aboutsummaryrefslogtreecommitdiffstats
path: root/libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/ThreefishEngine.java
diff options
context:
space:
mode:
Diffstat (limited to 'libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/ThreefishEngine.java')
-rw-r--r--libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/ThreefishEngine.java1494
1 files changed, 0 insertions, 1494 deletions
diff --git a/libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/ThreefishEngine.java b/libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/ThreefishEngine.java
deleted file mode 100644
index a5d59308b..000000000
--- a/libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/ThreefishEngine.java
+++ /dev/null
@@ -1,1494 +0,0 @@
-package org.spongycastle.crypto.engines;
-
-import org.spongycastle.crypto.BlockCipher;
-import org.spongycastle.crypto.CipherParameters;
-import org.spongycastle.crypto.DataLengthException;
-import org.spongycastle.crypto.params.KeyParameter;
-import org.spongycastle.crypto.params.TweakableBlockCipherParameters;
-
-/**
- * Implementation of the Threefish tweakable large block cipher in 256, 512 and 1024 bit block
- * sizes.
- * <p/>
- * This is the 1.3 version of Threefish defined in the Skein hash function submission to the NIST
- * SHA-3 competition in October 2010.
- * <p/>
- * Threefish was designed by Niels Ferguson - Stefan Lucks - Bruce Schneier - Doug Whiting - Mihir
- * Bellare - Tadayoshi Kohno - Jon Callas - Jesse Walker.
- * <p/>
- * This implementation inlines all round functions, unrolls 8 rounds, and uses 1.2k of static tables
- * to speed up key schedule injection. <br>
- * 2 x block size state is retained by each cipher instance.
- */
-public class ThreefishEngine
- implements BlockCipher
-{
- /**
- * 256 bit block size - Threefish-256
- */
- public static final int BLOCKSIZE_256 = 256;
- /**
- * 512 bit block size - Threefish-512
- */
- public static final int BLOCKSIZE_512 = 512;
- /**
- * 1024 bit block size - Threefish-1024
- */
- public static final int BLOCKSIZE_1024 = 1024;
-
- /**
- * Size of the tweak in bytes (always 128 bit/16 bytes)
- */
- private static final int TWEAK_SIZE_BYTES = 16;
- private static final int TWEAK_SIZE_WORDS = TWEAK_SIZE_BYTES / 8;
-
- /**
- * Rounds in Threefish-256
- */
- private static final int ROUNDS_256 = 72;
- /**
- * Rounds in Threefish-512
- */
- private static final int ROUNDS_512 = 72;
- /**
- * Rounds in Threefish-1024
- */
- private static final int ROUNDS_1024 = 80;
-
- /**
- * Max rounds of any of the variants
- */
- private static final int MAX_ROUNDS = ROUNDS_1024;
-
- /**
- * Key schedule parity constant
- */
- private static final long C_240 = 0x1BD11BDAA9FC1A22L;
-
- /* Pre-calculated modulo arithmetic tables for key schedule lookups */
- private static int[] MOD9 = new int[MAX_ROUNDS];
- private static int[] MOD17 = new int[MOD9.length];
- private static int[] MOD5 = new int[MOD9.length];
- private static int[] MOD3 = new int[MOD9.length];
-
- static
- {
- for (int i = 0; i < MOD9.length; i++)
- {
- MOD17[i] = i % 17;
- MOD9[i] = i % 9;
- MOD5[i] = i % 5;
- MOD3[i] = i % 3;
- }
- }
-
- /**
- * Block size in bytes
- */
- private int blocksizeBytes;
-
- /**
- * Block size in 64 bit words
- */
- private int blocksizeWords;
-
- /**
- * Buffer for byte oriented processBytes to call internal word API
- */
- private long[] currentBlock;
-
- /**
- * Tweak bytes (2 byte t1,t2, calculated t3 and repeat of t1,t2 for modulo free lookup
- */
- private long[] t = new long[5];
-
- /**
- * Key schedule words
- */
- private long[] kw;
-
- /**
- * The internal cipher implementation (varies by blocksize)
- */
- private ThreefishCipher cipher;
-
- private boolean forEncryption;
-
- /**
- * Constructs a new Threefish cipher, with a specified block size.
- *
- * @param blocksizeBits the block size in bits, one of {@link #BLOCKSIZE_256}, {@link #BLOCKSIZE_512},
- * {@link #BLOCKSIZE_1024}.
- */
- public ThreefishEngine(final int blocksizeBits)
- {
- this.blocksizeBytes = (blocksizeBits / 8);
- this.blocksizeWords = (this.blocksizeBytes / 8);
- this.currentBlock = new long[blocksizeWords];
-
- /*
- * Provide room for original key words, extended key word and repeat of key words for modulo
- * free lookup of key schedule words.
- */
- this.kw = new long[2 * blocksizeWords + 1];
-
- switch (blocksizeBits)
- {
- case BLOCKSIZE_256:
- cipher = new Threefish256Cipher(kw, t);
- break;
- case BLOCKSIZE_512:
- cipher = new Threefish512Cipher(kw, t);
- break;
- case BLOCKSIZE_1024:
- cipher = new Threefish1024Cipher(kw, t);
- break;
- default:
- throw new IllegalArgumentException(
- "Invalid blocksize - Threefish is defined with block size of 256, 512, or 1024 bits");
- }
- }
-
- /**
- * Initialise the engine.
- *
- * @param params an instance of {@link TweakableBlockCipherParameters}, or {@link KeyParameter} (to
- * use a 0 tweak)
- */
- public void init(boolean forEncryption, CipherParameters params)
- throws IllegalArgumentException
- {
- final byte[] keyBytes;
- final byte[] tweakBytes;
-
- if (params instanceof TweakableBlockCipherParameters)
- {
- TweakableBlockCipherParameters tParams = (TweakableBlockCipherParameters)params;
- keyBytes = tParams.getKey().getKey();
- tweakBytes = tParams.getTweak();
- }
- else if (params instanceof KeyParameter)
- {
- keyBytes = ((KeyParameter)params).getKey();
- tweakBytes = null;
- }
- else
- {
- throw new IllegalArgumentException("Invalid parameter passed to Threefish init - "
- + params.getClass().getName());
- }
-
- long[] keyWords = null;
- long[] tweakWords = null;
-
- if (keyBytes != null)
- {
- if (keyBytes.length != this.blocksizeBytes)
- {
- throw new IllegalArgumentException("Threefish key must be same size as block (" + blocksizeBytes
- + " bytes)");
- }
- keyWords = new long[blocksizeWords];
- for (int i = 0; i < keyWords.length; i++)
- {
- keyWords[i] = bytesToWord(keyBytes, i * 8);
- }
- }
- if (tweakBytes != null)
- {
- if (tweakBytes.length != TWEAK_SIZE_BYTES)
- {
- throw new IllegalArgumentException("Threefish tweak must be " + TWEAK_SIZE_BYTES + " bytes");
- }
- tweakWords = new long[]{bytesToWord(tweakBytes, 0), bytesToWord(tweakBytes, 8)};
- }
- init(forEncryption, keyWords, tweakWords);
- }
-
- /**
- * Initialise the engine, specifying the key and tweak directly.
