/* * This file is subject to the terms of the GFX License. If a copy of * the license was not distributed with this file, you can obtain one at: * * http://ugfx.org/license.html */ #include "gfx.h" #if GFX_USE_GDISP /* Include the low level driver information */ #include "gdisp_driver.h" #if 1 #undef INLINE #if defined(__KEIL__) || defined(__C51__) #define INLINE __inline #else #define INLINE inline #endif #else #undef INLINE #define INLINE #endif // Number of milliseconds for the startup logo - 0 means disabled. #if GDISP_NEED_STARTUP_LOGO #define GDISP_STARTUP_LOGO_TIMEOUT 1000 #define GDISP_STARTUP_LOGO_COLOR White #else #define GDISP_STARTUP_LOGO_TIMEOUT 0 #endif /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ #if GDISP_NEED_TIMERFLUSH static GTimer FlushTimer; #endif GDisplay *GDISP; #if GDISP_NEED_MULTITHREAD #define MUTEX_INIT(g) gfxMutexInit(&(g)->mutex) #define MUTEX_ENTER(g) gfxMutexEnter(&(g)->mutex) #define MUTEX_EXIT(g) gfxMutexExit(&(g)->mutex) #define MUTEX_DEINIT(g) gfxMutexDestroy(&(g)->mutex) #else #define MUTEX_INIT(g) #define MUTEX_ENTER(g) #define MUTEX_EXIT(g) #define MUTEX_DEINIT(g) #endif #define NEED_CLIPPING (GDISP_HARDWARE_CLIP != TRUE && (GDISP_NEED_VALIDATION || GDISP_NEED_CLIP)) #if !NEED_CLIPPING #define TEST_CLIP_AREA(g) #elif GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT #define TEST_CLIP_AREA(g) \ if (!gvmt(g)->setclip) { \ if ((g)->p.x < (g)->clipx0) { (g)->p.cx -= (g)->clipx0 - (g)->p.x; (g)->p.x = (g)->clipx0; } \ if ((g)->p.y < (g)->clipy0) { (g)->p.cy -= (g)->clipy0 - (g)->p.y; (g)->p.y = (g)->clipy0; } \ if ((g)->p.x + (g)->p.cx > (g)->clipx1) (g)->p.cx = (g)->clipx1 - (g)->p.x; \ if ((g)->p.y + (g)->p.cy > (g)->clipy1) (g)->p.cy = (g)->clipy1 - (g)->p.y; \ } \ if ((g)->p.cx > 0 && (g)->p.cy > 0) #else #define TEST_CLIP_AREA(g) \ if ((g)->p.x < (g)->clipx0) { (g)->p.cx -= (g)->clipx0 - (g)->p.x; (g)->p.x = (g)->clipx0; } \ if ((g)->p.y < (g)->clipy0) { (g)->p.cy -= (g)->clipy0 - (g)->p.y; (g)->p.y = (g)->clipy0; } \ if ((g)->p.x + (g)->p.cx > (g)->clipx1) (g)->p.cx = (g)->clipx1 - (g)->p.x; \ if ((g)->p.y + (g)->p.cy > (g)->clipy1) (g)->p.cy = (g)->clipy1 - (g)->p.y; \ if ((g)->p.cx > 0 && (g)->p.cy > 0) #endif /*==========================================================================*/ /* Internal functions. */ /*==========================================================================*/ #if GDISP_HARDWARE_STREAM_POS && GDISP_HARDWARE_STREAM_WRITE static INLINE void setglobalwindow(GDisplay *g) { coord_t x, y; x = g->p.x; y = g->p.y; g->p.x = g->p.y = 0; g->p.cx = g->g.Width; g->p.cy = g->g.Height; gdisp_lld_write_start(g); g->p.x = x; g->p.y = y; g->flags |= GDISP_FLG_SCRSTREAM; } #endif #if GDISP_NEED_AUTOFLUSH && GDISP_HARDWARE_FLUSH == HARDWARE_AUTODETECT #define autoflush_stopdone(g) if (gvmt(g)->flush) gdisp_lld_flush(g) #elif GDISP_NEED_AUTOFLUSH && GDISP_HARDWARE_FLUSH #define autoflush_stopdone(g) gdisp_lld_flush(g) #else #define autoflush_stopdone(g) #endif #if GDISP_HARDWARE_STREAM_POS && GDISP_HARDWARE_STREAM_WRITE #define autoflush(g) \ { \ if ((g->flags & GDISP_FLG_SCRSTREAM)) { \ gdisp_lld_write_stop(g); \ g->flags &= ~GDISP_FLG_SCRSTREAM; \ } \ autoflush_stopdone(g); \ } #else #define autoflush(g) autoflush_stopdone(g) #endif // drawpixel(g) // Parameters: x,y // Alters: cx, cy (if using streaming) // Does not clip static INLINE void drawpixel(GDisplay *g) { // Best is hardware accelerated pixel draw #if GDISP_HARDWARE_DRAWPIXEL #if GDISP_HARDWARE_DRAWPIXEL == HARDWARE_AUTODETECT if (gvmt(g)->pixel) #endif { gdisp_lld_draw_pixel(g); return; } #endif // Next best is cursor based streaming #if GDISP_HARDWARE_DRAWPIXEL != TRUE && GDISP_HARDWARE_STREAM_POS && GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_POS == HARDWARE_AUTODETECT if (gvmt(g)->writepos) #endif { if (!(g->flags & GDISP_FLG_SCRSTREAM)) setglobalwindow(g); gdisp_lld_write_pos(g); gdisp_lld_write_color(g); return; } #endif // Worst is general streaming #if GDISP_HARDWARE_DRAWPIXEL != TRUE && GDISP_HARDWARE_STREAM_POS != TRUE && GDISP_HARDWARE_STREAM_WRITE // The following test is unneeded because we are guaranteed to have streaming if we don't have drawpixel //#if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT // if (gvmt(g)->writestart) //#endif { g->p.cx = g->p.cy = 1; gdisp_lld_write_start(g); gdisp_lld_write_color(g); gdisp_lld_write_stop(g); return; } #endif } // drawpixel_clip(g) // Parameters: x,y // Alters: cx, cy (if using streaming) #if NEED_CLIPPING static INLINE void drawpixel_clip(GDisplay *g) { #if GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT if (!gvmt(g)->setclip) #endif { if (g->p.x < g->clipx0 || g->p.x >= g->clipx1 || g->p.y < g->clipy0 || g->p.y >= g->clipy1) return; } drawpixel(g); } #else #define drawpixel_clip(g) drawpixel(g) #endif // fillarea(g) // Parameters: x,y cx,cy and color // Alters: nothing // Note: This is not clipped // Resets the streaming area if GDISP_HARDWARE_STREAM_WRITE and GDISP_HARDWARE_STREAM_POS is set. static INLINE void fillarea(GDisplay *g) { // Best is hardware accelerated area fill #if GDISP_HARDWARE_FILLS #if GDISP_HARDWARE_FILLS == HARDWARE_AUTODETECT if (gvmt(g)->fill) #endif { gdisp_lld_fill_area(g); return; } #endif // Next best is hardware streaming #if GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT if (gvmt(g)->writestart) #endif { uint32_t area; #if GDISP_HARDWARE_STREAM_POS if ((g->flags & GDISP_FLG_SCRSTREAM)) { gdisp_lld_write_stop(g); g->flags &= ~GDISP_FLG_SCRSTREAM; } #endif area = (uint32_t)g->p.cx * g->p.cy; gdisp_lld_write_start(g); #if GDISP_HARDWARE_STREAM_POS #if GDISP_HARDWARE_STREAM_POS == HARDWARE_AUTODETECT if (gvmt(g)->writepos) #endif gdisp_lld_write_pos(g); #endif for(; area; area--) gdisp_lld_write_color(g); gdisp_lld_write_stop(g); return; } #endif // Worst is pixel drawing #if GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_HARDWARE_DRAWPIXEL // The following test is unneeded because we are guaranteed to have draw pixel if we don't have streaming //#if GDISP_HARDWARE_DRAWPIXEL == HARDWARE_AUTODETECT // if (gvmt(g)->pixel) //#endif { coord_t x0, y0, x1, y1; x0 = g->p.x; y0 = g->p.y; x1 = g->p.x + g->p.cx; y1 = g->p.y + g->p.cy; for(; g->p.y < y1; g->p.y++, g->p.x = x0) for(; g->p.x < x1; g->p.x++) gdisp_lld_draw_pixel(g); g->p.y = y0; return; } #endif } // Parameters: x,y and x1 // Alters: x,y x1,y1 cx,cy // Assumes the window covers the screen and a write_stop() will occur later // if GDISP_HARDWARE_STREAM_WRITE and GDISP_HARDWARE_STREAM_POS is set. static void hline_clip(GDisplay *g) { // Swap the points if necessary so it always goes from x to x1 if (g->p.x1 < g->p.x) { g->p.cx = g->p.x; g->p.x = g->p.x1; g->p.x1 = g->p.cx; } // Clipping #if NEED_CLIPPING #if GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT if (!gvmt(g)->setclip) #endif { if (g->p.y < g->clipy0 || g->p.y >= g->clipy1) return; if (g->p.x < g->clipx0) g->p.x = g->clipx0; if (g->p.x1 >= g->clipx1) g->p.x1 = g->clipx1 - 1; if (g->p.x1 < g->p.x) return; } #endif // This is an optimization for the point case. It is only worthwhile however if we // have hardware fills or if we support both hardware pixel drawing and hardware streaming #if GDISP_HARDWARE_FILLS || (GDISP_HARDWARE_DRAWPIXEL && GDISP_HARDWARE_STREAM_WRITE) // Is this a point if (g->p.x == g->p.x1) { drawpixel(g); return; } #endif // Best is hardware accelerated area fill #if GDISP_HARDWARE_FILLS #if GDISP_HARDWARE_FILLS == HARDWARE_AUTODETECT if (gvmt(g)->fill) #endif { g->p.cx = g->p.x1 - g->p.x + 1; g->p.cy = 1; gdisp_lld_fill_area(g); return; } #endif // Next best is cursor based streaming #if GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_STREAM_POS && GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_POS == HARDWARE_AUTODETECT if (gvmt(g)->writepos) #endif { if (!(g->flags & GDISP_FLG_SCRSTREAM)) setglobalwindow(g); g->p.cx = g->p.x1 - g->p.x + 1; gdisp_lld_write_pos(g); do { gdisp_lld_write_color(g); } while(--g->p.cx); return; } #endif // Next best is streaming #if GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_STREAM_POS != TRUE && GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT if (gvmt(g)->writestart) #endif { g->p.cx = g->p.x1 - g->p.x + 1; g->p.cy = 1; gdisp_lld_write_start(g); do { gdisp_lld_write_color(g); } while(--g->p.cx); gdisp_lld_write_stop(g); return; } #endif // Worst is drawing pixels #if GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_HARDWARE_DRAWPIXEL // The following test is unneeded because we are guaranteed to have draw pixel if we don't have streaming //#if GDISP_HARDWARE_DRAWPIXEL == HARDWARE_AUTODETECT // if (gvmt(g)->pixel) //#endif { for(; g->p.x <= g->p.x1; g->p.x++) gdisp_lld_draw_pixel(g); return; } #endif } // Parameters: x,y and y1 // Alters: x,y x1,y1 cx,cy static void vline_clip(GDisplay *g) { // Swap the points if necessary so it always goes from y to y1 if (g->p.y1 < g->p.y) { g->p.cy = g->p.y; g->p.y = g->p.y1; g->p.y1 = g->p.cy; } // Clipping #if NEED_CLIPPING #if GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT if (!gvmt(g)->setclip) #endif { if (g->p.x < g->clipx0 || g->p.x >= g->clipx1) return; if (g->p.y < g->clipy0) g->p.y = g->clipy0; if (g->p.y1 >= g->clipy1) g->p.y1 = g->clipy1 - 1; if (g->p.y1 < g->p.y) return; } #endif // This is an optimization for the point case. It is only worthwhile however if we // have hardware fills or if we support both hardware pixel drawing and hardware streaming #if GDISP_HARDWARE_FILLS || (GDISP_HARDWARE_DRAWPIXEL && GDISP_HARDWARE_STREAM_WRITE) || (GDISP_HARDWARE_STREAM_POS && GDISP_HARDWARE_STREAM_WRITE) // Is this a point if (g->p.y == g->p.y1) { drawpixel(g); return; } #endif // Best is hardware accelerated area fill #if GDISP_HARDWARE_FILLS #if GDISP_HARDWARE_FILLS == HARDWARE_AUTODETECT if (gvmt(g)->fill) #endif { g->p.cy = g->p.y1 - g->p.y + 1; g->p.cx = 1; gdisp_lld_fill_area(g); return; } #endif // Next best is streaming #if GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT if (gvmt(g)->writestart) #endif { #if GDISP_HARDWARE_STREAM_POS if ((g->flags & GDISP_FLG_SCRSTREAM)) { gdisp_lld_write_stop(g); g->flags &= ~GDISP_FLG_SCRSTREAM; } #endif g->p.cy = g->p.y1 - g->p.y + 1; g->p.cx = 1; gdisp_lld_write_start(g); #if GDISP_HARDWARE_STREAM_POS #if GDISP_HARDWARE_STREAM_POS == HARDWARE_AUTODETECT if (gvmt(g)->writepos) #endif gdisp_lld_write_pos(g); #endif do { gdisp_lld_write_color(g); } while(--g->p.cy); gdisp_lld_write_stop(g); return; } #endif // Worst is drawing pixels #if GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_HARDWARE_DRAWPIXEL // The following test is unneeded because we are guaranteed to have draw pixel if we don't have streaming //#if GDISP_HARDWARE_DRAWPIXEL == HARDWARE_AUTODETECT // if (gvmt(g)->pixel) //#endif { for(; g->p.y <= g->p.y1; g->p.y++) gdisp_lld_draw_pixel(g); return; } #endif } // Parameters: x,y and x1,y1 // Alters: x,y x1,y1 cx,cy static void line_clip(GDisplay *g) { int16_t dy, dx; int16_t addx, addy; int16_t P, diff, i; // Is this a horizontal line (or a point) if (g->p.y == g->p.y1) { hline_clip(g); return; } // Is this a vertical line (or a point) if (g->p.x == g->p.x1) { vline_clip(g); return; } // Not horizontal or vertical // Use Bresenham's line drawing algorithm. // This should be replaced with fixed point slope based line drawing // which is more efficient on modern processors as it branches less. // When clipping is needed, all the clipping could also be done up front // instead of on