = pArgs[i]; + pArgs[i] = pArgs[iBest]; + pArgs[iBest] = pTemp; + } +} + +/**Function************************************************************* + + Synopsis [Inserts a new node in the order by levels.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_MultiPushUniqueOrderByLevel( Ivy_Obj_t ** pArray, int nArgs, Ivy_Obj_t * pNode ) +{ + Ivy_Obj_t * pNode1, * pNode2; + int i; + // try to find the node in the array + for ( i = 0; i < nArgs; i++ ) + if ( pArray[i] == pNode ) + return nArgs; + // put the node last + pArray[nArgs++] = pNode; + // find the place to put the new node + for ( i = nArgs-1; i > 0; i-- ) + { + pNode1 = pArray[i ]; + pNode2 = pArray[i-1]; + if ( Ivy_Regular(pNode1)->Level <= Ivy_Regular(pNode2)->Level ) + break; + pArray[i ] = pNode2; + pArray[i-1] = pNode1; + } + return nArgs; +} + +/**Function************************************************************* + + Synopsis [Balances the array recursively.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_MultiBalance_rec( Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ) +{ + Ivy_Obj_t * pNodeNew; + // consider the case of one argument + assert( nArgs > 0 ); + if ( nArgs == 1 ) + return pArgs[0]; + // consider the case of two arguments + if ( nArgs == 2 ) + return Ivy_Oper( pArgs[0], pArgs[1], Type ); + // get the last two nodes + pNodeNew = Ivy_Oper( pArgs[nArgs-1], pArgs[nArgs-2], Type ); + // add the new node + nArgs = Ivy_MultiPushUniqueOrderByLevel( pArgs, nArgs - 2, pNodeNew ); + return Ivy_MultiBalance_rec( pArgs, nArgs, Type ); +} + +/**Function************************************************************* + + Synopsis [Implements multi-input AND/EXOR operation.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_MultiEval( Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ) +{ + Ivy_Obj_t * pTemp; + int i, k; + int nArgsOld = nArgs; + for ( i = 0; i < nArgs; i++ ) + printf( "%d[%d] ", i, Ivy_Regular(pArgs[i])->Level ); + for ( i = 1; i < nArgs; i++ ) + for ( k = 0; k < i; k++ ) + { + pTemp = Ivy_TableLookup(Ivy_ObjCreateGhost(pArgs[k], pArgs[i], Type, IVY_INIT_NONE)); + if ( pTemp != NULL ) + { + printf( "%d[%d]=(%d,%d) ", nArgs, Ivy_Regular(pTemp)->Level, k, i ); + pArgs[nArgs++] = pTemp; + } + } + printf( " ((%d/%d)) ", nArgsOld, nArgs-nArgsOld ); + return NULL; +} + + + +/**Function************************************************************* + + Synopsis [Old code.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Multi1( Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ) +{ + Ivy_Obj_t * pArgsRef[5], * pTemp; + int i, k, m, nArgsNew, Counter = 0; + + +//Ivy_MultiEval( pArgs, nArgs, Type ); printf( "\n" ); + + + assert( Type == IVY_AND || Type == IVY_EXOR ); + assert( nArgs > 0 ); + if ( nArgs == 1 ) + return pArgs[0]; + + // find the nodes with more than one fanout + nArgsNew = 0; + for ( i = 0; i < nArgs; i++ ) + if ( Ivy_ObjRefs( Ivy_Regular(pArgs[i]) ) > 0 ) + pArgsRef[nArgsNew++] = pArgs[i]; + + // go through pairs + if ( nArgsNew >= 2 ) + for ( i = 0; i < nArgsNew; i++ ) + for ( k = i + 1; k < nArgsNew; k++ ) + if ( pTemp = Ivy_TableLookup(Ivy_ObjCreateGhost(pArgsRef[i], pArgsRef[k], Type, IVY_INIT_NONE)) ) + Counter++; +// printf( "%d", Counter ); + + // go through pairs + if ( nArgsNew >= 2 ) + for ( i = 0; i < nArgsNew; i++ ) + for ( k = i + 1; k < nArgsNew; k++ ) + if ( pTemp = Ivy_TableLookup(Ivy_ObjCreateGhost(pArgsRef[i], pArgsRef[k], Type, IVY_INIT_NONE)) ) + { + nArgsNew = 0; + for ( m = 0; m < nArgs; m++ ) + if ( pArgs[m] != pArgsRef[i] && pArgs[m] != pArgsRef[k] ) + pArgs[nArgsNew++] = pArgs[m]; + pArgs[nArgsNew++] = pTemp; + assert( nArgsNew == nArgs - 1 ); + return Ivy_Multi1( pArgs, nArgsNew, Type ); + } + return Ivy_Multi_rec( pArgs, nArgs, Type ); +} + +/**Function************************************************************* + + Synopsis [Old code.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Multi2( Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ) +{ + assert( Type == IVY_AND || Type == IVY_EXOR ); + assert( nArgs > 0 ); + return Ivy_Multi_rec( pArgs, nArgs, Type ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyObj.c b/src/aig/ivy/ivyObj.c new file mode 100644 index 00000000..59dda19c --- /dev/null +++ b/src/aig/ivy/ivyObj.c @@ -0,0 +1,476 @@ +/**CFile**************************************************************** + + FileName [ivyObj.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Adding/removing objects.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyObj.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Create the new node assuming it does not exist.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_ObjCreatePi( Ivy_Man_t * p ) +{ + return Ivy_ObjCreate( p, Ivy_ObjCreateGhost(p, NULL, NULL, IVY_PI, IVY_INIT_NONE) ); +} + +/**Function************************************************************* + + Synopsis [Create the new node assuming it does not exist.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_ObjCreatePo( Ivy_Man_t * p, Ivy_Obj_t * pDriver ) +{ + return Ivy_ObjCreate( p, Ivy_ObjCreateGhost(p, pDriver, NULL, IVY_PO, IVY_INIT_NONE) ); +} + +/**Function************************************************************* + + Synopsis [Create the new node assuming it does not exist.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_ObjCreate( Ivy_Man_t * p, Ivy_Obj_t * pGhost ) +{ + Ivy_Obj_t * pObj; + assert( !Ivy_IsComplement(pGhost) ); + assert( Ivy_ObjIsGhost(pGhost) ); + assert( Ivy_TableLookup(p, pGhost) == NULL ); + // get memory for the new object + pObj = Ivy_ManFetchMemory( p ); + assert( Ivy_ObjIsNone(pObj) ); + pObj->Id = Vec_PtrSize(p->vObjs); + Vec_PtrPush( p->vObjs, pObj ); + // add basic info (fanins, compls, type, init) + pObj->Type = pGhost->Type; + pObj->Init = pGhost->Init; + // add connections + Ivy_ObjConnect( p, pObj, pGhost->pFanin0, pGhost->pFanin1 ); + // compute level + if ( Ivy_ObjIsNode(pObj) ) + pObj->Level = Ivy_ObjLevelNew(pObj); + else if ( Ivy_ObjIsLatch(pObj) ) + pObj->Level = 0; + else if ( Ivy_ObjIsOneFanin(pObj) ) + pObj->Level = Ivy_ObjFanin0(pObj)->Level; + else if ( !Ivy_ObjIsPi(pObj) ) + assert( 0 ); + // create phase + if ( Ivy_ObjIsNode(pObj) ) + pObj->fPhase = Ivy_ObjFaninPhase(Ivy_ObjChild0(pObj)) & Ivy_ObjFaninPhase(Ivy_ObjChild1(pObj)); + else if ( Ivy_ObjIsOneFanin(pObj) ) + pObj->fPhase = Ivy_ObjFaninPhase(Ivy_ObjChild0(pObj)); + // set the fail TFO flag + if ( Ivy_ObjIsNode(pObj) ) + pObj->fFailTfo = Ivy_ObjFanin0(pObj)->fFailTfo | Ivy_ObjFanin1(pObj)->fFailTfo; + // mark the fanins in a special way if the node is EXOR + if ( Ivy_ObjIsExor(pObj) ) + { + Ivy_ObjFanin0(pObj)->fExFan = 1; + Ivy_ObjFanin1(pObj)->fExFan = 1; + } + // add PIs/POs to the arrays + if ( Ivy_ObjIsPi(pObj) ) + Vec_PtrPush( p->vPis, pObj ); + else if ( Ivy_ObjIsPo(pObj) ) + Vec_PtrPush( p->vPos, pObj ); +// else if ( Ivy_ObjIsBuf(pObj) ) +// Vec_PtrPush( p->vBufs, pObj ); + if ( p->vRequired && Vec_IntSize(p->vRequired) <= pObj->Id ) + Vec_IntFillExtra( p->vRequired, 2 * Vec_IntSize(p->vRequired), 1000000 ); + // update node counters of the manager + p->nObjs[Ivy_ObjType(pObj)]++; + p->nCreated++; + +// printf( "Adding %sAIG node: ", p->pHaig==NULL? "H":" " ); +// Ivy_ObjPrintVerbose( p, pObj, p->pHaig==NULL ); +// printf( "\n" ); + + // if HAIG is defined, create a corresponding node + if ( p->pHaig ) + Ivy_ManHaigCreateObj( p, pObj ); + return pObj; +} + +/**Function************************************************************* + + Synopsis [Connect the object to the fanin.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjConnect( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Obj_t * pFan0, Ivy_Obj_t * pFan1 ) +{ + assert( !Ivy_IsComplement(pObj) ); + assert( Ivy_ObjIsPi(pObj) || Ivy_ObjIsOneFanin(pObj) || pFan1 != NULL ); + // add the first fanin + pObj->pFanin0 = pFan0; + pObj->pFanin1 = pFan1; + // increment references of the fanins and add their fanouts + if ( Ivy_ObjFanin0(pObj) != NULL ) + { + Ivy_ObjRefsInc( Ivy_ObjFanin0(pObj) ); + if ( p->fFanout ) + Ivy_ObjAddFanout( p, Ivy_ObjFanin0(pObj), pObj ); + } + if ( Ivy_ObjFanin1(pObj) != NULL ) + { + Ivy_ObjRefsInc( Ivy_ObjFanin1(pObj) ); + if ( p->fFanout ) + Ivy_ObjAddFanout( p, Ivy_ObjFanin1(pObj), pObj ); + } + // add the node to the structural hash table + Ivy_TableInsert( p, pObj ); +} + +/**Function************************************************************* + + Synopsis [Connect the object to the fanin.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjDisconnect( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + assert( !Ivy_IsComplement(pObj) ); + assert( Ivy_ObjIsPi(pObj) || Ivy_ObjIsOneFanin(pObj) || Ivy_ObjFanin1(pObj) != NULL ); + // remove connections + if ( pObj->pFanin0 != NULL ) + { + Ivy_ObjRefsDec(Ivy_ObjFanin0(pObj)); + if ( p->fFanout ) + Ivy_ObjDeleteFanout( p, Ivy_ObjFanin0(pObj), pObj ); + } + if ( pObj->pFanin1 != NULL ) + { + Ivy_ObjRefsDec(Ivy_ObjFanin1(pObj)); + if ( p->fFanout ) + Ivy_ObjDeleteFanout( p, Ivy_ObjFanin1(pObj), pObj ); + } + assert( pObj->pNextFan0 == NULL ); + assert( pObj->pNextFan1 == NULL ); + assert( pObj->pPrevFan0 == NULL ); + assert( pObj->pPrevFan1 == NULL ); + // remove the node from the structural hash table + Ivy_TableDelete( p, pObj ); + // add the first fanin + pObj->pFanin0 = NULL; + pObj->pFanin1 = NULL; +} + +/**Function************************************************************* + + Synopsis [Replaces the first fanin of the node by the new fanin.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjPatchFanin0( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Obj_t * pFaninNew ) +{ + Ivy_Obj_t * pFaninOld; + assert( !Ivy_IsComplement(pObj) ); + pFaninOld = Ivy_ObjFanin0(pObj); + // decrement ref and remove fanout + Ivy_ObjRefsDec( pFaninOld ); + if ( p->fFanout ) + Ivy_ObjDeleteFanout( p, pFaninOld, pObj ); + // update the fanin + pObj->pFanin0 = pFaninNew; + // increment ref and add fanout + Ivy_ObjRefsInc( Ivy_Regular(pFaninNew) ); + if ( p->fFanout ) + Ivy_ObjAddFanout( p, Ivy_Regular(pFaninNew), pObj ); + // get rid of old fanin + if ( !Ivy_ObjIsPi(pFaninOld) && !Ivy_ObjIsConst1(pFaninOld) && Ivy_ObjRefs(pFaninOld) == 0 ) + Ivy_ObjDelete_rec( p, pFaninOld, 1 ); +} + +/**Function************************************************************* + + Synopsis [Deletes the node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjDelete( Ivy_Man_t * p, Ivy_Obj_t * pObj, int fFreeTop ) +{ + assert( !Ivy_IsComplement(pObj) ); + assert( Ivy_ObjRefs(pObj) == 0 || !fFreeTop ); + // update node counters of the manager + p->nObjs[pObj->Type]--; + p->nDeleted++; + // remove connections + Ivy_ObjDisconnect( p, pObj ); + // remove PIs/POs from the arrays + if ( Ivy_ObjIsPi(pObj) ) + Vec_PtrRemove( p->vPis, pObj ); + else if ( Ivy_ObjIsPo(pObj) ) + Vec_PtrRemove( p->vPos, pObj ); + else if ( p->fFanout && Ivy_ObjIsBuf(pObj) ) + Vec_PtrRemove( p->vBufs, pObj ); + // clean and recycle the entry + if ( fFreeTop ) + { + // free the node + Vec_PtrWriteEntry( p->vObjs, pObj->Id, NULL ); + Ivy_ManRecycleMemory( p, pObj ); + } + else + { + int nRefsOld = pObj->nRefs; + Ivy_Obj_t * pFanout = pObj->pFanout; + Ivy_ObjClean( pObj ); + pObj->pFanout = pFanout; + pObj->nRefs = nRefsOld; + } +} + +/**Function************************************************************* + + Synopsis [Deletes the MFFC of the node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjDelete_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj, int fFreeTop ) +{ + Ivy_Obj_t * pFanin0, * pFanin1; + assert( !Ivy_IsComplement(pObj) ); + assert( !Ivy_ObjIsNone(pObj) ); + if ( Ivy_ObjIsConst1(pObj) || Ivy_ObjIsPi(pObj) ) + return; + pFanin0 = Ivy_ObjFanin0(pObj); + pFanin1 = Ivy_ObjFanin1(pObj); + Ivy_ObjDelete( p, pObj, fFreeTop ); + if ( pFanin0 && !Ivy_ObjIsNone(pFanin0) && Ivy_ObjRefs(pFanin0) == 0 ) + Ivy_ObjDelete_rec( p, pFanin0, 1 ); + if ( pFanin1 && !Ivy_ObjIsNone(pFanin1) && Ivy_ObjRefs(pFanin1) == 0 ) + Ivy_ObjDelete_rec( p, pFanin1, 1 ); +} + +/**Function************************************************************* + + Synopsis [Replaces one object by another.] + + Description [Both objects are currently in the manager. The new object + (pObjNew) should be used instead of the old object (pObjOld). If the + new object is complemented or used, the buffer is added.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjReplace( Ivy_Man_t * p, Ivy_Obj_t * pObjOld, Ivy_Obj_t * pObjNew, int fDeleteOld, int fFreeTop, int fUpdateLevel ) +{ + int nRefsOld;//, clk; + // the object to be replaced cannot be complemented + assert( !Ivy_IsComplement(pObjOld) ); + // the object to be replaced cannot be a terminal + assert( Ivy_ObjIsNone(pObjOld) || !Ivy_ObjIsPi(pObjOld) ); + // the object to be used cannot be a PO or assert + assert( !Ivy_ObjIsBuf(Ivy_Regular(pObjNew)) ); + // the object cannot be the same + assert( pObjOld != Ivy_Regular(pObjNew) ); +//printf( "Replacing %d by %d.\n", Ivy_Regular(pObjOld)->Id, Ivy_Regular(pObjNew)->Id ); + + // if HAIG is defined, create the choice node + if ( p->pHaig ) + { +// if ( pObjOld->Id == 31 ) +// { +// Ivy_ManShow( p, 0 ); +// Ivy_ManShow( p->pHaig, 1 ); +// } + Ivy_ManHaigCreateChoice( p, pObjOld, pObjNew ); + } + // if the new object is complemented or already used, add the buffer + if ( Ivy_IsComplement(pObjNew) || Ivy_ObjIsLatch(pObjNew) || Ivy_ObjRefs(pObjNew) > 0 || Ivy_ObjIsPi(pObjNew) || Ivy_ObjIsConst1(pObjNew) ) + pObjNew = Ivy_ObjCreate( p, Ivy_ObjCreateGhost(p, pObjNew, NULL, IVY_BUF, IVY_INIT_NONE) ); + assert( !Ivy_IsComplement(pObjNew) ); + if ( fUpdateLevel ) + { +//clk = clock(); + // if the new node's arrival time is different, recursively update arrival time of the fanouts + if ( p->fFanout && !Ivy_ObjIsBuf(pObjNew) && pObjOld->Level != pObjNew->Level ) + { + assert( Ivy_ObjIsNode(pObjOld) ); + pObjOld->Level = pObjNew->Level; + Ivy_ObjUpdateLevel_rec( p, pObjOld ); + } +//p->time1 += clock() - clk; + // if the new node's required time has changed, recursively update required time of the fanins +//clk = clock(); + if ( p->vRequired ) + { + int ReqNew = Vec_IntEntry(p->vRequired, pObjOld->Id); + if ( ReqNew < Vec_IntEntry(p->vRequired, pObjNew->Id) ) + { + Vec_IntWriteEntry( p->vRequired, pObjNew->Id, ReqNew ); + Ivy_ObjUpdateLevelR_rec( p, pObjNew, ReqNew ); + } + } +//p->time2 += clock() - clk; + } + // delete the old object + if ( fDeleteOld ) + Ivy_ObjDelete_rec( p, pObjOld, fFreeTop ); + // make sure object is not pointing to itself + assert( Ivy_ObjFanin0(pObjNew) == NULL || pObjOld != Ivy_ObjFanin0(pObjNew) ); + assert( Ivy_ObjFanin1(pObjNew) == NULL || pObjOld != Ivy_ObjFanin1(pObjNew) ); + // make sure the old node has no fanin fanout pointers + if ( p->fFanout ) + { + assert( pObjOld->pFanout != NULL ); + assert( pObjNew->pFanout == NULL ); + pObjNew->pFanout = pObjOld->pFanout; + } + // transfer the old object + assert( Ivy_ObjRefs(pObjNew) == 0 ); + nRefsOld = pObjOld->nRefs; + Ivy_ObjOverwrite( pObjOld, pObjNew ); + pObjOld->nRefs = nRefsOld; + // patch the fanout of the fanins + if ( p->fFanout ) + { + Ivy_ObjPatchFanout( p, Ivy_ObjFanin0(pObjOld), pObjNew, pObjOld ); + if ( Ivy_ObjFanin1(pObjOld) ) + Ivy_ObjPatchFanout( p, Ivy_ObjFanin1(pObjOld), pObjNew, pObjOld ); + } + // update the hash table + Ivy_TableUpdate( p, pObjNew, pObjOld->Id ); + // recycle the object that was taken over by pObjOld + Vec_PtrWriteEntry( p->vObjs, pObjNew->Id, NULL ); + Ivy_ManRecycleMemory( p, pObjNew ); + // if the new node is the buffer propagate it + if ( p->fFanout && Ivy_ObjIsBuf(pObjOld) ) + Vec_PtrPush( p->vBufs, pObjOld ); +// Ivy_ManCheckFanouts( p ); +// printf( "\n" ); +/* + if ( p->pHaig ) + { + int x; + Ivy_ManShow( p, 0, NULL ); + Ivy_ManShow( p->pHaig, 1, NULL ); + x = 0; + } +*/ +// if ( Ivy_ManCheckFanoutNums(p) ) +// { +// int x = 0; +// } +} + +/**Function************************************************************* + + Synopsis [Fixes buffer fanins.] + + Description [This situation happens because NodeReplace is a lazy + procedure, which does not propagate the change to the fanouts but + instead records the change in the form of a buf/inv node.