- *
- * @param forEncryption the cipher mode.
- * @param key the words of the key, or <code>null</code> to use the current key.
- * @param tweak the 2 word (128 bit) tweak, or <code>null</code> to use the current tweak.
- */
- public void init(boolean forEncryption, final long[] key, final long[] tweak)
- {
- this.forEncryption = forEncryption;
- if (key != null)
- {
- setKey(key);
- }
- if (tweak != null)
- {
- setTweak(tweak);
- }
- }
-
- private void setKey(long[] key)
- {
- if (key.length != this.blocksizeWords)
- {
- throw new IllegalArgumentException("Threefish key must be same size as block (" + blocksizeWords
- + " words)");
- }
-
- /*
- * Full subkey schedule is deferred to execution to avoid per cipher overhead (10k for 512,
- * 20k for 1024).
- *
- * Key and tweak word sequences are repeated, and static MOD17/MOD9/MOD5/MOD3 calculations
- * used, to avoid expensive mod computations during cipher operation.
- */
-
- long knw = C_240;
- for (int i = 0; i < blocksizeWords; i++)
- {
- kw[i] = key[i];
- knw = knw ^ kw[i];
- }
- kw[blocksizeWords] = knw;
- System.arraycopy(kw, 0, kw, blocksizeWords + 1, blocksizeWords);
- }
-
- private void setTweak(long[] tweak)
- {
- if (tweak.length != TWEAK_SIZE_WORDS)
- {
- throw new IllegalArgumentException("Tweak must be " + TWEAK_SIZE_WORDS + " words.");
- }
-
- /*
- * Tweak schedule partially repeated to avoid mod computations during cipher operation
- */
- t[0] = tweak[0];
- t[1] = tweak[1];
- t[2] = t[0] ^ t[1];
- t[3] = t[0];
- t[4] = t[1];
- }
-
- public String getAlgorithmName()
- {
- return "Threefish-" + (blocksizeBytes * 8);
- }
-
- public int getBlockSize()
- {
- return blocksizeBytes;
- }
-
- public void reset()
- {
- }
-
- public int processBlock(byte[] in, int inOff, byte[] out, int outOff)
- throws DataLengthException,
- IllegalStateException
- {
- if ((outOff + blocksizeBytes) > out.length)
- {
- throw new DataLengthException("Output buffer too short");
- }
-
- if ((inOff + blocksizeBytes) > in.length)
- {
- throw new DataLengthException("Input buffer too short");
- }
-
- for (int i = 0; i < blocksizeBytes; i += 8)
- {
- currentBlock[i >> 3] = bytesToWord(in, inOff + i);
- }
- processBlock(this.currentBlock, this.currentBlock);
- for (int i = 0; i < blocksizeBytes; i += 8)
- {
- wordToBytes(this.currentBlock[i >> 3], out, outOff + i);
- }
-
- return blocksizeBytes;
- }
-
- /**
- * Process a block of data represented as 64 bit words.
- *
- * @param in a block sized buffer of words to process.
- * @param out a block sized buffer of words to receive the output of the operation.
- * @return the number of 8 byte words processed (which will be the same as the block size).
- * @throws DataLengthException if either the input or output is not block sized.
- * @throws IllegalStateException if this engine is not initialised.
- */
- public int processBlock(long[] in, long[] out)
- throws DataLengthException, IllegalStateException
- {
- if (kw[blocksizeWords] == 0)
- {
- throw new IllegalStateException("Threefish engine not initialised");
- }
-
- if (in.length != blocksizeWords)
- {
- throw new DataLengthException("Input buffer too short");
- }
- if (out.length != blocksizeWords)
- {
- throw new DataLengthException("Output buffer too short");
- }
-
- if (forEncryption)
- {
- cipher.encryptBlock(in, out);
- }
- else
- {
- cipher.decryptBlock(in, out);
- }
-
- return blocksizeWords;
- }
-
- /**
- * Read a single 64 bit word from input in LSB first order.
- */
- // At least package protected for efficient access from inner class
- public static long bytesToWord(final byte[] bytes, final int off)
- {
- if ((off + 8) > bytes.length)
- {
- // Help the JIT avoid index checks
- throw new IllegalArgumentException();
- }
-
- long word = 0;
- int index = off;
-
- word = (bytes[index++] & 0xffL);
- word |= (bytes[index++] & 0xffL) << 8;
- word |= (bytes[index++] & 0xffL) << 16;
- word |= (bytes[index++] & 0xffL) << 24;
- word |= (bytes[index++] & 0xffL) << 32;
- word |= (bytes[index++] & 0xffL) << 40;
- word |= (bytes[index++] & 0xffL) << 48;
- word |= (bytes[index++] & 0xffL) << 56;
-
- return word;
- }
-
- /**
- * Write a 64 bit word to output in LSB first order.
- */
- // At least package protected for efficient access from inner class
- public static void wordToBytes(final long word, final byte[] bytes, final int off)
- {
- if ((off + 8) > bytes.length)
- {
- // Help the JIT avoid index checks
- throw new IllegalArgumentException();
- }
- int index = off;
-
- bytes[index++] = (byte)word;
- bytes[index++] = (byte)(word >> 8);
- bytes[index++] = (byte)(word >> 16);
- bytes[index++] = (byte)(word >> 24);
- bytes[index++] = (byte)(word >> 32);
- bytes[index++] = (byte)(word >> 40);
- bytes[index++] = (byte)(word >> 48);
- bytes[index++] = (byte)(word >> 56);
- }
-
- /**
- * Rotate left + xor part of the mix operation.
- */
- // Package protected for efficient access from inner class
- static long rotlXor(long x, int n, long xor)
- {
- return ((x << n) | (x >>> -n)) ^ xor;
- }
-
- /**
- * Rotate xor + rotate right part of the unmix operation.