each pixel. if (g->p.x1 >= g->p.x) { dx = g->p.x1 - g->p.x; addx = 1; } else { dx = g->p.x - g->p.x1; addx = -1; } if (g->p.y1 >= g->p.y) { dy = g->p.y1 - g->p.y; addy = 1; } else { dy = g->p.y - g->p.y1; addy = -1; } if (dx >= dy) { dy <<= 1; P = dy - dx; diff = P - dx; for(i=0; i<=dx; ++i) { drawpixel_clip(g); if (P < 0) { P += dy; g->p.x += addx; } else { P += diff; g->p.x += addx; g->p.y += addy; } } } else { dx <<= 1; P = dx - dy; diff = P - dy; for(i=0; i<=dy; ++i) { drawpixel_clip(g); if (P < 0) { P += dx; g->p.y += addy; } else { P += diff; g->p.x += addx; g->p.y += addy; } } } } #if GDISP_STARTUP_LOGO_TIMEOUT > 0 static bool_t gdispInitDone; static void StartupLogoDisplay(GDisplay *g) { coord_t x, y, w; const coord_t * p; static const coord_t blks[] = { // u 2, 6, 1, 10, 3, 11, 4, 1, 6, 6, 1, 6, // G 8, 0, 1, 12, 9, 0, 6, 1, 9, 11, 6, 1, 14, 6, 1, 5, 12, 6, 2, 1, // F 16, 0, 1, 12, 17, 0, 6, 1, 17, 6, 3, 1, // X 22, 6, 7, 1, 24, 0, 1, 6, 22, 7, 1, 5, 28, 0, 1, 6, 26, 7, 1, 5, }; // Get a starting position and a scale // Work on a 8x16 grid for each char, 4 chars (uGFX) in 1 line, using half the screen w = g->g.Width/(8*4*2); if (!w) w = 1; x = (g->g.Width - (8*4)*w)/2; y = (g->g.Height - (16*1)*w)/2; // Simple but crude! for(p = blks; p < blks+sizeof(blks)/sizeof(blks[0]); p+=4) gdispGFillArea(g, x+p[0]*w, y+p[1]*w, p[2]*w, p[3]*w, GDISP_STARTUP_LOGO_COLOR); } #endif #if GDISP_NEED_TIMERFLUSH static void FlushTimerFn(void *param) { GDisplay * g; (void) param; for(g = (GDisplay *)gdriverGetNext(GDRIVER_TYPE_DISPLAY, 0); g; g = (GDisplay *)gdriverGetNext(GDRIVER_TYPE_DISPLAY, (GDriver *)g)) gdispGFlush(g); } #endif /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ void _gdispInit(void) { // GDISP_DRIVER_LIST is defined - create each driver instance #if defined(GDISP_DRIVER_LIST) { unsigned i; typedef const GDISPVMT const GDISPVMTLIST[1]; extern GDISPVMTLIST GDISP_DRIVER_LIST; static const GDISPVMT * const dclist[] = {GDISP_DRIVER_LIST}; for(i = 0; i < sizeof(dclist)/sizeof(dclist[0]); i++) { if (!(dclist[i]->d.flags & GDISP_VFLG_DYNAMICONLY)) gdriverRegister(&dclist[i]->d, 0); } } #elif GDISP_TOTAL_DISPLAYS > 1 { unsigned i; extern const GDISPVMT const GDISPVMT_OnlyOne[1]; if (!(GDISPVMT_OnlyOne->d.flags & GDISP_VFLG_DYNAMICONLY)) { for(i = 0; i < GDISP_TOTAL_DISPLAYS; i++) gdriverRegister(&GDISPVMT_OnlyOne->d, 0); } } #else { extern const GDISPVMT const GDISPVMT_OnlyOne[1]; if (!(GDISPVMT_OnlyOne->d.flags & GDISP_VFLG_DYNAMICONLY)) gdriverRegister(&GDISPVMT_OnlyOne->d, 0); } #endif // Re-clear the display after the timeout if we added the logo #if GDISP_STARTUP_LOGO_TIMEOUT > 0 { GDisplay *g; gfxSleepMilliseconds(GDISP_STARTUP_LOGO_TIMEOUT); for(g = (GDisplay *)gdriverGetNext(GDRIVER_TYPE_DISPLAY, 0); g; g = (GDisplay *)gdriverGetNext(GDRIVER_TYPE_DISPLAY, (GDriver *)g)) { gdispGClear(g, GDISP_STARTUP_COLOR); #if GDISP_HARDWARE_FLUSH gdispGFlush(g); #endif } gdispInitDone = TRUE; } #endif // Start the automatic timer flush (if required) #if GDISP_NEED_TIMERFLUSH gtimerInit(&FlushTimer); gtimerStart(&FlushTimer, FlushTimerFn, 0, TRUE, GDISP_NEED_TIMERFLUSH); #endif } void _gdispDeinit(void) { /* ToDo */ } bool_t _gdispInitDriver(GDriver *g, void *param, unsigned driverinstance, unsigned systeminstance) { #define gd ((GDisplay *)g) bool_t ret; // Intialise fields gd->systemdisplay = systeminstance; gd->controllerdisplay = driverinstance; gd->flags = 0; gd->priv = param; MUTEX_INIT(gd); // Call the driver init MUTEX_ENTER(gd); ret = gdisp_lld_init(gd); MUTEX_EXIT(gd); return ret; #undef gd } void _gdispPostInitDriver(GDriver *g) { #define gd ((GDisplay *)g) // Set orientation, clip #if defined(GDISP_DEFAULT_ORIENTATION) && GDISP_NEED_CONTROL && GDISP_HARDWARE_CONTROL #if GDISP_NEED_PIXMAP // Pixmaps should stay in their created orientation (at least initially) if (!(gvmt(gd)->d.flags & GDISP_VFLG_PIXMAP)) #endif gdispGControl(gd, GDISP_CONTROL_ORIENTATION, (void *)GDISP_DEFAULT_ORIENTATION); #endif #if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP gdispGSetClip(gd, 0, 0, gd->g.Width, gd->g.Height); #endif // Clear the Screen gdispGClear(gd, GDISP_STARTUP_COLOR); // Display the startup logo if this is a static initialised display #if GDISP_STARTUP_LOGO_TIMEOUT > 0 if (!gdispInitDone) StartupLogoDisplay(gd); #endif // Flush #if GDISP_HARDWARE_FLUSH gdispGFlush(gd); #endif // If this is the first driver set GDISP if (!GDISP) GDISP = gd; #undef gd } void _gdispDeInitDriver(GDriver *g) { #define gd ((GDisplay *)g) if (GDISP == gd) GDISP = (GDisplay *)gdriverGetInstance(GDRIVER_TYPE_DISPLAY, 0); #if GDISP_HARDWARE_DEINIT #if GDISP_HARDWARE_DEINIT == HARDWARE_AUTODETECT if (gvmt(gd)->deinit) #endif { MUTEX_ENTER(gd); gdisp_lld_deinit(gd); MUTEX_EXIT(gd); } #endif MUTEX_DEINIT(gd); #undef gd } GDisplay *gdispGetDisplay(unsigned display) { return (GDisplay *)gdriverGetInstance(GDRIVER_TYPE_DISPLAY, display); } void gdispSetDisplay(GDisplay *g) { if (g) GDISP = g; } unsigned gdispGetDisplayCount(void) { return gdriverInstanceCount(GDRIVER_TYPE_DISPLAY); } coord_t gdispGGetWidth(GDisplay *g) { return g->g.Width; } coord_t gdispGGetHeight(GDisplay *g) { return g->g.Height; } powermode_t gdispGGetPowerMode(GDisplay *g) { return g->g.Powermode; } orientation_t gdispGGetOrientation(GDisplay *g) { return g->g.Orientation; } uint8_t gdispGGetBacklight(GDisplay *g) { return g->g.Backlight; } uint8_t gdispGGetContrast(GDisplay *g) { return g->g.Contrast; } void gdispGFlush(GDisplay *g) { #if GDISP_HARDWARE_FLUSH #if GDISP_HARDWARE_FLUSH == HARDWARE_AUTODETECT if (gvmt(g)->flush) #endif { MUTEX_ENTER(g); gdisp_lld_flush(g); MUTEX_EXIT(g); } #else (void) g; #endif } #if GDISP_NEED_STREAMING void gdispGStreamStart(GDisplay *g, coord_t x, coord_t y, coord_t cx, coord_t cy) { MUTEX_ENTER(g); #if NEED_CLIPPING #if GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT if (!gvmt(g)->setclip) #endif // Test if the area is valid - if not then exit if (x < g->clipx0 || x+cx > g->clipx1 || y < g->clipy0 || y+cy > g->clipy1) { MUTEX_EXIT(g); return; } #endif g->flags |= GDISP_FLG_INSTREAM; // Best is hardware streaming #if GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT if (gvmt(g)->writestart) #endif { g->p.x = x; g->p.y = y; g->p.cx = cx; g->p.cy = cy; gdisp_lld_write_start(g); #if GDISP_HARDWARE_STREAM_POS #if GDISP_HARDWARE_STREAM_POS == HARDWARE_AUTODETECT if (gvmt(g)->writepos) #endif gdisp_lld_write_pos(g); #endif return; } #endif // Worst - save the parameters and use pixel drawing and/or area fills #if GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_HARDWARE_DRAWPIXEL // The following test is unneeded because we are guaranteed to have draw pixel if we don't have streaming //#if GDISP_HARDWARE_DRAWPIXEL == HARDWARE_AUTODETECT // if (gvmt(g)->pixel) //#endif { // Use x,y as the current position, x1,y1 as the save position and x2,y2 as the end position, cx = bufpos g->p.x1 = g->p.x = x; g->p.y1 = g->p.y = y; g->p.x2 = x + cx; g->p.y2 = y + cy; #if (GDISP_LINEBUF_SIZE != 0 && GDISP_HARDWARE_BITFILLS) || GDISP_HARDWARE_FILLS g->p.cx = 0; g->p.cy = 1; #endif return; } #endif // Don't release the mutex as gdispStreamEnd() will do that. } void gdispGStreamColor(GDisplay *g, color_t color) { #if !GDISP_HARDWARE_STREAM_WRITE && GDISP_LINEBUF_SIZE != 0 && GDISP_HARDWARE_BITFILLS coord_t sx1, sy1; #endif // Don't touch the mutex as we should already own it // Ignore this call if we are not streaming if (!(g->flags & GDISP_FLG_INSTREAM)) return; // Best is hardware streaming #if GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT if (gvmt(g)->writestart) #endif { g->p.color = color; gdisp_lld_write_color(g); return; } #endif // Next best is to use bitfills with our line buffer #if GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_LINEBUF_SIZE != 0 && GDISP_HARDWARE_BITFILLS #if GDISP_HARDWARE_BITFILLS == HARDWARE_AUTODETECT if (gvmt(g)->blit) #endif { g->linebuf[g->p.cx++] = color; if (g->p.cx >= GDISP_LINEBUF_SIZE) { sx1 = g->p.x1; sy1 = g->p.y1; g->p.x1 = 0; g->p.y1 = 0; g->p.ptr = (void *)g->linebuf; gdisp_lld_blit_area(g); g->p.x1 = sx1; g->p.y1 = sy1; g->p.x += g->p.cx; g->p.cx = 0; } // Just wrap at end-of-line and end-of-buffer if (g->p.x+g->p.cx >= g->p.x2) { if (g->p.cx) { sx1 = g->p.x1; sy1 = g->p.y1; g->p.x1 = 0; g->p.y1 = 0; g->p.ptr = (void *)g->linebuf; gdisp_lld_blit_area(g); g->p.x1 = sx1; g->p.y1 = sy1; g->p.cx = 0; } g->p.x = g->p.x1; if (++g->p.y >= g->p.y2) g->p.y = g->p.y1; } } #endif // Only slightly better than drawing pixels is to look for runs and use fillarea #if GDISP_HARDWARE_STREAM_WRITE != TRUE && (GDISP_LINEBUF_SIZE == 0 || GDISP_HARDWARE_BITFILLS != TRUE) && GDISP_HARDWARE_FILLS // We don't need to test for auto-detect on drawpixel as we know we have it because we don't have streaming. #if GDISP_HARDWARE_FILLS == HARDWARE_AUTODETECT if (gvmt(g)->fill) #endif { if (!g->p.cx || g->p.color == color) { g->p.cx++; g->p.color = color; } else { if (g->p.cx == 1) gdisp_lld_draw_pixel(g); else gdisp_lld_fill_area(g); g->p.x += g->p.cx; g->p.color = color; g->p.cx = 1; } // Just wrap at end-of-line and end-of-buffer if (g->p.x+g->p.cx >= g->p.x2) { if (g->p.cx) { if (g->p.cx == 1) gdisp_lld_draw_pixel(g); else gdisp_lld_fill_area(g); g->p.cx = 0; } g->p.x = g->p.x1; if (++g->p.y >= g->p.y2) g->p.y = g->p.y1; } return; } #endif // Worst is using pixel drawing #if GDISP_HARDWARE_STREAM_WRITE != TRUE && (GDISP_LINEBUF_SIZE == 0 || GDISP_HARDWARE_BITFILLS != TRUE) && GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_DRAWPIXEL // The following test is unneeded because we are guaranteed to have draw pixel if we don't have streaming //#if GDISP_HARDWARE_DRAWPIXEL == HARDWARE_AUTODETECT // if (gvmt(g)->pixel) //#endif { g->p.color = color; gdisp_lld_draw_pixel(g); // Just wrap at end-of-line and end-of-buffer if (++g->p.x >= g->p.x2) { g->p.x = g->p.x1; if (++g->p.y >= g->p.y2) g->p.y = g->p.y1; } return; } #endif } void gdispGStreamStop(GDisplay *g) { // Only release the mutex and end the stream if we are actually streaming. if (!