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_NodeFixBufferFanins( Ivy_Man_t * p, Ivy_Obj_t * pNode, int fUpdateLevel ) +{ + Ivy_Obj_t * pFanReal0, * pFanReal1, * pResult; + if ( Ivy_ObjIsPo(pNode) ) + { + if ( !Ivy_ObjIsBuf(Ivy_ObjFanin0(pNode)) ) + return; + pFanReal0 = Ivy_ObjReal( Ivy_ObjChild0(pNode) ); + Ivy_ObjPatchFanin0( p, pNode, pFanReal0 ); +// Ivy_ManCheckFanouts( p ); + return; + } + if ( !Ivy_ObjIsBuf(Ivy_ObjFanin0(pNode)) && !Ivy_ObjIsBuf(Ivy_ObjFanin1(pNode)) ) + return; + // get the real fanins + pFanReal0 = Ivy_ObjReal( Ivy_ObjChild0(pNode) ); + pFanReal1 = Ivy_ObjReal( Ivy_ObjChild1(pNode) ); + // get the new node + if ( Ivy_ObjIsNode(pNode) ) + pResult = Ivy_Oper( p, pFanReal0, pFanReal1, Ivy_ObjType(pNode) ); + else if ( Ivy_ObjIsLatch(pNode) ) + pResult = Ivy_Latch( p, pFanReal0, Ivy_ObjInit(pNode) ); + else + assert( 0 ); + +//printf( "===== Replacing %d by %d.\n", pNode->Id, pResult->Id ); +//Ivy_ObjPrintVerbose( p, pNode, 0 ); printf( "\n" ); +//Ivy_ObjPrintVerbose( p, pResult, 0 ); printf( "\n" ); + + // perform the replacement + Ivy_ObjReplace( p, pNode, pResult, 1, 0, fUpdateLevel ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyOper.c b/src/aig/ivy/ivyOper.c new file mode 100644 index 00000000..8115ce4f --- /dev/null +++ b/src/aig/ivy/ivyOper.c @@ -0,0 +1,293 @@ +/**CFile**************************************************************** + + FileName [ivyOper.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [AIG operations.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyOper.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +// procedure to detect an EXOR gate +static inline int Ivy_ObjIsExorType( Ivy_Obj_t * p0, Ivy_Obj_t * p1, Ivy_Obj_t ** ppFan0, Ivy_Obj_t ** ppFan1 ) +{ + if ( !Ivy_IsComplement(p0) || !Ivy_IsComplement(p1) ) + return 0; + p0 = Ivy_Regular(p0); + p1 = Ivy_Regular(p1); + if ( !Ivy_ObjIsAnd(p0) || !Ivy_ObjIsAnd(p1) ) + return 0; + if ( Ivy_ObjFanin0(p0) != Ivy_ObjFanin0(p1) || Ivy_ObjFanin1(p0) != Ivy_ObjFanin1(p1) ) + return 0; + if ( Ivy_ObjFaninC0(p0) == Ivy_ObjFaninC0(p1) || Ivy_ObjFaninC1(p0) == Ivy_ObjFaninC1(p1) ) + return 0; + *ppFan0 = Ivy_ObjChild0(p0); + *ppFan1 = Ivy_ObjChild1(p0); + return 1; +} + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Perform one operation.] + + Description [The argument nodes can be complemented.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Oper( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1, Ivy_Type_t Type ) +{ + if ( Type == IVY_AND ) + return Ivy_And( p, p0, p1 ); + if ( Type == IVY_EXOR ) + return Ivy_Exor( p, p0, p1 ); + assert( 0 ); + return NULL; +} + +/**Function************************************************************* + + Synopsis [Performs canonicization step.] + + Description [The argument nodes can be complemented.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_And( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 ) +{ +// Ivy_Obj_t * pFan0, * pFan1; + // check trivial cases + if ( p0 == p1 ) + return p0; + if ( p0 == Ivy_Not(p1) ) + return Ivy_Not(p->pConst1); + if ( Ivy_Regular(p0) == p->pConst1 ) + return p0 == p->pConst1 ? p1 : Ivy_Not(p->pConst1); + if ( Ivy_Regular(p1) == p->pConst1 ) + return p1 == p->pConst1 ? p0 : Ivy_Not(p->pConst1); + // check if it can be an EXOR gate +// if ( Ivy_ObjIsExorType( p0, p1, &pFan0, &pFan1 ) ) +// return Ivy_CanonExor( pFan0, pFan1 ); + return Ivy_CanonAnd( p, p0, p1 ); +} + +/**Function************************************************************* + + Synopsis [Performs canonicization step.] + + Description [The argument nodes can be complemented.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Exor( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 ) +{ +/* + // check trivial cases + if ( p0 == p1 ) + return Ivy_Not(p->pConst1); + if ( p0 == Ivy_Not(p1) ) + return p->pConst1; + if ( Ivy_Regular(p0) == p->pConst1 ) + return Ivy_NotCond( p1, p0 == p->pConst1 ); + if ( Ivy_Regular(p1) == p->pConst1 ) + return Ivy_NotCond( p0, p1 == p->pConst1 ); + // check the table + return Ivy_CanonExor( p, p0, p1 ); +*/ + return Ivy_Or( p, Ivy_And(p, p0, Ivy_Not(p1)), Ivy_And(p, Ivy_Not(p0), p1) ); +} + +/**Function************************************************************* + + Synopsis [Implements Boolean OR.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Or( Ivy_Man_t * p, Ivy_Obj_t * p0, Ivy_Obj_t * p1 ) +{ + return Ivy_Not( Ivy_And( p, Ivy_Not(p0), Ivy_Not(p1) ) ); +} + +/**Function************************************************************* + + Synopsis [Implements ITE operation.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Mux( Ivy_Man_t * p, Ivy_Obj_t * pC, Ivy_Obj_t * p1, Ivy_Obj_t * p0 ) +{ + Ivy_Obj_t * pTempA1, * pTempA2, * pTempB1, * pTempB2, * pTemp; + int Count0, Count1; + // consider trivial cases + if ( p0 == Ivy_Not(p1) ) + return Ivy_Exor( p, pC, p0 ); + // other cases can be added + // implement the first MUX (F = C * x1 + C' * x0) + pTempA1 = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, pC, p1, IVY_AND, IVY_INIT_NONE) ); + pTempA2 = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, Ivy_Not(pC), p0, IVY_AND, IVY_INIT_NONE) ); + if ( pTempA1 && pTempA2 ) + { + pTemp = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, Ivy_Not(pTempA1), Ivy_Not(pTempA2), IVY_AND, IVY_INIT_NONE) ); + if ( pTemp ) return Ivy_Not(pTemp); + } + Count0 = (pTempA1 != NULL) + (pTempA2 != NULL); + // implement the second MUX (F' = C * x1' + C' * x0') + pTempB1 = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, pC, Ivy_Not(p1), IVY_AND, IVY_INIT_NONE) ); + pTempB2 = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, Ivy_Not(pC), Ivy_Not(p0), IVY_AND, IVY_INIT_NONE) ); + if ( pTempB1 && pTempB2 ) + { + pTemp = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, Ivy_Not(pTempB1), Ivy_Not(pTempB2), IVY_AND, IVY_INIT_NONE) ); + if ( pTemp ) return pTemp; + } + Count1 = (pTempB1 != NULL) + (pTempB2 != NULL); + // compare and decide which one to implement + if ( Count0 >= Count1 ) + { + pTempA1 = pTempA1? pTempA1 : Ivy_And(p, pC, p1); + pTempA2 = pTempA2? pTempA2 : Ivy_And(p, Ivy_Not(pC), p0); + return Ivy_Or( p, pTempA1, pTempA2 ); + } + pTempB1 = pTempB1? pTempB1 : Ivy_And(p, pC, Ivy_Not(p1)); + pTempB2 = pTempB2? pTempB2 : Ivy_And(p, Ivy_Not(pC), Ivy_Not(p0)); + return Ivy_Not( Ivy_Or( p, pTempB1, pTempB2 ) ); + +// return Ivy_Or( Ivy_And(pC, p1), Ivy_And(Ivy_Not(pC), p0) ); +} + +/**Function************************************************************* + + Synopsis [Implements ITE operation.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Maj( Ivy_Man_t * p, Ivy_Obj_t * pA, Ivy_Obj_t * pB, Ivy_Obj_t * pC ) +{ + return Ivy_Or( p, Ivy_Or(p, Ivy_And(p, pA, pB), Ivy_And(p, pA, pC)), Ivy_And(p, pB, pC) ); +} + +/**Function************************************************************* + + Synopsis [Constructs the well-balanced tree of gates.] + + Description [Disregards levels and possible logic sharing.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Multi_rec( Ivy_Man_t * p, Ivy_Obj_t ** ppObjs, int nObjs, Ivy_Type_t Type ) +{ + Ivy_Obj_t * pObj1, * pObj2; + if ( nObjs == 1 ) + return ppObjs[0]; + pObj1 = Ivy_Multi_rec( p, ppObjs, nObjs/2, Type ); + pObj2 = Ivy_Multi_rec( p, ppObjs + nObjs/2, nObjs - nObjs/2, Type ); + return Ivy_Oper( p, pObj1, pObj2, Type ); +} + +/**Function************************************************************* + + Synopsis [Old code.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Multi( Ivy_Man_t * p, Ivy_Obj_t ** pArgs, int nArgs, Ivy_Type_t Type ) +{ + assert( Type == IVY_AND || Type == IVY_EXOR ); + assert( nArgs > 0 ); + return Ivy_Multi_rec( p, pArgs, nArgs, Type ); +} + +/**Function************************************************************* + + Synopsis [Implements the miter.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Miter( Ivy_Man_t * p, Vec_Ptr_t * vPairs ) +{ + int i; + assert( vPairs->nSize > 0 ); + assert( vPairs->nSize % 2 == 0 ); + // go through the cubes of the node's SOP + for ( i = 0; i < vPairs->nSize; i += 2 ) + vPairs->pArray[i/2] = Ivy_Not( Ivy_Exor( p, vPairs->pArray[i], vPairs->pArray[i+1] ) ); + vPairs->nSize = vPairs->nSize/2; + return Ivy_Not( Ivy_Multi_rec( p, (Ivy_Obj_t **)vPairs->pArray, vPairs->nSize, IVY_AND ) ); +} + +/**Function************************************************************* + + Synopsis [Performs canonicization step.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_Latch( Ivy_Man_t * p, Ivy_Obj_t * pObj, Ivy_Init_t Init ) +{ + return Ivy_CanonLatch( p, pObj, Init ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyResyn.c b/src/aig/ivy/ivyResyn.c new file mode 100644 index 00000000..f42d7464 --- /dev/null +++ b/src/aig/ivy/ivyResyn.c @@ -0,0 +1,196 @@ +/**CFile**************************************************************** + + FileName [ivyResyn.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [AIG rewriting script.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyResyn.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Performs several passes of rewriting on the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_ManResyn0( Ivy_Man_t * pMan, int fUpdateLevel, int fVerbose ) +{ + int clk; + Ivy_Man_t * pTemp; + +if ( fVerbose ) { printf( "Original:\n" ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +clk = clock(); + pMan = Ivy_ManBalance( pMan, fUpdateLevel ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Balance", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +// Ivy_ManRewriteAlg( pMan, fUpdateLevel, 0 ); +clk = clock(); + Ivy_ManRewritePre( pMan, fUpdateLevel, 0, 0 ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Rewrite", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +clk = clock(); + pMan = Ivy_ManBalance( pTemp = pMan, fUpdateLevel ); + Ivy_ManStop( pTemp ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Balance", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + return pMan; +} + +/**Function************************************************************* + + Synopsis [Performs several passes of rewriting on the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_ManResyn( Ivy_Man_t * pMan, int fUpdateLevel, int fVerbose ) +{ + int clk; + Ivy_Man_t * pTemp; + +if ( fVerbose ) { printf( "Original:\n" ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +clk = clock(); + pMan = Ivy_ManBalance( pMan, fUpdateLevel ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Balance", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +// Ivy_ManRewriteAlg( pMan, fUpdateLevel, 0 ); +clk = clock(); + Ivy_ManRewritePre( pMan, fUpdateLevel, 0, 0 ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Rewrite", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +clk = clock(); + pMan = Ivy_ManBalance( pTemp = pMan, fUpdateLevel ); + Ivy_ManStop( pTemp ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Balance", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +// Ivy_ManRewriteAlg( pMan, fUpdateLevel, 1 ); +clk = clock(); + Ivy_ManRewritePre( pMan, fUpdateLevel, 1, 0 ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Rewrite", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +clk = clock(); + pMan = Ivy_ManBalance( pTemp = pMan, fUpdateLevel ); + Ivy_ManStop( pTemp ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Balance", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +// Ivy_ManRewriteAlg( pMan, fUpdateLevel, 1 ); +clk = clock(); + Ivy_ManRewritePre( pMan, fUpdateLevel, 1, 0 ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Rewrite", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +clk = clock(); + pMan = Ivy_ManBalance( pTemp = pMan, fUpdateLevel ); + Ivy_ManStop( pTemp ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Balance", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + return pMan; +} + +/**Function************************************************************* + + Synopsis [Performs several passes of rewriting on the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Man_t * Ivy_ManRwsat( Ivy_Man_t * pMan, int fVerbose ) +{ + int clk; + Ivy_Man_t * pTemp; + +if ( fVerbose ) { printf( "Original:\n" ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +clk = clock(); + Ivy_ManRewritePre( pMan, 0, 0, 0 ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Rewrite", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +clk = clock(); + pMan = Ivy_ManBalance( pTemp = pMan, 0 ); +// pMan = Ivy_ManDup( pTemp = pMan ); + Ivy_ManStop( pTemp ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Balance", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +/* +clk = clock(); + Ivy_ManRewritePre( pMan, 0, 0, 0 ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Rewrite", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); + +clk = clock(); + pMan = Ivy_ManBalance( pTemp = pMan, 0 ); + Ivy_ManStop( pTemp ); +if ( fVerbose ) { printf( "\n" ); } +if ( fVerbose ) { PRT( "Balance", clock() - clk ); } +if ( fVerbose ) Ivy_ManPrintStats( pMan ); +*/ + return pMan; +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyRwr.c b/src/aig/ivy/ivyRwr.c new file mode 100644 index 00000000..3f8720ba --- /dev/null +++ b/src/aig/ivy/ivyRwr.c @@ -0,0 +1,609 @@ +/**CFile**************************************************************** + + FileName [ivyRwt.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Rewriting based on precomputation.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyRwt.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" +#include "deco.h" +#include "rwt.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +static unsigned Ivy_NodeGetTruth( Ivy_Obj_t * pObj, int * pNums, int nNums ); +static int Ivy_NodeRewrite( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pNode, int fUpdateLevel, int fUseZeroCost ); +static Dec_Graph_t * Rwt_CutEvaluate( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pRoot, + Vec_Ptr_t * vFaninsCur, int nNodesSaved, int LevelMax, int * pGainBest, unsigned uTruth ); + +static int Ivy_GraphToNetworkCount( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax, int LevelMax ); +static void Ivy_GraphUpdateNetwork( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Performs incremental rewriting of the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManRewritePre( Ivy_Man_t * p, int fUpdateLevel, int fUseZeroCost, int fVerbose ) +{ + Rwt_Man_t * pManRwt; + Ivy_Obj_t * pNode; + int i, nNodes, nGain; + int clk, clkStart = clock(); + // start the rewriting manager + pManRwt = Rwt_ManStart( 0 ); + p->pData = pManRwt; + if ( pManRwt == NULL ) + return 0; + // create fanouts + if ( fUpdateLevel && p->fFanout == 0 ) + Ivy_ManStartFanout( p ); + // compute the reverse levels if level update is requested + if ( fUpdateLevel ) + Ivy_ManRequiredLevels( p ); + // set the number of levels +// p->nLevelMax = Ivy_ManLevels( p ); + // resynthesize each node once + nNodes = Ivy_ManObjIdMax(p); + Ivy_ManForEachNode( p, pNode, i ) + { + // fix the fanin buffer problem + Ivy_NodeFixBufferFanins( p, pNode, 1 ); + if ( Ivy_ObjIsBuf(pNode) ) + continue; + // stop if all nodes have been tried once + if ( i > nNodes ) + break; + // for each cut, try to resynthesize it + nGain = Ivy_NodeRewrite( p, pManRwt, pNode, fUpdateLevel, fUseZeroCost ); + if ( nGain > 0 || nGain == 0 && fUseZeroCost ) + { + Dec_Graph_t * pGraph = Rwt_ManReadDecs(pManRwt); + int fCompl = Rwt_ManReadCompl(pManRwt); +/* + { + Ivy_Obj_t * pObj; + int i; + printf( "USING: (" ); + Vec_PtrForEachEntry( Rwt_ManReadLeaves(pManRwt), pObj, i ) + printf( "%d ", Ivy_ObjFanoutNum(Ivy_Regular(pObj)) ); + printf( ") Gain = %d.