- */
- // Package protected for efficient access from inner class
- static long xorRotr(long x, int n, long xor)
- {
- long xored = x ^ xor;
- return (xored >>> n) | (xored << -n);
- }
-
- private static abstract class ThreefishCipher
- {
- /**
- * The extended + repeated tweak words
- */
- protected final long[] t;
- /**
- * The extended + repeated key words
- */
- protected final long[] kw;
-
- protected ThreefishCipher(final long[] kw, final long[] t)
- {
- this.kw = kw;
- this.t = t;
- }
-
- abstract void encryptBlock(long[] block, long[] out);
-
- abstract void decryptBlock(long[] block, long[] out);
-
- }
-
- private static final class Threefish256Cipher
- extends ThreefishCipher
- {
- /**
- * Mix rotation constants defined in Skein 1.3 specification
- */
- private static final int ROTATION_0_0 = 14, ROTATION_0_1 = 16;
- private static final int ROTATION_1_0 = 52, ROTATION_1_1 = 57;
- private static final int ROTATION_2_0 = 23, ROTATION_2_1 = 40;
- private static final int ROTATION_3_0 = 5, ROTATION_3_1 = 37;
-
- private static final int ROTATION_4_0 = 25, ROTATION_4_1 = 33;
- private static final int ROTATION_5_0 = 46, ROTATION_5_1 = 12;
- private static final int ROTATION_6_0 = 58, ROTATION_6_1 = 22;
- private static final int ROTATION_7_0 = 32, ROTATION_7_1 = 32;
-
- public Threefish256Cipher(long[] kw, long[] t)
- {
- super(kw, t);
- }
-
- void encryptBlock(long[] block, long[] out)
- {
- final long[] kw = this.kw;
- final long[] t = this.t;
- final int[] mod5 = MOD5;
- final int[] mod3 = MOD3;
-
- /* Help the JIT avoid index bounds checks */
- if (kw.length != 9)
- {
- throw new IllegalArgumentException();
- }
- if (t.length != 5)
- {
- throw new IllegalArgumentException();
- }
-
- /*
- * Read 4 words of plaintext data, not using arrays for cipher state
- */
- long b0 = block[0];
- long b1 = block[1];
- long b2 = block[2];
- long b3 = block[3];
-
- /*
- * First subkey injection.
- */
- b0 += kw[0];
- b1 += kw[1] + t[0];
- b2 += kw[2] + t[1];
- b3 += kw[3];
-
- /*
- * Rounds loop, unrolled to 8 rounds per iteration.
- *
- * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows
- * inlining of the permutations, which cycle every of 2 rounds (avoiding array
- * index/lookup).
- *
- * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows
- * inlining constant rotation values (avoiding array index/lookup).
- */
-
- for (int d = 1; d < (ROUNDS_256 / 4); d += 2)
- {
- final int dm5 = mod5[d];
- final int dm3 = mod3[d];
-
- /*
- * 4 rounds of mix and permute.
- *
- * Permute schedule has a 2 round cycle, so permutes are inlined in the mix
- * operations in each 4 round block.
- */
- b1 = rotlXor(b1, ROTATION_0_0, b0 += b1);
- b3 = rotlXor(b3, ROTATION_0_1, b2 += b3);
-
- b3 = rotlXor(b3, ROTATION_1_0, b0 += b3);
- b1 = rotlXor(b1, ROTATION_1_1, b2 += b1);
-
- b1 = rotlXor(b1, ROTATION_2_0, b0 += b1);
- b3 = rotlXor(b3, ROTATION_2_1, b2 += b3);
-
- b3 = rotlXor(b3, ROTATION_3_0, b0 += b3);
- b1 = rotlXor(b1, ROTATION_3_1, b2 += b1);
-
- /*
- * Subkey injection for first 4 rounds.
- */
- b0 += kw[dm5];
- b1 += kw[dm5 + 1] + t[dm3];
- b2 += kw[dm5 + 2] + t[dm3 + 1];
- b3 += kw[dm5 + 3] + d;
-
- /*
- * 4 more rounds of mix/permute
- */
- b1 = rotlXor(b1, ROTATION_4_0, b0 += b1);
- b3 = rotlXor(b3, ROTATION_4_1, b2 += b3);
-
- b3 = rotlXor(b3, ROTATION_5_0, b0 += b3);
- b1 = rotlXor(b1, ROTATION_5_1, b2 += b1);
-
- b1 = rotlXor(b1, ROTATION_6_0, b0 += b1);
- b3 = rotlXor(b3, ROTATION_6_1, b2 += b3);
-
- b3 = rotlXor(b3, ROTATION_7_0, b0 += b3);
- b1 = rotlXor(b1, ROTATION_7_1, b2 += b1);
-
- /*
- * Subkey injection for next 4 rounds.
- */
- b0 += kw[dm5 + 1];
- b1 += kw[dm5 + 2] + t[dm3 + 1];
- b2 += kw[dm5 + 3] + t[dm3 + 2];
- b3 += kw[dm5 + 4] + d + 1;
- }
-
- /*
- * Output cipher state.
- */
- out[0] = b0;
- out[1] = b1;
- out[2] = b2;
- out[3] = b3;
- }
-
- void decryptBlock(long[] block, long[] state)
- {
- final long[] kw = this.kw;
- final long[] t = this.t;
- final int[] mod5 = MOD5;
- final int[] mod3 = MOD3;
-
- /* Help the JIT avoid index bounds checks */
- if (kw.length != 9)
- {
- throw new IllegalArgumentException();
- }
- if (t.length != 5)
- {
- throw new IllegalArgumentException();
- }
-
- long b0 = block[0];
- long b1 = block[1];
- long b2 = block[2];
- long b3 = block[3];
-
- for (int d = (ROUNDS_256 / 4) - 1; d >= 1; d -= 2)
- {
- final int dm5 = mod5[d];
- final int dm3 = mod3[d];
-
- /* Reverse key injection for second 4 rounds */
- b0 -= kw[dm5 + 1];
- b1 -= kw[dm5 + 2] + t[dm3 + 1];
- b2 -= kw[dm5 + 3] + t[dm3 + 2];
- b3 -= kw[dm5 + 4] + d + 1;
-
- /* Reverse second 4 mix/permute rounds */
-
- b3 = xorRotr(b3, ROTATION_7_0, b0);
- b0 -= b3;
- b1 = xorRotr(b1, ROTATION_7_1, b2);
- b2 -= b1;
-
- b1 = xorRotr(b1, ROTATION_6_0, b0);
- b0 -= b1;
- b3 = xorRotr(b3, ROTATION_6_1, b2);
- b2 -= b3;
-
- b3 = xorRotr(b3, ROTATION_5_0, b0);
- b0 -= b3;
- b1 = xorRotr(b1, ROTATION_5_1, b2);
- b2 -= b1;
-
- b1 = xorRotr(b1, ROTATION_4_0, b0);
- b0 -= b1;
- b3 = xorRotr(b3, ROTATION_4_1, b2);
- b2 -= b3;
-
- /* Reverse key injection for first 4 rounds */
- b0 -= kw[dm5];
- b1 -= kw[dm5 + 1] + t[dm3];
- b2 -= kw[dm5 + 2] + t[dm3 + 1];
- b3 -= kw[dm5 + 3] + d;
-
- /* Reverse first 4 mix/permute rounds */
- b3 = xorRotr(b3, ROTATION_3_0, b0);
- b0 -= b3;
- b1 = xorRotr(b1, ROTATION_3_1, b2);
- b2 -= b1;
-
- b1 = xorRotr(b1, ROTATION_2_0, b0);
- b0 -= b1;
- b3 = xorRotr(b3, ROTATION_2_1, b2);
- b2 -= b3;
-
- b3 = xorRotr(b3, ROTATION_1_0, b0);
- b0 -= b3;
- b1 = xorRotr(b1, ROTATION_1_1, b2);
- b2 -= b1;
-
- b1 = xorRotr(b1, ROTATION_0_0, b0);
- b0 -= b1;
- b3 = xorRotr(b3, ROTATION_0_1, b2);
- b2 -= b3;
- }
-
- /*
- * First subkey uninjection.