(g->flags & GDISP_FLG_INSTREAM)) return; // Clear the flag g->flags &= ~GDISP_FLG_INSTREAM; // The cleanup below must match the streaming code above. #if GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT if (gvmt(g)->writestart) #endif { gdisp_lld_write_stop(g); autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif #if GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_LINEBUF_SIZE != 0 && GDISP_HARDWARE_BITFILLS #if GDISP_HARDWARE_BITFILLS == HARDWARE_AUTODETECT if (gvmt(g)->blit) #endif { if (g->p.cx) { g->p.x1 = 0; g->p.y1 = 0; g->p.ptr = (void *)g->linebuf; gdisp_lld_blit_area(g); } autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif #if GDISP_HARDWARE_STREAM_WRITE != TRUE && (GDISP_LINEBUF_SIZE == 0 || GDISP_HARDWARE_BITFILLS != TRUE) && GDISP_HARDWARE_FILLS // We don't need to test for auto-detect on drawpixel as we know we have it because we don't have streaming. #if GDISP_HARDWARE_FILLS == HARDWARE_AUTODETECT if (gvmt(g)->fill) #endif { if (g->p.cx) { if (g->p.cx == 1) gdisp_lld_draw_pixel(g); else gdisp_lld_fill_area(g); } autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif #if GDISP_HARDWARE_STREAM_WRITE != TRUE && (GDISP_LINEBUF_SIZE == 0 || GDISP_HARDWARE_BITFILLS != TRUE) && GDISP_HARDWARE_FILLS != TRUE { autoflush_stopdone(g); MUTEX_EXIT(g); } #endif } #endif void gdispGDrawPixel(GDisplay *g, coord_t x, coord_t y, color_t color) { MUTEX_ENTER(g); g->p.x = x; g->p.y = y; g->p.color = color; drawpixel_clip(g); autoflush(g); MUTEX_EXIT(g); } void gdispGDrawLine(GDisplay *g, coord_t x0, coord_t y0, coord_t x1, coord_t y1, color_t color) { MUTEX_ENTER(g); g->p.x = x0; g->p.y = y0; g->p.x1 = x1; g->p.y1 = y1; g->p.color = color; line_clip(g); autoflush(g); MUTEX_EXIT(g); } void gdispGClear(GDisplay *g, color_t color) { // Note - clear() ignores the clipping area. It clears the screen. MUTEX_ENTER(g); // Best is hardware accelerated clear #if GDISP_HARDWARE_CLEARS #if GDISP_HARDWARE_CLEARS == HARDWARE_AUTODETECT if (gvmt(g)->clear) #endif { g->p.color = color; gdisp_lld_clear(g); autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif // Next best is hardware accelerated area fill #if GDISP_HARDWARE_CLEARS != TRUE && GDISP_HARDWARE_FILLS #if GDISP_HARDWARE_FILLS == HARDWARE_AUTODETECT if (gvmt(g)->fill) #endif { g->p.x = g->p.y = 0; g->p.cx = g->g.Width; g->p.cy = g->g.Height; g->p.color = color; gdisp_lld_fill_area(g); autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif // Next best is streaming #if GDISP_HARDWARE_CLEARS != TRUE && GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT if (gvmt(g)->writestart) #endif { uint32_t area; g->p.x = g->p.y = 0; g->p.cx = g->g.Width; g->p.cy = g->g.Height; g->p.color = color; area = (uint32_t)g->p.cx * g->p.cy; gdisp_lld_write_start(g); #if GDISP_HARDWARE_STREAM_POS #if GDISP_HARDWARE_STREAM_POS == HARDWARE_AUTODETECT if (gvmt(g)->writepos) #endif gdisp_lld_write_pos(g); #endif for(; area; area--) gdisp_lld_write_color(g); gdisp_lld_write_stop(g); autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif // Worst is drawing pixels #if GDISP_HARDWARE_CLEARS != TRUE && GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_HARDWARE_DRAWPIXEL // The following test is unneeded because we are guaranteed to have draw pixel if we don't have streaming //#if GDISP_HARDWARE_DRAWPIXEL == HARDWARE_AUTODETECT // if (gvmt(g)->pixel) //#endif { g->p.color = color; for(g->p.y = 0; g->p.y < g->g.Height; g->p.y++) for(g->p.x = 0; g->p.x < g->g.Width; g->p.x++) gdisp_lld_draw_pixel(g); autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif } void gdispGFillArea(GDisplay *g, coord_t x, coord_t y, coord_t cx, coord_t cy, color_t color) { MUTEX_ENTER(g); g->p.x = x; g->p.y = y; g->p.cx = cx; g->p.cy = cy; g->p.color = color; TEST_CLIP_AREA(g) { fillarea(g); } autoflush_stopdone(g); MUTEX_EXIT(g); } void gdispGBlitArea(GDisplay *g, coord_t x, coord_t y, coord_t cx, coord_t cy, coord_t srcx, coord_t srcy, coord_t srccx, const pixel_t *buffer) { MUTEX_ENTER(g); #if NEED_CLIPPING #if GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT if (!gvmt(g)->setclip) #endif { // This is a different clipping to fillarea(g) as it needs to take into account srcx,srcy if (x < g->clipx0) { cx -= g->clipx0 - x; srcx += g->clipx0 - x; x = g->clipx0; } if (y < g->clipy0) { cy -= g->clipy0 - y; srcy += g->clipy0 - x; y = g->clipy0; } if (x+cx > g->clipx1) cx = g->clipx1 - x; if (y+cy > g->clipy1) cy = g->clipy1 - y; if (srcx+cx > srccx) cx = srccx - srcx; if (cx <= 0 || cy <= 0) { MUTEX_EXIT(g); return; } } #endif // Best is hardware bitfills #if GDISP_HARDWARE_BITFILLS #if GDISP_HARDWARE_BITFILLS == HARDWARE_AUTODETECT if (gvmt(g)->blit) #endif { g->p.x = x; g->p.y = y; g->p.cx = cx; g->p.cy = cy; g->p.x1 = srcx; g->p.y1 = srcy; g->p.x2 = srccx; g->p.ptr = (void *)buffer; gdisp_lld_blit_area(g); autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif // Next best is hardware streaming #if GDISP_HARDWARE_BITFILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT if (gvmt(g)->writestart) #endif { // Translate buffer to the real image data, use srcx,srcy as the end point, srccx as the buffer line gap buffer += srcy*srccx+srcx; srcx = x + cx; srcy = y + cy; srccx -= cx; g->p.x = x; g->p.y = y; g->p.cx = cx; g->p.cy = cy; gdisp_lld_write_start(g); #if GDISP_HARDWARE_STREAM_POS #if GDISP_HARDWARE_STREAM_POS == HARDWARE_AUTODETECT if (gvmt(g)->writepos) #endif gdisp_lld_write_pos(g); #endif for(g->p.y = y; g->p.y < srcy; g->p.y++, buffer += srccx) { for(g->p.x = x; g->p.x < srcx; g->p.x++) { g->p.color = *buffer++; gdisp_lld_write_color(g); } } gdisp_lld_write_stop(g); autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif // Only slightly better than drawing pixels is to look for runs and use fill area #if GDISP_HARDWARE_BITFILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_HARDWARE_FILLS // We don't need to test for auto-detect on drawpixel as we know we have it because we don't have streaming. #if GDISP_HARDWARE_FILLS == HARDWARE_AUTODETECT if (gvmt(g)->fill) #endif { // Translate buffer to the real image data, use srcx,srcy as the end point, srccx as the buffer line gap buffer += srcy*srccx+srcx; srcx = x + cx; srcy = y + cy; srccx -= cx; g->p.cy = 1; for(g->p.y = y; g->p.y < srcy; g->p.y++, buffer += srccx) { for(g->p.x=x; g->p.x < srcx; g->p.x += g->p.cx) { g->p.cx=1; g->p.color = *buffer++; while(g->p.x+g->p.cx < srcx && *buffer == g->p.color) { g->p.cx++; buffer++; } if (g->p.cx == 1) { gdisp_lld_draw_pixel(g); } else { gdisp_lld_fill_area(g); } } } autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif // Worst is drawing pixels #if GDISP_HARDWARE_BITFILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_DRAWPIXEL // The following test is unneeded because we are guaranteed to have draw pixel if we don't have streaming //#if GDISP_HARDWARE_DRAWPIXEL == HARDWARE_AUTODETECT // if (gvmt(g)->pixel) //#endif { // Translate buffer to the real image data, use srcx,srcy as the end point, srccx as the buffer line gap buffer += srcy*srccx+srcx; srcx = x + cx; srcy = y + cy; srccx -= cx; for(g->p.y = y; g->p.y < srcy; g->p.y++, buffer += srccx) { for(g->p.x=x; g->p.x < srcx; g->p.x++) { g->p.color = *buffer++; gdisp_lld_draw_pixel(g); } } autoflush_stopdone(g); MUTEX_EXIT(g); return; } #endif } #if GDISP_NEED_CLIP || GDISP_NEED_VALIDATION void gdispGSetClip(GDisplay *g, coord_t x, coord_t y, coord_t cx, coord_t cy) { MUTEX_ENTER(g); // Best is using hardware clipping #if GDISP_HARDWARE_CLIP #if GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT if (gvmt(g)->setclip) #endif { g->p.x = x; g->p.y = y; g->p.cx = cx; g->p.cy = cy; gdisp_lld_set_clip(g); } #if GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT else #endif #endif // Worst is using software clipping #if GDISP_HARDWARE_CLIP != TRUE { if (x < 0) { cx += x; x = 0; } if (y < 0) { cy += y; y = 0; } if (cx <= 0 || cy <= 0 || x >= g->g.Width || y >= g->g.Height) { x = y = cx = cy = 0; } g->clipx0 = x; g->clipy0 = y; g->clipx1 = x+cx; if (g->clipx1 > g->g.Width) g->clipx1 = g->g.Width; g->clipy1 = y+cy; if (g->clipy1 > g->g.Height) g->clipy1 = g->g.Height; } #endif MUTEX_EXIT(g); } #endif #if GDISP_NEED_CIRCLE void gdispGDrawCircle(GDisplay *g, coord_t x, coord_t y, coord_t radius, color_t color) { coord_t a, b, P; MUTEX_ENTER(g); // Calculate intermediates a = 1; b = radius; P = 4 - radius; g->p.color = color; // Away we go using Bresenham's circle algorithm // Optimized to prevent double drawing g->p.x = x; g->p.y = y + b; drawpixel_clip(g); g->p.x = x; g->p.y = y - b; drawpixel_clip(g); g->p.x = x + b; g->p.y = y; drawpixel_clip(g); g->p.x = x - b; g->p.y = y; drawpixel_clip(g); do { g->p.x = x + a; g->p.y = y + b; drawpixel_clip(g); g->p.x = x + a; g->p.y = y - b; drawpixel_clip(g); g->p.x = x + b; g->p.y = y + a; drawpixel_clip(g); g->p.x = x - b; g->p.y = y + a; drawpixel_clip(g); g->p.x = x - a; g->p.y = y + b; drawpixel_clip(g); g->p.x = x - a; g->p.y = y - b; drawpixel_clip(g); g->p.x = x + b; g->p.y = y - a; drawpixel_clip(g); g->p.x = x - b; g->p.y = y - a; drawpixel_clip(g); if (P < 0) P += 3 + 2*a++; else P += 5 + 2*(a++ - b--); } while(a < b); g->p.x = x + a; g->p.y = y + b; drawpixel_clip(g); g->p.x = x + a; g->p.y = y - b; drawpixel_clip(g); g->p.x = x - a; g->p.y = y + b; drawpixel_clip(g); g->p.x = x - a; g->p.y = y - b; drawpixel_clip(g); autoflush(g); MUTEX_EXIT(g); } #endif #if GDISP_NEED_CIRCLE void gdispGFillCircle(GDisplay *g, coord_t x, coord_t y, coord_t radius, color_t color) { coord_t a, b, P; MUTEX_ENTER(g); // Calculate intermediates a = 1; b = radius; P = 4 - radius; g->p.color = color; // Away we go using Bresenham's circle algorithm // This is optimized to prevent overdrawing by drawing a line only when a variable is about to change value g->p.y = y; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); g->p.y = y+b; g->p.x = x; drawpixel_clip(g); g->p.y = y-b; g->p.x = x; drawpixel_clip(g); do { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); if (P < 0) { P += 3 + 2*a++; } else { g->p.y = y+b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); g->p.y = y-b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); P += 5 + 2*(a++ - b--); } } while(a < b); g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); autoflush(g); MUTEX_EXIT(g); } #endif #if GDISP_NEED_ELLIPSE void gdispGDrawEllipse(GDisplay *g, coord_t x, coord_t y, coord_t a, coord_t b, color_t color) { coord_t dx, dy; int32_t a2, b2; int32_t err, e2; MUTEX_ENTER(g); // Calculate intermediates dx = 0; dy = b; a2 = a*a; b2 = b*b; err = b2-(2*b-1)*a2; g->p.color = color; // Away we go using Bresenham's ellipse algorithm do { g->p.x = x + dx; g->p.y = y + dy; drawpixel_clip(g); g->p.x = x - dx; g->p.y = y + dy; drawpixel_clip(g); g->p.x = x - dx; g->p.y = y - dy; drawpixel_clip(g); g->p.x = x + dx; g->p.y = y - dy; drawpixel_clip(g); e2 = 2*err; if(e2 < (2*dx+1)*b2) { dx++; err += (2*dx+1)*b2; } if(e2 > -(2*dy-1)*a2) { dy--; err -= (2*dy-1)*a2; } } while(dy >= 0); autoflush(g); MUTEX_EXIT(g); } #endif #if GDISP_NEED_ELLIPSE void gdispGFillEllipse(GDisplay *g, coord_t x, coord_t y, coord_t a, coord_t b, color_t color) { coord_t dx, dy; int32_t a2, b2; int32_t err, e2; MUTEX_ENTER(g); // Calculate intermediates dx = 0; dy = b; a2 = a*a; b2 = b*b; err = b2-(2*b-1)*a2; g->p.color = color; // Away we go using Bresenham's ellipse algorithm // This is optimized to prevent overdrawing by drawing a line only when a y is about to change value do { e2 = 2*err; if(e2 < (2*dx+1)*b2) { dx++; err += (2*dx+1)*b2; } if(e2 > -(2*dy-1)*a2) { g->p.y = y + dy; g->p.x = x - dx; g->p.x1 = x + dx; hline_clip(g); if (y) { g->p.y = y - dy; g->p.x = x - dx; g->p.x1 = x + dx; hline_clip(g); } dy--; err -= (2*dy-1)*a2; } } while(dy >= 0); autoflush(g); MUTEX_EXIT(g); } #endif #if GDISP_NEED_ARCSECTORS void gdispGDrawArcSectors(GDisplay *g, coord_t x, coord_t y, coord_t radius, uint8_t sectors, color_t color) { coord_t a, b, P; MUTEX_ENTER(g); // Calculate intermediates a = 1; // x in many explanations b = radius; // y in many explanations P = 4 - radius; g->p.color = color; // Away we go using Bresenham's circle algorithm // Optimized to prevent double drawing if (sectors & 0x06) { g->p.x = x; g->p.y = y - b; drawpixel_clip(g); } // Upper upper if (sectors & 0x60) { g->p.x = x; g->p.y = y + b; drawpixel_clip(g); } // Lower lower if (sectors & 0x81) { g->p.x = x + b; g->p.y = y; drawpixel_clip(g); } // Right right if (sectors & 0x18) { g->p.x = x - b; g->p.y = y; drawpixel_clip(g); } // Left left do { if (sectors & 0x01) { g->p.x = x + b; g->p.y = y - a; drawpixel_clip(g); } // Upper right right if (sectors & 0x02) { g->p.x = x + a; g->p.y = y - b; drawpixel_clip(g); } // Upper upper right if (sectors & 0x04) { g->p.x = x - a; g->p.y = y - b; drawpixel_clip(g); } // Upper upper left if (sectors & 0x08) { g->p.x = x - b; g->p.y = y - a; drawpixel_clip(g); } // Upper