'robots' content='index, nofollow'/>
aboutsummaryrefslogtreecommitdiffstats
path: root/xen/arch/x86/time.c
blob: 44f11187481f391ca90d8557b16e942573353420 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
/******************************************************************************
 * arch/x86/time.c
 * 
 * Per-CPU time calibration and management.
 * 
 * Copyright (c) 2002-2005, K A Fraser
 * 
 * Portions from Linux are:
 * Copyright (c) 1991, 1992, 1995  Linus Torvalds
 */

#include <xen/config.h>
#include <xen/errno.h>
#include <xen/event.h>
#include <xen/sched.h>
#include <xen/lib.h>
#include <xen/config.h>
#include <xen/init.h>
#include <xen/time.h>
#include <xen/timer.h>
#include <xen/smp.h>
#include <xen/irq.h>
#include <xen/softirq.h>
#include <asm/io.h>
#include <asm/msr.h>
#include <asm/mpspec.h>
#include <asm/processor.h>
#include <asm/fixmap.h>
#include <asm/mc146818rtc.h>
#include <asm/div64.h>
#include <asm/hpet.h>
#include <io_ports.h>

/* opt_clocksource: Force clocksource to one of: pit, hpet, cyclone, acpi. */
static char opt_clocksource[10];
string_param("clocksource", opt_clocksource);

#define EPOCH MILLISECS(1000)

unsigned long cpu_khz;  /* CPU clock frequency in kHz. */
unsigned long hpet_address;
DEFINE_SPINLOCK(rtc_lock);
unsigned long pit0_ticks;
static u32 wc_sec, wc_nsec; /* UTC time at last 'time update'. */
static DEFINE_SPINLOCK(wc_lock);

struct time_scale {
    int shift;
    u32 mul_frac;
};

struct cpu_time {
    u64 local_tsc_stamp;
    u64 cstate_tsc_stamp;
    s_time_t stime_local_stamp;
    s_time_t stime_master_stamp;
    struct time_scale tsc_scale;
    u32 cstate_plt_count_stamp;
    struct timer calibration_timer;
};

struct platform_timesource {
    char *name;
    u64 frequency;
    u32 (*read_counter)(void);
    int counter_bits;
};

static DEFINE_PER_CPU(struct cpu_time, cpu_time);

static u8 tsc_invariant=0;  /* TSC is invariant upon C state entry */

/*
 * We simulate a 32-bit platform timer from the 16-bit PIT ch2 counter.
 * Otherwise overflow happens too quickly (~50ms) for us to guarantee that
 * softirq handling will happen in time.
 * 
 * The pit_lock protects the 16- and 32-bit stamp fields as well as the 
 */
static DEFINE_SPINLOCK(pit_lock);
static u16 pit_stamp16;
static u32 pit_stamp32;
static int using_pit;

/*
 * 32-bit division of integer dividend and integer divisor yielding
 * 32-bit fractional quotient.
 */
static inline u32 div_frac(u32 dividend, u32 divisor)
{
    u32 quotient, remainder;
    ASSERT(dividend < divisor);
    asm ( 
        "divl %4"
        : "=a" (quotient), "=d" (remainder)
        : "0" (0), "1" (dividend), "r" (divisor) );
    return quotient;
}

/*
 * 32-bit multiplication of multiplicand and fractional multiplier
 * yielding 32-bit product (radix point at same position as in multiplicand).
 */
static inline u32 mul_frac(u32 multiplicand, u32 multiplier)
{
    u32 product_int, product_frac;
    asm (
        "mul %3"
        : "=a" (product_frac), "=d" (product_int)
        : "0" (multiplicand), "r" (multiplier) );
    return product_int;
}

/*
 * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
 * yielding a 64-bit result.
 */
static inline u64 scale_delta(u64 delta, struct time_scale *scale)
{
    u64 product;
#ifdef CONFIG_X86_32
    u32 tmp1, tmp2;
#endif

    if ( scale->shift < 0 )
        delta >>= -scale->shift;
    else
        delta <<= scale->shift;