- */
- b0 -= kw[0];
- b1 -= kw[1] + t[0];
- b2 -= kw[2] + t[1];
- b3 -= kw[3];
-
- /*
- * Output cipher state.
- */
- state[0] = b0;
- state[1] = b1;
- state[2] = b2;
- state[3] = b3;
- }
-
- }
-
- private static final class Threefish512Cipher
- extends ThreefishCipher
- {
- /**
- * Mix rotation constants defined in Skein 1.3 specification
- */
- private static final int ROTATION_0_0 = 46, ROTATION_0_1 = 36, ROTATION_0_2 = 19, ROTATION_0_3 = 37;
- private static final int ROTATION_1_0 = 33, ROTATION_1_1 = 27, ROTATION_1_2 = 14, ROTATION_1_3 = 42;
- private static final int ROTATION_2_0 = 17, ROTATION_2_1 = 49, ROTATION_2_2 = 36, ROTATION_2_3 = 39;
- private static final int ROTATION_3_0 = 44, ROTATION_3_1 = 9, ROTATION_3_2 = 54, ROTATION_3_3 = 56;
-
- private static final int ROTATION_4_0 = 39, ROTATION_4_1 = 30, ROTATION_4_2 = 34, ROTATION_4_3 = 24;
- private static final int ROTATION_5_0 = 13, ROTATION_5_1 = 50, ROTATION_5_2 = 10, ROTATION_5_3 = 17;
- private static final int ROTATION_6_0 = 25, ROTATION_6_1 = 29, ROTATION_6_2 = 39, ROTATION_6_3 = 43;
- private static final int ROTATION_7_0 = 8, ROTATION_7_1 = 35, ROTATION_7_2 = 56, ROTATION_7_3 = 22;
-
- protected Threefish512Cipher(long[] kw, long[] t)
- {
- super(kw, t);
- }
-
- public void encryptBlock(long[] block, long[] out)
- {
- final long[] kw = this.kw;
- final long[] t = this.t;
- final int[] mod9 = MOD9;
- final int[] mod3 = MOD3;
-
- /* Help the JIT avoid index bounds checks */
- if (kw.length != 17)
- {
- throw new IllegalArgumentException();
- }
- if (t.length != 5)
- {
- throw new IllegalArgumentException();
- }
-
- /*
- * Read 8 words of plaintext data, not using arrays for cipher state
- */
- long b0 = block[0];
- long b1 = block[1];
- long b2 = block[2];
- long b3 = block[3];
- long b4 = block[4];
- long b5 = block[5];
- long b6 = block[6];
- long b7 = block[7];
-
- /*
- * First subkey injection.
- */
- b0 += kw[0];
- b1 += kw[1];
- b2 += kw[2];
- b3 += kw[3];
- b4 += kw[4];
- b5 += kw[5] + t[0];
- b6 += kw[6] + t[1];
- b7 += kw[7];
-
- /*
- * Rounds loop, unrolled to 8 rounds per iteration.
- *
- * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows
- * inlining of the permutations, which cycle every of 4 rounds (avoiding array
- * index/lookup).
- *
- * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows
- * inlining constant rotation values (avoiding array index/lookup).
- */
-
- for (int d = 1; d < (ROUNDS_512 / 4); d += 2)
- {
- final int dm9 = mod9[d];
- final int dm3 = mod3[d];
-
- /*
- * 4 rounds of mix and permute.
- *
- * Permute schedule has a 4 round cycle, so permutes are inlined in the mix
- * operations in each 4 round block.
- */
- b1 = rotlXor(b1, ROTATION_0_0, b0 += b1);
- b3 = rotlXor(b3, ROTATION_0_1, b2 += b3);
- b5 = rotlXor(b5, ROTATION_0_2, b4 += b5);
- b7 = rotlXor(b7, ROTATION_0_3, b6 += b7);
-
- b1 = rotlXor(b1, ROTATION_1_0, b2 += b1);
- b7 = rotlXor(b7, ROTATION_1_1, b4 += b7);
- b5 = rotlXor(b5, ROTATION_1_2, b6 += b5);
- b3 = rotlXor(b3, ROTATION_1_3, b0 += b3);
-
- b1 = rotlXor(b1, ROTATION_2_0, b4 += b1);
- b3 = rotlXor(b3, ROTATION_2_1, b6 += b3);
- b5 = rotlXor(b5, ROTATION_2_2, b0 += b5);
- b7 = rotlXor(b7, ROTATION_2_3, b2 += b7);
-
- b1 = rotlXor(b1, ROTATION_3_0, b6 += b1);
- b7 = rotlXor(b7, ROTATION_3_1, b0 += b7);
- b5 = rotlXor(b5, ROTATION_3_2, b2 += b5);
- b3 = rotlXor(b3, ROTATION_3_3, b4 += b3);
-
- /*
- * Subkey injection for first 4 rounds.
- */
- b0 += kw[dm9];
- b1 += kw[dm9 + 1];
- b2 += kw[dm9 + 2];
- b3 += kw[dm9 + 3];
- b4 += kw[dm9 + 4];
- b5 += kw[dm9 + 5] + t[dm3];
- b6 += kw[dm9 + 6] + t[dm3 + 1];
- b7 += kw[dm9 + 7] + d;
-
- /*
- * 4 more rounds of mix/permute
- */
- b1 = rotlXor(b1, ROTATION_4_0, b0 += b1);
- b3 = rotlXor(b3, ROTATION_4_1, b2 += b3);
- b5 = rotlXor(b5, ROTATION_4_2, b4 += b5);
- b7 = rotlXor(b7, ROTATION_4_3, b6 += b7);
-
- b1 = rotlXor(b1, ROTATION_5_0, b2 += b1);
- b7 = rotlXor(b7, ROTATION_5_1, b4 += b7);
- b5 = rotlXor(b5, ROTATION_5_2, b6 += b5);
- b3 = rotlXor(b3, ROTATION_5_3, b0 += b3);
-
- b1 = rotlXor(b1, ROTATION_6_0, b4 += b1);
- b3 = rotlXor(b3, ROTATION_6_1, b6 += b3);
- b5 = rotlXor(b5, ROTATION_6_2, b0 += b5);
- b7 = rotlXor(b7, ROTATION_6_3, b2 += b7);
-
- b1 = rotlXor(b1, ROTATION_7_0, b6 += b1);
- b7 = rotlXor(b7, ROTATION_7_1, b0 += b7);
- b5 = rotlXor(b5, ROTATION_7_2, b2 += b5);
- b3 = rotlXor(b3, ROTATION_7_3, b4 += b3);
-
- /*
- * Subkey injection for next 4 rounds.
- */
- b0 += kw[dm9 + 1];
- b1 += kw[dm9 + 2];
- b2 += kw[dm9 + 3];
- b3 += kw[dm9 + 4];
- b4 += kw[dm9 + 5];
- b5 += kw[dm9 + 6] + t[dm3 + 1];
- b6 += kw[dm9 + 7] + t[dm3 + 2];
- b7 += kw[dm9 + 8] + d + 1;
- }
-
- /*
- * Output cipher state.