left left if (sectors & 0x10) { g->p.x = x - b; g->p.y = y + a; drawpixel_clip(g); } // Lower left left if (sectors & 0x20) { g->p.x = x - a; g->p.y = y + b; drawpixel_clip(g); } // Lower lower left if (sectors & 0x40) { g->p.x = x + a; g->p.y = y + b; drawpixel_clip(g); } // Lower lower right if (sectors & 0x80) { g->p.x = x + b; g->p.y = y + a; drawpixel_clip(g); } // Lower right right if (P < 0) P += 3 + 2*a++; else P += 5 + 2*(a++ - b--); } while(a < b); if (sectors & 0xC0) { g->p.x = x + a; g->p.y = y + b; drawpixel_clip(g); } // Lower right if (sectors & 0x03) { g->p.x = x + a; g->p.y = y - b; drawpixel_clip(g); } // Upper right if (sectors & 0x30) { g->p.x = x - a; g->p.y = y + b; drawpixel_clip(g); } // Lower left if (sectors & 0x0C) { g->p.x = x - a; g->p.y = y - b; drawpixel_clip(g); } // Upper left autoflush(g); MUTEX_EXIT(g); } #endif #if GDISP_NEED_ARCSECTORS void gdispGFillArcSectors(GDisplay *g, coord_t x, coord_t y, coord_t radius, uint8_t sectors, color_t color) { coord_t a, b, P; MUTEX_ENTER(g); // Calculate intermediates a = 1; // x in many explanations b = radius; // y in many explanations P = 4 - radius; g->p.color = color; // Away we go using Bresenham's circle algorithm // Optimized to prevent double drawing if (sectors & 0x06) { g->p.x = x; g->p.y = y - b; drawpixel_clip(g); } // Upper upper if (sectors & 0x60) { g->p.x = x; g->p.y = y + b; drawpixel_clip(g); } // Lower lower if (sectors & 0x81) { // Center right g->p.y = y; g->p.x = x; g->p.x1 = x + b; if (sectors & 0x18) g->p.x -= b; // Left right hline_clip(g); } else if (sectors & 0x18) { // Left center g->p.x = x - b; g->p.x1 = x; g->p.y = y; hline_clip(g); } do { // Top half switch(sectors & 0x0F) { case 0x01: g->p.y = y - a; g->p.x = x + a; g->p.x1 = x + b; hline_clip(g); break; case 0x02: g->p.y = y - b; g->p.x = x; g->p.x1 = x + a; hline_clip(g); g->p.y = y - a; g->p.x = x; g->p.x1 = x + a; hline_clip(g); break; case 0x03: g->p.y = y - b; g->p.x = x; g->p.x1 = x + a; hline_clip(g); g->p.y = y - a; g->p.x = x; g->p.x1 = x + b; hline_clip(g); break; case 0x04: g->p.y = y - b; g->p.x = x - a; g->p.x1 = x; hline_clip(g); g->p.y = y - a; g->p.x = x - a; g->p.x1 = x; hline_clip(g); break; case 0x05: g->p.y = y - b; g->p.x = x - a; g->p.x1 = x; hline_clip(g); g->p.y = y - a; g->p.x = x - a; g->p.x1 = x; hline_clip(g); g->p.y = y - a; g->p.x = x + a; g->p.x1 = x + b; hline_clip(g); break; case 0x06: g->p.y = y - b; g->p.x = x - a; g->p.x1 = x + a; hline_clip(g); g->p.y = y - a; g->p.x = x - a; g->p.x1 = x + a; hline_clip(g); break; case 0x07: g->p.y = y - b; g->p.x = x - a; g->p.x1 = x + a; hline_clip(g); g->p.y = y - a; g->p.x = x - a; g->p.x1 = x + b; hline_clip(g); break; case 0x08: g->p.y = y - a; g->p.x = x - b; g->p.x1 = x - a; hline_clip(g); break; case 0x09: g->p.y = y - a; g->p.x = x - b; g->p.x1 = x - a; hline_clip(g); g->p.y = y - a; g->p.x = x + a; g->p.x1 = x + b; hline_clip(g); break; case 0x0A: g->p.y = y - b; g->p.x = x; g->p.x1 = x + a; hline_clip(g); g->p.y = y - a; g->p.x = x - b; g->p.x1 = x - a; hline_clip(g); g->p.y = y - a; g->p.x = x; g->p.x1 = x + a; hline_clip(g); break; case 0x0B: g->p.y = y - b; g->p.x = x; g->p.x1 = x + a; hline_clip(g); g->p.y = y - a; g->p.x = x - b; g->p.x1 = x - a; hline_clip(g); g->p.y = y - a; g->p.x = x; g->p.x1 = x + b; hline_clip(g); break; case 0x0C: g->p.y = y - b; g->p.x = x - a; g->p.x1 = x; hline_clip(g); g->p.y = y - a; g->p.x = x - b; g->p.x1 = x; hline_clip(g); break; case 0x0D: g->p.y = y - b; g->p.x = x - a; g->p.x1 = x; hline_clip(g); g->p.y = y - a; g->p.x = x - b; g->p.x1 = x; hline_clip(g); g->p.y = y - a; g->p.x = x + a; g->p.x1 = x + b; hline_clip(g); break; case 0x0E: g->p.y = y - b; g->p.x = x - a; g->p.x1 = x + a; hline_clip(g); g->p.y = y - a; g->p.x = x - b; g->p.x1 = x + a; hline_clip(g); break; case 0x0F: g->p.y = y - b; g->p.x = x - a; g->p.x1 = x + a; hline_clip(g); g->p.y = y - a; g->p.x = x - b; g->p.x1 = x + b; hline_clip(g); break; } // Bottom half switch((sectors & 0xF0)>>4) { case 0x01: g->p.y = y + a; g->p.x = x - b; g->p.x1 = x - a; hline_clip(g); break; case 0x02: g->p.y = y + b; g->p.x = x - a; g->p.x1 = x; hline_clip(g); g->p.y = y + a; g->p.x = x - a; g->p.x1 = x; hline_clip(g); break; case 0x03: g->p.y = y + b; g->p.x = x - a; g->p.x1 = x; hline_clip(g); g->p.y = y + a; g->p.x = x - b; g->p.x1 = x; hline_clip(g); break; case 0x04: g->p.y = y + b; g->p.x = x; g->p.x1 = x + a; hline_clip(g); g->p.y = y + a; g->p.x = x; g->p.x1 = x + a; hline_clip(g); break; case 0x05: g->p.y = y + b; g->p.x = x; g->p.x1 = x + a; hline_clip(g); g->p.y = y + a; g->p.x = x - b; g->p.x1 = x - a; hline_clip(g); g->p.y = y + a; g->p.x = x; g->p.x1 = x + a; hline_clip(g); break; case 0x06: g->p.y = y + b; g->p.x = x - a; g->p.x1 = x + a; hline_clip(g); g->p.y = y + a; g->p.x = x - a; g->p.x1 = x + a; hline_clip(g); break; case 0x07: g->p.y = y + b; g->p.x = x - a; g->p.x1 = x + a; hline_clip(g); g->p.y = y + a; g->p.x = x - b; g->p.x1 = x + a; hline_clip(g); break; case 0x08: g->p.y = y + a; g->p.x = x + a; g->p.x1 = x + b; hline_clip(g); break; case 0x09: g->p.y = y + a; g->p.x = x - b; g->p.x1 = x - a; hline_clip(g); g->p.y = y + a; g->p.x = x + a; g->p.x1 = x + b; hline_clip(g); break; case 0x0A: g->p.y = y + b; g->p.x = x - a; g->p.x1 = x; hline_clip(g); g->p.y = y + a; g->p.x = x - a; g->p.x1 = x; hline_clip(g); g->p.y = y + a; g->p.x = x + a; g->p.x1 = x + b; hline_clip(g); break; case 0x0B: g->p.y = y + b; g->p.x = x - a; g->p.x1 = x; hline_clip(g); g->p.y = y + a; g->p.x = x - b; g->p.x1 = x; hline_clip(g); g->p.y = y + a; g->p.x = x + a; g->p.x1 = x + b; hline_clip(g); break; case 0x0C: g->p.y = y + b; g->p.x = x; g->p.x1 = x + a; hline_clip(g); g->p.y = y + a; g->p.x = x; g->p.x1 = x + b; hline_clip(g); break; case 0x0D: g->p.y = y + b; g->p.x = x; g->p.x1 = x + a; hline_clip(g); g->p.y = y + a; g->p.x = x - b; g->p.x1 = x - a; hline_clip(g); g->p.y = y + a; g->p.x = x; g->p.x1 = x + b; hline_clip(g); break; case 0x0E: g->p.y = y + b; g->p.x = x - a; g->p.x1 = x + a; hline_clip(g); g->p.y = y + a; g->p.x = x - a; g->p.x1 = x + b; hline_clip(g); break; case 0x0F: g->p.y = y + b; g->p.x = x - a; g->p.x1 = x + a; hline_clip(g); g->p.y = y + a; g->p.x = x - b; g->p.x1 = x + b; hline_clip(g); break; } if (P < 0) P += 3 + 2*a++; else P += 5 + 2*(a++ - b--); } while(a < b); // Top half if (sectors & 0x02) { g->p.y = y - a; g->p.x = x; g->p.x1 = x + a; hline_clip(g); } else if (sectors & 0x01) { g->p.y = y - a; g->p.x = x + a; drawpixel_clip(g); } if (sectors & 0x04) { g->p.y = y - a; g->p.x = x - a; g->p.x1 = x; hline_clip(g); } else if (sectors & 0x08) { g->p.y = y - a; g->p.x = x - a; drawpixel_clip(g); } // Bottom half if (sectors & 0x40) { g->p.y = y + a; g->p.x = x; g->p.x1 = x + a; hline_clip(g); } else if (sectors & 0x80) { g->p.y = y + a; g->p.x = x + a; drawpixel_clip(g); } if (sectors & 0x20) { g->p.y = y + a; g->p.x = x - a; g->p.x1 = x; hline_clip(g); } else if (sectors & 0x10) { g->p.y = y + a; g->p.x = x - a; drawpixel_clip(g); } autoflush(g); MUTEX_EXIT(g); } #endif #if GDISP_NEED_ARC #if (!GMISC_NEED_FIXEDTRIG && !GMISC_NEED_FASTTRIG) || !GFX_USE_GMISC #include #endif void gdispGDrawArc(GDisplay *g, coord_t x, coord_t y, coord_t radius, coord_t start, coord_t end, color_t color) { coord_t a, b, P, sedge, eedge; uint8_t full, sbit, ebit, tbit; // Normalize the angles if (start < 0) start -= (start/360-1)*360; else if (start >= 360) start %= 360; if (end < 0) end -= (end/360-1)*360; else if (end >= 360) end %= 360; sbit = 1<<(start/45); ebit = 1<<(end/45); full = 0; if (start == end) { full = 0xFF; } else if (end < start) { for(tbit=sbit<<1; tbit; tbit<<=1) full |= tbit; for(tbit=ebit>>1; tbit; tbit>>=1) full |= tbit; } else if (sbit < 0x80) { for(tbit=sbit<<1; tbit < ebit; tbit<<=1) full |= tbit; } tbit = start%45 == 0 ? sbit : 0; MUTEX_ENTER(g); g->p.color = color; if (full) { // Draw full sectors // Optimized to prevent double drawing a = 1; b = radius; P = 4 - radius; if (full & 0x60) { g->p.y = y+b; g->p.x = x; drawpixel_clip(g); } if (full & 0x06) { g->p.y = y-b; g->p.x = x; drawpixel_clip(g); } if (full & 0x81) { g->p.y = y; g->p.x = x+b; drawpixel_clip(g); } if (full & 0x18) { g->p.y = y; g->p.x = x-b; drawpixel_clip(g); } do { if (full & 0x01) { g->p.x = x+b; g->p.y = y-a; drawpixel_clip(g); } if (full & 0x02) { g->p.x = x+a; g->p.y = y-b; drawpixel_clip(g); } if (full & 0x04) { g->p.x = x-a; g->p.y = y-b; drawpixel_clip(g); } if (full & 0x08) { g->p.x = x-b; g->p.y = y-a; drawpixel_clip(g); } if (full & 0x10) { g->p.x = x-b; g->p.y = y+a; drawpixel_clip(g); } if (full & 0x20) { g->p.x = x-a; g->p.y = y+b; drawpixel_clip(g); } if (full & 0x40) { g->p.x = x+a; g->p.y = y+b; drawpixel_clip(g); } if (full & 0x80) { g->p.x = x+b; g->p.y = y+a; drawpixel_clip(g); } if (P < 0) P += 3 + 2*a++; else P += 5 + 2*(a++ - b--); } while(a < b); if (full & 0xC0) { g->p.x = x+a; g->p.y = y+b; drawpixel_clip(g); } if (full & 0x0C) { g->p.x = x-a; g->p.y = y-b; drawpixel_clip(g); } if (full & 0x03) { g->p.x = x+a; g->p.y = y-b; drawpixel_clip(g); } if (full & 0x30) { g->p.x = x-a; g->p.y = y+b; drawpixel_clip(g); } if (full == 0xFF) { autoflush(g); MUTEX_EXIT(g); return; } } #if GFX_USE_GMISC && GMISC_NEED_FIXEDTRIG sedge = NONFIXED(radius * ((sbit & 0x99) ? ffsin(start) : ffcos(start)) + FIXED0_5); eedge = NONFIXED(radius * ((ebit & 0x99) ? ffsin(end) : ffcos(end)) + FIXED0_5); #elif GFX_USE_GMISC && GMISC_NEED_FASTTRIG sedge = round(radius * ((sbit & 0x99) ? fsin(start) : fcos(start))); eedge = round(radius * ((ebit & 0x99) ? fsin(end) : fcos(end))); #else sedge = round(radius * ((sbit & 0x99) ? sin(start*M_PI/180) : cos(start*M_PI/180))); eedge = round(radius * ((ebit & 0x99) ? sin(end*M_PI/180) : cos(end*M_PI/180))); #endif if (sbit & 0xB4) sedge = -sedge; if (ebit & 0xB4) eedge = -eedge; if (sbit != ebit) { // Draw start and end sectors // Optimized to prevent double drawing a = 1; b = radius; P = 4 - radius; if ((sbit & 0x20) || (tbit & 0x40) || (ebit & 0x40)) { g->p.x = x; g->p.y = y+b; drawpixel_clip(g); } if ((sbit & 0x02) || (tbit & 0x04) || (ebit & 0x04)) { g->p.x = x; g->p.y = y-b; drawpixel_clip(g); } if ((sbit & 0x80) || (tbit & 0x01) || (ebit & 0x01)) { g->p.x = x+b; g->p.y = y; drawpixel_clip(g); } if ((sbit & 0x08) || (tbit & 0x10) || (ebit & 0x10)) { g->p.x = x-b; g->p.y = y; drawpixel_clip(g); } do { if (((sbit & 0x01) && a >= sedge) || ((ebit & 0x01) && a <= eedge)) { g->p.x = x+b; g->p.y = y-a; drawpixel_clip(g); } if (((sbit & 0x02) && a <= sedge) || ((ebit & 0x02) && a >= eedge)) { g->p.x = x+a; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x04) && a >= sedge) || ((ebit & 0x04) && a <= eedge)) { g->p.x = x-a; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x08) && a <= sedge) || ((ebit & 0x08) && a >= eedge)) { g->p.x = x-b; g->p.y = y-a; drawpixel_clip(g); } if (((sbit & 0x10) && a >= sedge) || ((ebit & 0x10) && a <= eedge)) { g->p.x = x-b; g->p.y = y+a; drawpixel_clip(g); } if (((sbit & 0x20) && a <= sedge) || ((ebit & 0x20) && a >= eedge)) { g->p.x = x-a; g->p.y = y+b; drawpixel_clip(g); } if (((sbit & 0x40) && a >= sedge) || ((ebit & 0x40) && a <= eedge)) { g->p.x = x+a; g->p.y = y+b; drawpixel_clip(g); } if (((sbit & 0x80) && a <= sedge) || ((ebit & 0x80) && a >= eedge)) { g->p.x = x+b; g->p.y = y+a; drawpixel_clip(g); } if (P < 0) P += 3 + 2*a++; else P += 5 + 2*(a++ - b--); } while(a < b); if (((sbit & 0x40) && a >= sedge) || ((ebit & 0x40) && a <= eedge) || ((sbit & 