\n", nGain ); + } + if ( nGain > 0 ) + { // print stats on the MFFC + extern void Ivy_NodeMffsConeSuppPrint( Ivy_Obj_t * pNode ); + printf( "Node %6d : Gain = %4d ", pNode->Id, nGain ); + Ivy_NodeMffsConeSuppPrint( pNode ); + } +*/ + // complement the FF if needed +clk = clock(); + if ( fCompl ) Dec_GraphComplement( pGraph ); + Ivy_GraphUpdateNetwork( p, pNode, pGraph, fUpdateLevel, nGain ); + if ( fCompl ) Dec_GraphComplement( pGraph ); +Rwt_ManAddTimeUpdate( pManRwt, clock() - clk ); + } + } +Rwt_ManAddTimeTotal( pManRwt, clock() - clkStart ); + // print stats + if ( fVerbose ) + Rwt_ManPrintStats( pManRwt ); + // delete the managers + Rwt_ManStop( pManRwt ); + p->pData = NULL; + // fix the levels + if ( fUpdateLevel ) + Vec_IntFree( p->vRequired ), p->vRequired = NULL; + else + Ivy_ManResetLevels( p ); + // check + if ( i = Ivy_ManCleanup(p) ) + printf( "Cleanup after rewriting removed %d dangling nodes.\n", i ); + if ( !Ivy_ManCheck(p) ) + printf( "Ivy_ManRewritePre(): The check has failed.\n" ); + return 1; +} + +/**Function************************************************************* + + Synopsis [Performs rewriting for one node.] + + Description [This procedure considers all the cuts computed for the node + and tries to rewrite each of them using the "forest" of different AIG + structures precomputed and stored in the RWR manager. + Determines the best rewriting and computes the gain in the number of AIG + nodes in the final network. In the end, p->vFanins contains information + about the best cut that can be used for rewriting, while p->pGraph gives + the decomposition dag (represented using decomposition graph data structure). + Returns gain in the number of nodes or -1 if node cannot be rewritten.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeRewrite( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pNode, int fUpdateLevel, int fUseZeroCost ) +{ + int fVeryVerbose = 0; + Dec_Graph_t * pGraph; + Ivy_Store_t * pStore; + Ivy_Cut_t * pCut; + Ivy_Obj_t * pFanin; + unsigned uPhase, uTruthBest, uTruth; + char * pPerm; + int Required, nNodesSaved, nNodesSaveCur; + int i, c, GainCur, GainBest = -1; + int clk, clk2; + + p->nNodesConsidered++; + // get the required times + Required = fUpdateLevel? Vec_IntEntry( pMan->vRequired, pNode->Id ) : 1000000; + // get the node's cuts +clk = clock(); + pStore = Ivy_NodeFindCutsAll( pMan, pNode, 5 ); +p->timeCut += clock() - clk; + + // go through the cuts +clk = clock(); + for ( c = 1; c < pStore->nCuts; c++ ) + { + pCut = pStore->pCuts + c; + // consider only 4-input cuts + if ( pCut->nSize != 4 ) + continue; + // skip the cuts with buffers + for ( i = 0; i < (int)pCut->nSize; i++ ) + if ( Ivy_ObjIsBuf( Ivy_ManObj(pMan, pCut->pArray[i]) ) ) + break; + if ( i != pCut->nSize ) + { + p->nCutsBad++; + continue; + } + p->nCutsGood++; + // get the fanin permutation +clk2 = clock(); + uTruth = 0xFFFF & Ivy_NodeGetTruth( pNode, pCut->pArray, pCut->nSize ); // truth table +p->timeTruth += clock() - clk2; + pPerm = p->pPerms4[ p->pPerms[uTruth] ]; + uPhase = p->pPhases[uTruth]; + // collect fanins with the corresponding permutation/phase + Vec_PtrClear( p->vFaninsCur ); + Vec_PtrFill( p->vFaninsCur, (int)pCut->nSize, 0 ); + for ( i = 0; i < (int)pCut->nSize; i++ ) + { + pFanin = Ivy_ManObj( pMan, pCut->pArray[pPerm[i]] ); + assert( Ivy_ObjIsNode(pFanin) || Ivy_ObjIsCi(pFanin) ); + pFanin = Ivy_NotCond(pFanin, ((uPhase & (1<<i)) > 0) ); + Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin ); + } +clk2 = clock(); +/* + printf( "Considering: (" ); + Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i ) + printf( "%d ", Ivy_ObjFanoutNum(Ivy_Regular(pFanin)) ); + printf( ")\n" ); +*/ + // mark the fanin boundary + Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i ) + Ivy_ObjRefsInc( Ivy_Regular(pFanin) ); + // label MFFC with current ID + Ivy_ManIncrementTravId( pMan ); + nNodesSaved = Ivy_ObjMffcLabel( pMan, pNode ); + // unmark the fanin boundary + Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i ) + Ivy_ObjRefsDec( Ivy_Regular(pFanin) ); +p->timeMffc += clock() - clk2; + + // evaluate the cut +clk2 = clock(); + pGraph = Rwt_CutEvaluate( pMan, p, pNode, p->vFaninsCur, nNodesSaved, Required, &GainCur, uTruth ); +p->timeEval += clock() - clk2; + + // check if the cut is better than the current best one + if ( pGraph != NULL && GainBest < GainCur ) + { + // save this form + nNodesSaveCur = nNodesSaved; + GainBest = GainCur; + p->pGraph = pGraph; + p->fCompl = ((uPhase & (1<<4)) > 0); + uTruthBest = uTruth; + // collect fanins in the + Vec_PtrClear( p->vFanins ); + Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i ) + Vec_PtrPush( p->vFanins, pFanin ); + } + } +p->timeRes += clock() - clk; + + if ( GainBest == -1 ) + return -1; + +// printf( "%d", nNodesSaveCur - GainBest ); +/* + if ( GainBest > 0 ) + { + if ( Rwt_CutIsintean( pNode, p->vFanins ) ) + printf( "b" ); + else + { + printf( "Node %d : ", pNode->Id ); + Vec_PtrForEachEntry( p->vFanins, pFanin, i ) + printf( "%d ", Ivy_Regular(pFanin)->Id ); + printf( "a" ); + } + } +*/ +/* + if ( GainBest > 0 ) + if ( p->fCompl ) + printf( "c" ); + else + printf( "." ); +*/ + + // copy the leaves + Vec_PtrForEachEntry( p->vFanins, pFanin, i ) + Dec_GraphNode(p->pGraph, i)->pFunc = pFanin; + + p->nScores[p->pMap[uTruthBest]]++; + p->nNodesGained += GainBest; + if ( fUseZeroCost || GainBest > 0 ) + p->nNodesRewritten++; + + // report the progress + if ( fVeryVerbose && GainBest > 0 ) + { + printf( "Node %6d : ", Ivy_ObjId(pNode) ); + printf( "Fanins = %d. ", p->vFanins->nSize ); + printf( "Save = %d. ", nNodesSaveCur ); + printf( "Add = %d. ", nNodesSaveCur-GainBest ); + printf( "GAIN = %d. ", GainBest ); + printf( "Cone = %d. ", p->pGraph? Dec_GraphNodeNum(p->pGraph) : 0 ); + printf( "Class = %d. ", p->pMap[uTruthBest] ); + printf( "\n" ); + } + return GainBest; +} + +/**Function************************************************************* + + Synopsis [Computes the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Ivy_NodeGetTruth_rec( Ivy_Obj_t * pObj, int * pNums, int nNums ) +{ + static unsigned uMasks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; + unsigned uTruth0, uTruth1; + int i; + for ( i = 0; i < nNums; i++ ) + if ( pObj->Id == pNums[i] ) + return uMasks[i]; + assert( Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj) ); + uTruth0 = Ivy_NodeGetTruth_rec( Ivy_ObjFanin0(pObj), pNums, nNums ); + if ( Ivy_ObjFaninC0(pObj) ) + uTruth0 = ~uTruth0; + if ( Ivy_ObjIsBuf(pObj) ) + return uTruth0; + uTruth1 = Ivy_NodeGetTruth_rec( Ivy_ObjFanin1(pObj), pNums, nNums ); + if ( Ivy_ObjFaninC1(pObj) ) + uTruth1 = ~uTruth1; + return uTruth0 & uTruth1; +} + + +/**Function************************************************************* + + Synopsis [Computes the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Ivy_NodeGetTruth( Ivy_Obj_t * pObj, int * pNums, int nNums ) +{ + assert( nNums < 6 ); + return Ivy_NodeGetTruth_rec( pObj, pNums, nNums ); +} + +/**Function************************************************************* + + Synopsis [Evaluates the cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Rwt_CutEvaluate( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pRoot, Vec_Ptr_t * vFaninsCur, int nNodesSaved, int LevelMax, int * pGainBest, unsigned uTruth ) +{ + Vec_Ptr_t * vSubgraphs; + Dec_Graph_t * pGraphBest, * pGraphCur; + Rwt_Node_t * pNode, * pFanin; + int nNodesAdded, GainBest, i, k; + // find the matching class of subgraphs + vSubgraphs = Vec_VecEntry( p->vClasses, p->pMap[uTruth] ); + p->nSubgraphs += vSubgraphs->nSize; + // determine the best subgraph + GainBest = -1; + Vec_PtrForEachEntry( vSubgraphs, pNode, i ) + { + // get the current graph + pGraphCur = (Dec_Graph_t *)pNode->pNext; + // copy the leaves + Vec_PtrForEachEntry( vFaninsCur, pFanin, k ) + Dec_GraphNode(pGraphCur, k)->pFunc = pFanin; + // detect how many unlabeled nodes will be reused + nNodesAdded = Ivy_GraphToNetworkCount( pMan, pRoot, pGraphCur, nNodesSaved, LevelMax ); + if ( nNodesAdded == -1 ) + continue; + assert( nNodesSaved >= nNodesAdded ); + // count the gain at this node + if ( GainBest < nNodesSaved - nNodesAdded ) + { + GainBest = nNodesSaved - nNodesAdded; + pGraphBest = pGraphCur; + } + } + if ( GainBest == -1 ) + return NULL; + *pGainBest = GainBest; + return pGraphBest; +} + + +/**Function************************************************************* + + Synopsis [Counts the number of new nodes added when using this graph.] + + Description [AIG nodes for the fanins should be assigned to pNode->pFunc + of the leaves of the graph before calling this procedure. + Returns -1 if the number of nodes and levels exceeded the given limit or + the number of levels exceeded the maximum allowed level.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_GraphToNetworkCount( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax, int LevelMax ) +{ + Dec_Node_t * pNode, * pNode0, * pNode1; + Ivy_Obj_t * pAnd, * pAnd0, * pAnd1; + int i, Counter, LevelNew, LevelOld; + // check for constant function or a literal + if ( Dec_GraphIsConst(pGraph) || Dec_GraphIsVar(pGraph) ) + return 0; + // set the levels of the leaves + Dec_GraphForEachLeaf( pGraph, pNode, i ) + pNode->Level = Ivy_Regular(pNode->pFunc)->Level; + // compute the AIG size after adding the internal nodes + Counter = 0; + Dec_GraphForEachNode( pGraph, pNode, i ) + { + // get the children of this node + pNode0 = Dec_GraphNode( pGraph, pNode->eEdge0.Node ); + pNode1 = Dec_GraphNode( pGraph, pNode->eEdge1.Node ); + // get the AIG nodes corresponding to the children + pAnd0 = pNode0->pFunc; + pAnd1 = pNode1->pFunc; + if ( pAnd0 && pAnd1 ) + { + // if they are both present, find the resulting node + pAnd0 = Ivy_NotCond( pAnd0, pNode->eEdge0.fCompl ); + pAnd1 = Ivy_NotCond( pAnd1, pNode->eEdge1.fCompl ); + pAnd = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, pAnd0, pAnd1, IVY_AND, IVY_INIT_NONE) ); + // return -1 if the node is the same as the original root + if ( Ivy_Regular(pAnd) == pRoot ) + return -1; + } + else + pAnd = NULL; + // count the number of added nodes + if ( pAnd == NULL || Ivy_ObjIsTravIdCurrent(p, Ivy_Regular(pAnd)) ) + { + if ( ++Counter > NodeMax ) + return -1; + } + // count the number of new levels + LevelNew = 1 + RWT_MAX( pNode0->Level, pNode1->Level ); + if ( pAnd ) + { + if ( Ivy_Regular(pAnd) == p->pConst1 ) + LevelNew = 0; + else if ( Ivy_Regular(pAnd) == Ivy_Regular(pAnd0) ) + LevelNew = (int)Ivy_Regular(pAnd0)->Level; + else if ( Ivy_Regular(pAnd) == Ivy_Regular(pAnd1) ) + LevelNew = (int)Ivy_Regular(pAnd1)->Level; + LevelOld = (int)Ivy_Regular(pAnd)->Level; +// assert( LevelNew == LevelOld ); + } + if ( LevelNew > LevelMax ) + return -1; + pNode->pFunc = pAnd; + pNode->Level = LevelNew; + } + return Counter; +} + +/**Function************************************************************* + + Synopsis [Transforms the decomposition graph into the AIG.] + + Description [AIG nodes for the fanins should be assigned to pNode->pFunc + of the leaves of the graph before calling this procedure.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_GraphToNetwork( Ivy_Man_t * p, Dec_Graph_t * pGraph ) +{ + Ivy_Obj_t * pAnd0, * pAnd1; + Dec_Node_t * pNode; + int i; + // check for constant function + if ( Dec_GraphIsConst(pGraph) ) + return Ivy_NotCond( Ivy_ManConst1(p), Dec_GraphIsComplement(pGraph) ); + // check for a literal + if ( Dec_GraphIsVar(pGraph) ) + return Ivy_NotCond( Dec_GraphVar(pGraph)->pFunc, Dec_GraphIsComplement(pGraph) ); + // build the AIG nodes corresponding to the AND gates of the graph + Dec_GraphForEachNode( pGraph, pNode, i ) + { + pAnd0 = Ivy_NotCond( Dec_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); + pAnd1 = Ivy_NotCond( Dec_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); + pNode->pFunc = Ivy_And( p, pAnd0, pAnd1 ); + } + // complement the result if necessary + return Ivy_NotCond( pNode->pFunc, Dec_GraphIsComplement(pGraph) ); +} + +/**Function************************************************************* + + Synopsis [Replaces MFFC of the node by the new factored form.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_GraphUpdateNetwork( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain ) +{ + Ivy_Obj_t * pRootNew; + int nNodesNew, nNodesOld, Required; + Required = fUpdateLevel? Vec_IntEntry( p->vRequired, pRoot->Id ) : 1000000; + nNodesOld = Ivy_ManNodeNum(p); + // create the new structure of nodes + pRootNew = Ivy_GraphToNetwork( p, pGraph ); + assert( (int)Ivy_Regular(pRootNew)->Level <= Required ); +// if ( Ivy_Regular(pRootNew)->Level == Required ) +// printf( "Difference %d.\n", Ivy_Regular(pRootNew)->Level - Required ); + // remove the old nodes +// Ivy_AigReplace( pMan->pManFunc, pRoot, pRootNew, fUpdateLevel ); +/* + if ( Ivy_IsComplement(pRootNew) ) + printf( "c" ); + else + printf( "d" ); + if ( Ivy_ObjRefs(Ivy_Regular(pRootNew)) > 0 ) + printf( "%d", Ivy_ObjRefs(Ivy_Regular(pRootNew)) ); + printf( " " ); +*/ + Ivy_ObjReplace( p, pRoot, pRootNew, 1, 0, 1 ); + // compare the gains + nNodesNew = Ivy_ManNodeNum(p); + assert( nGain <= nNodesOld - nNodesNew ); + // propagate the buffer + Ivy_ManPropagateBuffers( p, 1 ); +} + +/**Function************************************************************* + + Synopsis [Replaces MFFC of the node by the new factored form.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_GraphUpdateNetwork3( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain ) +{ + Ivy_Obj_t * pRootNew, * pFanin; + int nNodesNew, nNodesOld, i, nRefsOld; + nNodesOld = Ivy_ManNodeNum(p); + +//printf( "Before = %d. ", Ivy_ManNodeNum(p) ); + // mark the cut + Vec_PtrForEachEntry( ((Rwt_Man_t *)p->pData)->vFanins, pFanin, i ) + Ivy_ObjRefsInc( Ivy_Regular(pFanin) ); + // deref the old cone + nRefsOld = pRoot->nRefs; + pRoot->nRefs = 0; + Ivy_ObjDelete_rec( p, pRoot, 0 ); + pRoot->nRefs = nRefsOld; + // unmark the cut + Vec_PtrForEachEntry( ((Rwt_Man_t *)p->pData)->vFanins, pFanin, i ) + Ivy_ObjRefsDec( Ivy_Regular(pFanin) ); +//printf( "Deref = %d. ", Ivy_ManNodeNum(p) ); + + // create the new structure of nodes + pRootNew = Ivy_GraphToNetwork( p, pGraph ); +//printf( "Create = %d. ", Ivy_ManNodeNum(p) ); + // remove the old nodes +// Ivy_AigReplace( pMan->pManFunc, pRoot, pRootNew, fUpdateLevel ); +/* + if ( Ivy_IsComplement(pRootNew) ) + printf( "c" ); + else + printf( "d" ); + if ( Ivy_ObjRefs(Ivy_Regular(pRootNew)) > 0 ) + printf( "%d", Ivy_ObjRefs(Ivy_Regular(pRootNew)) ); + printf( " " ); +*/ + Ivy_ObjReplace( p, pRoot, pRootNew, 0, 0, 1 ); +//printf( "Replace = %d. ", Ivy_ManNodeNum(p) ); + + // delete remaining dangling nodes + Vec_PtrForEachEntry( ((Rwt_Man_t *)p->pData)->vFanins, pFanin, i ) + { + pFanin = Ivy_Regular(pFanin); + if ( !Ivy_ObjIsNone(pFanin) && Ivy_ObjRefs(pFanin) == 0 ) + Ivy_ObjDelete_rec( p, pFanin, 1 ); + } +//printf( "Deref = %d. ", Ivy_ManNodeNum(p) ); +//printf( "\n" ); + + // compare the gains + nNodesNew = Ivy_ManNodeNum(p); + assert( nGain <= nNodesOld - nNodesNew ); +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyRwrAlg.c b/src/aig/ivy/ivyRwrAlg.c new file mode 100644 index 00000000..fc48deb0 --- /dev/null +++ b/src/aig/ivy/ivyRwrAlg.c @@ -0,0 +1,408 @@ +/**CFile**************************************************************** + + FileName [ivyRwrAlg.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Algebraic AIG rewriting.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyRwrAlg.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +static int Ivy_ManFindAlgCut( Ivy_Obj_t * pRoot, Vec_Ptr_t * vFront, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone ); +static Ivy_Obj_t * Ivy_NodeRewriteAlg( Ivy_Obj_t * pObj, Vec_Ptr_t * vFront, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, Vec_Ptr_t * vSols, int LevelR, int fUseZeroCost ); +static int Ivy_NodeCountMffc( Ivy_Obj_t * pNode ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Algebraic AIG rewriting.