- */
- out[0] = b0;
- out[1] = b1;
- out[2] = b2;
- out[3] = b3;
- out[4] = b4;
- out[5] = b5;
- out[6] = b6;
- out[7] = b7;
- }
-
- public void decryptBlock(long[] block, long[] state)
- {
- final long[] kw = this.kw;
- final long[] t = this.t;
- final int[] mod9 = MOD9;
- final int[] mod3 = MOD3;
-
- /* Help the JIT avoid index bounds checks */
- if (kw.length != 17)
- {
- throw new IllegalArgumentException();
- }
- if (t.length != 5)
- {
- throw new IllegalArgumentException();
- }
-
- long b0 = block[0];
- long b1 = block[1];
- long b2 = block[2];
- long b3 = block[3];
- long b4 = block[4];
- long b5 = block[5];
- long b6 = block[6];
- long b7 = block[7];
-
- for (int d = (ROUNDS_512 / 4) - 1; d >= 1; d -= 2)
- {
- final int dm9 = mod9[d];
- final int dm3 = mod3[d];
-
- /* Reverse key injection for second 4 rounds */
- b0 -= kw[dm9 + 1];
- b1 -= kw[dm9 + 2];
- b2 -= kw[dm9 + 3];
- b3 -= kw[dm9 + 4];
- b4 -= kw[dm9 + 5];
- b5 -= kw[dm9 + 6] + t[dm3 + 1];
- b6 -= kw[dm9 + 7] + t[dm3 + 2];
- b7 -= kw[dm9 + 8] + d + 1;
-
- /* Reverse second 4 mix/permute rounds */
-
- b1 = xorRotr(b1, ROTATION_7_0, b6);
- b6 -= b1;
- b7 = xorRotr(b7, ROTATION_7_1, b0);
- b0 -= b7;
- b5 = xorRotr(b5, ROTATION_7_2, b2);
- b2 -= b5;
- b3 = xorRotr(b3, ROTATION_7_3, b4);
- b4 -= b3;
-
- b1 = xorRotr(b1, ROTATION_6_0, b4);
- b4 -= b1;
- b3 = xorRotr(b3, ROTATION_6_1, b6);
- b6 -= b3;
- b5 = xorRotr(b5, ROTATION_6_2, b0);
- b0 -= b5;
- b7 = xorRotr(b7, ROTATION_6_3, b2);
- b2 -= b7;
-
- b1 = xorRotr(b1, ROTATION_5_0, b2);
- b2 -= b1;
- b7 = xorRotr(b7, ROTATION_5_1, b4);
- b4 -= b7;
- b5 = xorRotr(b5, ROTATION_5_2, b6);
- b6 -= b5;
- b3 = xorRotr(b3, ROTATION_5_3, b0);
- b0 -= b3;
-
- b1 = xorRotr(b1, ROTATION_4_0, b0);
- b0 -= b1;
- b3 = xorRotr(b3, ROTATION_4_1, b2);
- b2 -= b3;
- b5 = xorRotr(b5, ROTATION_4_2, b4);
- b4 -= b5;
- b7 = xorRotr(b7, ROTATION_4_3, b6);
- b6 -= b7;
-
- /* Reverse key injection for first 4 rounds */
- b0 -= kw[dm9];
- b1 -= kw[dm9 + 1];
- b2 -= kw[dm9 + 2];
- b3 -= kw[dm9 + 3];
- b4 -= kw[dm9 + 4];
- b5 -= kw[dm9 + 5] + t[dm3];
- b6 -= kw[dm9 + 6] + t[dm3 + 1];
- b7 -= kw[dm9 + 7] + d;
-
- /* Reverse first 4 mix/permute rounds */
- b1 = xorRotr(b1, ROTATION_3_0, b6);
- b6 -= b1;
- b7 = xorRotr(b7, ROTATION_3_1, b0);
- b0 -= b7;
- b5 = xorRotr(b5, ROTATION_3_2, b2);
- b2 -= b5;
- b3 = xorRotr(b3, ROTATION_3_3, b4);
- b4 -= b3;
-
- b1 = xorRotr(b1, ROTATION_2_0, b4);
- b4 -= b1;
- b3 = xorRotr(b3, ROTATION_2_1, b6);
- b6 -= b3;
- b5 = xorRotr(b5, ROTATION_2_2, b0);
- b0 -= b5;
- b7 = xorRotr(b7, ROTATION_2_3, b2);
- b2 -= b7;
-
- b1 = xorRotr(b1, ROTATION_1_0, b2);
- b2 -= b1;
- b7 = xorRotr(b7, ROTATION_1_1, b4);
- b4 -= b7;
- b5 = xorRotr(b5, ROTATION_1_2, b6);
- b6 -= b5;
- b3 = xorRotr(b3, ROTATION_1_3, b0);
- b0 -= b3;
-
- b1 = xorRotr(b1, ROTATION_0_0, b0);
- b0 -= b1;
- b3 = xorRotr(b3, ROTATION_0_1, b2);
- b2 -= b3;
- b5 = xorRotr(b5, ROTATION_0_2, b4);
- b4 -= b5;
- b7 = xorRotr(b7, ROTATION_0_3, b6);
- b6 -= b7;
- }
-
- /*
- * First subkey uninjection.
- */
- b0 -= kw[0];
- b1 -= kw[1];
- b2 -= kw[2];
- b3 -= kw[3];
- b4 -= kw[4];
- b5 -= kw[5] + t[0];
- b6 -= kw[6] + t[1];
- b7 -= kw[7];
-
- /*
- * Output cipher state.