0x80) && a <= sedge) || ((ebit & 0x80) && a >= eedge)) { g->p.x = x+a; g->p.y = y+b; drawpixel_clip(g); } if (((sbit & 0x04) && a >= sedge) || ((ebit & 0x04) && a <= eedge) || ((sbit & 0x08) && a <= sedge) || ((ebit & 0x08) && a >= eedge)) { g->p.x = x-a; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x01) && a >= sedge) || ((ebit & 0x01) && a <= eedge) || ((sbit & 0x02) && a <= sedge) || ((ebit & 0x02) && a >= eedge)) { g->p.x = x+a; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x10) && a >= sedge) || ((ebit & 0x10) && a <= eedge) || ((sbit & 0x20) && a <= sedge) || ((ebit & 0x20) && a >= eedge)) { g->p.x = x-a; g->p.y = y+b; drawpixel_clip(g); } } else if (end < start) { // Draw start/end sector where it is a non-internal angle // Optimized to prevent double drawing a = 1; b = radius; P = 4 - radius; if ((sbit & 0x60) || (tbit & 0xC0)) { g->p.x = x; g->p.y = y+b; drawpixel_clip(g); } if ((sbit & 0x06) || (tbit & 0x0C)) { g->p.x = x; g->p.y = y-b; drawpixel_clip(g); } if ((sbit & 0x81) || (tbit & 0x03)) { g->p.x = x+b; g->p.y = y; drawpixel_clip(g); } if ((sbit & 0x18) || (tbit & 0x30)) { g->p.x = x-b; g->p.y = y; drawpixel_clip(g); } do { if ((sbit & 0x01) && (a >= sedge || a <= eedge)) { g->p.x = x+b; g->p.y = y-a; drawpixel_clip(g); } if ((sbit & 0x02) && (a <= sedge || a >= eedge)) { g->p.x = x+a; g->p.y = y-b; drawpixel_clip(g); } if ((sbit & 0x04) && (a >= sedge || a <= eedge)) { g->p.x = x-a; g->p.y = y-b; drawpixel_clip(g); } if ((sbit & 0x08) && (a <= sedge || a >= eedge)) { g->p.x = x-b; g->p.y = y-a; drawpixel_clip(g); } if ((sbit & 0x10) && (a >= sedge || a <= eedge)) { g->p.x = x-b; g->p.y = y+a; drawpixel_clip(g); } if ((sbit & 0x20) && (a <= sedge || a >= eedge)) { g->p.x = x-a; g->p.y = y+b; drawpixel_clip(g); } if ((sbit & 0x40) && (a >= sedge || a <= eedge)) { g->p.x = x+a; g->p.y = y+b; drawpixel_clip(g); } if ((sbit & 0x80) && (a <= sedge || a >= eedge)) { g->p.x = x+b; g->p.y = y+a; drawpixel_clip(g); } if (P < 0) P += 3 + 2*a++; else P += 5 + 2*(a++ - b--); } while(a < b); if (((sbit & 0x04) && (a >= sedge || a <= eedge)) || ((sbit & 0x08) && (a <= sedge || a >= eedge))) { g->p.x = x-a; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x40) && (a >= sedge || a <= eedge)) || ((sbit & 0x80) && (a <= sedge || a >= eedge))) { g->p.x = x+a; g->p.y = y+b; drawpixel_clip(g); } if (((sbit & 0x01) && (a >= sedge || a <= eedge)) || ((sbit & 0x02) && (a <= sedge || a >= eedge))) { g->p.x = x+a; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x10) && (a >= sedge || a <= eedge)) || ((sbit & 0x20) && (a <= sedge || a >= eedge))) { g->p.x = x-a; g->p.y = y+b; drawpixel_clip(g); } } else { // Draw start/end sector where it is a internal angle // Optimized to prevent double drawing a = 1; b = radius; P = 4 - radius; if (((sbit & 0x20) && !eedge) || ((sbit & 0x40) && !sedge)) { g->p.x = x; g->p.y = y+b; drawpixel_clip(g); } if (((sbit & 0x02) && !eedge) || ((sbit & 0x04) && !sedge)) { g->p.x = x; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x80) && !eedge) || ((sbit & 0x01) && !sedge)) { g->p.x = x+b; g->p.y = y; drawpixel_clip(g); } if (((sbit & 0x08) && !eedge) || ((sbit & 0x10) && !sedge)) { g->p.x = x-b; g->p.y = y; drawpixel_clip(g); } do { if (((sbit & 0x01) && a >= sedge && a <= eedge)) { g->p.x = x+b; g->p.y = y-a; drawpixel_clip(g); } if (((sbit & 0x02) && a <= sedge && a >= eedge)) { g->p.x = x+a; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x04) && a >= sedge && a <= eedge)) { g->p.x = x-a; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x08) && a <= sedge && a >= eedge)) { g->p.x = x-b; g->p.y = y-a; drawpixel_clip(g); } if (((sbit & 0x10) && a >= sedge && a <= eedge)) { g->p.x = x-b; g->p.y = y+a; drawpixel_clip(g); } if (((sbit & 0x20) && a <= sedge && a >= eedge)) { g->p.x = x-a; g->p.y = y+b; drawpixel_clip(g); } if (((sbit & 0x40) && a >= sedge && a <= eedge)) { g->p.x = x+a; g->p.y = y+b; drawpixel_clip(g); } if (((sbit & 0x80) && a <= sedge && a >= eedge)) { g->p.x = x+b; g->p.y = y+a; drawpixel_clip(g); } if (P < 0) P += 3 + 2*a++; else P += 5 + 2*(a++ - b--); } while(a < b); if (((sbit & 0x04) && a >= sedge && a <= eedge) || ((sbit & 0x08) && a <= sedge && a >= eedge)) { g->p.x = x-a; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x40) && a >= sedge && a <= eedge) || ((sbit & 0x80) && a <= sedge && a >= eedge)) { g->p.x = x+a; g->p.y = y+b; drawpixel_clip(g); } if (((sbit & 0x01) && a >= sedge && a <= eedge) || ((sbit & 0x02) && a <= sedge && a >= eedge)) { g->p.x = x+a; g->p.y = y-b; drawpixel_clip(g); } if (((sbit & 0x10) && a >= sedge && a <= eedge) || ((sbit & 0x20) && a <= sedge && a >= eedge)) { g->p.x = x-a; g->p.y = y+b; drawpixel_clip(g); } } autoflush(g); MUTEX_EXIT(g); } #endif #if GDISP_NEED_ARC void gdispGFillArc(GDisplay *g, coord_t x, coord_t y, coord_t radius, coord_t start, coord_t end, color_t color) { coord_t a, b, P; coord_t sy, ey; fixed sxa, sxb, sxd, exa, exb, exd; uint8_t qtr; MUTEX_ENTER(g); // Do the trig to get the formulas for the start and end lines. sxa = exa = FIXED(x)+FIXED0_5; #if GFX_USE_GMISC && GMISC_NEED_FIXEDTRIG sxb = radius*ffcos(start); sy = -NONFIXED(radius*ffsin(start) + FIXED0_5); exb = radius*ffcos(end); ey = -NONFIXED(radius*ffsin(end) + FIXED0_5); #elif GFX_USE_GMISC && GMISC_NEED_FASTTRIG sxb = FP2FIXED(radius*fcos(start)); sy = -round(radius*fsin(start)); exb = FP2FIXED(radius*fcos(end)); ey = -round(radius*fsin(end)); #else sxb = FP2FIXED(radius*cos(start*M_PI/180)); sy = -round(radius*sin(start*M_PI/180)); exb = FP2FIXED(radius*cos(end*M_PI/180)); ey = -round(radius*sin(end*M_PI/180)); #endif sxd = sy ? sxb/sy : sxb; exd = ey ? exb/ey : exb; // Calculate which quarters and which direction we are traveling qtr = 0; if (sxb > 0) qtr |= 0x01; // S1=0001(1), S2=0000(0), S3=0010(2), S4=0011(3) if (sy > 0) qtr |= 0x02; if (exb > 0) qtr |= 0x04; // E1=0100(4), E2=0000(0), E3=1000(8), E4=1100(12) if (ey > 0) qtr |= 0x08; if (sy > ey) qtr |= 0x10; // order of start and end lines // Calculate intermediates a = 1; b = radius; P = 4 - radius; g->p.color = color; sxb += sxa; exb += exa; // Away we go using Bresenham's circle algorithm // This is optimized to prevent overdrawing by drawing a line only when a variable is about to change value switch(qtr) { case 0: // S2E2 sy <= ey case 1: // S1E2 sy <= ey if (ey && sy) { g->p.x = x; g->p.x1 = x; // E2S sxa -= sxd; exa -= exd; } else if (sy) { g->p.x = x-b; g->p.x1 = x; // C2S sxa -= sxd; } else if (ey) { g->p.x = x; g->p.x1 = x+b; // E2C exa -= exd; } else { g->p.x = x-b; g->p.x1 = x+b; // C2C } g->p.y = y; hline_clip(g); do { if (-a >= ey) { g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = NONFIXED(sxa); hline_clip(g); // E2S sxa -= sxd; exa -= exd; } else if (-a >= sy) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = NONFIXED(sxa); hline_clip(g); // C2S sxa -= sxd; } else if (qtr & 1) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (P < 0) { P += 3 + 2*a++; } else { if (-b >= ey) { g->p.y = y-b; g->p.x = NONFIXED(exb); g->p.x1 = NONFIXED(sxb); hline_clip(g); // E2S sxb += sxd; exb += exd; } else if (-b >= sy) { g->p.y = y-b; g->p.x = x-a; g->p.x1 = NONFIXED(sxb); hline_clip(g); // C2S sxb += sxd; } else if (qtr & 1) { g->p.y = y-b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } P += 5 + 2*(a++ - b--); } } while(a < b); if (-a >= ey) { g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = NONFIXED(sxa); hline_clip(g); // E2S } else if (-a >= sy) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = NONFIXED(sxa); hline_clip(g); // C2S } else if (qtr & 1) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } break; case 2: // S3E2 sy <= ey case 3: // S4E2 sy <= ey case 6: // S3E1 sy <= ey case 7: // S4E1 sy <= ey case 18: // S3E2 sy > ey case 19: // S4E2 sy > ey case 22: // S3E1 sy > ey case 23: // S4E1 sy > ey g->p.y = y; g->p.x = x; g->p.x1 = x+b; hline_clip(g); // SE2C sxa += sxd; exa -= exd; do { if (-a >= ey) { g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = x+b; hline_clip(g); // E2C exa -= exd; } else if (!(qtr & 4)) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (a <= sy) { g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+b; hline_clip(g); // S2C sxa += sxd; } else if (!(qtr & 1)) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (P < 0) { P += 3 + 2*a++; } else { if (-b >= ey) { g->p.y = y-b; g->p.x = NONFIXED(exb); g->p.x1 = x+a; hline_clip(g); // E2C exb += exd; } else if (!(qtr & 4)) { g->p.y = y-b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } if (b <= sy) { g->p.y = y+b; g->p.x = NONFIXED(sxb); g->p.x1 = x+a; hline_clip(g); // S2C sxb -= sxd; } else if (!(qtr & 1)) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } P += 5 + 2*(a++ - b--); } } while(a < b); if (-a >= ey) { g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = x+b; hline_clip(g); // E2C } else if (!(qtr & 4)) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (a <= sy) { g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+a; hline_clip(g); // S2C } else if (!(qtr & 1)) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+a; hline_clip(g); // C2C } break; case 4: // S2E1 sy <= ey case 5: // S1E1 sy <= ey g->p.y = y; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C do { if (-a >= ey) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = NONFIXED(sxa); hline_clip(g); // C2S g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = x+b; hline_clip(g); // E2C sxa -= sxd; exa -= exd; } else if (-a >= sy) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = NONFIXED(sxa); hline_clip(g); // C2S sxa -= sxd; } else if (qtr & 1) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C if (P < 0) { P += 3 + 2*a++; } else { if (-b >= ey) { g->p.y = y-b; g->p.x = x-a; g->p.x1 = NONFIXED(sxb); hline_clip(g); // C2S g->p.y = y-b; g->p.x = NONFIXED(exb); g->p.x1 = x+a; hline_clip(g); // E2C sxb += sxd; exb += exd; } else if (-b >= sy) { g->p.y = y-b; g->p.x = x-a; g->p.x1 = NONFIXED(sxb); hline_clip(g); // C2S sxb += sxd; } else if (qtr & 1) { g->p.y = y-b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } g->p.y = y+b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C P += 5 + 2*(a++ - b--); } } while(a < b); if (-a >= ey) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = NONFIXED(sxa); hline_clip(g); // C2S g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = x+b; hline_clip(g); // E2C } else if (-a >= sy) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = NONFIXED(sxa); hline_clip(g); // C2S } else if (qtr & 1) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } g->p.y = y+b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C break; case 8: // S2E3 sy <= ey case 9: // S1E3 sy <= ey case 12: // S2E4 sy <= ey case 13: // S1E4 sy <= ey case 24: // S2E3 sy > ey case 25: // S1E3 sy > ey case 28: // S2E3 sy > ey case 29: // S1E3 sy > ey g->p.y = y; g->p.x = x-b; g->p.x1 = x; hline_clip(g); // C2SE sxa -= sxd; exa += exd; do { if (-a >= sy) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = NONFIXED(sxa); hline_clip(g); // C2S sxa -= sxd; } else if (qtr & 1) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (a <= ey) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = NONFIXED(exa); hline_clip(g); // C2E exa += exd; } else if (qtr & 4) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (P < 0) { P += 3 + 2*a++; } else { if (-b >= sy) { g->p.y = y-b; g->p.x = x-a; g->p.x1 = NONFIXED(sxb); hline_clip(g); // C2S sxb += sxd; } else if (qtr & 1) { g->p.y = y-b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } if (b <= ey) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = NONFIXED(exb); hline_clip(g); // C2E exb -= exd; } else if (qtr & 4) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } P += 5 + 2*(a++ - b--); } } while(a < b); if (-a >= sy) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = NONFIXED(sxa); hline_clip(g); // C2S } else if (qtr & 1) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (a <= ey) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = NONFIXED(exa); hline_clip(g); // C2E } else if (qtr & 4) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+a; hline_clip(g); // C2C } break; case 10: // S3E3 sy <= ey case 14: // S3E4 sy <= ey g->p.y = y; g->p.x = x; drawpixel_clip(g); // S2E sxa += sxd; exa += exd; do { if (a <= sy) { g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = NONFIXED(exa); hline_clip(g); // S2E sxa += sxd; exa += exd; } else if (a <= ey) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = NONFIXED(exa); hline_clip(g); // C2E exa += exd; } else if (qtr & 4) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (P < 0) { P += 3 + 2*a++; } else { if (b <= sy) { g->p.y = y+b; g->p.x = NONFIXED(sxb); g->p.x1 = NONFIXED(exb); hline_clip(g); // S2E sxb -= sxd; exb -= exd; } else if (b <= ey) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = NONFIXED(exb); hline_clip(g); // C2E exb -= exd; } else if (qtr & 4) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } P += 5 + 2*(a++ - b--); } } while(a < b); if (a <= sy) { g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = NONFIXED(exa); hline_clip(g); // S2E } else if (a <= ey) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = NONFIXED(exa); hline_clip(g); // C2E } else if (qtr & 4) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } break; case 11: // S4E3 sy <= ey case 15: // S4E4 sy <= ey g->p.y = y; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C do { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C if (a <= sy) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = NONFIXED(exa); hline_clip(g); // C2E g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+b; hline_clip(g); // S2C sxa += sxd; exa += exd; } else if (a <= ey) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = NONFIXED(exa); hline_clip(g); // C2E exa += exd; } else if (qtr & 4) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (P < 0) { P += 3 + 2*a++; } else { g->p.y = y-b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C if (b <= sy) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = NONFIXED(exb); hline_clip(g); // C2E g->p.y = y+b; g->p.x = NONFIXED(sxb); g->p.x1 = x+a; hline_clip(g); // S2C sxb -= sxd; exb -= exd; } else if (b <= ey) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = NONFIXED(exb); hline_clip(g); // C2E exb -= exd; } else if (qtr & 4) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } P += 5 + 2*(a++ - b--); } } while(a < b); g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C if (a <= sy) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = NONFIXED(exa); hline_clip(g); // C2E g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+b; hline_clip(g); // S2C } else if (a <= ey) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = NONFIXED(exa); hline_clip(g); // C2E } else if (qtr & 4) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } break; case 16: // S2E2 sy > ey case 20: // S2E1 sy > ey g->p.y = y; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C sxa -= sxd; exa -= exd; do { if (-a >= sy) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = NONFIXED(sxa); hline_clip(g); // C2S g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = x+b; hline_clip(g); // E2C sxa -= sxd; exa -= exd; } else if (-a >= ey) { g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = x+b; hline_clip(g); // E2C exa -= exd; } else if (!(qtr & 4)){ g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C if (P < 0) { P += 3 + 2*a++; } else { if (-b >= sy) { g->p.y = y-b; g->p.x = x-a; g->p.x1 = NONFIXED(sxb); hline_clip(g); // C2S g->p.y = y-b; g->p.x = NONFIXED(exb); g->p.x1 = x+a; hline_clip(g); // E2C sxb += sxd; exb += exd; } else if (-b >= ey) { g->p.y = y-b; g->p.x = NONFIXED(exb); g->p.x1 = x+a; hline_clip(g); // E2C exb += exd; } else if (!(qtr & 4)){ g->p.y = y-b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } g->p.y = y+b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C P += 5 + 2*(a++ - b--); } } while(a < b); if (-a >= sy) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = NONFIXED(sxa); hline_clip(g); // C2S g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = x+b; hline_clip(g); // E2C } else if (-a >= ey) { g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = x+b; hline_clip(g); // E2C } else if (!(qtr & 4)){ g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C break; case 17: // S1E2 sy > ey case 21: // S1E1 sy > ey if (sy) { g->p.x = x; g->p.x1 = x; // E2S sxa -= sxd; exa -= exd; } else { g->p.x = x; g->p.x1 = x+b; // E2C exa -= exd; } g->p.y = y; hline_clip(g); do { if (-a >= sy) { g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = NONFIXED(sxa); hline_clip(g); // E2S sxa -= sxd; exa -= exd; } else if (-a >= ey) { g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = x+b; hline_clip(g); // E2C exa -= exd; } else if (!(qtr & 4)) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (P < 0) { P += 3 + 2*a++; } else { if (-b >= sy) { g->p.y = y-b; g->p.x = NONFIXED(exb); g->p.x1 = NONFIXED(sxb); hline_clip(g); // E2S sxb += sxd; exb += exd; } else if (-b >= ey) { g->p.y = y-b; g->p.x = NONFIXED(exb); g->p.x1 = x+a; hline_clip(g); // E2C exb += exd; } else if (!(qtr & 4)) { g->p.y = y-b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } P += 5 + 2*(a++ - b--); } } while(a < b); if (-a >= sy) { g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = NONFIXED(sxa); hline_clip(g); // E2S } else if (-a >= ey) { g->p.y = y-a; g->p.x = NONFIXED(exa); g->p.x1 = x+b; hline_clip(g); // E2C } else if (!(qtr & 4)) { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } break; case 26: // S3E3 sy > ey case 27: // S4E3 sy > ey g->p.y = y; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C do { g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C if (a <= ey) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = NONFIXED(exa); hline_clip(g); // C2E g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+b; hline_clip(g); // S2C sxa += sxd; exa += exd; } else if (a <= sy) { g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+b; hline_clip(g); // S2C sxa += sxd; } else if (!(qtr & 1)) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (P < 0) { P += 3 + 2*a++; } else { g->p.y = y-b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C if (b <= ey) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = NONFIXED(exb); hline_clip(g); // C2E g->p.y = y+b; g->p.x = NONFIXED(sxb); g->p.x1 = x+a; hline_clip(g); // S2C sxb -= sxd; exb -= exd; } else if (b <= sy) { g->p.y = y+b; g->p.x = NONFIXED(sxb); g->p.x1 = x+a; hline_clip(g); // S2C sxb -= sxd; } else if (!(qtr & 1)) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } P += 5 + 2*(a++ - b--); } } while(a < b); g->p.y = y-a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C if (a <= ey) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = NONFIXED(exa); hline_clip(g); // C2E g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+b; hline_clip(g); // S2C } else if (a <= sy) { g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+b; hline_clip(g); // S2C } else if (!(qtr & 4)) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } break; case 30: // S3E4 sy > ey case 31: // S4E4 sy > ey do { if (a <= ey) { g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = NONFIXED(exa); hline_clip(g); // S2E sxa += sxd; exa += exd; } else if (a <= sy) { g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+b; hline_clip(g); // S2C sxa += sxd; } else if (!(qtr & 1)) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } if (P < 0) { P += 3 + 2*a++; } else { if (b <= ey) { g->p.y = y+b; g->p.x = NONFIXED(sxb); g->p.x1 = NONFIXED(exb); hline_clip(g); // S2E sxb -= sxd; exb -= exd; } else if (b <= sy) { g->p.y = y+b; g->p.x = NONFIXED(sxb); g->p.x1 = x+a; hline_clip(g); // S2C sxb -= sxd; } else if (!(qtr & 1)) { g->p.y = y+b; g->p.x = x-a; g->p.x1 = x+a; hline_clip(g); // C2C } P += 5 + 2*(a++ - b--); } } while(a < b); if (a <= ey) { g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+b; hline_clip(g); // S2C } else if (a <= sy) { g->p.y = y+a; g->p.x = NONFIXED(sxa); g->p.x1 = x+b; hline_clip(g); // S2C } else if (!(qtr & 4)) { g->p.y = y+a; g->p.x = x-b; g->p.x1 = x+b; hline_clip(g); // C2C } break; } autoflush(g); MUTEX_EXIT(g); } #endif #if GDISP_NEED_ARC || GDISP_NEED_ARCSECTORS void gdispGDrawRoundedBox(GDisplay *g, coord_t x, coord_t y, coord_t cx, coord_t cy, coord_t radius, color_t color) { if (2*radius > cx || 2*radius > cy) { gdispGDrawBox(g, x, y, cx, cy, color); return; } #if GDISP_NEED_ARCSECTORS gdispGDrawArcSectors(g, x+radius, y+radius, radius, 0x0C, color); gdispGDrawArcSectors(g, x+cx-1-radius, y+radius, radius, 0x03, color); gdispGDrawArcSectors(g, x+cx-1-radius, y+cy-1-radius, radius, 0xC0, color); gdispGDrawArcSectors(g, x+radius, y+cy-1-radius, radius, 0x30, color); #else gdispGDrawArc(g, x+radius, y+radius, radius, 90, 180, color); gdispGDrawArc(g, x+cx-1-radius, y+radius, radius, 0, 90, color); gdispGDrawArc(g, x+cx-1-radius, y+cy-1-radius, radius, 270, 360, color); gdispGDrawArc(g, x+radius, y+cy-1-radius, radius, 180, 270, color); #endif gdispGDrawLine(g, x+radius+1, y, x+cx-2-radius, y, color); gdispGDrawLine(g, x+cx-1, y+radius+1, x+cx-1, y+cy-2-radius, color); gdispGDrawLine(g, x+radius+1, y+cy-1, x+cx-2-radius, y+cy-1, color); gdispGDrawLine(g, x, y+radius+1, x, y+cy-2-radius, color); } #endif #if GDISP_NEED_ARC || GDISP_NEED_ARCSECTORS void gdispGFillRoundedBox(GDisplay *g, coord_t x, coord_t y, coord_t cx, coord_t cy, coord_t radius, color_t color) { coord_t radius2; radius2 = radius*2; if (radius2 > cx || radius2 > cy) { gdispGFillArea(g, x, y, cx, cy, color); return; } #if GDISP_NEED_ARCSECTORS gdispGFillArcSectors(g, x+radius, y+radius, radius, 0x0C, color); gdispGFillArcSectors(g, x+cx-1-radius, y+radius, radius, 0x03, color); gdispGFillArcSectors(g, x+cx-1-radius, y+cy-1-radius, radius, 0xC0, color); gdispGFillArcSectors(g, x+radius, y+cy-1-radius, radius, 0x30, color); #else gdispGFillArc(g, x+radius, y+radius, radius, 90, 180, color); gdispGFillArc(g, x+cx-1-radius, y+radius, radius, 0, 90, color); gdispGFillArc(g, x+cx-1-radius, y+cy-1-radius, radius, 270, 360, color); gdispGFillArc(g, x+radius, y+cy-1-radius, radius, 180, 270, color); #endif gdispGFillArea(g, x+radius+1, y, cx-radius2, radius, color); gdispGFillArea(g, x+radius+1, y+cy-radius, cx-radius2, radius, color); gdispGFillArea(g, x, y+radius, cx, cy-radius2, color); } #endif #if GDISP_NEED_PIXELREAD color_t gdispGGetPixelColor(GDisplay *g, coord_t x, coord_t y) { color_t c; /* Always synchronous as it must return a value */ MUTEX_ENTER(g); #if GDISP_HARDWARE_PIXELREAD #if GDISP_HARDWARE_PIXELREAD == HARDWARE_AUTODETECT if (gvmt(g)->get) #endif { // Best is direct pixel read g->p.x = x; g->p.y = y; c = gdisp_lld_get_pixel_color(g); MUTEX_EXIT(g); return c; } #endif #if GDISP_HARDWARE_PIXELREAD != TRUE && GDISP_HARDWARE_STREAM_READ #if GDISP_HARDWARE_STREAM_READ == HARDWARE_AUTODETECT if (gvmt(g)->readcolor) #endif { // Next best is