.. hazmat:: RSA === .. module:: cryptography.hazmat.primitives.asymmetric.rsa `RSA`_ is a `public-key`_ algorithm for encrypting and signing messages. Generation ~~~~~~~~~~ Unlike symmetric cryptography, where the key is typically just a random series of bytes, RSA keys have a complex internal structure with `specific mathematical properties`_. .. function:: generate_private_key(public_exponent, key_size, backend) .. versionadded:: 0.5 Generates a new RSA private key using the provided ``backend``. ``key_size`` describes how many bits long the key should be, larger keys provide more security, currently ``1024`` and below are considered breakable, and ``2048`` or ``4096`` are reasonable default key sizes for new keys. The ``public_exponent`` indicates what one mathematical property of the key generation will be, ``65537`` should almost always be used. .. doctest:: >>> from cryptography.hazmat.backends import default_backend >>> from cryptography.hazmat.primitives.asymmetric import rsa >>> private_key = rsa.generate_private_key( ... public_exponent=65537, ... key_size=2048, ... backend=default_backend() ... ) :param int public_exponent: The public exponent of the new key. Usually one of the small Fermat primes 3, 5, 17, 257, 65537. If in doubt you should `use 65537`_. :param int key_size: The length of the modulus in bits. For keys generated in 2015 it is strongly recommended to be `at least 2048`_ (See page 41). It must not be less than 512. Some backends may have additional limitations. :param backend: A backend which provides :class:`~cryptography.hazmat.backends.interfaces.RSABackend`. :return: An instance of :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey`. :raises cryptography.exceptions.UnsupportedAlgorithm: This is raised if the provided ``backend`` does not implement :class:`~cryptography.hazmat.backends.interfaces.RSABackend` Key loading ~~~~~~~~~~~ If you already have an on-disk key in the PEM format (which are recognizable by the distinctive ``-----BEGIN {format}-----`` and ``-----END {format}-----`` markers), you can load it: .. code-block:: pycon >>> from cryptography.hazmat.primitives import serialization >>> with open("path/to/key.pem", "rb") as key_file: ... private_key = serialization.load_pem_private_key( ... key_file.read(), ... password=None, ... backend=default_backend() ... ) Serialized keys may optionally be encrypted on disk using a password. In this example we loaded an unencrypted key, and therefore we did not provide a password. If the key is encrypted we can pass a ``bytes`` object as the ``password`` argument. There is also support for :func:`loading public keys in the SSH format `. Key serialization ~~~~~~~~~~~~~~~~~ If you have a private key that you've loaded or generated which implements the :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKeyWithSerialization` interface you can use :meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKeyWithSerialization.private_bytes` to serialize the key. .. doctest:: >>> from cryptography.hazmat.primitives import serialization >>> pem = private_key.private_bytes( ... encoding=serialization.Encoding.PEM, ... format=serialization.PrivateFormat.PKCS8, ... encryption_algorithm=serialization.BestAvailableEncryption(b'mypassword') ... ) >>> pem.splitlines()[0] '-----BEGIN ENCRYPTED PRIVATE KEY-----' It is also possible to serialize without encryption using :class:`~cryptography.hazmat.primitives.serialization.NoEncryption`. .. doctest:: >>> pem = private_key.private_bytes( ... encoding=serialization.Encoding.PEM, ... format=serialization.PrivateFormat.TraditionalOpenSSL, ... encryption_algorithm=serialization.NoEncryption() ... ) >>> pem.splitlines()[0] '-----BEGIN RSA PRIVATE KEY-----' Similarly, if your public key implements :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKeyWithSerialization` interface you can use :meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKeyWithSerialization.public_bytes` to serialize the key. .. doctest:: >>> from cryptography.hazmat.primitives import serialization >>> public_key = private_key.public_key() >>> pem = public_key.public_bytes( ... encoding=serialization.Encoding.PEM, ... format=serialization.PublicFormat.SubjectPublicKeyInfo ... ) >>> pem.splitlines()[0] '-----BEGIN PUBLIC KEY-----' Signing ~~~~~~~ A private key can be used to sign a message. This allows anyone with the public key to verify that the message was created by someone who possesses the corresponding private key. RSA signatures require