
Generic TCP/TLS proxying

Determine SSL interception settings

ProxyHandler.handle_connection

forward mode?

Get target address
from

proxy config

reverse regular

Determine
connection type

(HTTP, plain TCP,)

Get target address
from

platform resolver

transparent

yes

no

proxy mode?

protocol.handle_me
ssages

http

proxy mode?regular
CONNECT

established?

Verify proxy
authentication

no

error

other

server
connection

established?

target server
changed?

absolute form (GET http://example.com/...)

yes

yes

no

establish/switch
server connection

transparent / reverse
yes

Send remaining
data; close

connection(s)

disconnect

Client connects

Get target address
from

SOCKS data

SOCKS

Parse as HTTP/1.1
message

authority form (CONNECT ...)

Get target address
from

CONNECT request

handle_request

forward mode?

no

yes

Establish SSL with
server and client

based on SSL
interception

settings

Establish
server connection

no

Determine SSL
interception

settings

Send CONNECT
request to upstream

proxy

proxy mode?

transparent/SOCKS

regular (CONNECT)

reverse
Decide depending
on reverse proxy

spec

Check if not in pass-
through list

Check if on SSL port
and not on pass-

through list.

Verify proxy
authentication

Accept socket
connection
(TCP ack)

Attention to detail: the target
server isn t neccessarily the
server we re connected to (i.e.
in forward mode). But if the
target changes, we should
always open up a new socket.

At a later point in time, we
could offer rewriting HTTPS to
absolute-form HTTP in
handle_message

Give user the possibility to use
mitmproxy as SSL terminator
(or the other way around)

When/How do we do HTTP assembly, or, generally
speaking $protocol assembly?
This is difficult as we need to delay traffic
forwarding if we want to intercept and modify
based on higher-level attributes (e.g. HTTP content)

-> Introduce conntype attribute of the
ProxyHandler that signals the current connection
type and allows appropriate protocol assembly.
Also, we introduce an InterceptionWatchdog that
handles interception rules (for HTTP, TCP and
possibly other layer 5-7 protocols) and manages
forwarding (incl. streaming).

If we do pass-through (based on exclude list),
conntype is always TCP.
For reverse proxy mode, we can use the reverse
proxy spec to deterministically set the conntype
(probably just HTTP/S in most cases)
In regular mode without established CONNECT,
conntype is always HTTP.

In regular mode with intercepted CONNECT, in
reverse mode with tcp:// reverse proxy spec
(exotic) and in transparent mode (all without pass-
through), we can t be sure and need a heuristic.
Proposal:
Always use default mode based on port, unless
external events occur (e.g. switch to websocket or
SSL pass-through).

clientdisconnect
event

How do we save traffic dumps?
A) tnetstrings as before.
B) SQLAlchemy: Each flow type subclasses
the Flow class -> SQLAlchemy docs:
Mapping Class Inheritance Hierarchies

HTTP: As before
TCP: Per Connection

clientconnect
event

	proxy-flowchart.vsdx
	Zeichenblatt-1