hardware streaming g->p.x = x; g->p.y = y; g->p.cx = 1; g->p.cy = 1; gdisp_lld_read_start(g); c = gdisp_lld_read_color(g); gdisp_lld_read_stop(g); MUTEX_EXIT(g); return c; } #endif #if GDISP_HARDWARE_PIXELREAD != TRUE && GDISP_HARDWARE_STREAM_READ != TRUE #if !GDISP_HARDWARE_PIXELREAD && !GDISP_HARDWARE_STREAM_READ // Worst is "not possible" #error "GDISP: GDISP_NEED_PIXELREAD has been set but there is no hardware support for reading the display" #endif MUTEX_EXIT(g); return 0; #endif } #endif #if GDISP_NEED_SCROLL void gdispGVerticalScroll(GDisplay *g, coord_t x, coord_t y, coord_t cx, coord_t cy, int lines, color_t bgcolor) { coord_t abslines; #if GDISP_HARDWARE_SCROLL != TRUE coord_t fy, dy, ix, fx, i, j; #endif if (!lines) return; MUTEX_ENTER(g); #if NEED_CLIPPING #if GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT if (!gvmt(g)->setclip) #endif { if (x < g->clipx0) { cx -= g->clipx0 - x; x = g->clipx0; } if (y < g->clipy0) { cy -= g->clipy0 - y; y = g->clipy0; } if (cx <= 0 || cy <= 0 || x >= g->clipx1 || y >= g->clipy1) { MUTEX_EXIT(g); return; } if (x+cx > g->clipx1) cx = g->clipx1 - x; if (y+cy > g->clipy1) cy = g->clipy1 - y; } #endif abslines = lines < 0 ? -lines : lines; if (abslines >= cy) { abslines = cy; cy = 0; } else { // Best is hardware scroll #if GDISP_HARDWARE_SCROLL #if GDISP_HARDWARE_SCROLL == HARDWARE_AUTODETECT if (gvmt(g)->vscroll) #endif { g->p.x = x; g->p.y = y; g->p.cx = cx; g->p.cy = cy; g->p.y1 = lines; g->p.color = bgcolor; gdisp_lld_vertical_scroll(g); cy -= abslines; } #if GDISP_HARDWARE_SCROLL == HARDWARE_AUTODETECT else #endif #elif GDISP_LINEBUF_SIZE == 0 #error "GDISP: GDISP_NEED_SCROLL is set but there is no hardware support and GDISP_LINEBUF_SIZE is zero." #endif // Scroll Emulation #if GDISP_HARDWARE_SCROLL != TRUE { cy -= abslines; if (lines < 0) { fy = y+cy-1; dy = -1; } else { fy = y; dy = 1; } // Move the screen - one line at a time for(i = 0; i < cy; i++, fy += dy) { // Handle where the buffer is smaller than a line for(ix=0; ix < cx; ix += GDISP_LINEBUF_SIZE) { // Calculate the data we can move in one operation fx = cx - ix; if (fx > GDISP_LINEBUF_SIZE) fx = GDISP_LINEBUF_SIZE; // Read one line of data from the screen // Best line read is hardware streaming #if GDISP_HARDWARE_STREAM_READ #if GDISP_HARDWARE_STREAM_READ == HARDWARE_AUTODETECT if (gvmt(g)->readstart) #endif { g->p.x = x+ix; g->p.y = fy+lines; g->p.cx = fx; g->p.cy = 1; gdisp_lld_read_start(g); for(j=0; j < fx; j++) g->linebuf[j] = gdisp_lld_read_color(g); gdisp_lld_read_stop(g); } #if GDISP_HARDWARE_STREAM_READ == HARDWARE_AUTODETECT else #endif #endif // Next best line read is single pixel reads #if GDISP_HARDWARE_STREAM_READ != TRUE && GDISP_HARDWARE_PIXELREAD #if GDISP_HARDWARE_PIXELREAD == HARDWARE_AUTODETECT if (gvmt(g)->get) #endif { for(j=0; j < fx; j++) { g->p.x = x+ix+j; g->p.y = fy+lines; g->linebuf[j] = gdisp_lld_get_pixel_color(g); } } #if GDISP_HARDWARE_PIXELREAD == HARDWARE_AUTODETECT else { // Worst is "not possible" MUTEX_EXIT(g); return; } #endif #endif // Worst is "not possible" #if !GDISP_HARDWARE_STREAM_READ && !GDISP_HARDWARE_PIXELREAD #error "GDISP: GDISP_NEED_SCROLL is set but there is no hardware support for scrolling or reading pixels." #endif // Write that line to the new location // Best line write is hardware bitfills #if GDISP_HARDWARE_BITFILLS #if GDISP_HARDWARE_BITFILLS == HARDWARE_AUTODETECT if (gvmt(g)->blit) #endif { g->p.x = x+ix; g->p.y = fy; g->p.cx = fx; g->p.cy = 1; g->p.x1 = 0; g->p.y1 = 0; g->p.x2 = fx; g->p.ptr = (void *)g->linebuf; gdisp_lld_blit_area(g); } #if GDISP_HARDWARE_BITFILLS == HARDWARE_AUTODETECT else #endif #endif // Next best line write is hardware streaming #if GDISP_HARDWARE_BITFILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE #if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT if (gvmt(g)->writestart) #endif { g->p.x = x+ix; g->p.y = fy; g->p.cx = fx; g->p.cy = 1; gdisp_lld_write_start(g); #if GDISP_HARDWARE_STREAM_POS gdisp_lld_write_pos(g); #endif for(j = 0; j < fx; j++) { g->p.color = g->linebuf[j]; gdisp_lld_write_color(g); } gdisp_lld_write_stop(g); } #if GDISP_HARDWARE_STREAM_WRITE == HARDWARE_AUTODETECT else #endif #endif // Next best line write is drawing pixels in combination with filling #if GDISP_HARDWARE_BITFILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_HARDWARE_FILLS && GDISP_HARDWARE_DRAWPIXEL // We don't need to test for auto-detect on drawpixel as we know we have it because we don't have streaming. #if GDISP_HARDWARE_FILLS == HARDWARE_AUTODETECT if (gvmt(g)->fill) #endif { g->p.y = fy; g->p.cy = 1; g->p.x = x+ix; g->p.cx = 1; for(j = 0; j < fx; ) { g->p.color = g->linebuf[j]; if (j + g->p.cx < fx && g->linebuf[j] == g->linebuf[j + g->p.cx]) g->p.cx++; else if (g->p.cx == 1) { gdisp_lld_draw_pixel(g); j++; g->p.x++; } else { gdisp_lld_fill_area(g); j += g->p.cx; g->p.x += g->p.cx; g->p.cx = 1; } } } #if GDISP_HARDWARE_FILLS == HARDWARE_AUTODETECT else #endif #endif // Worst line write is drawing pixels #if GDISP_HARDWARE_BITFILLS != TRUE && GDISP_HARDWARE_STREAM_WRITE != TRUE && GDISP_HARDWARE_FILLS != TRUE && GDISP_HARDWARE_DRAWPIXEL // The following test is unneeded because we are guaranteed to have draw pixel if we don't have streaming //#if GDISP_HARDWARE_DRAWPIXEL == HARDWARE_AUTODETECT // if (gvmt(g)->pixel) //#endif { g->p.y = fy; for(g->p.x = x+ix, j = 0; j < fx; g->p.x++, j++) { g->p.color = g->linebuf[j]; gdisp_lld_draw_pixel(g); } } #endif } } } #endif } /* fill the remaining gap */ g->p.x = x; g->p.y = lines > 0 ? (y+cy) : y; g->p.cx = cx; g->p.cy = abslines; g->p.color = bgcolor; fillarea(g); autoflush_stopdone(g); MUTEX_EXIT(g); } #endif #if GDISP_NEED_CONTROL #if GDISP_HARDWARE_CONTROL void gdispGControl(GDisplay *g, unsigned what, void *value) { #if GDISP_HARDWARE_CONTROL == HARDWARE_AUTODETECT if (!gvmt(g)->control) return; #endif MUTEX_ENTER(g); g->p.x = what; g->p.ptr = value; if (what == GDISP_CONTROL_ORIENTATION) { switch ((orientation_t) value) { case GDISP_ROTATE_LANDSCAPE: g->p.ptr = g->g.Width >= g->g.Height ? (void *)GDISP_ROTATE_0 : (void *)GDISP_ROTATE_90; break; case GDISP_ROTATE_PORTRAIT: g->p.ptr = g->g.Width >= g->g.Height ? (void *)GDISP_ROTATE_90 : (void *)GDISP_ROTATE_0; break; default: break; } } gdisp_lld_control(g); #if GDISP_NEED_CLIP || GDISP_NEED_VALIDATION if (what == GDISP_CONTROL_ORIENTATION) { // Best is hardware clipping #if GDISP_HARDWARE_CLIP #if GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT if (gvmt(g)->setclip) #endif { g->p.x = 0; g->p.y = 0; g->p.cx = g->g.Width; g->p.cy = g->g.Height; gdisp_lld_set_clip(g); } #if GDISP_HARDWARE_CLIP == HARDWARE_AUTODETECT else #endif #endif // Worst is software clipping #if GDISP_HARDWARE_CLIP != TRUE { g->clipx0 = 0; g->clipy0 = 0; g->clipx1 = g->g.Width; g->clipy1 = g->g.Height; } #endif } #endif MUTEX_EXIT(g); } #else void gdispGControl(GDisplay *g, unsigned what, void *value) { (void)g; (void)what; (void)value; /* Ignore everything */ } #endif #endif #if GDISP_NEED_QUERY #if GDISP_HARDWARE_QUERY void *gdispGQuery(GDisplay *g, unsigned what) { void *res; #if GDISP_HARDWARE_QUERY == HARDWARE_AUTODETECT if (!gvmt(g)->query) return -1; #endif MUTEX_ENTER(g); g->p.x = (coord_t)what; res = gdisp_lld_query(g); MUTEX_EXIT(g); return res; } #else void *gdispGQuery(GDisplay *g, unsigned what) { (void) what; return (void *)-1; } #endif #endif /*===========================================================================*/ /* High Level Driver Routines. */ /*===========================================================================*/ void gdispGDrawBox(GDisplay *g, coord_t x, coord_t y, coord_t cx, coord_t cy, color_t color) { if (cx <= 0 || cy <= 0) return; cx = x+cx-1; cy = y+cy-1; // cx, cy are now the end point. MUTEX_ENTER(g); g->p.color = color; if (cx - x > 2) { g->p.x = x; g->p.y = y; g->p.x1 = cx; hline_clip(g); if (y != cy) { g->p.x = x; g->p.y = cy; g->p.x1 = cx; hline_clip(g); if (cy - y > 2) { y++; cy--; g->p.x = x; g->p.y = y; g->p.y1 = cy; vline_clip(g); g->p.x = cx; g->p.y = y; g->p.y1 = cy; vline_clip(g); } } } else { g->p.x = x; g->p.y = y; g->p.y1 = cy; vline_clip(g); if (x != cx) { g->p.x = cx; g->p.y = y; g->p.y1 = cy; vline_clip(g); } } autoflush(g); MUTEX_EXIT(g); } #if GDISP_NEED_CONVEX_POLYGON void gdispGDrawPoly(GDisplay *g, coord_t tx, coord_t ty, const point *pntarray, unsigned cnt, color_t color) { const point *epnt, *p; epnt = &pntarray[cnt-1]; MUTEX_ENTER(g); g->p.color = color; for(p = pntarray; p < epnt; p++) { g->p.x=tx+p->x; g->p.y=ty+p->y; g->p.x1=tx+p[1].x; g->p.y1=ty+p[1].y; line_clip(g); } g->p.x=tx+p->x; g->p.y=ty+p->y; g->p.x1=tx+pntarray->x; g->p.y1=ty+pntarray->y; line_clip(g); autoflush(g); MUTEX_EXIT(g); } void gdispGFillConvexPoly(GDisplay *g, coord_t tx, coord_t ty, const point *pntarray, unsigned cnt, color_t color) { const point *lpnt, *rpnt, *epnts; fixed lx, rx, lk, rk; coord_t y, ymax, lxc, rxc; epnts = &pntarray[cnt-1]; /* Find a top point */ rpnt = pntarray; for(lpnt=pntarray+1; lpnt <= epnts; lpnt++) { if (lpnt->y < rpnt->y) rpnt = lpnt; } lx = rx = FIXED(rpnt->x); y = rpnt->y; /* Work out the slopes of the two attached line segs */ for (lpnt = rpnt <= pntarray ? epnts : rpnt-1; lpnt->y == y; cnt--) { if (!cnt) return; lx = FIXED(lpnt->x); lpnt = lpnt <= pntarray ? epnts : lpnt-1; } for (rpnt = rpnt >= epnts ? pntarray : rpnt+1; rpnt->y == y; cnt--) { if (!cnt) return; rx = FIXED(rpnt->x); rpnt = rpnt >= epnts ? pntarray : rpnt+1; } lk = (FIXED(lpnt->x) - lx) / (lpnt->y - y); rk = (FIXED(rpnt->x) - rx) / (rpnt->y - y); // Add error correction for rounding lx += FIXED0_5; rx += FIXED0_5; // Do all the line segments MUTEX_ENTER(g); g->p.color = color; while(1) { /* Determine our boundary */ ymax = rpnt->y < lpnt->y ? rpnt->y : lpnt->y; /* Scan down the line segments until we hit a boundary */ for(; y < ymax; y++) { lxc = NONFIXED(lx); rxc = NONFIXED(rx); /* * Doesn't print the right hand point in order to allow polygon joining. * Also ensures that we draw from left to right with the minimum number * of pixels. */ if (lxc < rxc) { g->p.x=tx+lxc; g->p.y=ty+y; g->p.x1=tx+rxc-1; hline_clip(g); } else if (lxc > rxc) { g->p.x=tx+rxc; g->p.y=ty+y; g->p.x1=tx+lxc-1; hline_clip(g); } lx += lk; rx += rk; } if (!cnt) { autoflush(g); MUTEX_EXIT(g); return; } cnt--; /* Replace the appropriate point */ if (ymax == lpnt->y) { for (lpnt = lpnt <= pntarray ? epnts : lpnt-1; lpnt->y == y; cnt--) { if (!cnt) { autoflush(g); MUTEX_EXIT(g); return; } lx = FIXED(lpnt->x); lpnt = lpnt <= pntarray ? epnts : lpnt-1; } lk = (FIXED(lpnt->x) - lx) / (lpnt->y - y); lx += FIXED0_5; } else { for (rpnt = rpnt >= epnts ? pntarray : rpnt+1; rpnt->y == y; cnt--) { if (!cnt) { autoflush(g); MUTEX_EXIT(g); return; } rx = FIXED(rpnt->x); rpnt = rpnt >= epnts ? pntarray : rpnt+1; } rk = (FIXED(rpnt->x) - rx) / (rpnt->y - y); rx += FIXED0_5; } } } static int32_t rounding_div(const int32_t n, const int32_t d) { if ((n < 0) != (d < 0)) return (n - d/2) / d; else return (n + d/2) / d; } /* Find a vector (nx, ny) that is perpendicular to (dx, dy) and has length * equal to 'norm'. */ static void get_normal_vector(coord_t dx, coord_t dy, coord_t norm, coord_t *nx, coord_t *ny) { int32_t dx2, dy2, len_sq, norm_sq, norm_sq2; int div, step, best, delta, abs_delta; dx2 = dx; dy2 = dy; norm_sq = (int32_t)norm * norm; norm_sq2 = norm_sq * 512; /* Scale dx2 and dy2 so that * len_sq / 2 <= norm_sq * 512 <= len_sq * 2. * The scaling by 512 is to yield higher accuracy