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManRewriteAlg( Ivy_Man_t * p, int fUpdateLevel, int fUseZeroCost ) +{ + Vec_Int_t * vRequired; + Vec_Ptr_t * vFront, * vLeaves, * vCone, * vSol; + Ivy_Obj_t * pObj, * pResult; + int i, RetValue, LevelR, nNodesOld; + int CountUsed, CountUndo; + vRequired = fUpdateLevel? Ivy_ManRequiredLevels( p ) : NULL; + vFront = Vec_PtrAlloc( 100 ); + vLeaves = Vec_PtrAlloc( 100 ); + vCone = Vec_PtrAlloc( 100 ); + vSol = Vec_PtrAlloc( 100 ); + // go through the nodes in the topological order + CountUsed = CountUndo = 0; + nNodesOld = Ivy_ManObjIdNext(p); + Ivy_ManForEachObj( p, pObj, i ) + { + assert( !Ivy_ObjIsBuf(pObj) ); + if ( i >= nNodesOld ) + break; + // skip no-nodes and MUX roots + if ( !Ivy_ObjIsNode(pObj) || Ivy_ObjIsExor(pObj) || Ivy_ObjIsMuxType(pObj) ) + continue; +// if ( pObj->Id > 297 ) // 296 --- 297 +// break; + if ( pObj->Id == 297 ) + { + int x = 0; + } + // get the largest algebraic cut + RetValue = Ivy_ManFindAlgCut( pObj, vFront, vLeaves, vCone ); + // the case of a trivial tree cut + if ( RetValue == 1 ) + continue; + // the case of constant 0 cone + if ( RetValue == -1 ) + { + Ivy_ObjReplace( pObj, Ivy_ManConst0(p), 1, 0, 1 ); + continue; + } + assert( Vec_PtrSize(vLeaves) > 2 ); + // get the required level for this node + LevelR = vRequired? Vec_IntEntry(vRequired, pObj->Id) : 1000000; + // create a new cone + pResult = Ivy_NodeRewriteAlg( pObj, vFront, vLeaves, vCone, vSol, LevelR, fUseZeroCost ); + if ( pResult == NULL || pResult == pObj ) + continue; + assert( Vec_PtrSize(vSol) == 1 || !Ivy_IsComplement(pResult) ); + if ( Ivy_ObjLevel(Ivy_Regular(pResult)) > LevelR && Ivy_ObjRefs(Ivy_Regular(pResult)) == 0 ) + Ivy_ObjDelete_rec(Ivy_Regular(pResult), 1), CountUndo++; + else + Ivy_ObjReplace( pObj, pResult, 1, 0, 1 ), CountUsed++; + } + printf( "Used = %d. Undo = %d.\n", CountUsed, CountUndo ); + Vec_PtrFree( vFront ); + Vec_PtrFree( vCone ); + Vec_PtrFree( vSol ); + if ( vRequired ) Vec_IntFree( vRequired ); + if ( i = Ivy_ManCleanup(p) ) + printf( "Cleanup after rewriting removed %d dangling nodes.\n", i ); + if ( !Ivy_ManCheck(p) ) + printf( "Ivy_ManRewriteAlg(): The check has failed.\n" ); + return 1; +} + +/**Function************************************************************* + + Synopsis [Analizes one node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_NodeRewriteAlg( Ivy_Obj_t * pObj, Vec_Ptr_t * vFront, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone, Vec_Ptr_t * vSols, int LevelR, int fUseZeroCost ) +{ + int fVerbose = 0; + Ivy_Obj_t * pTemp; + int k, Counter, nMffc, RetValue; + + if ( fVerbose ) + { + if ( Ivy_ObjIsExor(pObj) ) + printf( "x " ); + else + printf( " " ); + } + +/* + printf( "%d ", Vec_PtrSize(vFront) ); + printf( "( " ); + Vec_PtrForEachEntry( vFront, pTemp, k ) + printf( "%d ", Ivy_ObjRefs(Ivy_Regular(pTemp)) ); + printf( ")\n" ); +*/ + // collect nodes in the cone + if ( Ivy_ObjIsExor(pObj) ) + Ivy_ManCollectCone( pObj, vFront, vCone ); + else + Ivy_ManCollectCone( pObj, vLeaves, vCone ); + + // deref nodes in the cone + Vec_PtrForEachEntry( vCone, pTemp, k ) + { + Ivy_ObjRefsDec( Ivy_ObjFanin0(pTemp) ); + Ivy_ObjRefsDec( Ivy_ObjFanin1(pTemp) ); + pTemp->fMarkB = 1; + } + + // count the MFFC size + Vec_PtrForEachEntry( vFront, pTemp, k ) + Ivy_Regular(pTemp)->fMarkA = 1; + nMffc = Ivy_NodeCountMffc( pObj ); + Vec_PtrForEachEntry( vFront, pTemp, k ) + Ivy_Regular(pTemp)->fMarkA = 0; + + if ( fVerbose ) + { + Counter = 0; + Vec_PtrForEachEntry( vCone, pTemp, k ) + Counter += (Ivy_ObjRefs(pTemp) > 0); + printf( "%5d : Leaves = %2d. Cone = %2d. ConeRef = %2d. Mffc = %d. Lev = %d. LevR = %d.\n", + pObj->Id, Vec_PtrSize(vFront), Vec_PtrSize(vCone), Counter-1, nMffc, Ivy_ObjLevel(pObj), LevelR ); + } +/* + printf( "Leaves:" ); + Vec_PtrForEachEntry( vLeaves, pTemp, k ) + printf( " %d%s", Ivy_Regular(pTemp)->Id, Ivy_IsComplement(pTemp)? "\'" : "" ); + printf( "\n" ); + printf( "Cone:\n" ); + Vec_PtrForEachEntry( vCone, pTemp, k ) + printf( " %5d = %d%s %d%s\n", pTemp->Id, + Ivy_ObjFaninId0(pTemp), Ivy_ObjFaninC0(pTemp)? "\'" : "", + Ivy_ObjFaninId1(pTemp), Ivy_ObjFaninC1(pTemp)? "\'" : "" ); +*/ + + RetValue = Ivy_MultiPlus( vLeaves, vCone, Ivy_ObjType(pObj), nMffc + fUseZeroCost, vSols ); + + // ref nodes in the cone + Vec_PtrForEachEntry( vCone, pTemp, k ) + { + Ivy_ObjRefsInc( Ivy_ObjFanin0(pTemp) ); + Ivy_ObjRefsInc( Ivy_ObjFanin1(pTemp) ); + pTemp->fMarkA = 0; + pTemp->fMarkB = 0; + } + + if ( !RetValue ) + return NULL; + + if ( Vec_PtrSize( vSols ) == 1 ) + return Vec_PtrEntry( vSols, 0 ); + return Ivy_NodeBalanceBuildSuper( vSols, Ivy_ObjType(pObj), 1 ); +} + +/**Function************************************************************* + + Synopsis [Comparison for node pointers.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeCountMffc_rec( Ivy_Obj_t * pNode ) +{ + if ( Ivy_ObjRefs(pNode) > 0 || Ivy_ObjIsCi(pNode) || pNode->fMarkA ) + return 0; + assert( pNode->fMarkB ); + pNode->fMarkA = 1; +// printf( "%d ", pNode->Id ); + if ( Ivy_ObjIsBuf(pNode) ) + return Ivy_NodeCountMffc_rec( Ivy_ObjFanin0(pNode) ); + return 1 + Ivy_NodeCountMffc_rec( Ivy_ObjFanin0(pNode) ) + Ivy_NodeCountMffc_rec( Ivy_ObjFanin1(pNode) ); +} + +/**Function************************************************************* + + Synopsis [Comparison for node pointers.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeCountMffc( Ivy_Obj_t * pNode ) +{ + assert( pNode->fMarkB ); + return 1 + Ivy_NodeCountMffc_rec( Ivy_ObjFanin0(pNode) ) + Ivy_NodeCountMffc_rec( Ivy_ObjFanin1(pNode) ); +} + +/**Function************************************************************* + + Synopsis [Comparison for node pointers.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManFindAlgCutCompare( Ivy_Obj_t ** pp1, Ivy_Obj_t ** pp2 ) +{ + if ( *pp1 < *pp2 ) + return -1; + if ( *pp1 > *pp2 ) + return 1; + return 0; +} + +/**Function************************************************************* + + Synopsis [Computing one algebraic cut.] + + Description [Returns 1 if the tree-leaves of this node where traversed + and found to have no external references (and have not been collected). + Returns 0 if the tree-leaves have external references and are collected.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManFindAlgCut_rec( Ivy_Obj_t * pObj, Ivy_Type_t Type, Vec_Ptr_t * vFront, Vec_Ptr_t * vCone ) +{ + int RetValue0, RetValue1; + Ivy_Obj_t * pObjR = Ivy_Regular(pObj); + assert( !Ivy_ObjIsBuf(pObjR) ); + assert( Type != IVY_EXOR || !Ivy_IsComplement(pObj) ); + + // make sure the node is not visited twice in different polarities + if ( Ivy_IsComplement(pObj) ) + { // if complemented, mark B + if ( pObjR->fMarkA ) + return -1; + pObjR->fMarkB = 1; + } + else + { // if non-complicated, mark A + if ( pObjR->fMarkB ) + return -1; + pObjR->fMarkA = 1; + } + Vec_PtrPush( vCone, pObjR ); + + // if the node is the end of the tree, return + if ( Ivy_IsComplement(pObj) || Ivy_ObjType(pObj) != Type ) + { + if ( Ivy_ObjRefs(pObjR) == 1 ) + return 1; + assert( Ivy_ObjRefs(pObjR) > 1 ); + Vec_PtrPush( vFront, pObj ); + return 0; + } + + // branch on the node + assert( !Ivy_IsComplement(pObj) ); + assert( Ivy_ObjIsNode(pObj) ); + // what if buffer has more than one fanout??? + RetValue0 = Ivy_ManFindAlgCut_rec( Ivy_ObjReal( Ivy_ObjChild0(pObj) ), Type, vFront, vCone ); + RetValue1 = Ivy_ManFindAlgCut_rec( Ivy_ObjReal( Ivy_ObjChild1(pObj) ), Type, vFront, vCone ); + if ( RetValue0 == -1 || RetValue1 == -1 ) + return -1; + + // the case when both have no external references + if ( RetValue0 && RetValue1 ) + { + if ( Ivy_ObjRefs(pObj) == 1 ) + return 1; + assert( Ivy_ObjRefs(pObj) > 1 ); + Vec_PtrPush( vFront, pObj ); + return 0; + } + // the case when one of them has external references + if ( RetValue0 ) + Vec_PtrPush( vFront, Ivy_ObjReal( Ivy_ObjChild0(pObj) ) ); + if ( RetValue1 ) + Vec_PtrPush( vFront, Ivy_ObjReal( Ivy_ObjChild1(pObj) ) ); + return 0; +} + +/**Function************************************************************* + + Synopsis [Computing one algebraic cut.] + + Description [Algebraic cut stops when we hit (a) CI, (b) complemented edge, + (c) boundary of different gates. Returns 1 if this is a pure tree. + Returns -1 if the contant 0 is detected. Return 0 if the array can be used.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManFindAlgCut( Ivy_Obj_t * pRoot, Vec_Ptr_t * vFront, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vCone ) +{ + Ivy_Obj_t * pObj, * pPrev; + int RetValue, i; + assert( !Ivy_IsComplement(pRoot) ); + assert( Ivy_ObjIsNode(pRoot) ); + // clear the frontier and collect the nodes + Vec_PtrClear( vCone ); + Vec_PtrClear( vFront ); + Vec_PtrClear( vLeaves ); + RetValue = Ivy_ManFindAlgCut_rec( pRoot, Ivy_ObjType(pRoot), vFront, vCone ); + // clean the marks + Vec_PtrForEachEntry( vCone, pObj, i ) + pObj->fMarkA = pObj->fMarkB = 0; + // quit if the same node is found in both polarities + if ( RetValue == -1 ) + return -1; + // return if the node is the root of a tree + if ( RetValue == 1 ) + return 1; + // return if the cut is composed of two nodes + if ( Vec_PtrSize(vFront) <= 2 ) + return 1; + // sort the entries in increasing order + Vec_PtrSort( vFront, Ivy_ManFindAlgCutCompare ); + // remove duplicates from vFront and save the nodes in vLeaves + pPrev = Vec_PtrEntry(vFront, 0); + Vec_PtrPush( vLeaves, pPrev ); + Vec_PtrForEachEntryStart( vFront, pObj, i, 1 ) + { + // compare current entry and the previous entry + if ( pObj == pPrev ) + { + if ( Ivy_ObjIsExor(pRoot) ) // A <+> A = 0 + { + // vLeaves are no longer structural support of pRoot!!! + Vec_PtrPop(vLeaves); + pPrev = Vec_PtrSize(vLeaves) == 0 ? NULL : Vec_PtrEntryLast(vLeaves); + } + continue; + } + if ( pObj == Ivy_Not(pPrev) ) + { + assert( Ivy_ObjIsAnd(pRoot) ); + return -1; + } + pPrev = pObj; + Vec_PtrPush( vLeaves, pObj ); + } + if ( Vec_PtrSize(vLeaves) == 0 ) + return -1; + if ( Vec_PtrSize(vLeaves) <= 2 ) + return 1; + return 0; +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivySeq.c b/src/aig/ivy/ivySeq.c new file mode 100644 index 00000000..0ee29fee --- /dev/null +++ b/src/aig/ivy/ivySeq.c @@ -0,0 +1,1134 @@ +/**CFile**************************************************************** + + FileName [ivySeq.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivySeq.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" +#include "deco.h" +#include "rwt.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +static int Ivy_NodeRewriteSeq( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pNode, int fUseZeroCost ); +static void Ivy_GraphPrepare( Dec_Graph_t * pGraph, Ivy_Cut_t * pCut, Vec_Ptr_t * vFanins, char * pPerm ); +static unsigned Ivy_CutGetTruth( Ivy_Man_t * p, Ivy_Obj_t * pObj, int * pNums, int nNums ); +static Dec_Graph_t * Rwt_CutEvaluateSeq( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pRoot, Ivy_Cut_t * pCut, char * pPerm, Vec_Ptr_t * vFaninsCur, int nNodesSaved, int * pGainBest, unsigned uTruth ); +static int Ivy_GraphToNetworkSeqCountSeq( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax ); +static Ivy_Obj_t * Ivy_GraphToNetworkSeq( Ivy_Man_t * p, Dec_Graph_t * pGraph ); +static void Ivy_GraphUpdateNetworkSeq( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int nGain ); +static Ivy_Store_t * Ivy_CutComputeForNode( Ivy_Man_t * p, Ivy_Obj_t * pObj, int nLeaves ); + +static inline int Ivy_CutHashValue( int NodeId ) { return 1 << (NodeId % 31); } + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +//int nMoves; +//int nMovesS; +//int nClauses; +//int timeInv; + +/**Function************************************************************* + + Synopsis [Performs incremental rewriting of the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManRewriteSeq( Ivy_Man_t * p, int fUseZeroCost, int fVerbose ) +{ + Rwt_Man_t * pManRwt; + Ivy_Obj_t * pNode; + int i, nNodes, nGain; + int clk, clkStart = clock(); + + // set the DC latch values + Ivy_ManForEachLatch( p, pNode, i ) + pNode->Init = IVY_INIT_DC; + // start the rewriting manager + pManRwt = Rwt_ManStart( 0 ); + p->pData = pManRwt; + if ( pManRwt == NULL ) + return 0; + // create fanouts + if ( p->fFanout == 0 ) + Ivy_ManStartFanout( p ); + // resynthesize each node once + nNodes = Ivy_ManObjIdMax(p); + Ivy_ManForEachNode( p, pNode, i ) + { + assert( !Ivy_ObjIsBuf(pNode) ); + assert( !Ivy_ObjIsBuf(Ivy_ObjFanin0(pNode)) ); + assert( !Ivy_ObjIsBuf(Ivy_ObjFanin1(pNode)) ); + // fix the fanin buffer problem +// Ivy_NodeFixBufferFanins( p, pNode ); +// if ( Ivy_ObjIsBuf(pNode) ) +// continue; + // stop if all nodes have been tried once + if ( i > nNodes ) + break; + // for each cut, try to resynthesize it + nGain = Ivy_NodeRewriteSeq( p, pManRwt, pNode, fUseZeroCost ); + if ( nGain > 0 || nGain == 0 && fUseZeroCost ) + { + Dec_Graph_t * pGraph = Rwt_ManReadDecs(pManRwt); + int fCompl = Rwt_ManReadCompl(pManRwt); + // complement the FF if needed +clk = clock(); + if ( fCompl ) Dec_GraphComplement( pGraph ); + Ivy_GraphUpdateNetworkSeq( p, pNode, pGraph, nGain ); + if ( fCompl ) Dec_GraphComplement( pGraph ); +Rwt_ManAddTimeUpdate( pManRwt, clock() - clk ); + } + } +Rwt_ManAddTimeTotal( pManRwt, clock() - clkStart ); + // print stats + if ( fVerbose ) + Rwt_ManPrintStats( pManRwt ); + // delete the managers + Rwt_ManStop( pManRwt ); + p->pData = NULL; + // fix the levels + Ivy_ManResetLevels( p ); +// if ( Ivy_ManCheckFanoutNums(p) ) +// printf( "Ivy_ManRewritePre(): The check has failed.\n" ); + // check + if ( !Ivy_ManCheck(p) ) + printf( "Ivy_ManRewritePre(): The check has failed.\n" ); + return 1; +} + + +/**Function************************************************************* + + Synopsis [Performs rewriting for one node.] + + Description [This procedure considers all the cuts computed for the node + and tries to rewrite each of them using the "forest" of different AIG + structures precomputed and stored in the RWR manager. + Determines the best rewriting and computes the gain in the number of AIG + nodes in the final network. In the end, p->vFanins contains information + about the best cut that can be used for rewriting, while p->pGraph gives + the decomposition dag (represented using decomposition graph data structure). + Returns gain in the number of nodes or -1 if node cannot be rewritten.