#ifdef CONFIG_X86_32
    asm (
        "mul  %5       ; "
        "mov  %4,%%eax ; "
        "mov  %%edx,%4 ; "
        "mul  %5       ; "
        "xor  %5,%5    ; "
        "add  %4,%%eax ; "
        "adc  %5,%%edx ; "
        : "=A" (product), "=r" (tmp1), "=r" (tmp2)
        : "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (scale->mul_frac) );
#else
    asm (
        "mul %%rdx ; shrd $32,%%rdx,%%rax"
        : "=a" (product) : "0" (delta), "d" ((u64)scale->mul_frac) );
#endif

    return product;
}

static void timer_interrupt(int irq, void *dev_id, struct cpu_user_regs *regs)
{
    ASSERT(local_irq_is_enabled());

    /* Only for start-of-day interruopt tests in io_apic.c. */
    (*(volatile unsigned long *)&pit0_ticks)++;

    /* Rough hack to allow accurate timers to sort-of-work with no APIC. */
    if ( !cpu_has_apic )
        raise_softirq(TIMER_SOFTIRQ);

    /* Emulate a 32-bit PIT counter. */
    if ( using_pit )
    {
        u16 count;

        spin_lock_irq(&pit_lock);

        outb(0x80, PIT_MODE);
        count  = inb(PIT_CH2);
        count |= inb(PIT_CH2) << 8;

        pit_stamp32 += (u16)(pit_stamp16 - count);
        pit_stamp16 = count;

        spin_unlock_irq(&pit_lock);
    }
}

static struct irqaction irq0 = { timer_interrupt, "timer", NULL };

/* ------ Calibrate the TSC ------- 
 * Return processor ticks per second / CALIBRATE_FRAC.
 */

#define CLOCK_TICK_RATE 1193180 /* system crystal frequency (Hz) */
#define CALIBRATE_FRAC  20      /* calibrate over 50ms */
#define CALIBRATE_LATCH ((CLOCK_TICK_RATE+(CALIBRATE_FRAC/2))/CALIBRATE_FRAC)

static u64 init_pit_and_calibrate_tsc(void)
{
    u64 start, end;
    unsigned long count;

    /* Set PIT channel 0 to HZ Hz. */
#define LATCH (((CLOCK_TICK_RATE)+(HZ/2))/HZ)
    outb_p(0x34, PIT_MODE);        /* binary, mode 2, LSB/MSB, ch 0 */
    outb_p(LATCH & 0xff, PIT_CH0); /* LSB */
    outb(LATCH >> 8, PIT_CH0);     /* MSB */

    /* Set the Gate high, disable speaker */
    outb((inb(0x61) & ~0x02) | 0x01, 0x61);

    /*
     * Now let's take care of CTC channel 2
     *
     * Set the Gate high, program CTC channel 2 for mode 0, (interrupt on
     * terminal count mode), binary count, load 5 * LATCH count, (LSB and MSB)
     * to begin countdown.
     */
    outb(0xb0, PIT_MODE);           /* binary, mode 0, LSB/MSB, Ch 2 */
    outb(CALIBRATE_LATCH & 0xff, PIT_CH2); /* LSB of count */
    outb(CALIBRATE_LATCH >> 8, PIT_CH2);   /* MSB of count */

    rdtscll(start);
    for ( count = 0; (inb(0x61) & 0x20) == 0; count++ )
        continue;
    rdtscll(end);

    /* Error if the CTC doesn't behave itself. */
    if ( count == 0 )
        return 0;

    return ((end - start) * (u64)CALIBRATE_FRAC);
}

static void set_time_scale(struct time_scale *ts, u64 ticks_per_sec)
{
    u64 tps64 = ticks_per_sec;
    u32 tps32;
    int shift = 0;

    ASSERT(tps64 != 0);

    while ( tps64 > (MILLISECS(1000)*2) )
    {
        tps64 >>= 1;
        shift--;
    }

    tps32 = (u32)tps64;
    while ( tps32 <= (u32)MILLISECS(1000) )
    {
        tps32 <<= 1;
        shift++;
    }

    ts->mul_frac = div_frac(MILLISECS(1000), tps32);
    ts->shift    = shift;
}

static atomic_t tsc_calibrate_gang = ATOMIC_INIT(0);
static unsigned int tsc_calibrate_status = 0;

void calibrate_tsc_bp(void)
{
    while ( atomic_read(&tsc_calibrate_gang) != (num_booting_cpus() - 1) )
        mb();

    outb(CALIBRATE_LATCH & 0xff, PIT_CH2);
    outb(CALIBRATE_LATCH >> 8, PIT_CH2);