in division later. */ len_sq = dx2 * dx2 + dy2 * dy2; if (len_sq < norm_sq2) { while (len_sq && len_sq < norm_sq2) { len_sq <<= 2; dx2 <<= 1; dy2 <<= 1; } } else if (len_sq > norm_sq2) { while (len_sq && len_sq > norm_sq2) { len_sq >>= 2; dx2 >>= 1; dy2 >>= 1; } } /* Now find the divider div so that * len_sq / div^2 == norm_sq i.e. div = sqrt(len_sq / norm_sq) * * This is done using bisection search to avoid the need for floating * point sqrt. * * Based on previous scaling, we know that * len_sq / 2 <= norm_sq * 512 <=> div <= sqrt(1024) = 32 * len_sq * 2 >= norm_sq * 512 <=> div >= sqrt(256) = 16 */ div = 24; step = 8; best = 256; for (;;) { dx = dx2 / div; dy = dy2 / div; len_sq = dx*dx + dy*dy; delta = len_sq - norm_sq; abs_delta = (delta >= 0) ? delta : -delta; if (abs_delta < best) { *nx = dy; *ny = -dx; best = abs_delta; } if (delta > 0) div += step; else if (delta < 0) div -= step; else if (delta == 0) break; if (step == 0) break; else step >>= 1; /* Do one round with step = 0 to calculate final result. */ } } void gdispGDrawThickLine(GDisplay *g, coord_t x0, coord_t y0, coord_t x1, coord_t y1, color_t color, coord_t width, bool_t round) { coord_t dx, dy, nx = 0, ny = 0; /* Compute the direction vector for the line */ dx = x1 - x0; dy = y1 - y0; /* Draw a small dot if the line length is zero. */ if (dx == 0 && dy == 0) dx += 1; /* Compute a normal vector with length 'width'. */ get_normal_vector(dx, dy, width, &nx, &ny); /* Handle 1px wide lines gracefully */ if (nx == 0 && ny == 0) nx = 1; /* Offset the x0,y0 by half the width of the line. This way we * can keep the width of the line accurate even if it is not evenly * divisible by 2. */ { x0 -= rounding_div(nx, 2); y0 -= rounding_div(ny, 2); } /* Fill in the point array */ if (!round) { /* We use 4 points for the basic line shape: * * pt1 pt2 * (+n) ------------------------------------ (d+n) * | | * (0,0) ----------------------------------- (d) * pt0 pt3 */ point pntarray[4]; pntarray[0].x = 0; pntarray[0].y = 0; pntarray[1].x = nx; pntarray[1].y = ny; pntarray[2].x = dx + nx; pntarray[2].y = dy + ny; pntarray[3].x = dx; pntarray[3].y = dy; gdispGFillConvexPoly(g, x0, y0, pntarray, 4, color); } else { /* We use 4 points for basic shape, plus 4 extra points for ends: * * pt3 ------------------ pt4 * / \ * pt2 pt5 * | | * pt1 pt6 * \ / * pt0 -------------------pt7 */ point pntarray[8]; coord_t nx2, ny2; /* Magic numbers: * 75/256 = sin(45) / (1 + sqrt(2)) diagonal octagon segments * 106/256 = 1 / (1 + sqrt(2)) octagon side * 53/256 = 0.5 / (1 + sqrt(2)) half of octagon side * 150/256 = 1 - 1 / (1 + sqrt(2)) octagon height minus one side */ /* Rotate the normal vector 45 deg counter-clockwise and reduce * to 1 / (1 + sqrt(2)) length, for forming octagonal ends. */ nx2 = rounding_div((nx * 75 + ny * 75), 256); ny2 = rounding_div((-nx * 75 + ny * 75), 256); /* Offset and extend the line so that the center of the octagon * is at the specified points. */ x0 += ny * 53 / 256; y0 -= nx * 53 / 256; dx -= ny * 106 / 256; dy += nx * 106 / 256; /* Now fill in the points by summing the calculated vectors. */ pntarray[0].x = 0; pntarray[0].y = 0; pntarray[1].x = nx2; pntarray[1].y = ny2; pntarray[2].x = nx2 + nx * 106/256; pntarray[2].y = ny2 + ny * 106/256; pntarray[3].x = nx; pntarray[3].y = ny; pntarray[4].x = dx + nx; pntarray[4].y = dy + ny; pntarray[5].x = dx + nx - nx2; pntarray[5].y = dy + ny - ny2; pntarray[6].x = dx + nx * 150/256 - nx2; pntarray[6].y = dy + ny * 150/256 - ny2; pntarray[7].x = dx; pntarray[7].y = dy; gdispGFillConvexPoly(g, x0, y0, pntarray, 8, color); } } #endif #if GDISP_NEED_TEXT #include "mcufont/mcufont.h" #if GDISP_NEED_ANTIALIAS && GDISP_HARDWARE_PIXELREAD static void drawcharline(int16_t x, int16_t y, uint8_t count, uint8_t alpha, void *state) { #define GD ((GDisplay *)state) if (y < GD->t.clipy0 || y >= GD->t.clipy1 || x+count <= GD->t.clipx0 || x >= GD->t.clipx1) return; if (x < GD->t.clipx0) { count -= GD->t.clipx0 - x; x = GD->t.clipx0; } if (x+count > GD->t.clipx1) count = GD->t.clipx1 - x; if (alpha == 255) { GD->p.x = x; GD->p.y = y; GD->p.x1 = x+count-1; GD->p.color = GD->t.color; hline_clip(GD); } else { for (; count; count--, x++) { GD->p.x = x; GD->p.y = y; GD->p.color = gdispBlendColor(GD->t.color, gdisp_lld_get_pixel_color(GD), alpha); drawpixel_clip(GD); } } #undef GD } #else static void drawcharline(int16_t x, int16_t y, uint8_t count, uint8_t alpha, void *state) { #define GD ((GDisplay *)state) if (y < GD->t.clipy0 || y >= GD->t.clipy1 || x+count <= GD->t.clipx0 || x >= GD->t.clipx1) return; if (x < GD->t.clipx0) { count -= GD->t.clipx0 - x; x = GD->t.clipx0; } if (x+count > GD->t.clipx1) count = GD->t.clipx1 - x; if (alpha > 0x80) { // A best approximation when using anti-aliased fonts but we can't actually draw them anti-aliased GD->p.x = x; GD->p.y = y; GD->p.x1 = x+count-1; GD->p.color = GD->t.color; hline_clip(GD); } #undef GD } #endif #if GDISP_NEED_ANTIALIAS static void fillcharline(int16_t x, int16_t y, uint8_t count, uint8_t alpha, void *state) { #define GD ((GDisplay *)state) if (y < GD->t.clipy0 || y >= GD->t.clipy1 || x+count <= GD->t.clipx0 || x >= GD->t.clipx1) return; if (x < GD->t.clipx0) { count -= GD->t.clipx0 - x; x = GD->t.clipx0; } if (x+count > GD->t.clipx1) count = GD->t.clipx1 - x; if (alpha == 255) { GD->p.color = GD->t.color; } else { GD->p.color = gdispBlendColor(GD->t.color, GD->t.bgcolor, alpha); } GD->p.x = x; GD->p.y = y; GD->p.x1 = x+count-1; hline_clip(GD); #undef GD } #else #define fillcharline drawcharline #endif /* Callback to render characters. */ static uint8_t drawcharglyph(int16_t x, int16_t y, mf_char ch, void *state) { #define GD ((GDisplay *)state) return mf_render_character(GD->t.font, x, y, ch, drawcharline, state); #undef GD } /* Callback to render characters. */ static uint8_t fillcharglyph(int16_t x, int16_t y, mf_char ch, void *state) { #define GD ((GDisplay *)state) return mf_render_character(GD->t.font, x, y, ch, fillcharline, state); #undef GD } void gdispGDrawChar(GDisplay *g, coord_t x, coord_t y, uint16_t c, font_t font, color_t color) { MUTEX_ENTER(g); g->t.font = font; g->t.clipx0 = x; g->t.clipy0 = y; g->t.clipx1 = x + mf_character_width(font, c) + font->baseline_x; g->t.clipy1 = y + font->height; g->t.color = color; mf_render_character(font, x, y, c, drawcharline, g); autoflush(g); MUTEX_EXIT(g); } void gdispGFillChar(GDisplay *g, coord_t x, coord_t y, uint16_t c, font_t font, color_t color, color_t bgcolor) { MUTEX_ENTER(g); g->p.cx = mf_character_width(font, c) + font->baseline_x; g->p.cy = font->height; g->t.font = font; g->t.clipx0 = g->p.x = x; g->t.clipy0 = g->p.y = y; g->t.clipx1 = g->p.x+g->p.cx; g->t.clipy1 = g->p.y+g->p.cy; g->t.color = color; g->t.bgcolor = g->p.color = bgcolor; TEST_CLIP_AREA(g) { fillarea(g); mf_render_character(font, x, y, c, fillcharline, g); } autoflush(g); MUTEX_EXIT(g); } void gdispGDrawString(GDisplay *g, coord_t x, coord_t y, const char *str, font_t font, color_t color) { MUTEX_ENTER(g); g->t.font = font; g->t.clipx0 = x; g->t.clipy0 = y; g->t.clipx1 = x + mf_get_string_width(font, str, 0, 0); g->t.clipy1 = y + font->height; g->t.color = color; mf_render_aligned(font, x+font->baseline_x, y, MF_ALIGN_LEFT, str, 0, drawcharglyph, g); autoflush(g); MUTEX_EXIT(g); } void gdispGFillString(GDisplay *g, coord_t x, coord_t y, const char *str, font_t font, color_t color, color_t bgcolor) { MUTEX_ENTER(g); g->p.cx = mf_get_string_width(font, str, 0, 0); g->p.cy = font->height; g->t.font = font; g->t.clipx0 = g->p.x = x; g->t.clipy0 = g->p.y = y; g->t.clipx1 = g->p.x+g->p.cx; g->t.clipy1 = g->p.y+g->p.cy; g->t.color = color; g->t.bgcolor = g->p.color = bgcolor; TEST_CLIP_AREA(g) { fillarea(g); mf_render_aligned(font, x+font->baseline_x, y, MF_ALIGN_LEFT, str, 0, fillcharglyph, g); } autoflush(g); MUTEX_EXIT(g); } void gdispGDrawStringBox(GDisplay *g, coord_t x, coord_t y, coord_t cx, coord_t cy, const char* str, font_t font, color_t color, justify_t justify) { MUTEX_ENTER(g); g->t.font = font; g->t.clipx0 = x; g->t.clipy0 = y; g->t.clipx1 = x+cx; g->t.clipy1 = y+cy; g->t.color = color; /* Select the anchor position */ switch(justify) { case justifyCenter: x += (cx + 1) / 2; break; case justifyRight: x += cx; break; default: // justifyLeft x += font->baseline_x; break; } y += (cy+1 - font->height)/2; mf_render_aligned(font, x, y, justify, str, 0, drawcharglyph, g); autoflush(g); MUTEX_EXIT(g); } void gdispGFillStringBox(GDisplay *g, coord_t x, coord_t y, coord_t cx, coord_t cy, const char* str, font_t font, color_t color, color_t bgcolor, justify_t justify) { MUTEX_ENTER(g); g->p.cx = cx; g->p.cy = cy; g->t.font = font; g->t.clipx0 = g->p.x = x; g->t.clipy0 = g->p.y = y; g->t.clipx1 = x+cx; g->t.clipy1 = y+cy; g->t.color = color; g->t.bgcolor = g->p.color = bgcolor; TEST_CLIP_AREA(g) { // background fill fillarea(g); /* Select the anchor position */ switch(justify) { case justifyCenter: x += (cx + 1) / 2; break; case justifyRight: x += cx; break; default: // justifyLeft x += font->baseline_x; break; } y += (cy+1 - font->height)/2; /* Render */ mf_render_aligned(font, x, y, justify, str, 0, fillcharglyph, g); } autoflush(g); MUTEX_EXIT(g); } coord_t gdispGetFontMetric(font_t font, fontmetric_t metric) { /* No mutex required as we only read static data */ switch(metric) { case fontHeight: return font->height; case fontDescendersHeight: return font->height - font->baseline_y; case fontLineSpacing: return font->line_height; case fontCharPadding: return 0; case fontMinWidth: return font->min_x_advance; case fontMaxWidth: return font->max_x_advance; case fontBaselineX: return font->baseline_x; case fontBaselineY: return font->baseline_y; } return 0; } coord_t gdispGetCharWidth(char c, font_t font) { /* No mutex required as we only read static data */ return mf_character_width(font, c); } coord_t gdispGetStringWidthCount(const char* str, font_t font, uint16_t count) { if (!str) { return 0; } // No mutex required as we only read static data #if GDISP_NEED_TEXT_KERNING return mf_get_string_width(font, str, count, TRUE); #else return mf_get_string_width(font, str, count, FALSE); #endif } coord_t gdispGetStringWidth(const char* str, font_t font) { if (!str) { return 0; } // No mutex required as we only read static data return gdispGetStringWidthCount(str, font, 0); } #endif color_t gdispBlendColor(color_t fg, color_t bg, uint8_t alpha) { uint16_t fg_ratio = alpha + 1; uint16_t bg_ratio = 256 - alpha; uint16_t r, g, b; r = RED_OF(fg) * fg_ratio; g = GREEN_OF(fg) * fg_ratio; b = BLUE_OF(fg) * fg_ratio; r += RED_OF(bg) * bg_ratio; g += GREEN_OF(bg) * bg_ratio; b += BLUE_OF(bg) * bg_ratio; r >>= 8; g >>= 8; b >>= 8; return RGB2COLOR(r, g, b); } color_t gdispContrastColor(color_t color) { uint16_t r, g, b; r = RED_OF(color) > 128 ? 0 : 255; g = GREEN_OF(color) > 128 ? 0 : 255; b = BLUE_OF(color) > 128 ? 0 : 255; return RGB2COLOR(r, g, b); } #if (!defined(gdispPackPixels) && !defined(GDISP_PIXELFORMAT_CUSTOM)) void gdispPackPixels(pixel_t *buf, coord_t cx, coord_t x, coord_t y, color_t color) { /* No mutex required as we only read static data */ #if defined(GDISP_PIXELFORMAT_RGB888) #error "GDISP: Packed pixels not supported yet" #elif defined(GDISP_PIXELFORMAT_RGB444) #error "GDISP: Packed pixels not supported yet" #elif defined(GDISP_PIXELFORMAT_RGB666) #error "GDISP: Packed pixels not supported yet" #elif #error "GDISP: Unsupported packed pixel format" #endif } #endif #endif /* GFX_USE_GDISP */