From 4d983653744906bd172f792c5895bbe56c584b3b Mon Sep 17 00:00:00 2001 From: jacobseptember Date: Fri, 4 Jan 2019 11:05:43 -0500 Subject: Changes to blocking interrupts, etc for PR change --- ISPProtocol.c | 617 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 617 insertions(+) create mode 100644 ISPProtocol.c diff --git a/ISPProtocol.c b/ISPProtocol.c new file mode 100644 index 000000000..ffe2c56db --- /dev/null +++ b/ISPProtocol.c @@ -0,0 +1,617 @@ +/* + LUFA Library + Copyright (C) Dean Camera, 2018. + + dean [at] fourwalledcubicle [dot] com + www.lufa-lib.org +*/ + +/* + Copyright 2018 Dean Camera (dean [at] fourwalledcubicle [dot] com) + + Function ISPProtocol_Calibrate() copyright 2018 Jacob September + + Permission to use, copy, modify, distribute, and sell this + software and its documentation for any purpose is hereby granted + without fee, provided that the above copyright notice appear in + all copies and that both that the copyright notice and this + permission notice and warranty disclaimer appear in supporting + documentation, and that the name of the author not be used in + advertising or publicity pertaining to distribution of the + software without specific, written prior permission. + + The author disclaims all warranties with regard to this + software, including all implied warranties of merchantability + and fitness. In no event shall the author be liable for any + special, indirect or consequential damages or any damages + whatsoever resulting from loss of use, data or profits, whether + in an action of contract, negligence or other tortious action, + arising out of or in connection with the use or performance of + this software. +*/ + +/** \file + * + * ISP Protocol handler, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices. + */ + +#include "ISPProtocol.h" +#include + +#if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__) + +/** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on + * the attached device, returning success or failure back to the host. + */ +void ISPProtocol_EnterISPMode(void) +{ + struct + { + uint8_t TimeoutMS; + uint8_t PinStabDelayMS; + uint8_t ExecutionDelayMS; + uint8_t SynchLoops; + uint8_t ByteDelay; + uint8_t PollValue; + uint8_t PollIndex; + uint8_t EnterProgBytes[4]; + } Enter_ISP_Params; + + Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NULL); + + Endpoint_ClearOUT(); + Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); + Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); + + uint8_t ResponseStatus = STATUS_CMD_FAILED; + + CurrentAddress = 0; + + /* Perform execution delay, initialize SPI bus */ + ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS); + ISPTarget_EnableTargetISP(); + + ISPTarget_ChangeTargetResetLine(true); + ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS); + + /* Continuously attempt to synchronize with the target until either the number of attempts specified + * by the host has exceeded, or the the device sends back the expected response values */ + while (Enter_ISP_Params.SynchLoops-- && TimeoutTicksRemaining) + { + uint8_t ResponseBytes[4]; + + for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++) + { + ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay); + ResponseBytes[RByte] = ISPTarget_TransferByte(Enter_ISP_Params.EnterProgBytes[RByte]); + } + + /* Check if polling disabled, or if the polled value matches the expected value */ + if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue)) + { + ResponseStatus = STATUS_CMD_OK; + break; + } + else + { + ISPTarget_ChangeTargetResetLine(false); + ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS); + ISPTarget_ChangeTargetResetLine(true); + ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS); + } + } + + Endpoint_Write_8(CMD_ENTER_PROGMODE_ISP); + Endpoint_Write_8(ResponseStatus); + Endpoint_ClearIN(); +} + +/** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */ +void ISPProtocol_LeaveISPMode(void) +{ + struct + { + uint8_t PreDelayMS; + uint8_t PostDelayMS; + } Leave_ISP_Params; + + Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NULL); + + Endpoint_ClearOUT(); + Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); + Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); + + /* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */ + ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS); + ISPTarget_ChangeTargetResetLine(false); + ISPTarget_DisableTargetISP(); + ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS); + + Endpoint_Write_8(CMD_LEAVE_PROGMODE_ISP); + Endpoint_Write_8(STATUS_CMD_OK); + Endpoint_ClearIN(); +} + +/** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes, + * words or pages of data to the attached device. + * + * \param[in] V2Command Issued V2 Protocol command byte from the host + */ +void ISPProtocol_ProgramMemory(uint8_t V2Command) +{ + struct + { + uint16_t BytesToWrite; + uint8_t ProgrammingMode; + uint8_t DelayMS; + uint8_t ProgrammingCommands[3]; + uint8_t PollValue1; + uint8_t PollValue2; + uint8_t ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the + } Write_Memory_Params; // whole page and ACK the packet as fast as possible to prevent it from aborting + + Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) - + sizeof(Write_Memory_Params.ProgData)), NULL); + Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite); + + if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData)) + { + Endpoint_ClearOUT(); + Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); + Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); + + Endpoint_Write_8(V2Command); + Endpoint_Write_8(STATUS_CMD_FAILED); + Endpoint_ClearIN(); + return; + } + + Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NULL); + + // The driver will terminate transfers that are a round multiple of the endpoint bank in size with a ZLP, need + // to catch this and discard it before continuing on with packet processing to prevent communication issues + if (((sizeof(uint8_t) + sizeof(Write_Memory_Params) - sizeof(Write_Memory_Params.ProgData)) + + Write_Memory_Params.BytesToWrite) % AVRISP_DATA_EPSIZE == 0) + { + Endpoint_ClearOUT(); + Endpoint_WaitUntilReady(); + } + + Endpoint_ClearOUT(); + Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); + Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); + + uint8_t ProgrammingStatus = STATUS_CMD_OK; + uint8_t PollValue = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 : + Write_Memory_Params.PollValue2; + uint16_t PollAddress = 0; + uint8_t* NextWriteByte = Write_Memory_Params.ProgData; + uint16_t PageStartAddress = (CurrentAddress & 0xFFFF); + + for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++) + { + uint8_t ByteToWrite = *(NextWriteByte++); + uint8_t ProgrammingMode = Write_Memory_Params.ProgrammingMode; + + /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */ + if (MustLoadExtendedAddress) + { + ISPTarget_LoadExtendedAddress(); + MustLoadExtendedAddress = false; + } + + ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[0]); + ISPTarget_SendByte(CurrentAddress >> 8); + ISPTarget_SendByte(CurrentAddress & 0xFF); + ISPTarget_SendByte(ByteToWrite); + + /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high + * or low byte at the current word address */ + if (V2Command == CMD_PROGRAM_FLASH_ISP) + Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK; + + /* Check to see if we have a valid polling address */ + if (!(PollAddress) && (ByteToWrite != PollValue)) + { + if ((CurrentByte & 0x01) && (V2Command == CMD_PROGRAM_FLASH_ISP)) + Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK; + else + Write_Memory_Params.ProgrammingCommands[2] &= ~READ_WRITE_HIGH_BYTE_MASK; + + PollAddress = (CurrentAddress & 0xFFFF); + } + + /* If in word programming mode, commit the byte to the target's memory */ + if (!(ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK)) + { + /* If the current polling address is invalid, switch to timed delay write completion mode */ + if (!(PollAddress) && !