    tsc_calibrate_status = 1;
    wmb();

    while ( (inb(0x61) & 0x20) == 0 )
        continue;

    tsc_calibrate_status = 2;
    wmb();

    while ( atomic_read(&tsc_calibrate_gang) != 0 )
        mb();
}

void calibrate_tsc_ap(void)
{
    u64 t1, t2, ticks_per_sec;

    atomic_inc(&tsc_calibrate_gang);

    while ( tsc_calibrate_status < 1 )
        mb();

    rdtscll(t1);

    while ( tsc_calibrate_status < 2 )
        mb();

    rdtscll(t2);

    ticks_per_sec = (t2 - t1) * (u64)CALIBRATE_FRAC;
    set_time_scale(&this_cpu(cpu_time).tsc_scale, ticks_per_sec);

    atomic_dec(&tsc_calibrate_gang);
}

static char *freq_string(u64 freq)
{
    static char s[20];
    unsigned int x, y;
    y = (unsigned int)do_div(freq, 1000000) / 1000;
    x = (unsigned int)freq;
    snprintf(s, sizeof(s), "%u.%03uMHz", x, y);
    return s;
}

/************************************************************
 * PLATFORM TIMER 1: PROGRAMMABLE INTERVAL TIMER (LEGACY PIT)
 */

static u32 read_pit_count(void)
{
    u16 count16;
    u32 count32;
    unsigned long flags;

    spin_lock_irqsave(&pit_lock, flags);

    outb(0x80, PIT_MODE);
    count16  = inb(PIT_CH2);
    count16 |= inb(PIT_CH2) << 8;

    count32 = pit_stamp32 + (u16)(pit_stamp16 - count16);

    spin_unlock_irqrestore(&pit_lock, flags);

    return count32;
}

static void init_pit(struct platform_timesource *pts)
{
    pts->name = "PIT";
    pts->frequency = CLOCK_TICK_RATE;
    pts->read_counter = read_pit_count;
    pts->counter_bits = 32;
    using_pit = 1;
}

/************************************************************
 * PLATFORM TIMER 2: HIGH PRECISION EVENT TIMER (HPET)
 */

static u32 read_hpet_count(void)
{
    return hpet_read32(HPET_COUNTER);
}

static int init_hpet(struct platform_timesource *pts)
{
    u64 hpet_rate;
    u32 hpet_id, hpet_period, cfg;
    int i;

    if ( hpet_address == 0 )
        return 0;

    set_fixmap_nocache(FIX_HPET_BASE, hpet_address);

    hpet_id = hpet_read32(HPET_ID);
    if ( hpet_id == 0 )
    {
        printk("BAD HPET vendor id.\n");
        return 0;
    }

    /* Check for sane period (100ps <= period <= 100ns). */
    hpet_period = hpet_read32(HPET_PERIOD);
    if ( (hpet_period > 100000000) || (hpet_period < 100000) )
    {
        printk("BAD HPET period %u.\n", hpet_period);
        return 0;
    }

    cfg = hpet_read32(HPET_CFG);
    cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
    hpet_write32(cfg, HPET_CFG);

    for ( i = 0; i <= ((hpet_id >> 8) & 31); i++ )
    {
        cfg = hpet_read32(HPET_T0_CFG + i*0x20);
        cfg &= ~HPET_TN_ENABLE;
        hpet_write32(cfg & ~HPET_TN_ENABLE, HPET_T0_CFG);
    }

    cfg = hpet_read32(HPET_CFG);
    cfg |= HPET_CFG_ENABLE;
    hpet_write32(cfg, HPET_CFG);

    hpet_rate = 1000000000000000ULL; /* 10^15 */
    (void)do_div(hpet_rate, hpet_period);

    pts->name = "HPET";
    pts->frequency = hpet_rate;
    pts->read_counter = read_hpet_count;
    pts->counter_bits = 32;

    return 1;
}

/************************************************************
 * PLATFORM TIMER 3: IBM 'CYCLONE' TIMER
 */

int use_cyclone;

/*
 * Although the counter is read via a 64-bit register, I believe it is actually
 * a 40-bit counter. Since this will wrap, I read only the low 32 bits and
 * periodically fold into a 64-bit software counter, just as for PIT and HPET.
 */
#define CYCLONE_CBAR_ADDR   0xFEB00CD0
#define CYCLONE_PMCC_OFFSET 0x51A0
#define CYCLONE_MPMC_OFFSET 0x51D0
#define CYCLONE_MPCS_OFFSET 0x51A8
#define CYCLONE_TIMER_FREQ  100000000