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_NodeRewriteSeq( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pNode, int fUseZeroCost ) +{ + int fVeryVerbose = 0; + Dec_Graph_t * pGraph; + Ivy_Store_t * pStore; + Ivy_Cut_t * pCut; + Ivy_Obj_t * pFanin;//, * pFanout; + Vec_Ptr_t * vFanout; + unsigned uPhase, uTruthBest, uTruth;//, nNewClauses; + char * pPerm; + int nNodesSaved, nNodesSaveCur; + int i, c, GainCur, GainBest = -1; + int clk, clk2;//, clk3; + + p->nNodesConsidered++; + // get the node's cuts +clk = clock(); + pStore = Ivy_CutComputeForNode( pMan, pNode, 5 ); +p->timeCut += clock() - clk; + + // go through the cuts +clk = clock(); + vFanout = Vec_PtrAlloc( 100 ); + for ( c = 1; c < pStore->nCuts; c++ ) + { + pCut = pStore->pCuts + c; + // consider only 4-input cuts + if ( pCut->nSize != 4 ) + continue; + // skip the cuts with buffers + for ( i = 0; i < (int)pCut->nSize; i++ ) + if ( Ivy_ObjIsBuf( Ivy_ManObj(pMan, Ivy_LeafId(pCut->pArray[i])) ) ) + break; + if ( i != pCut->nSize ) + { + p->nCutsBad++; + continue; + } + p->nCutsGood++; + // get the fanin permutation +clk2 = clock(); + uTruth = 0xFFFF & Ivy_CutGetTruth( pMan, pNode, pCut->pArray, pCut->nSize ); // truth table +p->timeTruth += clock() - clk2; + pPerm = p->pPerms4[ p->pPerms[uTruth] ]; + uPhase = p->pPhases[uTruth]; + // collect fanins with the corresponding permutation/phase + Vec_PtrClear( p->vFaninsCur ); + Vec_PtrFill( p->vFaninsCur, (int)pCut->nSize, 0 ); + for ( i = 0; i < (int)pCut->nSize; i++ ) + { + pFanin = Ivy_ManObj( pMan, Ivy_LeafId( pCut->pArray[pPerm[i]] ) ); + assert( Ivy_ObjIsNode(pFanin) || Ivy_ObjIsCi(pFanin) || Ivy_ObjIsConst1(pFanin) ); + pFanin = Ivy_NotCond(pFanin, ((uPhase & (1<<i)) > 0) ); + Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin ); + } +clk2 = clock(); + // mark the fanin boundary + Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i ) + Ivy_ObjRefsInc( Ivy_Regular(pFanin) ); + // label MFFC with current ID + Ivy_ManIncrementTravId( pMan ); + nNodesSaved = Ivy_ObjMffcLabel( pMan, pNode ); + // label fanouts with the current ID +// Ivy_ObjForEachFanout( pMan, pNode, vFanout, pFanout, i ) +// Ivy_ObjSetTravIdCurrent( pMan, pFanout ); + // unmark the fanin boundary + Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i ) + Ivy_ObjRefsDec( Ivy_Regular(pFanin) ); +p->timeMffc += clock() - clk2; + + // evaluate the cut +clk2 = clock(); + pGraph = Rwt_CutEvaluateSeq( pMan, p, pNode, pCut, pPerm, p->vFaninsCur, nNodesSaved, &GainCur, uTruth ); +p->timeEval += clock() - clk2; + + + // check if the cut is better than the current best one + if ( pGraph != NULL && GainBest < GainCur ) + { + // save this form + nNodesSaveCur = nNodesSaved; + GainBest = GainCur; + p->pGraph = pGraph; + p->pCut = pCut; + p->pPerm = pPerm; + p->fCompl = ((uPhase & (1<<4)) > 0); + uTruthBest = uTruth; + // collect fanins in the + Vec_PtrClear( p->vFanins ); + Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i ) + Vec_PtrPush( p->vFanins, pFanin ); + } + } + Vec_PtrFree( vFanout ); +p->timeRes += clock() - clk; + + if ( GainBest == -1 ) + return -1; +/* + { + Ivy_Cut_t * pCut = p->pCut; + printf( "Node %5d. Using cut : {", Ivy_ObjId(pNode) ); + for ( i = 0; i < pCut->nSize; i++ ) + printf( " %d(%d)", Ivy_LeafId(pCut->pArray[i]), Ivy_LeafLat(pCut->pArray[i]) ); + printf( " }\n" ); + } +*/ + +//clk3 = clock(); +//nNewClauses = Ivy_CutTruthPrint( pMan, p->pCut, uTruth ); +//timeInv += clock() - clk; + +// nClauses += nNewClauses; +// nMoves++; +// if ( nNewClauses > 0 ) +// nMovesS++; + + // copy the leaves + Ivy_GraphPrepare( p->pGraph, p->pCut, p->vFanins, p->pPerm ); + + p->nScores[p->pMap[uTruthBest]]++; + p->nNodesGained += GainBest; + if ( fUseZeroCost || GainBest > 0 ) + p->nNodesRewritten++; + +/* + if ( GainBest > 0 ) + { + Ivy_Cut_t * pCut = p->pCut; + printf( "Node %5d. Using cut : {", Ivy_ObjId(pNode) ); + for ( i = 0; i < pCut->nSize; i++ ) + printf( " %5d(%2d)", Ivy_LeafId(pCut->pArray[i]), Ivy_LeafLat(pCut->pArray[i]) ); + printf( " }\n" ); + } +*/ + + // report the progress + if ( fVeryVerbose && GainBest > 0 ) + { + printf( "Node %6d : ", Ivy_ObjId(pNode) ); + printf( "Fanins = %d. ", p->vFanins->nSize ); + printf( "Save = %d. ", nNodesSaveCur ); + printf( "Add = %d. ", nNodesSaveCur-GainBest ); + printf( "GAIN = %d. ", GainBest ); + printf( "Cone = %d. ", p->pGraph? Dec_GraphNodeNum(p->pGraph) : 0 ); + printf( "Class = %d. ", p->pMap[uTruthBest] ); + printf( "\n" ); + } + return GainBest; +} + + +/**Function************************************************************* + + Synopsis [Evaluates the cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Rwt_CutEvaluateSeq( Ivy_Man_t * pMan, Rwt_Man_t * p, Ivy_Obj_t * pRoot, Ivy_Cut_t * pCut, char * pPerm, Vec_Ptr_t * vFaninsCur, int nNodesSaved, int * pGainBest, unsigned uTruth ) +{ + Vec_Ptr_t * vSubgraphs; + Dec_Graph_t * pGraphBest, * pGraphCur; + Rwt_Node_t * pNode; + int nNodesAdded, GainBest, i; + // find the matching class of subgraphs + vSubgraphs = Vec_VecEntry( p->vClasses, p->pMap[uTruth] ); + p->nSubgraphs += vSubgraphs->nSize; + // determine the best subgraph + GainBest = -1; + Vec_PtrForEachEntry( vSubgraphs, pNode, i ) + { + // get the current graph + pGraphCur = (Dec_Graph_t *)pNode->pNext; + +// if ( pRoot->Id == 8648 ) +// Dec_GraphPrint( stdout, pGraphCur, NULL, NULL ); + // copy the leaves +// Vec_PtrForEachEntry( vFaninsCur, pFanin, k ) +// Dec_GraphNode(pGraphCur, k)->pFunc = pFanin; + Ivy_GraphPrepare( pGraphCur, pCut, vFaninsCur, pPerm ); + + // detect how many unlabeled nodes will be reused + nNodesAdded = Ivy_GraphToNetworkSeqCountSeq( pMan, pRoot, pGraphCur, nNodesSaved ); + if ( nNodesAdded == -1 ) + continue; + assert( nNodesSaved >= nNodesAdded ); + // count the gain at this node + if ( GainBest < nNodesSaved - nNodesAdded ) + { + GainBest = nNodesSaved - nNodesAdded; + pGraphBest = pGraphCur; + } + } + if ( GainBest == -1 ) + return NULL; + *pGainBest = GainBest; + return pGraphBest; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_GraphPrepare( Dec_Graph_t * pGraph, Ivy_Cut_t * pCut, Vec_Ptr_t * vFanins, char * pPerm ) +{ + Dec_Node_t * pNode, * pNode0, * pNode1; + int i; + assert( Dec_GraphLeaveNum(pGraph) == pCut->nSize ); + assert( Vec_PtrSize(vFanins) == pCut->nSize ); + // label the leaves with latch numbers + Dec_GraphForEachLeaf( pGraph, pNode, i ) + { + pNode->pFunc = Vec_PtrEntry( vFanins, i ); + pNode->nLat2 = Ivy_LeafLat( pCut->pArray[pPerm[i]] ); + } + // propagate latches through the nodes + Dec_GraphForEachNode( pGraph, pNode, i ) + { + // get the children of this node + pNode0 = Dec_GraphNode( pGraph, pNode->eEdge0.Node ); + pNode1 = Dec_GraphNode( pGraph, pNode->eEdge1.Node ); + // distribute the latches + pNode->nLat2 = IVY_MIN( pNode0->nLat2, pNode1->nLat2 ); + pNode->nLat0 = pNode0->nLat2 - pNode->nLat2; + pNode->nLat1 = pNode1->nLat2 - pNode->nLat2; + } +} + +/**Function************************************************************* + + Synopsis [Counts the number of new nodes added when using this graph.] + + Description [AIG nodes for the fanins should be assigned to pNode->pFunc + of the leaves of the graph before calling this procedure. + Returns -1 if the number of nodes and levels exceeded the given limit or + the number of levels exceeded the maximum allowed level.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_GraphToNetworkSeqCountSeq( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int NodeMax ) +{ + Dec_Node_t * pNode, * pNode0, * pNode1; + Ivy_Obj_t * pAnd, * pAnd0, * pAnd1; + int i, k, Counter, fCompl; + // check for constant function or a literal + if ( Dec_GraphIsConst(pGraph) || Dec_GraphIsVar(pGraph) ) + return 0; + // compute the AIG size after adding the internal nodes + Counter = 0; + Dec_GraphForEachNode( pGraph, pNode, i ) + { + // get the children of this node + pNode0 = Dec_GraphNode( pGraph, pNode->eEdge0.Node ); + pNode1 = Dec_GraphNode( pGraph, pNode->eEdge1.Node ); + // get the AIG nodes corresponding to the children + pAnd0 = pNode0->pFunc; + pAnd1 = pNode1->pFunc; + // skip the latches + for ( k = 0; pAnd0 && k < (int)pNode->nLat0; k++ ) + { + fCompl = Ivy_IsComplement(pAnd0); + pAnd0 = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, Ivy_Regular(pAnd0), NULL, IVY_LATCH, IVY_INIT_DC) ); + if ( pAnd0 ) + pAnd0 = Ivy_NotCond( pAnd0, fCompl ); + } + for ( k = 0; pAnd1 && k < (int)pNode->nLat1; k++ ) + { + fCompl = Ivy_IsComplement(pAnd1); + pAnd1 = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, Ivy_Regular(pAnd1), NULL, IVY_LATCH, IVY_INIT_DC) ); + if ( pAnd1 ) + pAnd1 = Ivy_NotCond( pAnd1, fCompl ); + } + // get the new node + if ( pAnd0 && pAnd1 ) + { + // if they are both present, find the resulting node + pAnd0 = Ivy_NotCond( pAnd0, pNode->eEdge0.fCompl ); + pAnd1 = Ivy_NotCond( pAnd1, pNode->eEdge1.fCompl ); + assert( !Ivy_ObjIsLatch(Ivy_Regular(pAnd0)) || !Ivy_ObjIsLatch(Ivy_Regular(pAnd1)) ); + if ( Ivy_Regular(pAnd0) == Ivy_Regular(pAnd1) || Ivy_ObjIsConst1(Ivy_Regular(pAnd0)) || Ivy_ObjIsConst1(Ivy_Regular(pAnd1)) ) + pAnd = Ivy_And( p, pAnd0, pAnd1 ); + else + pAnd = Ivy_TableLookup( p, Ivy_ObjCreateGhost(p, pAnd0, pAnd1, IVY_AND, IVY_INIT_NONE) ); + // return -1 if the node is the same as the original root + if ( Ivy_Regular(pAnd) == pRoot ) + return -1; + } + else + pAnd = NULL; + // count the number of added nodes + if ( pAnd == NULL || Ivy_ObjIsTravIdCurrent(p, Ivy_Regular(pAnd)) ) + { + if ( ++Counter > NodeMax ) + return -1; + } + pNode->pFunc = pAnd; + } + return Counter; +} + + +/**Function************************************************************* + + Synopsis [Transforms the decomposition graph into the AIG.] + + Description [AIG nodes for the fanins should be assigned to pNode->pFunc + of the leaves of the graph before calling this procedure.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_GraphToNetworkSeq( Ivy_Man_t * p, Dec_Graph_t * pGraph ) +{ + Ivy_Obj_t * pAnd0, * pAnd1; + Dec_Node_t * pNode; + int i, k; + // check for constant function + if ( Dec_GraphIsConst(pGraph) ) + return Ivy_NotCond( Ivy_ManConst1(p), Dec_GraphIsComplement(pGraph) ); + // check for a literal + if ( Dec_GraphIsVar(pGraph) ) + { + // get the variable node + pNode = Dec_GraphVar(pGraph); + // add the remaining latches + for ( k = 0; k < (int)pNode->nLat2; k++ ) + pNode->pFunc = Ivy_Latch( p, pNode->pFunc, IVY_INIT_DC ); + return Ivy_NotCond( pNode->pFunc, Dec_GraphIsComplement(pGraph) ); + } + // build the AIG nodes corresponding to the AND gates of the graph + Dec_GraphForEachNode( pGraph, pNode, i ) + { + pAnd0 = Ivy_NotCond( Dec_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); + pAnd1 = Ivy_NotCond( Dec_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); + // add the latches + for ( k = 0; k < (int)pNode->nLat0; k++ ) + pAnd0 = Ivy_Latch( p, pAnd0, IVY_INIT_DC ); + for ( k = 0; k < (int)pNode->nLat1; k++ ) + pAnd1 = Ivy_Latch( p, pAnd1, IVY_INIT_DC ); + // create the node + pNode->pFunc = Ivy_And( p, pAnd0, pAnd1 ); + } + // add the remaining latches + for ( k = 0; k < (int)pNode->nLat2; k++ ) + pNode->pFunc = Ivy_Latch( p, pNode->pFunc, IVY_INIT_DC ); + // complement the result if necessary + return Ivy_NotCond( pNode->pFunc, Dec_GraphIsComplement(pGraph) ); +} + +/**Function************************************************************* + + Synopsis [Replaces MFFC of the node by the new factored form.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_GraphUpdateNetworkSeq( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Dec_Graph_t * pGraph, int nGain ) +{ + Ivy_Obj_t * pRootNew; + int nNodesNew, nNodesOld; + nNodesOld = Ivy_ManNodeNum(p); + // create the new structure of nodes + pRootNew = Ivy_GraphToNetworkSeq( p, pGraph ); + Ivy_ObjReplace( p, pRoot, pRootNew, 1, 0, 0 ); + // compare the gains + nNodesNew = Ivy_ManNodeNum(p); + assert( nGain <= nNodesOld - nNodesNew ); + // propagate the buffer + Ivy_ManPropagateBuffers( p, 0 ); +} + + + + + + + + + +/**Function************************************************************* + + Synopsis [Computes the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Ivy_CutGetTruth_rec( Ivy_Man_t * p, int Leaf, int * pNums, int nNums ) +{ + static unsigned uMasks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; + unsigned uTruth0, uTruth1; + Ivy_Obj_t * pObj; + int i; + for ( i = 0; i < nNums; i++ ) + if ( Leaf == pNums[i] ) + return uMasks[i]; + pObj = Ivy_ManObj( p, Ivy_LeafId(Leaf) ); + if ( Ivy_ObjIsLatch(pObj) ) + { + assert( !Ivy_ObjFaninC0(pObj) ); + Leaf = Ivy_LeafCreate( Ivy_ObjFaninId0(pObj), Ivy_LeafLat(Leaf) + 1 ); + return Ivy_CutGetTruth_rec( p, Leaf, pNums, nNums ); + } + assert( Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj) ); + Leaf = Ivy_LeafCreate( Ivy_ObjFaninId0(pObj), Ivy_LeafLat(Leaf) ); + uTruth0 = Ivy_CutGetTruth_rec( p, Leaf, pNums, nNums ); + if ( Ivy_ObjFaninC0(pObj) ) + uTruth0 = ~uTruth0; + if ( Ivy_ObjIsBuf(pObj) ) + return uTruth0; + Leaf = Ivy_LeafCreate( Ivy_ObjFaninId1(pObj), Ivy_LeafLat(Leaf) ); + uTruth1 = Ivy_CutGetTruth_rec( p, Leaf, pNums, nNums ); + if ( Ivy_ObjFaninC1(pObj) ) + uTruth1 = ~uTruth1; + return uTruth0 & uTruth1; +} + + +/**Function************************************************************* + + Synopsis [Computes the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Ivy_CutGetTruth( Ivy_Man_t * p, Ivy_Obj_t * pObj, int * pNums, int nNums ) +{ + assert( Ivy_ObjIsNode(pObj) ); + assert( nNums < 6 ); + return Ivy_CutGetTruth_rec( p, Ivy_LeafCreate(pObj->Id, 0), pNums, nNums ); +} + + + + + +/**Function************************************************************* + + Synopsis [Returns 1 if the cut can be constructed; 0 otherwise.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_CutPrescreen( Ivy_Cut_t * pCut, int Id0, int Id1 ) +{ + int i; + if ( pCut->nSize < pCut->nSizeMax ) + return 1; + for ( i = 0; i < pCut->nSize; i++ ) + if ( pCut->pArray[i] == Id0 || pCut->pArray[i] == Id1 ) + return 1; + return 0; +} + +/**Function************************************************************* + + Synopsis [Derives new cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_CutDeriveNew2( Ivy_Cut_t * pCut, Ivy_Cut_t * pCutNew, int IdOld, int IdNew0, int IdNew1 ) +{ + unsigned uHash = 0; + int i, k; + assert( pCut->nSize > 0 ); + assert( IdNew0 < IdNew1 ); + for ( i = k = 0; i < pCut->nSize; i++ ) + { + if ( pCut->pArray[i] == IdOld ) + continue; + if ( IdNew0 >= 0 ) + { + if ( IdNew0 <= pCut->pArray[i] ) + { + if ( IdNew0 < pCut->pArray[i] ) + { + if ( k == pCut->nSizeMax ) + return 0; + pCutNew->pArray[ k++ ] = IdNew0; + uHash |= Ivy_CutHashValue( IdNew0 ); + } + IdNew0 = -1; + } + } + if ( IdNew1 >= 0 ) + { + if ( IdNew1 <= pCut->pArray[i] ) + { + if ( IdNew1 < pCut->pArray[i] ) + { + if ( k == pCut->nSizeMax ) + return 0; + pCutNew->pArray[ k++ ] = IdNew1; + uHash |= Ivy_CutHashValue( IdNew1 ); + } + IdNew1 = -1; + } + } + if ( k == pCut->nSizeMax ) + return 0; + pCutNew->pArray[ k++ ] = pCut->pArray[i]; + uHash |= Ivy_CutHashValue( pCut->pArray[i] ); + } + if ( IdNew0 >= 0 ) + { + if ( k == pCut->nSizeMax ) + return 0; + pCutNew->pArray[ k++ ] = IdNew0; + uHash |= Ivy_CutHashValue( IdNew0 ); + } + if ( IdNew1 >= 0 ) + { + if ( k == pCut->nSizeMax ) + return 0; + pCutNew->pArray[ k++ ] = IdNew1; + uHash |= Ivy_CutHashValue( IdNew1 ); + } + pCutNew->nSize = k; + pCutNew->uHash = uHash; + assert( pCutNew->nSize <= pCut->nSizeMax ); + for ( i = 1; i < pCutNew->nSize; i++ ) + assert( pCutNew->pArray[i-1] < pCutNew->pArray[i] ); + return 1; +} + +/**Function************************************************************* + + Synopsis [Derives new cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_CutDeriveNew( Ivy_Cut_t * pCut, Ivy_Cut_t * pCutNew, int IdOld, int IdNew0, int IdNew1 ) +{ + unsigned uHash = 0; + int i, k; + assert( pCut->nSize > 0 ); + assert( IdNew0 < IdNew1 ); + for ( i = k = 0; i < pCut->nSize; i++ ) + { + if ( pCut->pArray[i] == IdOld ) + continue; + if ( IdNew0 <= pCut->pArray[i] ) + { + if ( IdNew0 < pCut->pArray[i] ) + { + pCutNew->pArray[ k++ ] = IdNew0; + uHash |= Ivy_CutHashValue( IdNew0 ); + } + IdNew0 = 0x7FFFFFFF; + } + if ( IdNew1 <= pCut->pArray[i] ) + { + if ( IdNew1 < pCut->pArray[i] ) + { + pCutNew->pArray[ k++ ] = IdNew1; + uHash |= Ivy_CutHashValue( IdNew1 ); + } + IdNew1 = 0x7FFFFFFF; + } + pCutNew->pArray[ k++ ] = pCut->pArray[i]; + uHash |= Ivy_CutHashValue( pCut->pArray[i] ); + } + if ( IdNew0 < 0x7FFFFFFF ) + { + pCutNew->pArray[ k++ ] = IdNew0; + uHash |= Ivy_CutHashValue( IdNew0 ); + } + if ( IdNew1 < 0x7FFFFFFF ) + { + pCutNew->pArray[ k++ ] = IdNew1; + uHash |= Ivy_CutHashValue( IdNew1 ); + } + pCutNew->nSize = k; + pCutNew->uHash = uHash; + assert( pCutNew->nSize <= pCut->nSizeMax ); +// for ( i = 1; i < pCutNew->nSize; i++ ) +// assert( pCutNew->pArray[i-1] < pCutNew->pArray[i] ); + return 1; +} + +/**Function************************************************************* + + Synopsis [Find the hash value of the cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline unsigned Ivy_NodeCutHash( Ivy_Cut_t * pCut ) +{ + int i; + pCut->uHash = 0; + for ( i = 0; i < pCut->nSize; i++ ) + pCut->uHash |= (1 << (pCut->pArray[i] % 31)); + return pCut->uHash; +} + +/**Function************************************************************* + + Synopsis [Derives new cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_CutDeriveNew3( Ivy_Cut_t * pCut, Ivy_Cut_t * pCutNew, int IdOld, int IdNew0, int IdNew1 ) +{ + int i, k; + assert( pCut->nSize > 0 ); + assert( IdNew0 < IdNew1 ); + for ( i = k = 0; i < pCut->nSize; i++ ) + { + if ( pCut->pArray[i] == IdOld ) + continue; + if ( IdNew0 <= pCut->pArray[i] ) + { + if ( IdNew0 < pCut->pArray[i] ) + pCutNew->pArray[ k++ ] = IdNew0; + IdNew0 = 0x7FFFFFFF; + } + if ( IdNew1 <= pCut->pArray[i] ) + { + if ( IdNew1 < pCut->pArray[i] ) + pCutNew->pArray[ k++ ] = IdNew1; + IdNew1 = 0x7FFFFFFF; + } + pCutNew->pArray[ k++ ] = pCut->pArray[i]; + } + if ( IdNew0 < 0x7FFFFFFF ) + pCutNew->pArray[ k++ ] = IdNew0; + if ( IdNew1 < 0x7FFFFFFF ) + pCutNew->pArray[ k++ ] = IdNew1; + pCutNew->nSize = k; + assert( pCutNew->nSize <= pCut->nSizeMax ); + Ivy_NodeCutHash( pCutNew ); + return 1; +} + +/**Function************************************************************* + + Synopsis [Returns 1 if pDom is contained in pCut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_CutCheckDominance( Ivy_Cut_t * pDom, Ivy_Cut_t * pCut ) +{ + int i, k; + for ( i = 0; i < pDom->nSize; i++ ) + { + assert( i==0 || pDom->pArray[i-1] < pDom->pArray[i] ); + for ( k = 0; k < pCut->nSize; k++ ) + if ( pDom->pArray[i] == pCut->pArray[k] ) + break; + if ( k == pCut->nSize ) // node i in pDom is not contained in pCut + return 0; + } + // every node in pDom is contained in pCut + return 1; +} + +/**Function************************************************************* + + Synopsis [Check if the cut exists.] + + Description [Returns 1 if the cut exists.