aboutsummaryrefslogtreecommitdiffstats
path: root/OpenKeychain/src/main/java/org/sufficientlysecure/keychain/securitytoken/SecurityTokenHelper.java
blob: deee6366f312d416527632b5b86afc48077eb94f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
/*
 * Copyright (C) 2016 Nikita Mikhailov <nikita.s.mikhailov@gmail.com>
 * Copyright (C) 2013-2015 Dominik Schürmann <dominik@dominikschuermann.de>
 * Copyright (C) 2015 Vincent Breitmoser <v.breitmoser@mugenguild.com>
 * Copyright (C) 2013-2014 Signe Rüsch
 * Copyright (C) 2013-2014 Philipp Jakubeit
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */


package org.sufficientlysecure.keychain.securitytoken;

import android.support.annotation.NonNull;

import org.bouncycastle.bcpg.HashAlgorithmTags;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;
import org.sufficientlysecure.keychain.Constants;
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
import org.sufficientlysecure.keychain.pgp.exception.PgpGeneralException;
import org.sufficientlysecure.keychain.util.Iso7816TLV;
import org.sufficientlysecure.keychain.util.Log;
import org.sufficientlysecure.keychain.util.Passphrase;

import java.io.IOException;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.security.interfaces.RSAPrivateCrtKey;

import nordpol.Apdu;

/**
 * This class provides a communication interface to OpenPGP applications on ISO SmartCard compliant
 * devices.
 * For the full specs, see http://g10code.com/docs/openpgp-card-2.0.pdf
 */
public class SecurityTokenHelper {
    private static final int MAX_APDU_DATAFIELD_SIZE = 254;
    // Fidesmo constants
    private static final String FIDESMO_APPS_AID_PREFIX = "A000000617";

    private static final byte[] BLANK_FINGERPRINT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    private Transport mTransport;

    private Passphrase mPin;
    private Passphrase mAdminPin;
    private boolean mPw1ValidForMultipleSignatures;
    private boolean mPw1ValidatedForSignature;
    private boolean mPw1ValidatedForDecrypt; // Mode 82 does other things; consider renaming?
    private boolean mPw3Validated;

    protected SecurityTokenHelper() {
    }

    public static SecurityTokenHelper getInstance() {
        return LazyHolder.SECURITY_TOKEN_HELPER;
    }

    private static String getHex(byte[] raw) {
        return new String(Hex.encode(raw));
    }

    private String getHolderName(String name) {
        try {
            String slength;
            int ilength;
            name = name.substring(6);
            slength = name.substring(0, 2);
            ilength = Integer.parseInt(slength, 16) * 2;
            name = name.substring(2, ilength + 2);
            name = (new String(Hex.decode(name))).replace('<', ' ');
            return name;
        } catch (IndexOutOfBoundsException e) {
            // try-catch for https://github.com/FluffyKaon/OpenPGP-Card
            // Note: This should not happen, but happens with
            // https://github.com/FluffyKaon/OpenPGP-Card, thus return an empty string for now!

            Log.e(Constants.TAG, "Couldn't get holder name, returning empty string!", e);
            return "";
        }
    }

    public Passphrase getPin() {
        return mPin;
    }

    public void setPin(final Passphrase pin) {
        this.mPin = pin;
    }

    public Passphrase getAdminPin() {
        return mAdminPin;
    }

    public void setAdminPin(final Passphrase adminPin) {
        this.mAdminPin = adminPin;
    }

    public void changeKey(CanonicalizedSecretKey secretKey, Passphrase passphrase) throws IOException {
        long keyGenerationTimestamp = secretKey.getCreationTime().getTime() / 1000;
        byte[] timestampBytes = ByteBuffer.allocate(4).putInt((int) keyGenerationTimestamp).array();
        KeyType keyType = KeyType.from(secretKey);

        if (keyType == null) {
            throw new IOException("Inappropriate key flags for smart card key.");
        }

        // Slot is empty, or contains this key already. PUT KEY operation is safe
        boolean canPutKey = isSlotEmpty(keyType)
                || keyMatchesFingerPrint(keyType, secretKey.getFingerprint());

        if (!canPutKey) {
            throw new IOException(String.format("Key slot occupied; card must be reset to put new %s key.",
                    keyType.toString()));
        }

        putKey(keyType.getmSlot(), secretKey, passphrase);
        putData(keyType.getmFingerprintObjectId(), secretKey.getFingerprint());
        putData(keyType.getTimestampObjectId(), timestampBytes);
    }

    private boolean isSlotEmpty(KeyType keyType) throws IOException {
        // Note: special case: This should not happen, but happens with
        // https://github.com/FluffyKaon/OpenPGP-Card, thus for now assume true
        if (getKeyFingerprint(keyType) == null) return true;

        return keyMatchesFingerPrint(keyType, BLANK_FINGERPRINT);
    }

    public boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException {
        return java.util.Arrays.equals(getKeyFingerprint(keyType), fingerprint);
    }