/* Cyclone MPMC0 register. */
static volatile u32 *cyclone_timer;

static u32 read_cyclone_count(void)
{
    return *cyclone_timer;
}

static volatile u32 *map_cyclone_reg(unsigned long regaddr)
{
    unsigned long pageaddr = regaddr &  PAGE_MASK;
    unsigned long offset   = regaddr & ~PAGE_MASK;
    set_fixmap_nocache(FIX_CYCLONE_TIMER, pageaddr);
    return (volatile u32 *)(fix_to_virt(FIX_CYCLONE_TIMER) + offset);
}

static int init_cyclone(struct platform_timesource *pts)
{
    u32 base;
    
    if ( !use_cyclone )
        return 0;

    /* Find base address. */
    base = *(map_cyclone_reg(CYCLONE_CBAR_ADDR));
    if ( base == 0 )
    {
        printk(KERN_ERR "Cyclone: Could not find valid CBAR value.\n");
        return 0;
    }
 
    /* Enable timer and map the counter register. */
    *(map_cyclone_reg(base + CYCLONE_PMCC_OFFSET)) = 1;
    *(map_cyclone_reg(base + CYCLONE_MPCS_OFFSET)) = 1;
    cyclone_timer = map_cyclone_reg(base + CYCLONE_MPMC_OFFSET);

    pts->name = "IBM Cyclone";
    pts->frequency = CYCLONE_TIMER_FREQ;
    pts->read_counter = read_cyclone_count;
    pts->counter_bits = 32;

    return 1;
}

/************************************************************
 * PLATFORM TIMER 4: ACPI PM TIMER
 */

u32 pmtmr_ioport;

/* ACPI PM timer ticks at 3.579545 MHz. */
#define ACPI_PM_FREQUENCY 3579545

static u32 read_pmtimer_count(void)
{
    return inl(pmtmr_ioport);
}

static int init_pmtimer(struct platform_timesource *pts)
{
    if ( pmtmr_ioport == 0 )
        return 0;

    pts->name = "ACPI PM Timer";
    pts->frequency = ACPI_PM_FREQUENCY;
    pts->read_counter = read_pmtimer_count;
    pts->counter_bits = 24;

    return 1;
}

/************************************************************
 * GENERIC PLATFORM TIMER INFRASTRUCTURE
 */

static struct platform_timesource plt_src; /* details of chosen timesource  */
static u32 plt_mask;             /* hardware-width mask                     */
static u64 plt_overflow_period;  /* ns between calls to plt_overflow()      */
static struct time_scale plt_scale; /* scale: platform counter -> nanosecs  */

/* Protected by platform_timer_lock. */
static DEFINE_SPINLOCK(platform_timer_lock);
static s_time_t stime_platform_stamp; /* System time at below platform time */
static u64 platform_timer_stamp;      /* Platform time at above system time */
static u64 plt_stamp64;          /* 64-bit platform counter stamp           */
static u32 plt_stamp;            /* hardware-width platform counter stamp   */
static struct timer plt_overflow_timer;

static void plt_overflow(void *unused)
{
    u32 count;

    spin_lock(&platform_timer_lock);
    count = plt_src.read_counter();
    plt_stamp64 += (count - plt_stamp) & plt_mask;
    plt_stamp = count;
    spin_unlock(&platform_timer_lock);

    set_timer(&plt_overflow_timer, NOW() + plt_overflow_period);
}

static s_time_t __read_platform_stime(u64 platform_time)
{
    u64 diff = platform_time - platform_timer_stamp;
    ASSERT(spin_is_locked(&platform_timer_lock));
    return (stime_platform_stamp + scale_delta(diff, &plt_scale));
}

static s_time_t read_platform_stime(void)
{
    u64 count;
    s_time_t stime;

    spin_lock(&platform_timer_lock);
    count = plt_stamp64 + ((plt_src.read_counter() - plt_stamp) & plt_mask);
    stime = __read_platform_stime(count);
    spin_unlock(&platform_timer_lock);

    return stime;
}

static void platform_time_calibration(void)
{
    u64 count;
    s_time_t stamp;