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_CutFindOrAddFilter( Ivy_Store_t * pCutStore, Ivy_Cut_t * pCutNew ) +{ + Ivy_Cut_t * pCut; + int i, k; + assert( pCutNew->uHash ); + // try to find the cut + for ( i = 0; i < pCutStore->nCuts; i++ ) + { + pCut = pCutStore->pCuts + i; + if ( pCut->nSize == 0 ) + continue; + if ( pCut->nSize == pCutNew->nSize ) + { + if ( pCut->uHash == pCutNew->uHash ) + { + for ( k = 0; k < pCutNew->nSize; k++ ) + if ( pCut->pArray[k] != pCutNew->pArray[k] ) + break; + if ( k == pCutNew->nSize ) + return 1; + } + continue; + } + if ( pCut->nSize < pCutNew->nSize ) + { + // skip the non-contained cuts + if ( (pCut->uHash & pCutNew->uHash) != pCut->uHash ) + continue; + // check containment seriously + if ( Ivy_CutCheckDominance( pCut, pCutNew ) ) + return 1; + continue; + } + // check potential containment of other cut + + // skip the non-contained cuts + if ( (pCut->uHash & pCutNew->uHash) != pCutNew->uHash ) + continue; + // check containment seriously + if ( Ivy_CutCheckDominance( pCutNew, pCut ) ) + { + // remove the current cut + pCut->nSize = 0; + } + } + assert( pCutStore->nCuts < pCutStore->nCutsMax ); + // add the cut + pCut = pCutStore->pCuts + pCutStore->nCuts++; + *pCut = *pCutNew; + return 0; +} + +/**Function************************************************************* + + Synopsis [Compresses the cut representation.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_CutCompactAll( Ivy_Store_t * pCutStore ) +{ + Ivy_Cut_t * pCut; + int i, k; + pCutStore->nCutsM = 0; + for ( i = k = 0; i < pCutStore->nCuts; i++ ) + { + pCut = pCutStore->pCuts + i; + if ( pCut->nSize == 0 ) + continue; + if ( pCut->nSize < pCut->nSizeMax ) + pCutStore->nCutsM++; + pCutStore->pCuts[k++] = *pCut; + } + pCutStore->nCuts = k; +} + +/**Function************************************************************* + + Synopsis [Print the cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_CutPrintForNode( Ivy_Cut_t * pCut ) +{ + int i; + assert( pCut->nSize > 0 ); + printf( "%d : {", pCut->nSize ); + for ( i = 0; i < pCut->nSize; i++ ) + printf( " %d", pCut->pArray[i] ); + printf( " }\n" ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_CutPrintForNodes( Ivy_Store_t * pCutStore ) +{ + int i; + printf( "Node %d\n", pCutStore->pCuts[0].pArray[0] ); + for ( i = 0; i < pCutStore->nCuts; i++ ) + Ivy_CutPrintForNode( pCutStore->pCuts + i ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline int Ivy_CutReadLeaf( Ivy_Obj_t * pFanin ) +{ + int nLats, iLeaf; + assert( !Ivy_IsComplement(pFanin) ); + if ( !Ivy_ObjIsLatch(pFanin) ) + return Ivy_LeafCreate( pFanin->Id, 0 ); + iLeaf = Ivy_CutReadLeaf(Ivy_ObjFanin0(pFanin)); + nLats = Ivy_LeafLat(iLeaf); + assert( nLats < IVY_LEAF_MASK ); + return 1 + iLeaf; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Store_t * Ivy_CutComputeForNode( Ivy_Man_t * p, Ivy_Obj_t * pObj, int nLeaves ) +{ + static Ivy_Store_t CutStore, * pCutStore = &CutStore; + Ivy_Cut_t CutNew, * pCutNew = &CutNew, * pCut; + Ivy_Man_t * pMan = p; + Ivy_Obj_t * pLeaf; + int i, k, Temp, nLats, iLeaf0, iLeaf1; + + assert( nLeaves <= IVY_CUT_INPUT ); + + // start the structure + pCutStore->nCuts = 0; + pCutStore->nCutsMax = IVY_CUT_LIMIT; + // start the trivial cut + pCutNew->uHash = 0; + pCutNew->nSize = 1; + pCutNew->nSizeMax = nLeaves; + pCutNew->pArray[0] = Ivy_LeafCreate( pObj->Id, 0 ); + pCutNew->uHash = Ivy_CutHashValue( pCutNew->pArray[0] ); + // add the trivial cut + pCutStore->pCuts[pCutStore->nCuts++] = *pCutNew; + assert( pCutStore->nCuts == 1 ); + + // explore the cuts + for ( i = 0; i < pCutStore->nCuts; i++ ) + { + // expand this cut + pCut = pCutStore->pCuts + i; + if ( pCut->nSize == 0 ) + continue; + for ( k = 0; k < pCut->nSize; k++ ) + { + pLeaf = Ivy_ManObj( p, Ivy_LeafId(pCut->pArray[k]) ); + if ( Ivy_ObjIsCi(pLeaf) || Ivy_ObjIsConst1(pLeaf) ) + continue; + assert( Ivy_ObjIsNode(pLeaf) ); + nLats = Ivy_LeafLat(pCut->pArray[k]); + + // get the fanins fanins + iLeaf0 = Ivy_CutReadLeaf( Ivy_ObjFanin0(pLeaf) ); + iLeaf1 = Ivy_CutReadLeaf( Ivy_ObjFanin1(pLeaf) ); + assert( nLats + Ivy_LeafLat(iLeaf0) < IVY_LEAF_MASK && nLats + Ivy_LeafLat(iLeaf1) < IVY_LEAF_MASK ); + iLeaf0 = nLats + iLeaf0; + iLeaf1 = nLats + iLeaf1; + if ( !Ivy_CutPrescreen( pCut, iLeaf0, iLeaf1 ) ) + continue; + // the given cut exist + if ( iLeaf0 > iLeaf1 ) + Temp = iLeaf0, iLeaf0 = iLeaf1, iLeaf1 = Temp; + // create the new cut + if ( !Ivy_CutDeriveNew( pCut, pCutNew, pCut->pArray[k], iLeaf0, iLeaf1 ) ) + continue; + // add the cut + Ivy_CutFindOrAddFilter( pCutStore, pCutNew ); + if ( pCutStore->nCuts == IVY_CUT_LIMIT ) + break; + } + if ( pCutStore->nCuts == IVY_CUT_LIMIT ) + break; + } + if ( pCutStore->nCuts == IVY_CUT_LIMIT ) + pCutStore->fSatur = 1; + else + pCutStore->fSatur = 0; +// printf( "%d ", pCutStore->nCuts ); + Ivy_CutCompactAll( pCutStore ); +// printf( "%d \n", pCutStore->nCuts ); +// Ivy_CutPrintForNodes( pCutStore ); + return pCutStore; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_CutComputeAll( Ivy_Man_t * p, int nInputs ) +{ + Ivy_Store_t * pStore; + Ivy_Obj_t * pObj; + int i, nCutsTotal, nCutsTotalM, nNodeTotal, nNodeOver; + int clk = clock(); + if ( nInputs > IVY_CUT_INPUT ) + { + printf( "Cannot compute cuts for more than %d inputs.\n", IVY_CUT_INPUT ); + return; + } + nNodeTotal = nNodeOver = 0; + nCutsTotal = nCutsTotalM = -Ivy_ManNodeNum(p); + Ivy_ManForEachObj( p, pObj, i ) + { + if ( !Ivy_ObjIsNode(pObj) ) + continue; + pStore = Ivy_CutComputeForNode( p, pObj, nInputs ); + nCutsTotal += pStore->nCuts; + nCutsTotalM += pStore->nCutsM; + nNodeOver += pStore->fSatur; + nNodeTotal++; + } + printf( "All = %6d. Minus = %6d. Triv = %6d. Node = %6d. Satur = %6d. ", + nCutsTotal, nCutsTotalM, Ivy_ManPiNum(p) + Ivy_ManNodeNum(p), nNodeTotal, nNodeOver ); + PRT( "Time", clock() - clk ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyShow.c b/src/aig/ivy/ivyShow.c new file mode 100644 index 00000000..cd726e43 --- /dev/null +++ b/src/aig/ivy/ivyShow.c @@ -0,0 +1,338 @@ +/**CFile**************************************************************** + + FileName [ivyShow.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Visualization of HAIG.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyShow.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +static void Ivy_WriteDotAig( Ivy_Man_t * pMan, char * pFileName, int fHaig, Vec_Ptr_t * vBold ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManShow( Ivy_Man_t * pMan, int fHaig, Vec_Ptr_t * vBold ) +{ + extern void Abc_ShowFile( char * FileNameDot ); + static Counter = 0; + char FileNameDot[200]; + FILE * pFile; + // create the file name +// Ivy_ShowGetFileName( pMan->pName, FileNameDot ); + sprintf( FileNameDot, "temp%02d.dot", Counter++ ); + // check that the file can be opened + if ( (pFile = fopen( FileNameDot, "w" )) == NULL ) + { + fprintf( stdout, "Cannot open the intermediate file \"%s\".\n", FileNameDot ); + return; + } + fclose( pFile ); + // generate the file + Ivy_WriteDotAig( pMan, FileNameDot, fHaig, vBold ); + // visualize the file + Abc_ShowFile( FileNameDot ); +} + +/**Function************************************************************* + + Synopsis [Writes the graph structure of AIG for DOT.] + + Description [Useful for graph visualization using tools such as GraphViz: + http://www.graphviz.org/] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_WriteDotAig( Ivy_Man_t * pMan, char * pFileName, int fHaig, Vec_Ptr_t * vBold ) +{ + FILE * pFile; + Ivy_Obj_t * pNode, * pTemp, * pPrev; + int LevelMax, Level, i; + + if ( Ivy_ManNodeNum(pMan) > 200 ) + { + fprintf( stdout, "Cannot visualize AIG with more than 200 nodes.\n" ); + return; + } + if ( (pFile = fopen( pFileName, "w" )) == NULL ) + { + fprintf( stdout, "Cannot open the intermediate file \"%s\".\n", pFileName ); + return; + } + + // mark the nodes + if ( vBold ) + Vec_PtrForEachEntry( vBold, pNode, i ) + pNode->fMarkB = 1; + + // compute levels + LevelMax = 1 + Ivy_ManSetLevels( pMan, fHaig ); + + // write the DOT header + fprintf( pFile, "# %s\n", "AIG structure generated by IVY package" ); + fprintf( pFile, "\n" ); + fprintf( pFile, "digraph AIG {\n" ); + fprintf( pFile, "size = \"7.5,10\";\n" ); +// fprintf( pFile, "ranksep = 0.5;\n" ); +// fprintf( pFile, "nodesep = 0.5;\n" ); + fprintf( pFile, "center = true;\n" ); +// fprintf( pFile, "orientation = landscape;\n" ); +// fprintf( pFile, "edge [fontsize = 10];\n" ); +// fprintf( pFile, "edge [dir = none];\n" ); + fprintf( pFile, "edge [dir = back];\n" ); + fprintf( pFile, "\n" ); + + // labels on the left of the picture + fprintf( pFile, "{\n" ); + fprintf( pFile, " node [shape = plaintext];\n" ); + fprintf( pFile, " edge [style = invis];\n" ); + fprintf( pFile, " LevelTitle1 [label=\"\"];\n" ); + fprintf( pFile, " LevelTitle2 [label=\"\"];\n" ); + // generate node names with labels + for ( Level = LevelMax; Level >= 0; Level-- ) + { + // the visible node name + fprintf( pFile, " Level%d", Level ); + fprintf( pFile, " [label = " ); + // label name + fprintf( pFile, "\"" ); + fprintf( pFile, "\"" ); + fprintf( pFile, "];\n" ); + } + + // genetate the sequence of visible/invisible nodes to mark levels + fprintf( pFile, " LevelTitle1 -> LevelTitle2 ->" ); + for ( Level = LevelMax; Level >= 0; Level-- ) + { + // the visible node name + fprintf( pFile, " Level%d", Level ); + // the connector + if ( Level != 0 ) + fprintf( pFile, " ->" ); + else + fprintf( pFile, ";" ); + } + fprintf( pFile, "\n" ); + fprintf( pFile, "}" ); + fprintf( pFile, "\n" ); + fprintf( pFile, "\n" ); + + // generate title box on top + fprintf( pFile, "{\n" ); + fprintf( pFile, " rank = same;\n" ); + fprintf( pFile, " LevelTitle1;\n" ); + fprintf( pFile, " title1 [shape=plaintext,\n" ); + fprintf( pFile, " fontsize=20,\n" ); + fprintf( pFile, " fontname = \"Times-Roman\",\n" ); + fprintf( pFile, " label=\"" ); + fprintf( pFile, "%s", "AIG structure visualized by ABC" ); + fprintf( pFile, "\\n" ); + fprintf( pFile, "Benchmark \\\"%s\\\". ", "aig" ); + fprintf( pFile, "Time was %s. ", Extra_TimeStamp() ); + fprintf( pFile, "\"\n" ); + fprintf( pFile, " ];\n" ); + fprintf( pFile, "}" ); + fprintf( pFile, "\n" ); + fprintf( pFile, "\n" ); + + // generate statistics box + fprintf( pFile, "{\n" ); + fprintf( pFile, " rank = same;\n" ); + fprintf( pFile, " LevelTitle2;\n" ); + fprintf( pFile, " title2 [shape=plaintext,\n" ); + fprintf( pFile, " fontsize=18,\n" ); + fprintf( pFile, " fontname = \"Times-Roman\",\n" ); + fprintf( pFile, " label=\"" ); + fprintf( pFile, "The set contains %d logic nodes and spans %d levels.", Ivy_ManNodeNum(pMan), LevelMax ); + fprintf( pFile, "\\n" ); + fprintf( pFile, "\"\n" ); + fprintf( pFile, " ];\n" ); + fprintf( pFile, "}" ); + fprintf( pFile, "\n" ); + fprintf( pFile, "\n" ); + + // generate the COs + fprintf( pFile, "{\n" ); + fprintf( pFile, " rank = same;\n" ); + // the labeling node of this level + fprintf( pFile, " Level%d;\n", LevelMax ); + // generate the CO nodes + Ivy_ManForEachCo( pMan, pNode, i ) + { + if ( fHaig || pNode->pEquiv == NULL ) + fprintf( pFile, " Node%d%s [label = \"%d%s\"", pNode->Id, + (Ivy_ObjIsLatch(pNode)? "_in":""), pNode->Id, (Ivy_ObjIsLatch(pNode)? "_in":"") ); + else + fprintf( pFile, " Node%d%s [label = \"%d%s(%d%s)\"", pNode->Id, + (Ivy_ObjIsLatch(pNode)? "_in":""), pNode->Id, (Ivy_ObjIsLatch(pNode)? "_in":""), + Ivy_Regular(pNode->pEquiv)->Id, Ivy_IsComplement(pNode->pEquiv)? "\'":"" ); + fprintf( pFile, ", shape = %s", (Ivy_ObjIsLatch(pNode)? "box":"invtriangle") ); + fprintf( pFile, ", color = coral, fillcolor = coral" ); + fprintf( pFile, "];\n" ); + } + fprintf( pFile, "}" ); + fprintf( pFile, "\n" ); + fprintf( pFile, "\n" ); + + // generate nodes of each rank + for ( Level = LevelMax - 1; Level > 0; Level-- ) + { + fprintf( pFile, "{\n" ); + fprintf( pFile, " rank = same;\n" ); + // the labeling node of this level + fprintf( pFile, " Level%d;\n", Level ); + Ivy_ManForEachObj( pMan, pNode, i ) + { + if ( (int)pNode->Level != Level ) + continue; + if ( fHaig || pNode->pEquiv == NULL ) + fprintf( pFile, " Node%d [label = \"%d\"", pNode->Id, pNode->Id ); + else + fprintf( pFile, " Node%d [label = \"%d(%d%s)\"", pNode->Id, pNode->Id, + Ivy_Regular(pNode->pEquiv)->Id, Ivy_IsComplement(pNode->pEquiv)? "\'":"" ); + fprintf( pFile, ", shape = ellipse" ); + if ( vBold && pNode->fMarkB ) + fprintf( pFile, ", style = filled" ); + fprintf( pFile, "];\n" ); + } + fprintf( pFile, "}" ); + fprintf( pFile, "\n" ); + fprintf( pFile, "\n" ); + } + + // generate the CI nodes + fprintf( pFile, "{\n" ); + fprintf( pFile, " rank = same;\n" ); + // the labeling node of this level + fprintf( pFile, " Level%d;\n", 0 ); + // generate constant node + if ( Ivy_ObjRefs(Ivy_ManConst1(pMan)) > 0 ) + { + pNode = Ivy_ManConst1(pMan); + // check if the costant node is present + fprintf( pFile, " Node%d [label = \"Const1\"", pNode->Id ); + fprintf( pFile, ", shape = ellipse" ); + fprintf( pFile, ", color = coral, fillcolor = coral" ); + fprintf( pFile, "];\n" ); + } + // generate the CI nodes + Ivy_ManForEachCi( pMan, pNode, i ) + { + if ( fHaig || pNode->pEquiv == NULL ) + fprintf( pFile, " Node%d%s [label = \"%d%s\"", pNode->Id, + (Ivy_ObjIsLatch(pNode)? "_out":""), pNode->Id, (Ivy_ObjIsLatch(pNode)? "_out":"") ); + else + fprintf( pFile, " Node%d%s [label = \"%d%s(%d%s)\"", pNode->Id, + (Ivy_ObjIsLatch(pNode)? "_out":""), pNode->Id, (Ivy_ObjIsLatch(pNode)? "_out":""), + Ivy_Regular(pNode->pEquiv)->Id, Ivy_IsComplement(pNode->pEquiv)? "\'":"" ); + fprintf( pFile, ", shape = %s", (Ivy_ObjIsLatch(pNode)? "box":"triangle") ); + fprintf( pFile, ", color = coral, fillcolor = coral" ); + fprintf( pFile, "];\n" ); + } + fprintf( pFile, "}" ); + fprintf( pFile, "\n" ); + fprintf( pFile, "\n" ); + + // generate invisible edges from the square down + fprintf( pFile, "title1 -> title2 [style = invis];\n" ); + Ivy_ManForEachCo( pMan, pNode, i ) + fprintf( pFile, "title2 -> Node%d%s [style = invis];\n", pNode->Id, (Ivy_ObjIsLatch(pNode)? "_in":"") ); + + // generate edges + Ivy_ManForEachObj( pMan, pNode, i ) + { + if ( !Ivy_ObjIsNode(pNode) && !Ivy_ObjIsCo(pNode) && !Ivy_ObjIsBuf(pNode) ) + continue; + // generate the edge from this node to the next + fprintf( pFile, "Node%d%s", pNode->Id, (Ivy_ObjIsLatch(pNode)? "_in":"") ); + fprintf( pFile, " -> " ); + fprintf( pFile, "Node%d%s", Ivy_ObjFaninId0(pNode), (Ivy_ObjIsLatch(Ivy_ObjFanin0(pNode))? "_out":"") ); + fprintf( pFile, " [" ); + fprintf( pFile, "style = %s", Ivy_ObjFaninC0(pNode)? "dotted" : "bold" ); +// if ( Ivy_NtkIsSeq(pNode->pMan) && Seq_ObjFaninL0(pNode) > 0 ) +// fprintf( pFile, ", label = \"%s\"", Seq_ObjFaninGetInitPrintable(pNode,0) ); + fprintf( pFile, "]" ); + fprintf( pFile, ";\n" ); + if ( !Ivy_ObjIsNode(pNode) ) + continue; + // generate the edge from this node to the next + fprintf( pFile, "Node%d", pNode->Id ); + fprintf( pFile, " -> " ); + fprintf( pFile, "Node%d%s", Ivy_ObjFaninId1(pNode), (Ivy_ObjIsLatch(Ivy_ObjFanin1(pNode))? "_out":"") ); + fprintf( pFile, " [" ); + fprintf( pFile, "style = %s", Ivy_ObjFaninC1(pNode)? "dotted" : "bold" ); +// if ( Ivy_NtkIsSeq(pNode->pMan) && Seq_ObjFaninL1(pNode) > 0 ) +// fprintf( pFile, ", label = \"%s\"", Seq_ObjFaninGetInitPrintable(pNode,1) ); + fprintf( pFile, "]" ); + fprintf( pFile, ";\n" ); + // generate the edges between the equivalent nodes + if ( fHaig && pNode->pEquiv && Ivy_ObjRefs(pNode) > 0 ) + { + pPrev = pNode; + for ( pTemp = pNode->pEquiv; pTemp != pNode; pTemp = Ivy_Regular(pTemp->pEquiv) ) + { + fprintf( pFile, "Node%d", pPrev->Id ); + fprintf( pFile, " -> " ); + fprintf( pFile, "Node%d", pTemp->Id ); + fprintf( pFile, " [style = %s]", Ivy_IsComplement(pTemp->pEquiv)? "dotted" : "bold" ); + fprintf( pFile, ";\n" ); + pPrev = pTemp; + } + // connect the last node with the first + fprintf( pFile, "Node%d", pPrev->Id ); + fprintf( pFile, " -> " ); + fprintf( pFile, "Node%d", pNode->Id ); + fprintf( pFile, " [style = %s]", Ivy_IsComplement(pPrev->pEquiv)? "dotted" : "bold" ); + fprintf( pFile, ";\n" ); + } + } + + fprintf( pFile, "}" ); + fprintf( pFile, "\n" ); + fprintf( pFile, "\n" ); + fclose( pFile ); + + // unmark nodes + if ( vBold ) + Vec_PtrForEachEntry( vBold, pNode, i ) + pNode->fMarkB = 0; +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyTable.c b/src/aig/ivy/ivyTable.c new file mode 100644 index 00000000..2ac0ae49 --- /dev/null +++ b/src/aig/ivy/ivyTable.c @@ -0,0 +1,301 @@ +/**CFile**************************************************************** + + FileName [ivyTable.