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Attention to detail: the target 
server isn t neccessarily the 
server we re connected to (i.e. 
in forward mode). But if the 
target changes, we should 
always open up a new socket.

At a later point in time, we 
could offer rewriting HTTPS to 
absolute-form HTTP in 
handle_message

Give user the possibility to use 
mitmproxy as SSL terminator 
(or the other way around)

When/How do we do HTTP assembly, or, generally 
speaking $protocol assembly?
This is difficult as we need to delay traffic 
forwarding if we want to intercept and modify 
based on higher-level attributes (e.g. HTTP content)

-> Introduce  conntype  attribute of the 
ProxyHandler that signals the current connection 
type and allows appropriate protocol assembly. 
Also, we introduce an InterceptionWatchdog that 
handles interception rules (for  HTTP, TCP and 
possibly other layer 5-7 protocols) and manages 
forwarding (incl. streaming).

If we do pass-through (based on exclude list), 
conntype is always TCP.
For reverse proxy mode, we can use the reverse 
proxy spec to deterministically set the conntype 
(probably just HTTP/S in most cases)
In regular mode without established CONNECT, 
conntype is always HTTP.

In regular mode with intercepted CONNECT, in 
reverse mode with tcp:// reverse proxy spec 
(exotic) and in transparent mode (all without pass-
through), we can t be sure and need a heuristic. 
Proposal:
Always use default mode based on port, unless 
external events occur (e.g. switch to websocket or 
SSL pass-through).

clientdisconnect 
event

How do we save traffic dumps? 
A) tnetstrings as before.
B) SQLAlchemy: Each flow type subclasses 
the Flow class -> SQLAlchemy docs: 
Mapping Class Inheritance Hierarchies

HTTP: As before
TCP: Per Connection

clientconnect 
event
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