    spin_lock(&platform_timer_lock);
    count = plt_stamp64 + ((plt_src.read_counter() - plt_stamp) & plt_mask);
    stamp = __read_platform_stime(count);
    stime_platform_stamp = stamp;
    platform_timer_stamp = count;
    spin_unlock(&platform_timer_lock);
}

static void resume_platform_timer(void)
{
    /* No change in platform_stime across suspend/resume. */
    platform_timer_stamp = plt_stamp64;
    plt_stamp = plt_src.read_counter();
}

static void init_platform_timer(void)
{
    struct platform_timesource *pts = &plt_src;
    int rc = -1;

    if ( opt_clocksource[0] != '\0' )
    {
        if ( !strcmp(opt_clocksource, "pit") )
            rc = (init_pit(pts), 1);
        else if ( !strcmp(opt_clocksource, "hpet") )
            rc = init_hpet(pts);
        else if ( !strcmp(opt_clocksource, "cyclone") )
            rc = init_cyclone(pts);
        else if ( !strcmp(opt_clocksource, "acpi") )
            rc = init_pmtimer(pts);

        if ( rc <= 0 )
            printk("WARNING: %s clocksource '%s'.\n",
                   (rc == 0) ? "Could not initialise" : "Unrecognised",
                   opt_clocksource);
    }

    if ( (rc <= 0) &&
         !init_cyclone(pts) &&
         !init_hpet(pts) &&
         !init_pmtimer(pts) )
        init_pit(pts);

    plt_mask = (u32)~0u >> (32 - pts->counter_bits);

    set_time_scale(&plt_scale, pts->frequency);

    plt_overflow_period = scale_delta(
        1ull << (pts->counter_bits-1), &plt_scale);
    init_timer(&plt_overflow_timer, plt_overflow, NULL, 0);
    plt_overflow(NULL);

    platform_timer_stamp = plt_stamp64;

    printk("Platform timer is %s %s\n",
           freq_string(pts->frequency), pts->name);
}

void cstate_save_tsc(void)
{
    struct cpu_time *t = &this_cpu(cpu_time);

    if (!tsc_invariant){
        t->cstate_plt_count_stamp = plt_src.read_counter();
        rdtscll(t->cstate_tsc_stamp);
    }
}

void cstate_restore_tsc(void)
{
    struct cpu_time *t;
    u32    plt_count_delta;
    u64    tsc_delta;

    if (!tsc_invariant){
        t = &this_cpu(cpu_time);

        /* if platform counter overflow happens, interrupt will bring CPU from
           C state to working state, so the platform counter won't wrap the
           cstate_plt_count_stamp, and the 32 bit unsigned platform counter
           is enough for delta calculation
         */
        plt_count_delta = 
            (plt_src.read_counter() - t->cstate_plt_count_stamp) & plt_mask;
        tsc_delta = scale_delta(plt_count_delta, &plt_scale)*cpu_khz/1000000UL;
        wrmsrl(MSR_IA32_TSC,  t->cstate_tsc_stamp + tsc_delta);
    }
}

/***************************************************************************
 * CMOS Timer functions
 ***************************************************************************/

/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
 *
 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
 * machines were long is 32-bit! (However, as time_t is signed, we
 * will already get problems at other places on 2038-01-19 03:14:08)
 */
unsigned long
mktime (unsigned int year, unsigned int mon,
        unsigned int day, unsigned int hour,
        unsigned int min, unsigned int sec)
{
    /* 1..12 -> 11,12,1..10: put Feb last since it has a leap day. */
    if ( 0 >= (int) (mon -= 2) )
    {
        mon += 12;
        year -= 1;
    }

    return ((((unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day)+
              year*365 - 719499
        )*24 + hour /* now have hours */
        )*60 + min  /* now have minutes */
        )*60 + sec; /* finally seconds */
}

static unsigned long __get_cmos_time(void)
{
    unsigned int year, mon, day, hour, min, sec;

    sec  = CMOS_READ(RTC_SECONDS);
    min  = CMOS_READ(RTC_MINUTES);
    hour = CMOS_READ(RTC_HOURS);
    day  = CMOS_READ(RTC_DAY_OF_MONTH);
    mon  = CMOS_READ(RTC_MONTH);
    year = CMOS_READ(RTC_YEAR);
    
    if ( !(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD )
    {
        BCD_TO_BIN(sec);
        BCD_TO_BIN(min);
        BCD_TO_BIN(hour);
        BCD_TO_BIN(day);
        BCD_TO_BIN(mon);
        BCD_TO_BIN(year);
    }

    if ( (year += 1900) < 1970 )
        year += 100;

    return mktime(year, mon, day, hour, min, sec);
}

static unsigned long get_cmos_time(void)
{
    unsigned long res, flags;
    int i;

    spin_lock_irqsave(&rtc_lock, flags);