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Structural hashing table.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006. ] + + Revision [$Id: ivyTable.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +// hashing the node +static unsigned Ivy_Hash( Ivy_Obj_t * pObj, int TableSize ) +{ + unsigned Key = Ivy_ObjIsExor(pObj) * 1699; + Key ^= Ivy_ObjFaninId0(pObj) * 7937; + Key ^= Ivy_ObjFaninId1(pObj) * 2971; + Key ^= Ivy_ObjFaninC0(pObj) * 911; + Key ^= Ivy_ObjFaninC1(pObj) * 353; + Key ^= Ivy_ObjInit(pObj) * 911; + return Key % TableSize; +} + +// returns the place where this node is stored (or should be stored) +static int * Ivy_TableFind( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + int i; + assert( Ivy_ObjIsHash(pObj) ); + for ( i = Ivy_Hash(pObj, p->nTableSize); p->pTable[i]; i = (i+1) % p->nTableSize ) + if ( p->pTable[i] == pObj->Id ) + break; + return p->pTable + i; +} + +static void Ivy_TableResize( Ivy_Man_t * p ); +static unsigned int Cudd_PrimeAig( unsigned int p ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Checks if node with the given attributes is in the hash table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_TableLookup( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pEntry; + int i; + assert( !Ivy_IsComplement(pObj) ); + if ( !Ivy_ObjIsHash(pObj) ) + return NULL; + assert( Ivy_ObjIsLatch(pObj) || Ivy_ObjFaninId0(pObj) > 0 ); + assert( Ivy_ObjFaninId1(pObj) == 0 || Ivy_ObjFaninId0(pObj) < Ivy_ObjFaninId1(pObj) ); + if ( Ivy_ObjFanin0(pObj)->nRefs == 0 || (Ivy_ObjChild1(pObj) && Ivy_ObjFanin1(pObj)->nRefs == 0) ) + return NULL; + for ( i = Ivy_Hash(pObj, p->nTableSize); p->pTable[i]; i = (i+1) % p->nTableSize ) + { + pEntry = Ivy_ManObj( p, p->pTable[i] ); + if ( Ivy_ObjChild0(pEntry) == Ivy_ObjChild0(pObj) && + Ivy_ObjChild1(pEntry) == Ivy_ObjChild1(pObj) && + Ivy_ObjInit(pEntry) == Ivy_ObjInit(pObj) && + Ivy_ObjType(pEntry) == Ivy_ObjType(pObj) ) + return pEntry; + } + return NULL; +} + +/**Function************************************************************* + + Synopsis [Adds the node to the hash table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TableInsert( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + int * pPlace; + assert( !Ivy_IsComplement(pObj) ); + if ( !Ivy_ObjIsHash(pObj) ) + return; + if ( (pObj->Id & 63) == 0 ) + { + if ( p->nTableSize < 2 * Ivy_ManHashObjNum(p) ) + Ivy_TableResize( p ); + } + pPlace = Ivy_TableFind( p, pObj ); + assert( *pPlace == 0 ); + *pPlace = pObj->Id; +} + +/**Function************************************************************* + + Synopsis [Deletes the node from the hash table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TableDelete( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pEntry; + int i, * pPlace; + assert( !Ivy_IsComplement(pObj) ); + if ( !Ivy_ObjIsHash(pObj) ) + return; + pPlace = Ivy_TableFind( p, pObj ); + assert( *pPlace == pObj->Id ); // node should be in the table + *pPlace = 0; + // rehash the adjacent entries + i = pPlace - p->pTable; + for ( i = (i+1) % p->nTableSize; p->pTable[i]; i = (i+1) % p->nTableSize ) + { + pEntry = Ivy_ManObj( p, p->pTable[i] ); + p->pTable[i] = 0; + Ivy_TableInsert( p, pEntry ); + } +} + +/**Function************************************************************* + + Synopsis [Updates the table to point to the new node.] + + Description [If the old node (pObj) is in the table, updates the table + to point to an object with different ID (ObjIdNew). The table should + not contain an object with ObjIdNew (this is currently not checked).] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TableUpdate( Ivy_Man_t * p, Ivy_Obj_t * pObj, int ObjIdNew ) +{ + int * pPlace; + assert( !Ivy_IsComplement(pObj) ); + if ( !Ivy_ObjIsHash(pObj) ) + return; + pPlace = Ivy_TableFind( p, pObj ); + assert( *pPlace == pObj->Id ); // node should be in the table + *pPlace = ObjIdNew; +} + +/**Function************************************************************* + + Synopsis [Count the number of nodes in the table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_TableCountEntries( Ivy_Man_t * p ) +{ + int i, Counter = 0; + for ( i = 0; i < p->nTableSize; i++ ) + Counter += (p->pTable[i] != 0); + return Counter; +} + +/**Function************************************************************* + + Synopsis [Resizes the table.] + + Description [Typically this procedure should not be called.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_TableResize( Ivy_Man_t * p ) +{ + int * pTableOld, * pPlace; + int nTableSizeOld, Counter, nEntries, e, clk; +clk = clock(); + // save the old table + pTableOld = p->pTable; + nTableSizeOld = p->nTableSize; + // get the new table + p->nTableSize = Cudd_PrimeAig( 5 * Ivy_ManHashObjNum(p) ); + p->pTable = ALLOC( int, p->nTableSize ); + memset( p->pTable, 0, sizeof(int) * p->nTableSize ); + // rehash the entries from the old table + Counter = 0; + for ( e = 0; e < nTableSizeOld; e++ ) + { + if ( pTableOld[e] == 0 ) + continue; + Counter++; + // get the place where this entry goes in the table table + pPlace = Ivy_TableFind( p, Ivy_ManObj(p, pTableOld[e]) ); + assert( *pPlace == 0 ); // should not be in the table + *pPlace = pTableOld[e]; + } + nEntries = Ivy_ManHashObjNum(p); +// assert( Counter == nEntries ); +// printf( "Increasing the structural table size from %6d to %6d. ", nTableSizeOld, p->nTableSize ); +// PRT( "Time", clock() - clk ); + // replace the table and the parameters + free( pTableOld ); +} + +/**Function******************************************************************** + + Synopsis [Profiles the hash table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +******************************************************************************/ +void Ivy_TableProfile( Ivy_Man_t * p ) +{ + int i, Counter = 0; + for ( i = 0; i < p->nTableSize; i++ ) + { + if ( p->pTable[i] ) + Counter++; + else if ( Counter ) + { + printf( "%d ", Counter ); + Counter = 0; + } + } +} + +/**Function******************************************************************** + + Synopsis [Returns the next prime >= p.] + + Description [Copied from CUDD, for stand-aloneness.] + + SideEffects [None] + + SeeAlso [] + +******************************************************************************/ +unsigned int Cudd_PrimeAig( unsigned int p) +{ + int i,pn; + + p--; + do { + p++; + if (p&1) { + pn = 1; + i = 3; + while ((unsigned) (i * i) <= p) { + if (p % i == 0) { + pn = 0; + break; + } + i += 2; + } + } else { + pn = 0; + } + } while (!pn); + return(p); + +} /* end of Cudd_Prime */ + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyUtil.c b/src/aig/ivy/ivyUtil.c new file mode 100644 index 00000000..ab62a276 --- /dev/null +++ b/src/aig/ivy/ivyUtil.c @@ -0,0 +1,818 @@ +/**CFile**************************************************************** + + FileName [ivyUtil.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [Various procedures.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivyUtil.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Increments the current traversal ID of the network.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManIncrementTravId( Ivy_Man_t * p ) +{ + if ( p->nTravIds >= (1<<30)-1 - 1000 ) + Ivy_ManCleanTravId( p ); + p->nTravIds++; +} + +/**Function************************************************************* + + Synopsis [Sets the DFS ordering of the nodes.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManCleanTravId( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj; + int i; + p->nTravIds = 1; + Ivy_ManForEachObj( p, pObj, i ) + pObj->TravId = 0; +} + +/**Function************************************************************* + + Synopsis [Computes truth table of the cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManCollectCut_rec( Ivy_Man_t * p, Ivy_Obj_t * pNode, Vec_Int_t * vNodes ) +{ + if ( pNode->fMarkA ) + return; + pNode->fMarkA = 1; + assert( Ivy_ObjIsAnd(pNode) || Ivy_ObjIsExor(pNode) ); + Ivy_ManCollectCut_rec( p, Ivy_ObjFanin0(pNode), vNodes ); + Ivy_ManCollectCut_rec( p, Ivy_ObjFanin1(pNode), vNodes ); + Vec_IntPush( vNodes, pNode->Id ); +} + +/**Function************************************************************* + + Synopsis [Computes truth table of the cut.] + + Description [Does not modify the array of leaves. Uses array vTruth to store + temporary truth tables. The returned pointer should be used immediately.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManCollectCut( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Vec_Int_t * vLeaves, Vec_Int_t * vNodes ) +{ + int i, Leaf; + // collect and mark the leaves + Vec_IntClear( vNodes ); + Vec_IntForEachEntry( vLeaves, Leaf, i ) + { + Vec_IntPush( vNodes, Leaf ); + Ivy_ManObj(p, Leaf)->fMarkA = 1; + } + // collect and mark the nodes + Ivy_ManCollectCut_rec( p, pRoot, vNodes ); + // clean the nodes + Vec_IntForEachEntry( vNodes, Leaf, i ) + Ivy_ManObj(p, Leaf)->fMarkA = 0; +} + +/**Function************************************************************* + + Synopsis [Returns the pointer to the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Ivy_ObjGetTruthStore( int ObjNum, Vec_Int_t * vTruth ) +{ + return ((unsigned *)Vec_IntArray(vTruth)) + 8 * ObjNum; +} + +/**Function************************************************************* + + Synopsis [Computes truth table of the cut.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManCutTruthOne( Ivy_Man_t * p, Ivy_Obj_t * pNode, Vec_Int_t * vTruth, int nWords ) +{ + unsigned * pTruth, * pTruth0, * pTruth1; + int i; + pTruth = Ivy_ObjGetTruthStore( pNode->TravId, vTruth ); + pTruth0 = Ivy_ObjGetTruthStore( Ivy_ObjFanin0(pNode)->TravId, vTruth ); + pTruth1 = Ivy_ObjGetTruthStore( Ivy_ObjFanin1(pNode)->TravId, vTruth ); + if ( Ivy_ObjIsExor(pNode) ) + for ( i = 0; i < nWords; i++ ) + pTruth[i] = pTruth0[i] ^ pTruth1[i]; + else if ( !Ivy_ObjFaninC0(pNode) && !Ivy_ObjFaninC1(pNode) ) + for ( i = 0; i < nWords; i++ ) + pTruth[i] = pTruth0[i] & pTruth1[i]; + else if ( !Ivy_ObjFaninC0(pNode) && Ivy_ObjFaninC1(pNode) ) + for ( i = 0; i < nWords; i++ ) + pTruth[i] = pTruth0[i] & ~pTruth1[i]; + else if ( Ivy_ObjFaninC0(pNode) && !Ivy_ObjFaninC1(pNode) ) + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ~pTruth0[i] & pTruth1[i]; + else // if ( Ivy_ObjFaninC0(pNode) && Ivy_ObjFaninC1(pNode) ) + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ~pTruth0[i] & ~pTruth1[i]; +} + +/**Function************************************************************* + + Synopsis [Computes truth table of the cut.] + + Description [Does not modify the array of leaves. Uses array vTruth to store + temporary truth tables. The returned pointer should be used immediately.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned * Ivy_ManCutTruth( Ivy_Man_t * p, Ivy_Obj_t * pRoot, Vec_Int_t * vLeaves, Vec_Int_t * vNodes, Vec_Int_t * vTruth ) +{ + static unsigned uTruths[8][8] = { // elementary truth tables + { 0xAAAAAAAA,0xAAAAAAAA,0xAAAAAAAA,0xAAAAAAAA,0xAAAAAAAA,0xAAAAAAAA,0xAAAAAAAA,0xAAAAAAAA }, + { 0xCCCCCCCC,0xCCCCCCCC,0xCCCCCCCC,0xCCCCCCCC,0xCCCCCCCC,0xCCCCCCCC,0xCCCCCCCC,0xCCCCCCCC }, + { 0xF0F0F0F0,0xF0F0F0F0,0xF0F0F0F0,0xF0F0F0F0,0xF0F0F0F0,0xF0F0F0F0,0xF0F0F0F0,0xF0F0F0F0 }, + { 0xFF00FF00,0xFF00FF00,0xFF00FF00,0xFF00FF00,0xFF00FF00,0xFF00FF00,0xFF00FF00,0xFF00FF00 }, + { 0xFFFF0000,0xFFFF0000,0xFFFF0000,0xFFFF0000,0xFFFF0000,0xFFFF0000,0xFFFF0000,0xFFFF0000 }, + { 0x00000000,0xFFFFFFFF,0x00000000,0xFFFFFFFF,0x00000000,0xFFFFFFFF,0x00000000,0xFFFFFFFF }, + { 0x00000000,0x00000000,0xFFFFFFFF,0xFFFFFFFF,0x00000000,0x00000000,0xFFFFFFFF,0xFFFFFFFF }, + { 0x00000000,0x00000000,0x00000000,0x00000000,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF } + }; + int i, Leaf; + // collect the cut + Ivy_ManCollectCut( p, pRoot, vLeaves, vNodes ); + // set the node numbers + Vec_IntForEachEntry( vNodes, Leaf, i ) + Ivy_ManObj(p, Leaf)->TravId = i; + // alloc enough memory + Vec_IntClear( vTruth ); + Vec_IntGrow( vTruth, 8 * Vec_IntSize(vNodes) ); + // set the elementary truth tables + Vec_IntForEachEntry( vLeaves, Leaf, i ) + memcpy( Ivy_ObjGetTruthStore(i, vTruth), uTruths[i], 8 * sizeof(unsigned) ); + // compute truths for other nodes + Vec_IntForEachEntryStart( vNodes, Leaf, i, Vec_IntSize(vLeaves) ) + Ivy_ManCutTruthOne( p, Ivy_ManObj(p, Leaf), vTruth, 8 ); + return Ivy_ObjGetTruthStore( pRoot->TravId, vTruth ); +} + +/**Function************************************************************* + + Synopsis [Collect the latches.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Int_t * Ivy_ManLatches( Ivy_Man_t * p ) +{ + Vec_Int_t * vLatches; + Ivy_Obj_t * pObj; + int i; + vLatches = Vec_IntAlloc( Ivy_ManLatchNum(p) ); + Ivy_ManForEachLatch( p, pObj, i ) + Vec_IntPush( vLatches, pObj->Id ); + return vLatches; +} + +/**Function************************************************************* + + Synopsis [Collect the latches.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManLevels( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj; + int i, LevelMax = 0; + Ivy_ManForEachPo( p, pObj, i ) + LevelMax = IVY_MAX( LevelMax, (int)Ivy_ObjFanin0(pObj)->Level ); + return LevelMax; +} + +/**Function************************************************************* + + Synopsis [Collect the latches.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ManResetLevels_rec( Ivy_Obj_t * pObj ) +{ + if ( pObj->Level || Ivy_ObjIsCi(pObj) || Ivy_ObjIsConst1(pObj) ) + return pObj->Level; + if ( Ivy_ObjIsBuf(pObj) ) + return pObj->Level = Ivy_ManResetLevels_rec( Ivy_ObjFanin0(pObj) ); + assert( Ivy_ObjIsNode(pObj) ); + Ivy_ManResetLevels_rec( Ivy_ObjFanin0(pObj) ); + Ivy_ManResetLevels_rec( Ivy_ObjFanin1(pObj) ); + return pObj->Level = Ivy_ObjLevelNew( pObj ); +} + +/**Function************************************************************* + + Synopsis [Collect the latches.