- */
- state[0] = b0;
- state[1] = b1;
- state[2] = b2;
- state[3] = b3;
- state[4] = b4;
- state[5] = b5;
- state[6] = b6;
- state[7] = b7;
- }
- }
-
- private static final class Threefish1024Cipher
- extends ThreefishCipher
- {
- /**
- * Mix rotation constants defined in Skein 1.3 specification
- */
- private static final int ROTATION_0_0 = 24, ROTATION_0_1 = 13, ROTATION_0_2 = 8, ROTATION_0_3 = 47;
- private static final int ROTATION_0_4 = 8, ROTATION_0_5 = 17, ROTATION_0_6 = 22, ROTATION_0_7 = 37;
- private static final int ROTATION_1_0 = 38, ROTATION_1_1 = 19, ROTATION_1_2 = 10, ROTATION_1_3 = 55;
- private static final int ROTATION_1_4 = 49, ROTATION_1_5 = 18, ROTATION_1_6 = 23, ROTATION_1_7 = 52;
- private static final int ROTATION_2_0 = 33, ROTATION_2_1 = 4, ROTATION_2_2 = 51, ROTATION_2_3 = 13;
- private static final int ROTATION_2_4 = 34, ROTATION_2_5 = 41, ROTATION_2_6 = 59, ROTATION_2_7 = 17;
- private static final int ROTATION_3_0 = 5, ROTATION_3_1 = 20, ROTATION_3_2 = 48, ROTATION_3_3 = 41;
- private static final int ROTATION_3_4 = 47, ROTATION_3_5 = 28, ROTATION_3_6 = 16, ROTATION_3_7 = 25;
-
- private static final int ROTATION_4_0 = 41, ROTATION_4_1 = 9, ROTATION_4_2 = 37, ROTATION_4_3 = 31;
- private static final int ROTATION_4_4 = 12, ROTATION_4_5 = 47, ROTATION_4_6 = 44, ROTATION_4_7 = 30;
- private static final int ROTATION_5_0 = 16, ROTATION_5_1 = 34, ROTATION_5_2 = 56, ROTATION_5_3 = 51;
- private static final int ROTATION_5_4 = 4, ROTATION_5_5 = 53, ROTATION_5_6 = 42, ROTATION_5_7 = 41;
- private static final int ROTATION_6_0 = 31, ROTATION_6_1 = 44, ROTATION_6_2 = 47, ROTATION_6_3 = 46;
- private static final int ROTATION_6_4 = 19, ROTATION_6_5 = 42, ROTATION_6_6 = 44, ROTATION_6_7 = 25;
- private static final int ROTATION_7_0 = 9, ROTATION_7_1 = 48, ROTATION_7_2 = 35, ROTATION_7_3 = 52;
- private static final int ROTATION_7_4 = 23, ROTATION_7_5 = 31, ROTATION_7_6 = 37, ROTATION_7_7 = 20;
-
- public Threefish1024Cipher(long[] kw, long[] t)
- {
- super(kw, t);
- }
-
- void encryptBlock(long[] block, long[] out)
- {
- final long[] kw = this.kw;
- final long[] t = this.t;
- final int[] mod17 = MOD17;
- final int[] mod3 = MOD3;
-
- /* Help the JIT avoid index bounds checks */
- if (kw.length != 33)
- {
- throw new IllegalArgumentException();
- }
- if (t.length != 5)
- {
- throw new IllegalArgumentException();
- }
-
- /*
- * Read 16 words of plaintext data, not using arrays for cipher state
- */
- long b0 = block[0];
- long b1 = block[1];
- long b2 = block[2];
- long b3 = block[3];
- long b4 = block[4];
- long b5 = block[5];
- long b6 = block[6];
- long b7 = block[7];
- long b8 = block[8];
- long b9 = block[9];
- long b10 = block[10];
- long b11 = block[11];
- long b12 = block[12];
- long b13 = block[13];
- long b14 = block[14];
- long b15 = block[15];
-
- /*
- * First subkey injection.
- */
- b0 += kw[0];
- b1 += kw[1];
- b2 += kw[2];
- b3 += kw[3];
- b4 += kw[4];
- b5 += kw[5];
- b6 += kw[6];
- b7 += kw[7];
- b8 += kw[8];
- b9 += kw[9];
- b10 += kw[10];
- b11 += kw[11];
- b12 += kw[12];
- b13 += kw[13] + t[0];
- b14 += kw[14] + t[1];
- b15 += kw[15];
-
- /*
- * Rounds loop, unrolled to 8 rounds per iteration.
- *
- * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows
- * inlining of the permutations, which cycle every of 4 rounds (avoiding array
- * index/lookup).
- *
- * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows
- * inlining constant rotation values (avoiding array index/lookup).
- */
-
- for (int d = 1; d < (ROUNDS_1024 / 4); d += 2)
- {
- final int dm17 = mod17[d];
- final int dm3 = mod3[d];
-
- /*
- * 4 rounds of mix and permute.
- *
- * Permute schedule has a 4 round cycle, so permutes are inlined in the mix
- * operations in each 4 round block.
- */
- b1 = rotlXor(b1, ROTATION_0_0, b0 += b1);
- b3 = rotlXor(b3, ROTATION_0_1, b2 += b3);
- b5 = rotlXor(b5, ROTATION_0_2, b4 += b5);
- b7 = rotlXor(b7, ROTATION_0_3, b6 += b7);
- b9 = rotlXor(b9, ROTATION_0_4, b8 += b9);
- b11 = rotlXor(b11, ROTATION_0_5, b10 += b11);
- b13 = rotlXor(b13, ROTATION_0_6, b12 += b13);
- b15 = rotlXor(b15, ROTATION_0_7, b14 += b15);
-
- b9 = rotlXor(b9, ROTATION_1_0, b0 += b9);
- b13 = rotlXor(b13, ROTATION_1_1, b2 += b13);
- b11 = rotlXor(b11, ROTATION_1_2, b6 += b11);
- b15 = rotlXor(b15, ROTATION_1_3, b4 += b15);
- b7 = rotlXor(b7, ROTATION_1_4, b10 += b7);
- b3 = rotlXor(b3, ROTATION_1_5, b12 += b3);
- b5 = rotlXor(b5, ROTATION_1_6, b14 += b5);
- b1 = rotlXor(b1, ROTATION_1_7, b8 += b1);
-
- b7 = rotlXor(b7, ROTATION_2_0, b0 += b7);
- b5 = rotlXor(b5, ROTATION_2_1, b2 += b5);
- b3 = rotlXor(b3, ROTATION_2_2, b4 += b3);
- b1 = rotlXor(b1, ROTATION_2_3, b6 += b1);
- b15 = rotlXor(b15, ROTATION_2_4, b12 += b15);
- b13 = rotlXor(b13, ROTATION_2_5, b14 += b13);
- b11 = rotlXor(b11, ROTATION_2_6, b8 += b11);
- b9 = rotlXor(b9, ROTATION_2_7, b10 += b9);
-
- b15 = rotlXor(b15, ROTATION_3_0, b0 += b15);
- b11 = rotlXor(b11, ROTATION_3_1, b2 += b11);
- b13 = rotlXor(b13, ROTATION_3_2, b6 += b13);
- b9 = rotlXor(b9, ROTATION_3_3, b4 += b9);
- b1 = rotlXor(b1, ROTATION_3_4, b14 += b1);
- b5 = rotlXor(b5, ROTATION_3_5, b8 += b5);
- b3 = rotlXor(b3, ROTATION_3_6, b10 += b3);
- b7 = rotlXor(b7, ROTATION_3_7, b12 += b7);
-
- /*
- * Subkey injection for first 4 rounds.