    /**
     * Connect to device and select pgp applet
     *
     * @throws IOException
     */
    public void connectToDevice() throws IOException {
        // Connect on transport layer
        mTransport.connect();

        // Connect on smartcard layer

        // SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
        // See specification, page 51
        String accepted = "9000";

        // Command APDU (page 51) for SELECT FILE command (page 29)
        String opening =
                "00" // CLA
                        + "A4" // INS
                        + "04" // P1
                        + "00" // P2
                        + "06" // Lc (number of bytes)
                        + "D27600012401" // Data (6 bytes)
                        + "00"; // Le
        String response = communicate(opening);  // activate connection
        if (!response.endsWith(accepted)) {
            throw new CardException("Initialization failed!", parseCardStatus(response));
        }

        byte[] pwStatusBytes = getPwStatusBytes();
        mPw1ValidForMultipleSignatures = (pwStatusBytes[0] == 1);
        mPw1ValidatedForSignature = false;
        mPw1ValidatedForDecrypt = false;
        mPw3Validated = false;
    }

    /**
     * Parses out the status word from a JavaCard response string.
     *
     * @param response A hex string with the response from the card
     * @return A short indicating the SW1/SW2, or 0 if a status could not be determined.
     */
    private short parseCardStatus(String response) {
        if (response.length() < 4) {
            return 0; // invalid input
        }

        try {
            return Short.parseShort(response.substring(response.length() - 4), 16);
        } catch (NumberFormatException e) {
            return 0;
        }
    }

    /**
     * Modifies the user's PW1 or PW3. Before sending, the new PIN will be validated for
     * conformance to the token's requirements for key length.
     *
     * @param pw     For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
     * @param newPin The new PW1 or PW3.
     */
    public void modifyPin(int pw, byte[] newPin) throws IOException {
        final int MAX_PW1_LENGTH_INDEX = 1;
        final int MAX_PW3_LENGTH_INDEX = 3;

        byte[] pwStatusBytes = getPwStatusBytes();

        if (pw == 0x81) {
            if (newPin.length < 6 || newPin.length > pwStatusBytes[MAX_PW1_LENGTH_INDEX]) {
                throw new IOException("Invalid PIN length");
            }
        } else if (pw == 0x83) {
            if (newPin.length < 8 || newPin.length > pwStatusBytes[MAX_PW3_LENGTH_INDEX]) {
                throw new IOException("Invalid PIN length");
            }
        } else {
            throw new IOException("Invalid PW index for modify PIN operation");
        }

        byte[] pin;
        if (pw == 0x83) {
            pin = mAdminPin.toStringUnsafe().getBytes();
        } else {
            pin = mPin.toStringUnsafe().getBytes();
        }

        // Command APDU for CHANGE REFERENCE DATA command (page 32)
        String changeReferenceDataApdu = "00" // CLA
                + "24" // INS
                + "00" // P1
                + String.format("%02x", pw) // P2
                + String.format("%02x", pin.length + newPin.length) // Lc
                + getHex(pin)
                + getHex(newPin);
        String response = communicate(changeReferenceDataApdu); // change PIN
        if (!response.equals("9000")) {
            throw new CardException("Failed to change PIN", parseCardStatus(response));
        }
    }

    /**
     * Call DECIPHER command
     *
     * @param encryptedSessionKey the encoded session key
     * @return the decoded session key
     */
    public byte[] decryptSessionKey(@NonNull byte[] encryptedSessionKey) throws IOException {
        if (!mPw1ValidatedForDecrypt) {
            verifyPin(0x82); // (Verify PW1 with mode 82 for decryption)
        }

        int offset = 1; // Skip first byte
        String response = "", status = "";