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManResetLevels( Ivy_Man_t * p ) +{ + Ivy_Obj_t * pObj; + int i; + Ivy_ManForEachObj( p, pObj, i ) + pObj->Level = 0; + Ivy_ManForEachCo( p, pObj, i ) + Ivy_ManResetLevels_rec( Ivy_ObjFanin0(pObj) ); +} + +/**Function************************************************************* + + Synopsis [References/references the node and returns MFFC size.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ObjRefDeref( Ivy_Man_t * p, Ivy_Obj_t * pNode, int fReference, int fLabel ) +{ + Ivy_Obj_t * pNode0, * pNode1; + int Counter; + // label visited nodes + if ( fLabel ) + Ivy_ObjSetTravIdCurrent( p, pNode ); + // skip the CI + if ( Ivy_ObjIsPi(pNode) ) + return 0; + assert( Ivy_ObjIsNode(pNode) || Ivy_ObjIsBuf(pNode) || Ivy_ObjIsLatch(pNode) ); + // process the internal node + pNode0 = Ivy_ObjFanin0(pNode); + pNode1 = Ivy_ObjFanin1(pNode); + Counter = Ivy_ObjIsNode(pNode); + if ( fReference ) + { + if ( pNode0->nRefs++ == 0 ) + Counter += Ivy_ObjRefDeref( p, pNode0, fReference, fLabel ); + if ( pNode1 && pNode1->nRefs++ == 0 ) + Counter += Ivy_ObjRefDeref( p, pNode1, fReference, fLabel ); + } + else + { + assert( pNode0->nRefs > 0 ); + assert( pNode1 == NULL || pNode1->nRefs > 0 ); + if ( --pNode0->nRefs == 0 ) + Counter += Ivy_ObjRefDeref( p, pNode0, fReference, fLabel ); + if ( pNode1 && --pNode1->nRefs == 0 ) + Counter += Ivy_ObjRefDeref( p, pNode1, fReference, fLabel ); + } + return Counter; +} + + +/**Function************************************************************* + + Synopsis [Labels MFFC with the current label.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ObjMffcLabel( Ivy_Man_t * p, Ivy_Obj_t * pNode ) +{ + int nConeSize1, nConeSize2; + assert( !Ivy_IsComplement( pNode ) ); + assert( Ivy_ObjIsNode( pNode ) ); + nConeSize1 = Ivy_ObjRefDeref( p, pNode, 0, 1 ); // dereference + nConeSize2 = Ivy_ObjRefDeref( p, pNode, 1, 0 ); // reference + assert( nConeSize1 == nConeSize2 ); + assert( nConeSize1 > 0 ); + return nConeSize1; +} + +/**Function************************************************************* + + Synopsis [Recursively updates fanout levels.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjUpdateLevel_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pFanout; + Vec_Ptr_t * vFanouts; + int i, LevelNew; + assert( p->fFanout ); + assert( Ivy_ObjIsNode(pObj) ); + vFanouts = Vec_PtrAlloc( 10 ); + Ivy_ObjForEachFanout( p, pObj, vFanouts, pFanout, i ) + { + if ( Ivy_ObjIsCo(pFanout) ) + { +// assert( (int)Ivy_ObjFanin0(pFanout)->Level <= p->nLevelMax ); + continue; + } + LevelNew = Ivy_ObjLevelNew( pFanout ); + if ( (int)pFanout->Level == LevelNew ) + continue; + pFanout->Level = LevelNew; + Ivy_ObjUpdateLevel_rec( p, pFanout ); + } + Vec_PtrFree( vFanouts ); +} + +/**Function************************************************************* + + Synopsis [Compute the new required level.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ObjLevelRNew( Ivy_Man_t * p, Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pFanout; + Vec_Ptr_t * vFanouts; + int i, Required, LevelNew = 1000000; + assert( p->fFanout && p->vRequired ); + vFanouts = Vec_PtrAlloc( 10 ); + Ivy_ObjForEachFanout( p, pObj, vFanouts, pFanout, i ) + { + Required = Vec_IntEntry(p->vRequired, pFanout->Id); + LevelNew = IVY_MIN( LevelNew, Required ); + } + Vec_PtrFree( vFanouts ); + return LevelNew - 1; +} + +/**Function************************************************************* + + Synopsis [Recursively updates fanout levels.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjUpdateLevelR_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj, int ReqNew ) +{ + Ivy_Obj_t * pFanin; + if ( Ivy_ObjIsConst1(pObj) || Ivy_ObjIsCi(pObj) ) + return; + assert( Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj) ); + // process the first fanin + pFanin = Ivy_ObjFanin0(pObj); + if ( Vec_IntEntry(p->vRequired, pFanin->Id) > ReqNew - 1 ) + { + Vec_IntWriteEntry( p->vRequired, pFanin->Id, ReqNew - 1 ); + Ivy_ObjUpdateLevelR_rec( p, pFanin, ReqNew - 1 ); + } + if ( Ivy_ObjIsBuf(pObj) ) + return; + // process the second fanin + pFanin = Ivy_ObjFanin1(pObj); + if ( Vec_IntEntry(p->vRequired, pFanin->Id) > ReqNew - 1 ) + { + Vec_IntWriteEntry( p->vRequired, pFanin->Id, ReqNew - 1 ); + Ivy_ObjUpdateLevelR_rec( p, pFanin, ReqNew - 1 ); + } +} + +/**Function************************************************************* + + Synopsis [Returns 1 if the node is the root of MUX or EXOR/NEXOR.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_ObjIsMuxType( Ivy_Obj_t * pNode ) +{ + Ivy_Obj_t * pNode0, * pNode1; + // check that the node is regular + assert( !Ivy_IsComplement(pNode) ); + // if the node is not AND, this is not MUX + if ( !Ivy_ObjIsAnd(pNode) ) + return 0; + // if the children are not complemented, this is not MUX + if ( !Ivy_ObjFaninC0(pNode) || !Ivy_ObjFaninC1(pNode) ) + return 0; + // get children + pNode0 = Ivy_ObjFanin0(pNode); + pNode1 = Ivy_ObjFanin1(pNode); + // if the children are not ANDs, this is not MUX + if ( !Ivy_ObjIsAnd(pNode0) || !Ivy_ObjIsAnd(pNode1) ) + return 0; + // otherwise the node is MUX iff it has a pair of equal grandchildren + return (Ivy_ObjFaninId0(pNode0) == Ivy_ObjFaninId0(pNode1) && (Ivy_ObjFaninC0(pNode0) ^ Ivy_ObjFaninC0(pNode1))) || + (Ivy_ObjFaninId0(pNode0) == Ivy_ObjFaninId1(pNode1) && (Ivy_ObjFaninC0(pNode0) ^ Ivy_ObjFaninC1(pNode1))) || + (Ivy_ObjFaninId1(pNode0) == Ivy_ObjFaninId0(pNode1) && (Ivy_ObjFaninC1(pNode0) ^ Ivy_ObjFaninC0(pNode1))) || + (Ivy_ObjFaninId1(pNode0) == Ivy_ObjFaninId1(pNode1) && (Ivy_ObjFaninC1(pNode0) ^ Ivy_ObjFaninC1(pNode1))); +} + +/**Function************************************************************* + + Synopsis [Recognizes what nodes are control and data inputs of a MUX.] + + Description [If the node is a MUX, returns the control variable C. + Assigns nodes T and E to be the then and else variables of the MUX. + Node C is never complemented. Nodes T and E can be complemented. + This function also recognizes EXOR/NEXOR gates as MUXes.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_ObjRecognizeMux( Ivy_Obj_t * pNode, Ivy_Obj_t ** ppNodeT, Ivy_Obj_t ** ppNodeE ) +{ + Ivy_Obj_t * pNode0, * pNode1; + assert( !Ivy_IsComplement(pNode) ); + assert( Ivy_ObjIsMuxType(pNode) ); + // get children + pNode0 = Ivy_ObjFanin0(pNode); + pNode1 = Ivy_ObjFanin1(pNode); + // find the control variable +// if ( pNode1->p1 == Fraig_Not(pNode2->p1) ) + if ( Ivy_ObjFaninId0(pNode0) == Ivy_ObjFaninId0(pNode1) && (Ivy_ObjFaninC0(pNode0) ^ Ivy_ObjFaninC0(pNode1)) ) + { +// if ( Fraig_IsComplement(pNode1->p1) ) + if ( Ivy_ObjFaninC0(pNode0) ) + { // pNode2->p1 is positive phase of C + *ppNodeT = Ivy_Not(Ivy_ObjChild1(pNode1));//pNode2->p2); + *ppNodeE = Ivy_Not(Ivy_ObjChild1(pNode0));//pNode1->p2); + return Ivy_ObjChild0(pNode1);//pNode2->p1; + } + else + { // pNode1->p1 is positive phase of C + *ppNodeT = Ivy_Not(Ivy_ObjChild1(pNode0));//pNode1->p2); + *ppNodeE = Ivy_Not(Ivy_ObjChild1(pNode1));//pNode2->p2); + return Ivy_ObjChild0(pNode0);//pNode1->p1; + } + } +// else if ( pNode1->p1 == Fraig_Not(pNode2->p2) ) + else if ( Ivy_ObjFaninId0(pNode0) == Ivy_ObjFaninId1(pNode1) && (Ivy_ObjFaninC0(pNode0) ^ Ivy_ObjFaninC1(pNode1)) ) + { +// if ( Fraig_IsComplement(pNode1->p1) ) + if ( Ivy_ObjFaninC0(pNode0) ) + { // pNode2->p2 is positive phase of C + *ppNodeT = Ivy_Not(Ivy_ObjChild0(pNode1));//pNode2->p1); + *ppNodeE = Ivy_Not(Ivy_ObjChild1(pNode0));//pNode1->p2); + return Ivy_ObjChild1(pNode1);//pNode2->p2; + } + else + { // pNode1->p1 is positive phase of C + *ppNodeT = Ivy_Not(Ivy_ObjChild1(pNode0));//pNode1->p2); + *ppNodeE = Ivy_Not(Ivy_ObjChild0(pNode1));//pNode2->p1); + return Ivy_ObjChild0(pNode0);//pNode1->p1; + } + } +// else if ( pNode1->p2 == Fraig_Not(pNode2->p1) ) + else if ( Ivy_ObjFaninId1(pNode0) == Ivy_ObjFaninId0(pNode1) && (Ivy_ObjFaninC1(pNode0) ^ Ivy_ObjFaninC0(pNode1)) ) + { +// if ( Fraig_IsComplement(pNode1->p2) ) + if ( Ivy_ObjFaninC1(pNode0) ) + { // pNode2->p1 is positive phase of C + *ppNodeT = Ivy_Not(Ivy_ObjChild1(pNode1));//pNode2->p2); + *ppNodeE = Ivy_Not(Ivy_ObjChild0(pNode0));//pNode1->p1); + return Ivy_ObjChild0(pNode1);//pNode2->p1; + } + else + { // pNode1->p2 is positive phase of C + *ppNodeT = Ivy_Not(Ivy_ObjChild0(pNode0));//pNode1->p1); + *ppNodeE = Ivy_Not(Ivy_ObjChild1(pNode1));//pNode2->p2); + return Ivy_ObjChild1(pNode0);//pNode1->p2; + } + } +// else if ( pNode1->p2 == Fraig_Not(pNode2->p2) ) + else if ( Ivy_ObjFaninId1(pNode0) == Ivy_ObjFaninId1(pNode1) && (Ivy_ObjFaninC1(pNode0) ^ Ivy_ObjFaninC1(pNode1)) ) + { +// if ( Fraig_IsComplement(pNode1->p2) ) + if ( Ivy_ObjFaninC1(pNode0) ) + { // pNode2->p2 is positive phase of C + *ppNodeT = Ivy_Not(Ivy_ObjChild0(pNode1));//pNode2->p1); + *ppNodeE = Ivy_Not(Ivy_ObjChild0(pNode0));//pNode1->p1); + return Ivy_ObjChild1(pNode1);//pNode2->p2; + } + else + { // pNode1->p2 is positive phase of C + *ppNodeT = Ivy_Not(Ivy_ObjChild0(pNode0));//pNode1->p1); + *ppNodeE = Ivy_Not(Ivy_ObjChild0(pNode1));//pNode2->p1); + return Ivy_ObjChild1(pNode0);//pNode1->p2; + } + } + assert( 0 ); // this is not MUX + return NULL; +} + +/**Function************************************************************* + + Synopsis [Returns the real fanin.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Ivy_Obj_t * Ivy_ObjReal( Ivy_Obj_t * pObj ) +{ + Ivy_Obj_t * pFanin; + if ( pObj == NULL || !Ivy_ObjIsBuf( Ivy_Regular(pObj) ) ) + return pObj; + pFanin = Ivy_ObjReal( Ivy_ObjChild0(Ivy_Regular(pObj)) ); + return Ivy_NotCond( pFanin, Ivy_IsComplement(pObj) ); +} + +/**Function************************************************************* + + Synopsis [Prints node in HAIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ObjPrintVerbose( Ivy_Man_t * p, Ivy_Obj_t * pObj, int fHaig ) +{ + Ivy_Obj_t * pTemp; + int fShowFanouts = 0; + assert( !Ivy_IsComplement(pObj) ); + printf( "Node %5d : ", Ivy_ObjId(pObj) ); + if ( Ivy_ObjIsConst1(pObj) ) + printf( "constant 1" ); + else if ( Ivy_ObjIsPi(pObj) ) + printf( "PI" ); + else if ( Ivy_ObjIsPo(pObj) ) + printf( "PO" ); + else if ( Ivy_ObjIsLatch(pObj) ) + printf( "latch (%d%s)", Ivy_ObjFanin0(pObj)->Id, (Ivy_ObjFaninC0(pObj)? "\'" : " ") ); + else if ( Ivy_ObjIsBuf(pObj) ) + printf( "buffer (%d%s)", Ivy_ObjFanin0(pObj)->Id, (Ivy_ObjFaninC0(pObj)? "\'" : " ") ); + else + printf( "AND( %5d%s, %5d%s )", + Ivy_ObjFanin0(pObj)->Id, (Ivy_ObjFaninC0(pObj)? "\'" : " "), + Ivy_ObjFanin1(pObj)->Id, (Ivy_ObjFaninC1(pObj)? "\'" : " ") ); + printf( " (refs = %3d)", Ivy_ObjRefs(pObj) ); + if ( fShowFanouts ) + { + Vec_Ptr_t * vFanouts; + Ivy_Obj_t * pFanout; + int i; + vFanouts = Vec_PtrAlloc( 10 ); + printf( "\nFanouts:\n" ); + Ivy_ObjForEachFanout( p, pObj, vFanouts, pFanout, i ) + { + printf( " " ); + printf( "Node %5d : ", Ivy_ObjId(pFanout) ); + if ( Ivy_ObjIsPo(pFanout) ) + printf( "PO" ); + else if ( Ivy_ObjIsLatch(pFanout) ) + printf( "latch (%d%s)", Ivy_ObjFanin0(pFanout)->Id, (Ivy_ObjFaninC0(pFanout)? "\'" : " ") ); + else if ( Ivy_ObjIsBuf(pFanout) ) + printf( "buffer (%d%s)", Ivy_ObjFanin0(pFanout)->Id, (Ivy_ObjFaninC0(pFanout)? "\'" : " ") ); + else + printf( "AND( %5d%s, %5d%s )", + Ivy_ObjFanin0(pFanout)->Id, (Ivy_ObjFaninC0(pFanout)? "\'" : " "), + Ivy_ObjFanin1(pFanout)->Id, (Ivy_ObjFaninC1(pFanout)? "\'" : " ") ); + printf( "\n" ); + } + Vec_PtrFree( vFanouts ); + return; + } + if ( !fHaig ) + { + if ( pObj->pEquiv == NULL ) + printf( " HAIG node not given" ); + else + printf( " HAIG node = %d%s", Ivy_Regular(pObj->pEquiv)->Id, (Ivy_IsComplement(pObj->pEquiv)? "\'" : " ") ); + return; + } + if ( pObj->pEquiv == NULL ) + return; + // there are choices + if ( Ivy_ObjRefs(pObj) > 0 ) + { + // print equivalence class + printf( " { %5d ", pObj->Id ); + assert( !Ivy_IsComplement(pObj->pEquiv) ); + for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) ) + printf( " %5d%s", pTemp->Id, (Ivy_IsComplement(pTemp->pEquiv)? "\'" : " ") ); + printf( " }" ); + return; + } + // this is a secondary node + for ( pTemp = Ivy_Regular(pObj->pEquiv); Ivy_ObjRefs(pTemp) == 0; pTemp = Ivy_Regular(pTemp->pEquiv) ); + assert( Ivy_ObjRefs(pTemp) > 0 ); + printf( " class of %d", pTemp->Id ); +} + +/**Function************************************************************* + + Synopsis [Prints node in HAIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ivy_ManPrintVerbose( Ivy_Man_t * p, int fHaig ) +{ + Vec_Int_t * vNodes; + Ivy_Obj_t * pObj; + int i; + printf( "PIs: " ); + Ivy_ManForEachPi( p, pObj, i ) + printf( " %d", pObj->Id ); + printf( "\n" ); + printf( "POs: " ); + Ivy_ManForEachPo( p, pObj, i ) + printf( " %d", pObj->Id ); + printf( "\n" ); + printf( "Latches: " ); + Ivy_ManForEachLatch( p, pObj, i ) + printf( " %d=%d%s", pObj->Id, Ivy_ObjFanin0(pObj)->Id, (Ivy_ObjFaninC0(pObj)? "\'" : " ") ); + printf( "\n" ); + vNodes = Ivy_ManDfsSeq( p, NULL ); + Ivy_ManForEachNodeVec( p, vNodes, pObj, i ) + Ivy_ObjPrintVerbose( p, pObj, fHaig ), printf( "\n" ); + printf( "\n" ); +} + +/**Function************************************************************* + + Synopsis [Performs incremental rewriting of the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_CutTruthPrint2( Ivy_Man_t * p, Ivy_Cut_t * pCut, unsigned uTruth ) +{ + int i; + printf( "Trying cut : {" ); + for ( i = 0; i < pCut->nSize; i++ ) + printf( " %6d(%d)", Ivy_LeafId(pCut->pArray[i]), Ivy_LeafLat(pCut->pArray[i]) ); + printf( " } " ); + Extra_PrintBinary( stdout, &uTruth, 16 ); printf( "\n" ); + return 0; +} + +/**Function************************************************************* + + Synopsis [Performs incremental rewriting of the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Ivy_CutTruthPrint( Ivy_Man_t * p, Ivy_Cut_t * pCut, unsigned uTruth ) +{ + Vec_Ptr_t * vArray; + Ivy_Obj_t * pObj, * pFanout; + int nLatches = 0; + int nPresent = 0; + int i, k; + int fVerbose = 0; + + if ( fVerbose ) + printf( "Trying cut : {" ); + for ( i = 0; i < pCut->nSize; i++ ) + { + if ( fVerbose ) + printf( " %6d(%d)", Ivy_LeafId(pCut->pArray[i]), Ivy_LeafLat(pCut->pArray[i]) ); + nLatches += Ivy_LeafLat(pCut->pArray[i]); + } + if ( fVerbose ) + printf( " } " ); + if ( fVerbose ) + printf( "Latches = %d. ", nLatches ); + + // check if there are latches on the fanout edges + vArray = Vec_PtrAlloc( 100 ); + for ( i = 0; i < pCut->nSize; i++ ) + { + pObj = Ivy_ManObj( p, Ivy_LeafId(pCut->pArray[i]) ); + Ivy_ObjForEachFanout( p, pObj, vArray, pFanout, k ) + { + if ( Ivy_ObjIsLatch(pFanout) ) + { + nPresent++; + break; + } + } + } + Vec_PtrSize( vArray ); + if ( fVerbose ) + { + printf( "Present = %d. ", nPresent ); + if ( nLatches > nPresent ) + printf( "Clauses = %d. ", 2*(nLatches - nPresent) ); + printf( "\n" ); + } + return ( nLatches > nPresent ) ? 2*(nLatches - nPresent) : 0; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivy_.c b/src/aig/ivy/ivy_.c new file mode 100644 index 00000000..65689689 --- /dev/null +++ b/src/aig/ivy/ivy_.c @@ -0,0 +1,48 @@ +/**CFile**************************************************************** + + FileName [ivy_.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [And-Inverter Graph package.] + + Synopsis [] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - May 11, 2006.] + + Revision [$Id: ivy_.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ivy.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/module.make b/src/aig/ivy/module.make new file mode 100644 index 00000000..daef43df --- /dev/null +++ b/src/aig/ivy/module.make @@ -0,0 +1,22 @@ +SRC += src/aig/ivy/ivyBalance.c \ + src/aig/ivy/ivyCanon.c \ + src/aig/ivy/ivyCheck.c \ + src/aig/ivy/ivyCut.c \ + src/aig/ivy/ivyCutTrav.c \ + src/aig/ivy/ivyDfs.c \ + src/aig/ivy/ivyDsd.c \ + src/aig/ivy/ivyFanout.c \ + src/aig/ivy/ivyFastMap.c \ + src/aig/ivy/ivyFraig.c \ + src/aig/ivy/ivyHaig.c \ + src/aig/ivy/ivyMan.c \ + src/aig/ivy/ivyMem.c \ + src/aig/ivy/ivyMulti.c \ + src/aig/ivy/ivyObj.c \ + src/aig/ivy/ivyOper.c \ + src/aig/ivy/ivyResyn.c \ + src/aig/ivy/ivyRwr.c \ + src/aig/ivy/ivySeq.c \ + src/aig/ivy/ivyShow.c \ + src/aig/ivy/ivyTable.c \ + src/aig/ivy/ivyUtil.c |