    /* read RTC exactly on falling edge of update flag */
    for ( i = 0 ; i < 1000000 ; i++ ) /* may take up to 1 second... */
        if ( (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) )
            break;
    for ( i = 0 ; i < 1000000 ; i++ ) /* must try at least 2.228 ms */
        if ( !(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) )
            break;

    res = __get_cmos_time();

    spin_unlock_irqrestore(&rtc_lock, flags);
    return res;
}

/***************************************************************************
 * System Time
 ***************************************************************************/

s_time_t get_s_time(void)
{
    struct cpu_time *t = &this_cpu(cpu_time);
    u64 tsc, delta;
    s_time_t now;

    rdtscll(tsc);
    delta = tsc - t->local_tsc_stamp;
    now = t->stime_local_stamp + scale_delta(delta, &t->tsc_scale);

    return now;
}

static inline void version_update_begin(u32 *version)
{
    /* Explicitly OR with 1 just in case version number gets out of sync. */
    *version = (*version + 1) | 1;
    wmb();
}

static inline void version_update_end(u32 *version)
{
    wmb();
    (*version)++;
}

void update_vcpu_system_time(struct vcpu *v)
{
    struct cpu_time       *t;
    struct vcpu_time_info *u;

    if ( v->vcpu_info == NULL )
        return;

    t = &this_cpu(cpu_time);
    u = &vcpu_info(v, time);

    if ( u->tsc_timestamp == t->local_tsc_stamp )
        return;

    version_update_begin(&u->version);

    u->tsc_timestamp     = t->local_tsc_stamp;
    u->system_time       = t->stime_local_stamp;
    u->tsc_to_system_mul = t->tsc_scale.mul_frac;
    u->tsc_shift         = (s8)t->tsc_scale.shift;

    version_update_end(&u->version);
}

void update_domain_wallclock_time(struct domain *d)
{
    spin_lock(&wc_lock);
    version_update_begin(&shared_info(d, wc_version));
    shared_info(d, wc_sec)  = wc_sec + d->time_offset_seconds;
    shared_info(d, wc_nsec) = wc_nsec;
    version_update_end(&shared_info(d, wc_version));
    spin_unlock(&wc_lock);
}

int cpu_frequency_change(u64 freq)
{
    struct cpu_time *t = &this_cpu(cpu_time);
    u64 curr_tsc;

    /* Sanity check: CPU frequency allegedly dropping below 1MHz? */
    if ( freq < 1000000u )
    {
        gdprintk(XENLOG_WARNING, "Rejecting CPU frequency change "
                 "to %"PRIu64" Hz.\n", freq);
        return -EINVAL;
    }

    local_irq_disable();
    /* Platform time /first/, as we may be delayed by platform_timer_lock. */
    t->stime_master_stamp = read_platform_stime();
    /* TSC-extrapolated time may be bogus after frequency change. */
    /*t->stime_local_stamp = get_s_time();*/
    t->stime_local_stamp = t->stime_master_stamp;
    rdtscll(curr_tsc);
    t->local_tsc_stamp = curr_tsc;
    set_time_scale(&t->tsc_scale, freq);
    local_irq_enable();

    /* A full epoch should pass before we check for deviation. */
    set_timer(&t->calibration_timer, NOW() + EPOCH);
    if ( smp_processor_id() == 0 )
        platform_time_calibration();

    return 0;
}

/* Set clock to <secs,usecs> after 00:00:00 UTC, 1 January, 1970. */
void do_settime(unsigned long secs, unsigned long nsecs, u64 system_time_base)
{
    u64 x;
    u32 y, _wc_sec, _wc_nsec;
    struct domain *d;

    x = (secs * 1000000000ULL) + (u64)nsecs - system_time_base;
    y = do_div(x, 1000000000);

    spin_lock(&wc_lock);
    wc_sec  = _wc_sec  = (u32)x;
    wc_nsec = _wc_nsec = (u32)y;
    spin_unlock(&wc_lock);

    rcu_read_lock(&domlist_read_lock);
    for_each_domain ( d )
        update_domain_wallclock_time(d);
    rcu_read_unlock(&domlist_read_lock);
}

static void local_time_calibration(void *unused)
{
    struct cpu_time *t = &this_cpu(cpu_time);