        // Transmit
        while (offset < encryptedSessionKey.length) {
            boolean isLastCommand = offset + MAX_APDU_DATAFIELD_SIZE < encryptedSessionKey.length;
            String cla = isLastCommand ? "10" : "00";

            int len = Math.min(MAX_APDU_DATAFIELD_SIZE, encryptedSessionKey.length - offset);
            response = communicate(cla + "2a8086" + Hex.toHexString(new byte[]{(byte) len})
                            + Hex.toHexString(encryptedSessionKey, offset, len));
            status = response.substring(response.length() - 4);

            if (!isLastCommand && !response.endsWith("9000")) {
                throw new CardException("Deciphering with Security token failed on transmit", parseCardStatus(response));
            }

            offset += MAX_APDU_DATAFIELD_SIZE;
        }

        // Receive
        String result = getDataField(response);
        while (response.endsWith("61")) {
            response = communicate("00C00000" + status.substring(2));
            status = response.substring(response.length() - 4);
            result += getDataField(response);
        }
        if (!status.equals("9000")) {
            throw new CardException("Deciphering with Security token failed on receive", parseCardStatus(response));
        }

        return Hex.decode(result);
    }

    /**
     * Verifies the user's PW1 or PW3 with the appropriate mode.
     *
     * @param mode For PW1, this is 0x81 for signing, 0x82 for everything else.
     *             For PW3 (Admin PIN), mode is 0x83.
     */
    private void verifyPin(int mode) throws IOException {
        if (mPin != null || mode == 0x83) {

            byte[] pin;
            if (mode == 0x83) {
                pin = mAdminPin.toStringUnsafe().getBytes();
            } else {
                pin = mPin.toStringUnsafe().getBytes();
            }

            // SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
            // See specification, page 51
            String accepted = "9000";
            String response = tryPin(mode, pin); // login
            if (!response.equals(accepted)) {
                throw new CardException("Bad PIN!", parseCardStatus(response));
            }

            if (mode == 0x81) {
                mPw1ValidatedForSignature = true;
            } else if (mode == 0x82) {
                mPw1ValidatedForDecrypt = true;
            } else if (mode == 0x83) {
                mPw3Validated = true;
            }
        }
    }

    /**
     * Stores a data object on the token. Automatically validates the proper PIN for the operation.
     * Supported for all data objects < 255 bytes in length. Only the cardholder certificate
     * (0x7F21) can exceed this length.
     *
     * @param dataObject The data object to be stored.
     * @param data       The data to store in the object
     */
    private void putData(int dataObject, byte[] data) throws IOException {
        if (data.length > 254) {
            throw new IOException("Cannot PUT DATA with length > 254");
        }
        if (dataObject == 0x0101 || dataObject == 0x0103) {
            if (!mPw1ValidatedForDecrypt) {
                verifyPin(0x82); // (Verify PW1 for non-signing operations)
            }
        } else if (!mPw3Validated) {
            verifyPin(0x83); // (Verify PW3)
        }

        String putDataApdu = "00" // CLA
                + "DA" // INS
                + String.format("%02x", (dataObject & 0xFF00) >> 8) // P1
                + String.format("%02x", dataObject & 0xFF) // P2
                + String.format("%02x", data.length) // Lc
                + getHex(data);

        String response = communicate(putDataApdu); // put data
        if (!response.equals("9000")) {
            throw new CardException("Failed to put data.", parseCardStatus(response));
        }
    }

    /**
     * Puts a key on the token in the given slot.
     *
     * @param slot The slot on the token where the key should be stored:
     *             0xB6: Signature Key
     *             0xB8: Decipherment Key
     *             0xA4: Authentication Key
     */
    private void putKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase)
            throws IOException {
        if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
            throw new IOException("Invalid key slot");
        }

        RSAPrivateCrtKey crtSecretKey;
        try {
            secretKey.unlock(passphrase);
            crtSecretKey = secretKey.getCrtSecretKey();
        } catch (PgpGeneralException e) {
            throw new IOException(e.getMessage());
        }

        // Shouldn't happen; the UI should block the user from getting an incompatible key this far.
        if (crtSecretKey.getModulus().bitLength() > 2048) {
            throw new IOException("Key too large to export to Security Token.");
        }

        // Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
        if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
            throw new IOException("Invalid public exponent for smart Security Token.");
        }

        if (!mPw3Validated) {
            verifyPin(0x83); // (Verify PW3 with mode 83)
        }

        byte[] header = Hex.decode(
                "4D82" + "03A2"      // Extended header list 4D82, length of 930 bytes. (page 23)
                        + String.format("%02x", slot) + "00" // CRT to indicate targeted key, no length
                        + "7F48" + "15"      // Private key template 0x7F48, length 21 (decimal, 0x15 hex)
                        + "9103"             // Public modulus, length 3
                        + "928180"           // Prime P, length 128
                        + "938180"           // Prime Q, length 128
                        + "948180"           // Coefficient (1/q mod p), length 128
                        + "958180"           // Prime exponent P (d mod (p - 1)), length 128
                        + "968180"           // Prime exponent Q (d mod (1 - 1)), length 128
                        + "97820100"         // Modulus, length 256, last item in private key template
                        + "5F48" + "820383");// DO 5F48; 899 bytes of concatenated key data will follow
        byte[] dataToSend = new byte[934];
        byte[] currentKeyObject;
        int offset = 0;

        System.arraycopy(header, 0, dataToSend, offset, header.length);
        offset += header.length;
        currentKeyObject = crtSecretKey.getPublicExponent().toByteArray();
        System.arraycopy(currentKeyObject, 0, dataToSend, offset, 3);
        offset += 3;
        // NOTE: For a 2048-bit key, these lengths are fixed. However, bigint includes a leading 0
        // in the array to represent sign, so we take care to set the offset to 1 if necessary.
        currentKeyObject = crtSecretKey.getPrimeP().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
        Arrays.fill(currentKeyObject, (byte) 0);
        offset += 128;
        currentKeyObject = crtSecretKey.getPrimeQ().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
        Arrays.fill(currentKeyObject, (byte) 0);
        offset += 128;
        currentKeyObject = crtSecretKey.getCrtCoefficient().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
        Arrays.fill(currentKeyObject, (byte) 0);
        offset += 128;
        currentKeyObject = crtSecretKey.getPrimeExponentP().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
        Arrays.fill(currentKeyObject, (byte) 0);
        offset += 128;
        currentKeyObject = crtSecretKey.getPrimeExponentQ().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
        Arrays.fill(currentKeyObject, (byte) 0);
        offset += 128;
        currentKeyObject = crtSecretKey.getModulus().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 256, dataToSend, offset, 256);

        String putKeyCommand = "10DB3FFF";
        String lastPutKeyCommand = "00DB3FFF";

        // Now we're ready to communicate with the token.
        offset = 0;
        String response;
        while (offset < dataToSend.length) {
            int dataRemaining = dataToSend.length - offset;
            if (dataRemaining > 254) {
                response = communicate(
                        putKeyCommand + "FE" + Hex.toHexString(dataToSend, offset, 254)
                );
                offset += 254;
            } else {
                int length = dataToSend.length - offset;
                response = communicate(
                        lastPutKeyCommand + String.format("%02x", length)
                                + Hex.toHexString(dataToSend, offset, length));
                offset += length;
            }

            if (!response.endsWith("9000")) {
                throw new CardException("Key export to Security Token failed", parseCardStatus(response));
            }
        }

        // Clear array with secret data before we return.
        Arrays.fill(dataToSend, (byte) 0);
    }

    /**
     * Return fingerprints of all keys from application specific data stored
     * on tag, or null if data not available.
     *
     * @return The fingerprints of all subkeys in a contiguous byte array.
     */
    public byte[] getFingerprints() throws IOException {
        String data = "00CA006E00";
        byte[] buf = mTransport.transceive(Hex.decode(data));

        Iso7816TLV tlv = Iso7816TLV.readSingle(buf, true);
        Log.d(Constants.TAG, "nfcGetFingerprints() Iso7816TLV tlv data:\n" + tlv.prettyPrint());

        Iso7816TLV fptlv = Iso7816TLV.findRecursive(tlv, 0xc5);
        if (fptlv == null) {
            return null;
        }
        return fptlv.mV;
    }

    /**
     * Return the PW Status Bytes from the token. This is a simple DO; no TLV decoding needed.
     *
     * @return Seven bytes in fixed format, plus 0x9000 status word at the end.
     */
    private byte[] getPwStatusBytes() throws IOException {
        String data = "00CA00C400";
        return mTransport.transceive(Hex.decode(data));
    }

    public byte[] getAid() throws IOException {
        String info = "00CA004F00";
        return mTransport.transceive(Hex.decode(info));
    }

    public String getUserId() throws IOException {
        String info = "00CA006500";
        return getHolderName(communicate(info));
    }

    /**
     * Call COMPUTE DIGITAL SIGNATURE command and returns the MPI value
     *
     * @param hash the hash for signing
     * @return a big integer representing the MPI for the given hash
     */
    public byte[] calculateSignature(byte[] hash, int hashAlgo, boolean useAuthKey) throws IOException {
        if (!mPw1ValidatedForSignature) {
            // (Verify PW1 with mode 81 for signing)
            // (Verify PW1 with mode 82 for auth)
            verifyPin(useAuthKey ? 0x82 : 0x81); 
        }

