aboutsummaryrefslogtreecommitdiffstats
path: root/libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java
diff options
context:
space:
mode:
Diffstat (limited to 'libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java')
-rw-r--r--libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java363
1 files changed, 0 insertions, 363 deletions
diff --git a/libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java b/libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java
deleted file mode 100644
index e91e654e8..000000000
--- a/libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/RC6Engine.java
+++ /dev/null
@@ -1,363 +0,0 @@
-package org.spongycastle.crypto.engines;
-
-import org.spongycastle.crypto.BlockCipher;
-import org.spongycastle.crypto.CipherParameters;
-import org.spongycastle.crypto.DataLengthException;
-import org.spongycastle.crypto.OutputLengthException;
-import org.spongycastle.crypto.params.KeyParameter;
-
-/**
- * An RC6 engine.
- */
-public class RC6Engine
- implements BlockCipher
-{
- private static final int wordSize = 32;
- private static final int bytesPerWord = wordSize / 8;
-
- /*
- * the number of rounds to perform
- */
- private static final int _noRounds = 20;
-
- /*
- * the expanded key array of size 2*(rounds + 1)
- */
- private int _S[];
-
- /*
- * our "magic constants" for wordSize 32
- *
- * Pw = Odd((e-2) * 2^wordsize)
- * Qw = Odd((o-2) * 2^wordsize)
- *
- * where e is the base of natural logarithms (2.718281828...)
- * and o is the golden ratio (1.61803398...)
- */
- private static final int P32 = 0xb7e15163;
- private static final int Q32 = 0x9e3779b9;
-
- private static final int LGW = 5; // log2(32)
-
- private boolean forEncryption;
-
- /**
- * Create an instance of the RC6 encryption algorithm
- * and set some defaults
- */
- public RC6Engine()
- {
- _S = null;
- }
-
- public String getAlgorithmName()
- {
- return "RC6";
- }
-
- public int getBlockSize()
- {
- return 4 * bytesPerWord;
- }
-
- /**
- * initialise a RC5-32 cipher.
- *
- * @param forEncryption whether or not we are for encryption.
- * @param params the parameters required to set up the cipher.
- * @exception IllegalArgumentException if the params argument is
- * inappropriate.
- */
- public void init(
- boolean forEncryption,
- CipherParameters params)
- {
- if (!(params instanceof KeyParameter))
- {
- throw new IllegalArgumentException("invalid parameter passed to RC6 init - " + params.getClass().getName());
- }
-
- KeyParameter p = (KeyParameter)params;
- this.forEncryption = forEncryption;
- setKey(p.getKey());
- }
-
- public int processBlock(
- byte[] in,
- int inOff,
- byte[] out,
- int outOff)
- {
- int blockSize = getBlockSize();
- if (_S == null)
- {
- throw new IllegalStateException("RC6 engine not initialised");
- }
- if ((inOff + blockSize) > in.length)
- {
- throw new DataLengthException("input buffer too short");
- }
- if ((outOff + blockSize) > out.length)
- {
- throw new OutputLengthException("output buffer too short");
- }
-
- return (forEncryption)
- ? encryptBlock(in, inOff, out, outOff)
- : decryptBlock(in, inOff, out, outOff);
- }
-
- public void reset()
- {
- }
-
- /**
- * Re-key the cipher.
- * <p>
- * @param key the key to be used
- */
- private void setKey(
- byte[] key)
- {
-
- //
- // KEY EXPANSION:
- //
- // There are 3 phases to the key expansion.
- //
- // Phase 1:
- // Copy the secret key K[0...b-1] into an array L[0..c-1] of
- // c = ceil(b/u), where u = wordSize/8 in little-endian order.
- // In other words, we fill up L using u consecutive key bytes
- // of K. Any unfilled byte positions in L are zeroed. In the
- // case that b = c = 0, set c = 1 and L[0] = 0.
- //
- // compute number of dwords
- int c = (key.length + (bytesPerWord - 1)) / bytesPerWord;
- if (c == 0)
- {
- c = 1;
- }
- int[] L = new int[(key.length + bytesPerWord - 1) / bytesPerWord];
-
- // load all key bytes into array of key dwords
- for (int i = key.length - 1; i >= 0; i--)
- {
- L[i / bytesPerWord] = (L[i / bytesPerWord] << 8) + (key[i] & 0xff);
- }
-
- //
- // Phase 2:
- // Key schedule is placed in a array of 2+2*ROUNDS+2 = 44 dwords.
- // Initialize S to a particular fixed pseudo-random bit pattern
- // using an arithmetic progression modulo 2^wordsize determined
- // by the magic numbers, Pw & Qw.
- //
- _S = new int[2+2*_noRounds+2];
-
- _S[0] = P32;
- for (int i=1; i < _S.length; i++)
- {
- _S[i] = (_S[i-1] + Q32);
- }
-
- //
- // Phase 3:
- // Mix in the user's secret key in 3 passes over the arrays S & L.