(ProgrammingMode & PROG_MODE_WORD_READYBUSY_MASK)) + ProgrammingMode = (ProgrammingMode & ~PROG_MODE_WORD_VALUE_MASK) | PROG_MODE_WORD_TIMEDELAY_MASK; + + ProgrammingStatus = ISPTarget_WaitForProgComplete(ProgrammingMode, PollAddress, PollValue, + Write_Memory_Params.DelayMS, + Write_Memory_Params.ProgrammingCommands[2]); + + /* Abort the programming loop early if the byte/word programming failed */ + if (ProgrammingStatus != STATUS_CMD_OK) + break; + + /* Must reset the polling address afterwards, so it is not erroneously used for the next byte */ + PollAddress = 0; + } + + /* EEPROM just increments the address each byte, flash needs to increment on each word and + * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended + * address boundary has been crossed during FLASH memory programming */ + if ((CurrentByte & 0x01) || (V2Command == CMD_PROGRAM_EEPROM_ISP)) + { + CurrentAddress++; + + if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF)) + MustLoadExtendedAddress = true; + } + } + + /* If the current page must be committed, send the PROGRAM PAGE command to the target */ + if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK) + { + ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[1]); + ISPTarget_SendByte(PageStartAddress >> 8); + ISPTarget_SendByte(PageStartAddress & 0xFF); + ISPTarget_SendByte(0x00); + + /* Check if polling is enabled and possible, if not switch to timed delay mode */ + if ((Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_VALUE_MASK) && !(PollAddress)) + { + Write_Memory_Params.ProgrammingMode = (Write_Memory_Params.ProgrammingMode & ~PROG_MODE_PAGED_VALUE_MASK) | + PROG_MODE_PAGED_TIMEDELAY_MASK; + } + + ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue, + Write_Memory_Params.DelayMS, + Write_Memory_Params.ProgrammingCommands[2]); + + /* Check to see if the FLASH address has crossed the extended address boundary */ + if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF)) + MustLoadExtendedAddress = true; + } + + Endpoint_Write_8(V2Command); + Endpoint_Write_8(ProgrammingStatus); + Endpoint_ClearIN(); +} + +/** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes, + * words or pages of data from the attached device. + * + * \param[in] V2Command Issued V2 Protocol command byte from the host + */ +void ISPProtocol_ReadMemory(uint8_t V2Command) +{ + struct + { + uint16_t BytesToRead; + uint8_t ReadMemoryCommand; + } Read_Memory_Params; + + Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NULL); + Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead); + + Endpoint_ClearOUT(); + Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); + Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); + + Endpoint_Write_8(V2Command); + Endpoint_Write_8(STATUS_CMD_OK); + + /* Read each byte from the device and write them to the packet for the host */ + for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++) + { + /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */ + if (MustLoadExtendedAddress) + { + ISPTarget_LoadExtendedAddress(); + MustLoadExtendedAddress = false; + } + + /* Read the next byte from the desired memory space in the device */ + ISPTarget_SendByte(Read_Memory_Params.ReadMemoryCommand); + ISPTarget_SendByte(CurrentAddress >> 8); + ISPTarget_SendByte(CurrentAddress & 0xFF); + Endpoint_Write_8(ISPTarget_ReceiveByte()); + + /* Check if the endpoint bank is currently full, if so send the packet */ + if (!(Endpoint_IsReadWriteAllowed())) + { + Endpoint_ClearIN(); + Endpoint_WaitUntilReady(); + } + + /* AVR FLASH addressing requires us to modify the read command based on if we are reading a high + * or low byte at the current word address */ + if (V2Command == CMD_READ_FLASH_ISP) + Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK; + + /* EEPROM just increments the address each byte, flash needs to increment on each word and + * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended + * address boundary has been crossed */ + if ((CurrentByte & 0x01) || (V2Command == CMD_READ_EEPROM_ISP)) + { + CurrentAddress++; + + if ((V2Command != CMD_READ_EEPROM_ISP) && !