        // dsi, including Lc
        String dsi;

        Log.i(Constants.TAG, "Hash: " + hashAlgo);
        switch (hashAlgo) {
            case HashAlgorithmTags.SHA1:
                if (hash.length != 20) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
                }
                dsi = "23" // Lc
                        + "3021" // Tag/Length of Sequence, the 0x21 includes all following 33 bytes
                        + "3009" // Tag/Length of Sequence, the 0x09 are the following header bytes
                        + "0605" + "2B0E03021A" // OID of SHA1
                        + "0500" // TLV coding of ZERO
                        + "0414" + getHex(hash); // 0x14 are 20 hash bytes
                break;
            case HashAlgorithmTags.RIPEMD160:
                if (hash.length != 20) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
                }
                dsi = "233021300906052B2403020105000414" + getHex(hash);
                break;
            case HashAlgorithmTags.SHA224:
                if (hash.length != 28) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 28!");
                }
                dsi = "2F302D300D06096086480165030402040500041C" + getHex(hash);
                break;
            case HashAlgorithmTags.SHA256:
                if (hash.length != 32) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 32!");
                }
                dsi = "333031300D060960864801650304020105000420" + getHex(hash);
                break;
            case HashAlgorithmTags.SHA384:
                if (hash.length != 48) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 48!");
                }
                dsi = "433041300D060960864801650304020205000430" + getHex(hash);
                break;
            case HashAlgorithmTags.SHA512:
                if (hash.length != 64) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 64!");
                }
                dsi = "533051300D060960864801650304020305000440" + getHex(hash);
                break;
            default:
                throw new IOException("Not supported hash algo!");
        }

        String apdu;

        if (!useAuthKey) {
            // Command APDU for PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE (page 37)
            apdu =
                    "002A9E9A" // CLA, INS, P1, P2
                            + dsi // digital signature input
                            + "00"; // Le

        } else {
            // Command APDU for INTERNAL AUTHENTICATE (page 55)
            // This command doesn't take /
            apdu =
                    "00880000" // CLA, INS, P1, P2
                            + dsi  // digital signature input, card does PKCS#1
                            + "00"; // Le

        }

        String response = communicate(apdu);

        if (response.length() < 4) {
            throw new CardException("Bad response", (short) 0);
        }
        // split up response into signature and status
        String status = response.substring(response.length() - 4);
        String signature = response.substring(0, response.length() - 4);

        // while we are getting 0x61 status codes, retrieve more data
        while (status.substring(0, 2).equals("61")) {
            Log.d(Constants.TAG, "requesting more data, status " + status);
            // Send GET RESPONSE command
            response = communicate("00C00000" + status.substring(2));
            status = response.substring(response.length() - 4);
            signature += response.substring(0, response.length() - 4);
        }

        Log.d(Constants.TAG, "final response:" + status);

        if (!mPw1ValidForMultipleSignatures) {
            mPw1ValidatedForSignature = false;
        }

        if (!"9000".equals(status)) {
            throw new CardException("Bad NFC response code: " + status, parseCardStatus(response));
        }

        // Make sure the signature we received is actually the expected number of bytes long!
        if (signature.length() != 256 && signature.length() != 512
                && signature.length() != 768 && signature.length() != 1024) {
            throw new IOException("Bad signature length! Expected 128/256/384/512 bytes, got " + signature.length() / 2);
        }

        return Hex.decode(signature);
    }

    /**
     * Transceive data via NFC encoded as Hex
     */
    private String communicate(String apdu) throws IOException {
        return getHex(mTransport.transceive(Hex.decode(apdu)));
    }

    public Transport getTransport() {
        return mTransport;
    }

    public void setTransport(Transport mTransport) {
        this.mTransport = mTransport;
    }

    public boolean isFidesmoToken() {
        if (isConnected()) { // Check if we can still talk to the card
            try {
                // By trying to select any apps that have the Fidesmo AID prefix we can
                // see if it is a Fidesmo device or not
                byte[] mSelectResponse = mTransport.transceive(Apdu.select(FIDESMO_APPS_AID_PREFIX));
                // Compare the status returned by our select with the OK status code
                return Apdu.hasStatus(mSelectResponse, Apdu.OK_APDU);
            } catch (IOException e) {
                Log.e(Constants.TAG, "Card communication failed!", e);
            }
        }
        return false;
    }