a specific hash function, and padding to be used. Here is an example of signing ``message`` using RSA, with a secure hash function and padding: .. doctest:: >>> from cryptography.hazmat.primitives import hashes >>> from cryptography.hazmat.primitives.asymmetric import padding >>> signer = private_key.signer( ... padding.PSS( ... mgf=padding.MGF1(hashes.SHA256()), ... salt_length=padding.PSS.MAX_LENGTH ... ), ... hashes.SHA256() ... ) >>> message = b"A message I want to sign" >>> signer.update(message) >>> signature = signer.finalize() Valid paddings for signatures are :class:`~cryptography.hazmat.primitives.asymmetric.padding.PSS` and :class:`~cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15`. ``PSS`` is the recommended choice for any new protocols or applications, ``PKCS1v15`` should only be used to support legacy protocols. Verification ~~~~~~~~~~~~ The previous section describes what to do if you have a private key and want to sign something. If you have a public key, a message, and a signature, you can check that the public key genuinely was used to sign that specific message. You also need to know which signing algorithm was used: .. doctest:: >>> public_key = private_key.public_key() >>> verifier = public_key.verifier( ... signature, ... padding.PSS( ... mgf=padding.MGF1(hashes.SHA256()), ... salt_length=padding.PSS.MAX_LENGTH ... ), ... hashes.SHA256() ... ) >>> verifier.update(message) >>> verifier.verify() If the signature does not match, ``verify()`` will raise an :class:`~cryptography.exceptions.InvalidSignature` exception. Encryption ~~~~~~~~~~ RSA encryption is interesting because encryption is performed using the **public** key, meaning anyone can encrypt data. The data is then decrypted using the **private** key. Like signatures, RSA supports encryption with several different padding options. Here's an example using a secure padding and hash function: .. doctest:: >>> message = b"encrypted data" >>> ciphertext = public_key.encrypt( ... message, ... padding.OAEP( ... mgf=padding.MGF1(algorithm=hashes.SHA1()), ... algorithm=hashes.SHA1(), ... label=None ... ) ... ) Valid paddings for encryption are :class:`~cryptography.hazmat.primitives.asymmetric.padding.OAEP` and :class:`~cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15`. ``OAEP`` is the recommended choice for any new protocols or applications, ``PKCS1v15`` should only be used to support legacy protocols. Decryption ~~~~~~~~~~ Once you have an encrypted message, it can be decrypted using the private key: .. doctest:: >>> plaintext = private_key.decrypt( ... ciphertext, ... padding.OAEP( ... mgf=padding.MGF1(algorithm=hashes.SHA1()), ... algorithm=hashes.SHA1(), ... label=None ... ) ... ) >>> plaintext == message True Padding ~~~~~~~ .. module:: cryptography.hazmat.primitives.asymmetric.padding .. class:: AsymmetricPadding .. versionadded:: 0.2 .. attribute:: name .. class:: PSS(mgf, salt_length) .. versionadded:: 0.3 .. versionchanged:: 0.4 Added ``salt_length`` parameter. PSS (Probabilistic Signature Scheme) is a signature scheme defined in :rfc:`3447`. It is more complex than PKCS1 but possesses a `security proof`_. This is the `recommended padding algorithm`_ for RSA signatures. It cannot be used with RSA encryption. :param mgf: A mask generation function object. At this time the only supported MGF is :class:`MGF1`. :param int salt_length: The length of the salt. It is recommended that this be set to ``PSS.MAX_LENGTH``. .. attribute:: MAX_LENGTH Pass this attribute to ``salt_length`` to get the maximum salt length available. .. class:: OAEP(mgf, label) .. versionadded:: 0.4 OAEP (Optimal Asymmetric Encryption Padding) is a padding scheme defined in :rfc:`3447`. It provides probabilistic encryption and is `proven secure`_ against several attack types. This is the `recommended padding algorithm`_ for RSA encryption. It cannot be used with RSA signing. :param mgf: A mask generation function object. At this time the only supported MGF is :class:`MGF1`. :param bytes label: A label to apply. This is a rarely used field and should typically be set to ``None`` or ``b""``, which are equivalent. .. class:: PKCS1v15() .. versionadded:: 0.3 PKCS1 v1.5 (also known as simply PKCS1) is a simple padding scheme developed for use with RSA keys. It is defined in :rfc:`3447`. This padding can be used for signing and encryption. It is not recommended that ``PKCS1v15`` be used for new applications, :class:`OAEP` should be preferred for encryption and :class:`PSS` should