(CurrentAddress & 0xFFFF)) + MustLoadExtendedAddress = true; + } + } + + Endpoint_Write_8(STATUS_CMD_OK); + + bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed()); + Endpoint_ClearIN(); + + /* Ensure last packet is a short packet to terminate the transfer */ + if (IsEndpointFull) + { + Endpoint_WaitUntilReady(); + Endpoint_ClearIN(); + Endpoint_WaitUntilReady(); + } +} + +/** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */ +void ISPProtocol_ChipErase(void) +{ + struct + { + uint8_t EraseDelayMS; + uint8_t PollMethod; + uint8_t EraseCommandBytes[4]; + } Erase_Chip_Params; + + Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NULL); + + Endpoint_ClearOUT(); + Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); + Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); + + uint8_t ResponseStatus = STATUS_CMD_OK; + + /* Send the chip erase commands as given by the host to the device */ + for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++) + ISPTarget_SendByte(Erase_Chip_Params.EraseCommandBytes[SByte]); + + /* Use appropriate command completion check as given by the host (delay or busy polling) */ + if (!(Erase_Chip_Params.PollMethod)) + ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS); + else + ResponseStatus = ISPTarget_WaitWhileTargetBusy(); + + Endpoint_Write_8(CMD_CHIP_ERASE_ISP); + Endpoint_Write_8(ResponseStatus); + Endpoint_ClearIN(); +} + +/** Global volatile variables used in ISRs relating to ISPProtocol_Calibrate() */ +volatile uint16_t HalfCyclesRemaining; +volatile uint8_t ResponseTogglesRemaining; + +/** ISR to toggle MOSI pin when TIMER1 overflows */ +ISR(TIMER1_OVF_vect, ISR_BLOCK) +{ + PINB |= (1 << PB2); // toggle PB2 (MOSI) by writing 1 to its bit in PINB + HalfCyclesRemaining--; +} + +/** ISR to listen for toggles on MISO pin */ +ISR(PCINT0_vect, ISR_BLOCK) +{ + ResponseTogglesRemaining--; +} + +/** Handler for the CMD_OSCCAL command, entering RC-calibration mode as specified in AVR053 */ +void ISPProtocol_Calibrate(void) +{ + #define CALIB_CLOCK 32768 + // CALIB_TICKS uses 2x frequency because we toggle twice per cycle + // and adds 1/2 denom. to nom. to ensure rounding instead of flooring of integer division + #define CALIB_TICKS ( (F_CPU+CALIB_CLOCK) / (2*CALIB_CLOCK) ) + // Per AVR053, calibration guaranteed to take 1024 cycles (2048 half-cycles) or fewer; + // add some cycles for response delay (5-10 after success) and response itself + #define HALF_CYCLE_LIMIT (2*1024 + 50) + #define SUCCESS_TOGGLE_NUM 8 + + uint8_t ResponseStatus = STATUS_CMD_OK; + + /* Don't entirely know why this is needed, something to do with the USB communication back to PC */ + Endpoint_ClearOUT(); + Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); + Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); + + /* Enable pullup on MISO and release ~RESET */ + DDRB = ~(1 << PB3); // explicitly set all PORTB to outputs except PB3 (MISO) + PORTB |= ( (1 << PB4) | (1 << PB3) ); // set PB4 (TARG_RST) high (i.e. not reset) and enable pullup on PB3 (MISO) + + /* Set up MISO pin (PCINT3) to listen for toggles */ + PCMSK0 = (1 << PCINT3); // set mask to enable PCINT on only Pin 3 (MISO) + + /* Set up timer that fires at a rate of 65536 Hz - this will drive the MOSI toggle */ + OCR1A = CALIB_TICKS - 1; // zero-indexed counter; for 16MHz system clock, this becomes 243 + TCCR1A = ( (1 << WGM11) | (1 << WGM10) ); // set for fast PWM, TOP = OCR1A + TCCR1B = ( (1 << WGM13) | (1 << WGM12) | (1 << CS10) ); // ... and no clock prescaling + TCNT1 = 0; // reset counter + + /* Initialize counter variables */ + HalfCyclesRemaining = HALF_CYCLE_LIMIT; + ResponseTogglesRemaining = SUCCESS_TOGGLE_NUM; + + /* Turn on interrupts */ + PCICR |= (1 << PCIE0); // enable interrupts for PCINT7:0 (don't touch setting for PCINT12:8) + TIMSK1 = (1 << TOIE1); // enable T1 OVF interrupt (and no other T1 interrupts) + + /* Turn on global interrupts for the following block, restoring current state at end */ + NONATOMIC_BLOCK(NONATOMIC_RESTORESTATE) + { + /* Let device do its calibration, wait for reponse on MISO */ + while ( HalfCyclesRemaining && ResponseTogglesRemaining ) + { + // do nothing... + } + + /* Disable interrupts */ + PCICR &= ~(1 << PCIE0); + TIMSK1 = 0; + } + + /* Check if device responded with a success message or if we timed out */ + if (ResponseTogglesRemaining) + { + ResponseStatus = STATUS_CMD_TOUT; + } + + /* Report back to PC via USB */ + Endpoint_Write_8(CMD_OSCCAL); + Endpoint_Write_8(ResponseStatus); + Endpoint_ClearIN(); + +} // void