    /*
     * System timestamps, extrapolated from local and master oscillators,
     * taken during this calibration and the previous calibration.
     */
    s_time_t prev_local_stime, curr_local_stime;
    s_time_t prev_master_stime, curr_master_stime;

    /* TSC timestamps taken during this calibration and prev calibration. */
    u64 prev_tsc, curr_tsc;

    /*
     * System time and TSC ticks elapsed during the previous calibration
     * 'epoch'. These values are down-shifted to fit in 32 bits.
     */
    u64 stime_elapsed64, tsc_elapsed64;
    u32 stime_elapsed32, tsc_elapsed32;

    /* The accumulated error in the local estimate. */
    u64 local_stime_err;

    /* Error correction to slow down a fast local clock. */
    u32 error_factor = 0;

    /* Calculated TSC shift to ensure 32-bit scale multiplier. */
    int tsc_shift = 0;

    /* The overall calibration scale multiplier. */
    u32 calibration_mul_frac;

    prev_tsc          = t->local_tsc_stamp;
    prev_local_stime  = t->stime_local_stamp;
    prev_master_stime = t->stime_master_stamp;

    /*
     * Disable IRQs to get 'instantaneous' current timestamps. We read platform
     * time first, as we may be delayed when acquiring platform_timer_lock.
     */
    local_irq_disable();
    curr_master_stime = read_platform_stime();
    curr_local_stime  = get_s_time();
    rdtscll(curr_tsc);
    local_irq_enable();

#if 0
    printk("PRE%d: tsc=%"PRIu64" stime=%"PRIu64" master=%"PRIu64"\n",
           smp_processor_id(), prev_tsc, prev_local_stime, prev_master_stime);
    printk("CUR%d: tsc=%"PRIu64" stime=%"PRIu64" master=%"PRIu64
           " -> %"PRId64"\n",
           smp_processor_id(), curr_tsc, curr_local_stime, curr_master_stime,
           curr_master_stime - curr_local_stime);
#endif

    /* Local time warps forward if it lags behind master time. */
    if ( curr_local_stime < curr_master_stime )
        curr_local_stime = curr_master_stime;

    stime_elapsed64 = curr_master_stime - prev_master_stime;
    tsc_elapsed64   = curr_tsc - prev_tsc;

    /*
     * Weirdness can happen if we lose sync with the platform timer.
     * We could be smarter here: resync platform timer with local timer?
     */
    if ( ((s64)stime_elapsed64 < (EPOCH / 2)) )
        goto out;

    /*
     * Calculate error-correction factor. This only slows down a fast local
     * clock (slow clocks are warped forwards). The scale factor is clamped
     * to >= 0.5.
     */
    if ( curr_local_stime != curr_master_stime )
    {
        local_stime_err = curr_local_stime - curr_master_stime;
        if ( local_stime_err > EPOCH )
            local_stime_err = EPOCH;
        error_factor = div_frac(EPOCH, EPOCH + (u32)local_stime_err);
    }

    /*
     * We require 0 < stime_elapsed < 2^31.
     * This allows us to binary shift a 32-bit tsc_elapsed such that:
     * stime_elapsed < tsc_elapsed <= 2*stime_elapsed
     */
    while ( ((u32)stime_elapsed64 != stime_elapsed64) ||
            ((s32)stime_elapsed64 < 0) )
    {
        stime_elapsed64 >>= 1;
        tsc_elapsed64   >>= 1;
    }

    /* stime_master_diff now fits in a 32-bit word. */
    stime_elapsed32 = (u32)stime_elapsed64;

    /* tsc_elapsed <= 2*stime_elapsed */
    while ( tsc_elapsed64 > (stime_elapsed32 * 2) )
    {
        tsc_elapsed64 >>= 1;
        tsc_shift--;
    }