be preferred for signatures. Mask generation functions ------------------------- .. class:: MGF1(algorithm) .. versionadded:: 0.3 .. versionchanged:: 0.6 Removed the deprecated ``salt_length`` parameter. MGF1 (Mask Generation Function 1) is used as the mask generation function in :class:`PSS` padding. It takes a hash algorithm and a salt length. :param algorithm: An instance of a :class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm` provider. Numbers ~~~~~~~ .. currentmodule:: cryptography.hazmat.primitives.asymmetric.rsa These classes hold the constituent components of an RSA key. They are useful only when more traditional :doc:`/hazmat/primitives/asymmetric/serialization` is unavailable. .. class:: RSAPublicNumbers(e, n) .. versionadded:: 0.5 The collection of integers that make up an RSA public key. .. attribute:: n :type: int The public modulus. .. attribute:: e :type: int The public exponent. .. method:: public_key(backend) :param backend: A :class:`~cryptography.hazmat.backends.interfaces.RSABackend` provider. :returns: A new instance of a :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey` provider. .. class:: RSAPrivateNumbers(p, q, d, dmp1, dmq1, iqmp, public_numbers) .. versionadded:: 0.5 The collection of integers that make up an RSA private key. .. warning:: With the exception of the integers contained in the :class:`RSAPublicNumbers` all attributes of this class must be kept secret. Revealing them will compromise the security of any cryptographic operations performed with a key loaded from them. .. attribute:: public_numbers :type: :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers` The :class:`RSAPublicNumbers` which makes up the RSA public key associated with this RSA private key. .. attribute:: p :type: int ``p``, one of the two primes composing ``n``. .. attribute:: q :type: int ``q``, one of the two primes composing ``n``. .. attribute:: d :type: int The private exponent. .. attribute:: dmp1 :type: int A `Chinese remainder theorem`_ coefficient used to speed up RSA operations. Calculated as: d mod (p-1) .. attribute:: dmq1 :type: int A `Chinese remainder theorem`_ coefficient used to speed up RSA operations. Calculated as: d mod (q-1) .. attribute:: iqmp :type: int A `Chinese remainder theorem`_ coefficient used to speed up RSA operations. Calculated as: q\ :sup:`-1` mod p .. method:: private_key(backend) :param backend: A new instance of a :class:`~cryptography.hazmat.backends.interfaces.RSABackend` provider. :returns: A :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey` provider. Handling partial RSA private keys ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If you are trying to load RSA private keys yourself you may find that not all parameters required by ``RSAPrivateNumbers`` are available. In particular the `Chinese Remainder Theorem`_ (CRT) values ``dmp1``, ``dmq1``, ``iqmp`` may be missing or present in a different form. For example `OpenPGP`_ does not include the ``iqmp``, ``dmp1`` or ``dmq1`` parameters. The following functions are provided for users who want to work with keys like this without having to do the math themselves. .. function:: rsa_crt_iqmp(p, q) .. versionadded:: 0.4 Computes the ``iqmp`` (also known as ``qInv``) parameter from the RSA primes ``p`` and ``q``. .. function:: rsa_crt_dmp1(private_exponent, p) .. versionadded:: 0.4 Computes the ``dmp1`` parameter from the RSA private exponent and prime ``p``. .. function:: rsa_crt_dmq1(private_exponent, q) .. versionadded:: 0.4 Computes the ``dmq1`` parameter from the RSA private exponent and prime ``q``. .. function:: rsa_recover_prime_factors(n, e, d) .. versionadded:: 0.8 Computes the prime factors ``(p, q)`` given the modulus, public exponent, and private exponent. .. note:: When recovering prime factors this algorithm will always return ``p`` and ``q`` such that ``p < q``. :return: A tuple ``(p, q)`` Key interfaces ~~~~~~~~~~~~~~ .. class:: RSAPrivateKey .. versionadded:: 0.2 An `RSA`_ private key. .. method:: signer(padding, algorithm) .. versionadded:: 0.3 Sign data which can be verified later by others using the public key. :param padding: An instance of a :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding` provider. :param algorithm: An instance of a :class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm` provider. :returns: :class:`~cryptography.hazmat.primitives.asymmetric.AsymmetricSignatureContext` .. method:: decrypt(ciphertext, padding) .. versionadded:: 0.4 Decrypt data