- */
- b0 += kw[dm17];
- b1 += kw[dm17 + 1];
- b2 += kw[dm17 + 2];
- b3 += kw[dm17 + 3];
- b4 += kw[dm17 + 4];
- b5 += kw[dm17 + 5];
- b6 += kw[dm17 + 6];
- b7 += kw[dm17 + 7];
- b8 += kw[dm17 + 8];
- b9 += kw[dm17 + 9];
- b10 += kw[dm17 + 10];
- b11 += kw[dm17 + 11];
- b12 += kw[dm17 + 12];
- b13 += kw[dm17 + 13] + t[dm3];
- b14 += kw[dm17 + 14] + t[dm3 + 1];
- b15 += kw[dm17 + 15] + d;
-
- /*
- * 4 more rounds of mix/permute
- */
- b1 = rotlXor(b1, ROTATION_4_0, b0 += b1);
- b3 = rotlXor(b3, ROTATION_4_1, b2 += b3);
- b5 = rotlXor(b5, ROTATION_4_2, b4 += b5);
- b7 = rotlXor(b7, ROTATION_4_3, b6 += b7);
- b9 = rotlXor(b9, ROTATION_4_4, b8 += b9);
- b11 = rotlXor(b11, ROTATION_4_5, b10 += b11);
- b13 = rotlXor(b13, ROTATION_4_6, b12 += b13);
- b15 = rotlXor(b15, ROTATION_4_7, b14 += b15);
-
- b9 = rotlXor(b9, ROTATION_5_0, b0 += b9);
- b13 = rotlXor(b13, ROTATION_5_1, b2 += b13);
- b11 = rotlXor(b11, ROTATION_5_2, b6 += b11);
- b15 = rotlXor(b15, ROTATION_5_3, b4 += b15);
- b7 = rotlXor(b7, ROTATION_5_4, b10 += b7);
- b3 = rotlXor(b3, ROTATION_5_5, b12 += b3);
- b5 = rotlXor(b5, ROTATION_5_6, b14 += b5);
- b1 = rotlXor(b1, ROTATION_5_7, b8 += b1);
-
- b7 = rotlXor(b7, ROTATION_6_0, b0 += b7);
- b5 = rotlXor(b5, ROTATION_6_1, b2 += b5);
- b3 = rotlXor(b3, ROTATION_6_2, b4 += b3);
- b1 = rotlXor(b1, ROTATION_6_3, b6 += b1);
- b15 = rotlXor(b15, ROTATION_6_4, b12 += b15);
- b13 = rotlXor(b13, ROTATION_6_5, b14 += b13);
- b11 = rotlXor(b11, ROTATION_6_6, b8 += b11);
- b9 = rotlXor(b9, ROTATION_6_7, b10 += b9);
-
- b15 = rotlXor(b15, ROTATION_7_0, b0 += b15);
- b11 = rotlXor(b11, ROTATION_7_1, b2 += b11);
- b13 = rotlXor(b13, ROTATION_7_2, b6 += b13);
- b9 = rotlXor(b9, ROTATION_7_3, b4 += b9);
- b1 = rotlXor(b1, ROTATION_7_4, b14 += b1);
- b5 = rotlXor(b5, ROTATION_7_5, b8 += b5);
- b3 = rotlXor(b3, ROTATION_7_6, b10 += b3);
- b7 = rotlXor(b7, ROTATION_7_7, b12 += b7);
-
- /*
- * Subkey injection for next 4 rounds.
- */
- b0 += kw[dm17 + 1];
- b1 += kw[dm17 + 2];
- b2 += kw[dm17 + 3];
- b3 += kw[dm17 + 4];
- b4 += kw[dm17 + 5];
- b5 += kw[dm17 + 6];
- b6 += kw[dm17 + 7];
- b7 += kw[dm17 + 8];
- b8 += kw[dm17 + 9];
- b9 += kw[dm17 + 10];
- b10 += kw[dm17 + 11];
- b11 += kw[dm17 + 12];
- b12 += kw[dm17 + 13];
- b13 += kw[dm17 + 14] + t[dm3 + 1];
- b14 += kw[dm17 + 15] + t[dm3 + 2];
- b15 += kw[dm17 + 16] + d + 1;
-
- }
-
- /*
- * Output cipher state.
- */
- out[0] = b0;
- out[1] = b1;
- out[2] = b2;
- out[3] = b3;
- out[4] = b4;
- out[5] = b5;
- out[6] = b6;
- out[7] = b7;
- out[8] = b8;
- out[9] = b9;
- out[10] = b10;
- out[11] = b11;
- out[12] = b12;
- out[13] = b13;
- out[14] = b14;
- out[15] = b15;
- }
-
- void decryptBlock(long[] block, long[] state)
- {
- final long[] kw = this.kw;
- final long[] t = this.t;
- final int[] mod17 = MOD17;
- final int[] mod3 = MOD3;
-
- /* Help the JIT avoid index bounds checks */
- if (kw.length != 33)
- {
- throw new IllegalArgumentException();
- }
- if (t.length != 5)
- {
- throw new IllegalArgumentException();
- }
-
- long b0 = block[0];
- long b1 = block[1];
- long b2 = block[2];
- long b3 = block[3];
- long b4 = block[4];
- long b5 = block[5];
- long b6 = block[6];
- long b7 = block[7];
- long b8 = block[8];
- long b9 = block[9];
- long b10 = block[10];
- long b11 = block[11];
- long b12 = block[12];
- long b13 = block[13];
- long b14 = block[14];
- long b15 = block[15];
-
- for (int d = (ROUNDS_1024 / 4) - 1; d >= 1; d -= 2)
- {
- final int dm17 = mod17[d];
- final int dm3 = mod3[d];
-
- /* Reverse key injection for second 4 rounds */
- b0 -= kw[dm17 + 1];
- b1 -= kw[dm17 + 2];
- b2 -= kw[dm17 + 3];
- b3 -= kw[dm17 + 4];
- b4 -= kw[dm17 + 5];
- b5 -= kw[dm17 + 6];
- b6 -= kw[dm17 + 7];
- b7 -= kw[dm17 + 8];
- b8 -= kw[dm17 + 9];
- b9 -= kw[dm17 + 10];
- b10 -= kw[dm17 + 11];
- b11 -= kw[dm17 + 12];
- b12 -= kw[dm17 + 13];
- b13 -= kw[dm17 + 14] + t[dm3 + 1];
- b14 -= kw[dm17 + 15] + t[dm3 + 2];
- b15 -= kw[dm17 + 16] + d + 1;
-
- /* Reverse second 4 mix/permute rounds */
- b15 = xorRotr(b15, ROTATION_7_0, b0);
- b0 -= b15;
- b11 = xorRotr(b11, ROTATION_7_1, b2);
- b2 -= b11;
- b13 = xorRotr(b13, ROTATION_7_2, b6);
- b6 -= b13;
- b9 = xorRotr(b9, ROTATION_7_3, b4);
- b4 -= b9;
- b1 = xorRotr(b1, ROTATION_7_4, b14);