- // The max of the arrays sizes is used as the loop control
- //
- int iter;
-
- if (L.length > _S.length)
- {
- iter = 3 * L.length;
- }
- else
- {
- iter = 3 * _S.length;
- }
-
- int A = 0;
- int B = 0;
- int i = 0, j = 0;
-
- for (int k = 0; k < iter; k++)
- {
- A = _S[i] = rotateLeft(_S[i] + A + B, 3);
- B = L[j] = rotateLeft(L[j] + A + B, A+B);
- i = (i+1) % _S.length;
- j = (j+1) % L.length;
- }
- }
-
- private int encryptBlock(
- byte[] in,
- int inOff,
- byte[] out,
- int outOff)
- {
- // load A,B,C and D registers from in.
- int A = bytesToWord(in, inOff);
- int B = bytesToWord(in, inOff + bytesPerWord);
- int C = bytesToWord(in, inOff + bytesPerWord*2);
- int D = bytesToWord(in, inOff + bytesPerWord*3);
-
- // Do pseudo-round #0: pre-whitening of B and D
- B += _S[0];
- D += _S[1];
-
- // perform round #1,#2 ... #ROUNDS of encryption
- for (int i = 1; i <= _noRounds; i++)
- {
- int t = 0,u = 0;
-
- t = B*(2*B+1);
- t = rotateLeft(t,5);
-
- u = D*(2*D+1);
- u = rotateLeft(u,5);
-
- A ^= t;
- A = rotateLeft(A,u);
- A += _S[2*i];
-
- C ^= u;
- C = rotateLeft(C,t);
- C += _S[2*i+1];
-
- int temp = A;
- A = B;
- B = C;
- C = D;
- D = temp;
- }
- // do pseudo-round #(ROUNDS+1) : post-whitening of A and C
- A += _S[2*_noRounds+2];
- C += _S[2*_noRounds+3];
-
- // store A, B, C and D registers to out
- wordToBytes(A, out, outOff);
- wordToBytes(B, out, outOff + bytesPerWord);
- wordToBytes(C, out, outOff + bytesPerWord*2);
- wordToBytes(D, out, outOff + bytesPerWord*3);
-
- return 4 * bytesPerWord;
- }
-
- private int decryptBlock(
- byte[] in,
- int inOff,
- byte[] out,
- int outOff)
- {
- // load A,B,C and D registers from out.
- int A = bytesToWord(in, inOff);
- int B = bytesToWord(in, inOff + bytesPerWord);
- int C = bytesToWord(in, inOff + bytesPerWord*2);
- int D = bytesToWord(in, inOff + bytesPerWord*3);
-
- // Undo pseudo-round #(ROUNDS+1) : post whitening of A and C
- C -= _S[2*_noRounds+3];
- A -= _S[2*_noRounds+2];
-
- // Undo round #ROUNDS, .., #2,#1 of encryption
- for (int i = _noRounds; i >= 1; i--)
- {
- int t=0,u = 0;
-
- int temp = D;
- D = C;
- C = B;
- B = A;
- A = temp;
-
- t = B*(2*B+1);
- t = rotateLeft(t, LGW);
-
- u = D*(2*D+1);
- u = rotateLeft(u, LGW);
-
- C -= _S[2*i+1];
- C = rotateRight(C,t);
- C ^= u;
-
- A -= _S[2*i];
- A = rotateRight(A,u);
- A ^= t;
-
- }
- // Undo pseudo-round #0: pre-whitening of B and D
- D -= _S[1];
- B -= _S[0];
-
- wordToBytes(A, out, outOff);
- wordToBytes(B, out, outOff + bytesPerWord);
- wordToBytes(C, out, outOff + bytesPerWord*2);
- wordToBytes(D, out, outOff + bytesPerWord*3);
-
- return 4 * bytesPerWord;
- }
-
-
- //////////////////////////////////////////////////////////////
- //
- // PRIVATE Helper Methods
- //
- //////////////////////////////////////////////////////////////
-
- /**
- * Perform a left "spin" of the word. The rotation of the given
- * word <em>x</em> is rotated left by <em>y</em> bits.
- * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
- * are used to determine the rotation amount. Here it is
- * assumed that the wordsize used is 32.
- * <p>
- * @param x word to rotate
- * @param y number of bits to rotate % wordSize
- */
- private int rotateLeft(int x, int y)
- {
- return (x << y) | (x >>> -y);
- }
-
- /**
- * Perform a right "spin" of the word. The rotation of the given
- * word <em>x</em> is rotated left by <em>y</em> bits.
- * Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
- * are used to determine the rotation amount. Here it is
- * assumed that the wordsize used is a power of 2.
- * <p>
- * @param x word to rotate
- * @param y number of bits to rotate % wordSize
- */
- private int rotateRight(int x, int y)
- {
- return (x >>> y) | (x << -y);
- }
-
- private int bytesToWord(
- byte[] src,
- int srcOff)
- {
- int word = 0;
-
- for (int i = bytesPerWord - 1; i >= 0; i--)
- {
- word = (word << 8) + (src[i + srcOff] & 0xff);
- }
-
- return word;
- }
-
- private void wordToBytes(
- int word,
- byte[] dst,
- int dstOff)
- {
- for (int i = 0; i < bytesPerWord; i++)
- {
- dst[i + dstOff] = (byte)word;
- word >>>= 8;
- }
- }
-}