    /**
     * Generates a key on the card in the given slot. If the slot is 0xB6 (the signature key),
     * this command also has the effect of resetting the digital signature counter.
     * NOTE: This does not set the key fingerprint data object! After calling this command, you
     * must construct a public key packet using the returned public key data objects, compute the
     * key fingerprint, and store it on the card using: putData(0xC8, key.getFingerprint())
     *
     * @param slot The slot on the card where the key should be generated:
     *             0xB6: Signature Key
     *             0xB8: Decipherment Key
     *             0xA4: Authentication Key
     * @return the public key data objects, in TLV format. For RSA this will be the public modulus
     * (0x81) and exponent (0x82). These may come out of order; proper TLV parsing is required.
     */
    public byte[] generateKey(int slot) throws IOException {
        if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
            throw new IOException("Invalid key slot");
        }

        if (!mPw3Validated) {
            verifyPin(0x83); // (Verify PW3 with mode 83)
        }

        String generateKeyApdu = "0047800002" + String.format("%02x", slot) + "0000";
        String getResponseApdu = "00C00000";

        String first = communicate(generateKeyApdu);
        String second = communicate(getResponseApdu);

        if (!second.endsWith("9000")) {
            throw new IOException("On-card key generation failed");
        }

        String publicKeyData = getDataField(first) + getDataField(second);

        Log.d(Constants.TAG, "Public Key Data Objects: " + publicKeyData);

        return Hex.decode(publicKeyData);
    }

    private String getDataField(String output) {
        return output.substring(0, output.length() - 4);
    }

    private String tryPin(int mode, byte[] pin) throws IOException {
        // Command APDU for VERIFY command (page 32)
        String login =
                "00" // CLA
                        + "20" // INS
                        + "00" // P1
                        + String.format("%02x", mode) // P2
                        + String.format("%02x", pin.length) // Lc
                        + Hex.toHexString(pin);

        return communicate(login);
    }

    /**
     * Resets security token, which deletes all keys and data objects.
     * This works by entering a wrong PIN and then Admin PIN 4 times respectively.
     * Afterwards, the token is reactivated.
     */
    public void resetAndWipeToken() throws IOException {
        String accepted = "9000";

        // try wrong PIN 4 times until counter goes to C0
        byte[] pin = "XXXXXX".getBytes();
        for (int i = 0; i <= 4; i++) {
            String response = tryPin(0x81, pin);
            if (response.equals(accepted)) { // Should NOT accept!
                throw new CardException("Should never happen, XXXXXX has been accepted!", parseCardStatus(response));
            }
        }

        // try wrong Admin PIN 4 times until counter goes to C0
        byte[] adminPin = "XXXXXXXX".getBytes();
        for (int i = 0; i <= 4; i++) {
            String response = tryPin(0x83, adminPin);
            if (response.equals(accepted)) { // Should NOT accept!
                throw new CardException("Should never happen, XXXXXXXX has been accepted", parseCardStatus(response));
            }
        }

        // reactivate token!
        String reactivate1 = "00" + "e6" + "00" + "00";
        String reactivate2 = "00" + "44" + "00" + "00";
        String response1 = communicate(reactivate1);
        String response2 = communicate(reactivate2);
        if (!response1.equals(accepted) || !response2.equals(accepted)) {
            throw new CardException("Reactivating failed!", parseCardStatus(response1));
        }

    }

    /**
     * Return the fingerprint from application specific data stored on tag, or
     * null if it doesn't exist.
     *
     * @param keyType key type
     * @return The fingerprint of the requested key, or null if not found.
     */
    public byte[] getKeyFingerprint(@NonNull KeyType keyType) throws IOException {
        byte[] data = getFingerprints();
        if (data == null) {
            return null;
        }

        // return the master key fingerprint
        ByteBuffer fpbuf = ByteBuffer.wrap(data);
        byte[] fp = new byte[20];
        fpbuf.position(keyType.getIdx() * 20);
        fpbuf.get(fp, 0, 20);

        return fp;
    }

    public boolean isPersistentConnectionAllowed() {
        return mTransport != null && mTransport.isPersistentConnectionAllowed();
    }

    public boolean isConnected() {
        return mTransport != null && mTransport.isConnected();
    }

    private static class LazyHolder {
        private static final SecurityTokenHelper SECURITY_TOKEN_HELPER = new SecurityTokenHelper();
    }
}