    /* Local difference must now fit in 32 bits. */
    ASSERT((u32)tsc_elapsed64 == tsc_elapsed64);
    tsc_elapsed32 = (u32)tsc_elapsed64;

    /* tsc_elapsed > stime_elapsed */
    ASSERT(tsc_elapsed32 != 0);
    while ( tsc_elapsed32 <= stime_elapsed32 )
    {
        tsc_elapsed32 <<= 1;
        tsc_shift++;
    }

    calibration_mul_frac = div_frac(stime_elapsed32, tsc_elapsed32);
    if ( error_factor != 0 )
        calibration_mul_frac = mul_frac(calibration_mul_frac, error_factor);

#if 0
    printk("---%d: %08x %08x %d\n", smp_processor_id(),
           error_factor, calibration_mul_frac, tsc_shift);
#endif

    /* Record new timestamp information, atomically w.r.t. interrupts. */
    local_irq_disable();
    t->tsc_scale.mul_frac = calibration_mul_frac;
    t->tsc_scale.shift    = tsc_shift;
    t->local_tsc_stamp    = curr_tsc;
    t->stime_local_stamp  = curr_local_stime;
    t->stime_master_stamp = curr_master_stime;
    local_irq_enable();

    update_vcpu_system_time(current);

 out:
    set_timer(&t->calibration_timer, NOW() + EPOCH);

    if ( smp_processor_id() == 0 )
        platform_time_calibration();
}

void init_percpu_time(void)
{
    struct cpu_time *t = &this_cpu(cpu_time);
    unsigned long flags;
    s_time_t now;

    local_irq_save(flags);
    rdtscll(t->local_tsc_stamp);
    now = !plt_src.read_counter ? 0 : read_platform_stime();
    local_irq_restore(flags);

    t->stime_master_stamp = now;
    t->stime_local_stamp  = now;

    init_timer(&t->calibration_timer, local_time_calibration,
               NULL, smp_processor_id());
    set_timer(&t->calibration_timer, NOW() + EPOCH);
}

/* Late init function (after all CPUs are booted). */
int __init init_xen_time(void)
{
    wc_sec = get_cmos_time();

    local_irq_disable();

    init_percpu_time();

    stime_platform_stamp = 0;
    init_platform_timer();

    /* check if TSC is invariant during deep C state
       this is a new feature introduced by Nehalem*/
    if ( cpuid_edx(0x80000007) & (1U<<8) )
        tsc_invariant = 1;

    local_irq_enable();

    return 0;
}


/* Early init function. */
void __init early_time_init(void)
{
    u64 tmp = init_pit_and_calibrate_tsc();

    set_time_scale(&this_cpu(cpu_time).tsc_scale, tmp);

    do_div(tmp, 1000);
    cpu_khz = (unsigned long)tmp;
    printk("Detected %lu.%03lu MHz processor.\n", 
           cpu_khz / 1000, cpu_khz % 1000);

    setup_irq(0, &irq0);
}

static int __init disable_pit_irq(void)
{
    if ( !using_pit && cpu_has_apic )
    {
        /* Disable PIT CH0 timer interrupt. */
        outb_p(0x30, PIT_MODE);
        outb_p(0, PIT_CH0);
        outb_p(0, PIT_CH0);
    }
    return 0;
}
__initcall(disable_pit_irq);

void send_timer_event(struct vcpu *v)
{
    send_guest_vcpu_virq(v, VIRQ_TIMER);
}

/* Return secs after 00:00:00 localtime, 1 January, 1970. */
unsigned long get_localtime(struct domain *d)
{
    return wc_sec + (wc_nsec + NOW()) / 1000000000ULL 
        + d->time_offset_seconds;
}

/* "cmos_utc_offset" is the difference between UTC time and CMOS time. */
static long cmos_utc_offset; /* in seconds */

int time_suspend(void)
{
    if ( smp_processor_id() == 0 )
    {
        cmos_utc_offset = -get_cmos_time();
        cmos_utc_offset += (wc_sec + (wc_nsec + NOW()) / 1000000000ULL);
    }

    /* Better to cancel calibration timer for accuracy. */
    kill_timer(&this_cpu(cpu_time).calibration_timer);

    return 0;
}

int time_resume(void)
{
    u64 tmp = init_pit_and_calibrate_tsc();

    disable_pit_irq();

    set_time_scale(&this_cpu(cpu_time).tsc_scale, tmp);