ISPProtocol_Calibrate(void) + +/** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands, + * reading the requested configuration byte from the device. + * + * \param[in] V2Command Issued V2 Protocol command byte from the host + */ +void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command) +{ + struct + { + uint8_t RetByte; + uint8_t ReadCommandBytes[4]; + } Read_FuseLockSigOSCCAL_Params; + + Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NULL); + + Endpoint_ClearOUT(); + Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); + Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); + + uint8_t ResponseBytes[4]; + + /* Send the Fuse or Lock byte read commands as given by the host to the device, store response */ + for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++) + ResponseBytes[RByte] = ISPTarget_TransferByte(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]); + + Endpoint_Write_8(V2Command); + Endpoint_Write_8(STATUS_CMD_OK); + Endpoint_Write_8(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]); + Endpoint_Write_8(STATUS_CMD_OK); + Endpoint_ClearIN(); +} + +/** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration + * byte to the device. + * + * \param[in] V2Command Issued V2 Protocol command byte from the host + */ +void ISPProtocol_WriteFuseLock(uint8_t V2Command) +{ + struct + { + uint8_t WriteCommandBytes[4]; + } Write_FuseLockSig_Params; + + Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NULL); + + Endpoint_ClearOUT(); + Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); + Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); + + /* Send the Fuse or Lock byte program commands as given by the host to the device */ + for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++) + ISPTarget_SendByte(Write_FuseLockSig_Params.WriteCommandBytes[SByte]); + + Endpoint_Write_8(V2Command); + Endpoint_Write_8(STATUS_CMD_OK); + Endpoint_Write_8(STATUS_CMD_OK); + Endpoint_ClearIN(); +} + +/** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */ +void ISPProtocol_SPIMulti(void) +{ + struct + { + uint8_t TxBytes; + uint8_t RxBytes; + uint8_t RxStartAddr; + uint8_t TxData[255]; + } SPI_Multi_Params; + + Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NULL); + Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NULL); + + Endpoint_ClearOUT(); + Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); + Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); + + Endpoint_Write_8(CMD_SPI_MULTI); + Endpoint_Write_8(STATUS_CMD_OK); + + uint8_t CurrTxPos = 0; + uint8_t CurrRxPos = 0; + + /* Write out bytes to transmit until the start of the bytes to receive is met */ + while (CurrTxPos < SPI_Multi_Params.RxStartAddr) + { + if (CurrTxPos < SPI_Multi_Params.TxBytes) + ISPTarget_SendByte(SPI_Multi_Params.TxData[CurrTxPos]); + else + ISPTarget_SendByte(0); + + CurrTxPos++; + } + + /* Transmit remaining bytes with padding as needed, read in response bytes */ + while (CurrRxPos < SPI_Multi_Params.RxBytes) + { + if (CurrTxPos < SPI_Multi_Params.TxBytes) + Endpoint_Write_8(ISPTarget_TransferByte(SPI_Multi_Params.TxData[CurrTxPos++])); + else + Endpoint_Write_8(ISPTarget_ReceiveByte()); + + /* Check to see if we have filled the endpoint bank and need to send the packet */ + if (!(Endpoint_IsReadWriteAllowed())) + { + Endpoint_ClearIN(); + Endpoint_WaitUntilReady(); + } + + CurrRxPos++; + } + + Endpoint_Write_8(STATUS_CMD_OK); + + bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed()); + Endpoint_ClearIN(); + + /* Ensure last packet is a short packet to terminate the transfer */ + if (IsEndpointFull) + { + Endpoint_WaitUntilReady(); + Endpoint_ClearIN(); + Endpoint_WaitUntilReady(); + } +} + +/** Blocking delay for a given number of milliseconds. This provides a simple wrapper around + * the avr-libc provided delay function, so that the delay function can be called with a + * constant value (to prevent run-time floating point operations being required). + * + * \param[in] DelayMS Number of milliseconds to delay for + */ +void ISPProtocol_DelayMS(uint8_t DelayMS) +{ + while (DelayMS-- && TimeoutTicksRemaining) + Delay_MS(1); +} + +#endif -- cgit v1.2.3