- b14 -= b1;
- b5 = xorRotr(b5, ROTATION_7_5, b8);
- b8 -= b5;
- b3 = xorRotr(b3, ROTATION_7_6, b10);
- b10 -= b3;
- b7 = xorRotr(b7, ROTATION_7_7, b12);
- b12 -= b7;
-
- b7 = xorRotr(b7, ROTATION_6_0, b0);
- b0 -= b7;
- b5 = xorRotr(b5, ROTATION_6_1, b2);
- b2 -= b5;
- b3 = xorRotr(b3, ROTATION_6_2, b4);
- b4 -= b3;
- b1 = xorRotr(b1, ROTATION_6_3, b6);
- b6 -= b1;
- b15 = xorRotr(b15, ROTATION_6_4, b12);
- b12 -= b15;
- b13 = xorRotr(b13, ROTATION_6_5, b14);
- b14 -= b13;
- b11 = xorRotr(b11, ROTATION_6_6, b8);
- b8 -= b11;
- b9 = xorRotr(b9, ROTATION_6_7, b10);
- b10 -= b9;
-
- b9 = xorRotr(b9, ROTATION_5_0, b0);
- b0 -= b9;
- b13 = xorRotr(b13, ROTATION_5_1, b2);
- b2 -= b13;
- b11 = xorRotr(b11, ROTATION_5_2, b6);
- b6 -= b11;
- b15 = xorRotr(b15, ROTATION_5_3, b4);
- b4 -= b15;
- b7 = xorRotr(b7, ROTATION_5_4, b10);
- b10 -= b7;
- b3 = xorRotr(b3, ROTATION_5_5, b12);
- b12 -= b3;
- b5 = xorRotr(b5, ROTATION_5_6, b14);
- b14 -= b5;
- b1 = xorRotr(b1, ROTATION_5_7, b8);
- b8 -= b1;
-
- b1 = xorRotr(b1, ROTATION_4_0, b0);
- b0 -= b1;
- b3 = xorRotr(b3, ROTATION_4_1, b2);
- b2 -= b3;
- b5 = xorRotr(b5, ROTATION_4_2, b4);
- b4 -= b5;
- b7 = xorRotr(b7, ROTATION_4_3, b6);
- b6 -= b7;
- b9 = xorRotr(b9, ROTATION_4_4, b8);
- b8 -= b9;
- b11 = xorRotr(b11, ROTATION_4_5, b10);
- b10 -= b11;
- b13 = xorRotr(b13, ROTATION_4_6, b12);
- b12 -= b13;
- b15 = xorRotr(b15, ROTATION_4_7, b14);
- b14 -= b15;
-
- /* Reverse key injection for first 4 rounds */
- b0 -= kw[dm17];
- b1 -= kw[dm17 + 1];
- b2 -= kw[dm17 + 2];
- b3 -= kw[dm17 + 3];
- b4 -= kw[dm17 + 4];
- b5 -= kw[dm17 + 5];
- b6 -= kw[dm17 + 6];
- b7 -= kw[dm17 + 7];
- b8 -= kw[dm17 + 8];
- b9 -= kw[dm17 + 9];
- b10 -= kw[dm17 + 10];
- b11 -= kw[dm17 + 11];
- b12 -= kw[dm17 + 12];
- b13 -= kw[dm17 + 13] + t[dm3];
- b14 -= kw[dm17 + 14] + t[dm3 + 1];
- b15 -= kw[dm17 + 15] + d;
-
- /* Reverse first 4 mix/permute rounds */
- b15 = xorRotr(b15, ROTATION_3_0, b0);
- b0 -= b15;
- b11 = xorRotr(b11, ROTATION_3_1, b2);
- b2 -= b11;
- b13 = xorRotr(b13, ROTATION_3_2, b6);
- b6 -= b13;
- b9 = xorRotr(b9, ROTATION_3_3, b4);
- b4 -= b9;
- b1 = xorRotr(b1, ROTATION_3_4, b14);
- b14 -= b1;
- b5 = xorRotr(b5, ROTATION_3_5, b8);
- b8 -= b5;
- b3 = xorRotr(b3, ROTATION_3_6, b10);
- b10 -= b3;
- b7 = xorRotr(b7, ROTATION_3_7, b12);
- b12 -= b7;
-
- b7 = xorRotr(b7, ROTATION_2_0, b0);
- b0 -= b7;
- b5 = xorRotr(b5, ROTATION_2_1, b2);
- b2 -= b5;
- b3 = xorRotr(b3, ROTATION_2_2, b4);
- b4 -= b3;
- b1 = xorRotr(b1, ROTATION_2_3, b6);
- b6 -= b1;
- b15 = xorRotr(b15, ROTATION_2_4, b12);
- b12 -= b15;
- b13 = xorRotr(b13, ROTATION_2_5, b14);
- b14 -= b13;
- b11 = xorRotr(b11, ROTATION_2_6, b8);
- b8 -= b11;
- b9 = xorRotr(b9, ROTATION_2_7, b10);
- b10 -= b9;
-
- b9 = xorRotr(b9, ROTATION_1_0, b0);
- b0 -= b9;
- b13 = xorRotr(b13, ROTATION_1_1, b2);
- b2 -= b13;
- b11 = xorRotr(b11, ROTATION_1_2, b6);
- b6 -= b11;
- b15 = xorRotr(b15, ROTATION_1_3, b4);
- b4 -= b15;
- b7 = xorRotr(b7, ROTATION_1_4, b10);
- b10 -= b7;
- b3 = xorRotr(b3, ROTATION_1_5, b12);
- b12 -= b3;
- b5 = xorRotr(b5, ROTATION_1_6, b14);
- b14 -= b5;
- b1 = xorRotr(b1, ROTATION_1_7, b8);
- b8 -= b1;
-
- b1 = xorRotr(b1, ROTATION_0_0, b0);
- b0 -= b1;
- b3 = xorRotr(b3, ROTATION_0_1, b2);
- b2 -= b3;
- b5 = xorRotr(b5, ROTATION_0_2, b4);
- b4 -= b5;
- b7 = xorRotr(b7, ROTATION_0_3, b6);
- b6 -= b7;
- b9 = xorRotr(b9, ROTATION_0_4, b8);
- b8 -= b9;
- b11 = xorRotr(b11, ROTATION_0_5, b10);
- b10 -= b11;
- b13 = xorRotr(b13, ROTATION_0_6, b12);
- b12 -= b13;
- b15 = xorRotr(b15, ROTATION_0_7, b14);
- b14 -= b15;
- }
-
- /*
- * First subkey uninjection.
- */
- b0 -= kw[0];
- b1 -= kw[1];
- b2 -= kw[2];
- b3 -= kw[3];
- b4 -= kw[4];
- b5 -= kw[5];
- b6 -= kw[6];
- b7 -= kw[7];
- b8 -= kw[8];
- b9 -= kw[9];
- b10 -= kw[10];
- b11 -= kw[11];
- b12 -= kw[12];
- b13 -= kw[13] + t[0];
- b14 -= kw[14] + t[1];
- b15 -= kw[15];
-
- /*
- * Output cipher state.
- */
- state[0] = b0;
- state[1] = b1;
- state[2] = b2;
- state[3] = b3;
- state[4] = b4;
- state[5] = b5;
- state[6] = b6;
- state[7] = b7;
- state[8] = b8;
- state[9] = b9;
- state[10] = b10;
- state[11] = b11;
- state[12] = b12;
- state[13] = b13;
- state[14] = b14;
- state[15] = b15;
- }
-
- }
-
-}