that was encrypted with the public key. :param bytes ciphertext: The ciphertext to decrypt. :param padding: An instance of an :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding` provider. :return bytes: Decrypted data. .. method:: public_key() :return: :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey` An RSA public key object corresponding to the values of the private key. .. attribute:: key_size :type: int The bit length of the modulus. .. class:: RSAPrivateKeyWithSerialization .. versionadded:: 0.8 Extends :class:`RSAPrivateKey`. .. method:: private_numbers() Create a :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers` object. :returns: An :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers` instance. .. method:: private_bytes(encoding, format, encryption_algorithm) Allows serialization of the key to bytes. Encoding ( :attr:`~cryptography.hazmat.primitives.serialization.Encoding.PEM` or :attr:`~cryptography.hazmat.primitives.serialization.Encoding.DER`), format ( :attr:`~cryptography.hazmat.primitives.serialization.PrivateFormat.TraditionalOpenSSL` or :attr:`~cryptography.hazmat.primitives.serialization.PrivateFormat.PKCS8`) and encryption algorithm (such as :class:`~cryptography.hazmat.primitives.serialization.BestAvailableEncryption` or :class:`~cryptography.hazmat.primitives.serialization.NoEncryption`) are chosen to define the exact serialization. :param encoding: A value from the :class:`~cryptography.hazmat.primitives.serialization.Encoding` enum. :param format: A value from the :class:`~cryptography.hazmat.primitives.serialization.PrivateFormat` enum. :param encryption_algorithm: An instance of an object conforming to the :class:`~cryptography.hazmat.primitives.serialization.KeySerializationEncryption` interface. :return bytes: Serialized key. .. class:: RSAPublicKey .. versionadded:: 0.2 An `RSA`_ public key. .. method:: verifier(signature, padding, algorithm) .. versionadded:: 0.3 Verify data was signed by the private key associated with this public key. :param bytes signature: The signature to verify. :param padding: An instance of a :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding` provider. :param algorithm: An instance of a :class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm` provider. :returns: :class:`~cryptography.hazmat.primitives.asymmetric.AsymmetricVerificationContext` .. method:: encrypt(plaintext, padding) .. versionadded:: 0.4 Encrypt data with the public key. :param bytes plaintext: The plaintext to encrypt. :param padding: An instance of a :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding` provider. :return bytes: Encrypted data. .. attribute:: key_size :type: int The bit length of the modulus. .. method:: public_numbers() Create a :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers` object. :returns: An :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers` instance. .. method:: public_bytes(encoding, format) Allows serialization of the key to bytes. Encoding ( :attr:`~cryptography.hazmat.primitives.serialization.Encoding.PEM` or :attr:`~cryptography.hazmat.primitives.serialization.Encoding.DER`) and format ( :attr:`~cryptography.hazmat.primitives.serialization.PublicFormat.SubjectPublicKeyInfo` or :attr:`~cryptography.hazmat.primitives.serialization.PublicFormat.PKCS1`) are chosen to define the exact serialization. :param encoding: A value from the :class:`~cryptography.hazmat.primitives.serialization.Encoding` enum. :param format: A value from the :class:`~cryptography.hazmat.primitives.serialization.PublicFormat` enum. :return bytes: Serialized key. .. class:: RSAPublicKeyWithSerialization .. versionadded:: 0.8 Alias of :class:`RSAPublicKey`. .. _`RSA`: https://en.wikipedia.org/wiki/RSA_(cryptosystem) .. _`public-key`: https://en.wikipedia.org/wiki/Public-key_cryptography .. _`specific mathematical properties`: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation .. _`use 65537`: http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html .. _`at least 2048`: http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf .. _`OpenPGP`: https://en.wikipedia.org/wiki/Pretty_Good_Privacy .. _`Chinese Remainder Theorem`: https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Using_the_Chinese_remainder_algorithm .. _`security proof`: http://eprint.iacr.org/2001/062.pdf .. _`recommended padding algorithm`: http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html .. _`proven secure`: http://cseweb.ucsd.edu/~mihir/papers/oae.pdf