// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file tests some commonly used argument matchers. #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace testing { namespace internal { string FormatMatcherDescriptionSyntaxError(const char* description, const char* error_pos); int GetParamIndex(const char* param_names[], const string& param_name); string JoinAsTuple(const Strings& fields); bool SkipPrefix(const char* prefix, const char** pstr); } // namespace internal namespace gmock_matchers_test { using std::make_pair; using std::map; using std::multimap; using std::pair; using std::stringstream; using std::tr1::make_tuple; using testing::A; using testing::AllArgs; using testing::AllOf; using testing::An; using testing::AnyOf; using testing::ByRef; using testing::ContainsRegex; using testing::DoubleEq; using testing::EndsWith; using testing::Eq; using testing::ExplainMatchResult; using testing::Field; using testing::FloatEq; using testing::Ge; using testing::Gt; using testing::HasSubstr; using testing::IsNull; using testing::Key; using testing::Le; using testing::Lt; using testing::MakeMatcher; using testing::MakePolymorphicMatcher; using testing::MatchResultListener; using testing::Matcher; using testing::MatcherCast; using testing::MatcherInterface; using testing::Matches; using testing::MatchesRegex; using testing::NanSensitiveDoubleEq; using testing::NanSensitiveFloatEq; using testing::Ne; using testing::Not; using testing::NotNull; using testing::Pair; using testing::Pointee; using testing::PolymorphicMatcher; using testing::Property; using testing::Ref; using testing::ResultOf; using testing::StartsWith; using testing::StrCaseEq; using testing::StrCaseNe; using testing::StrEq; using testing::StrNe; using testing::Truly; using testing::TypedEq; using testing::Value; using testing::_; using testing::internal::DummyMatchResultListener; using testing::internal::ExplainMatchFailureTupleTo; using testing::internal::FloatingEqMatcher; using testing::internal::FormatMatcherDescriptionSyntaxError; using testing::internal::GetParamIndex; using testing::internal::Interpolation; using testing::internal::Interpolations; using testing::internal::JoinAsTuple; using testing::internal::RE; using testing::internal::SkipPrefix; using testing::internal::StreamMatchResultListener; using testing::internal::String; using testing::internal::StringMatchResultListener; using testing::internal::Strings; using testing::internal::ValidateMatcherDescription; using testing::internal::kInvalidInterpolation; using testing::internal::kPercentInterpolation; using testing::internal::kTupleInterpolation; using testing::internal::linked_ptr; using testing::internal::scoped_ptr; using testing::internal::string; // For testing ExplainMatchResultTo(). class GreaterThanMatcher : public MatcherInterface { public: explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {} virtual void DescribeTo(::std::ostream* os) const { *os << "is > " << rhs_; } virtual bool MatchAndExplain(int lhs, MatchResultListener* listener) const { const int diff = lhs - rhs_; if (diff > 0) { *listener << "which is " << diff << " more than " << rhs_; } else if (diff == 0) { *listener << "which is the same as " << rhs_; } else { *listener << "which is " << -diff << " less than " << rhs_; } return lhs > rhs_; } private: int rhs_; }; Matcher GreaterThan(int n) { return MakeMatcher(new GreaterThanMatcher(n)); } // Returns the description of the given matcher. template string Describe(const Matcher& m) { stringstream ss; m.DescribeTo(&ss); return ss.str(); } // Returns the description of the negation of the given matcher. template string DescribeNegation(const Matcher& m) { stringstream ss; m.DescribeNegationTo(&ss); return ss.str(); } // Returns the reason why x matches, or doesn't match, m. template string Explain(const MatcherType& m, const Value& x) { stringstream ss; m.ExplainMatchResultTo(x, &ss); return ss.str(); } TEST(MatchResultListenerTest, StreamingWorks) { StringMatchResultListener listener; listener << "hi" << 5; EXPECT_EQ("hi5", listener.str()); // Streaming shouldn't crash when the underlying ostream is NULL. DummyMatchResultListener dummy; dummy << "hi" << 5; } TEST(MatchResultListenerTest, CanAccessUnderlyingStream) { EXPECT_TRUE(DummyMatchResultListener().stream() == NULL); EXPECT_TRUE(StreamMatchResultListener(NULL).stream() == NULL); EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream()); } TEST(MatchResultListenerTest, IsInterestedWorks) { EXPECT_TRUE(StringMatchResultListener().IsInterested()); EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested()); EXPECT_FALSE(DummyMatchResultListener().IsInterested()); EXPECT_FALSE(StreamMatchResultListener(NULL).IsInterested()); } // Makes sure that the MatcherInterface interface doesn't // change. class EvenMatcherImpl : public MatcherInterface { public: virtual bool MatchAndExplain(int x, MatchResultListener* /* listener */) const { return x % 2 == 0; } virtual void DescribeTo(::std::ostream* os) const { *os << "is an even number"; } // We deliberately don't define DescribeNegationTo() and // ExplainMatchResultTo() here, to make sure the definition of these // two methods is optional. }; // Makes sure that the MatcherInterface API doesn't change. TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) { EvenMatcherImpl m; } // Tests implementing a monomorphic matcher using MatchAndExplain(). class NewEvenMatcherImpl : public MatcherInterface { public: virtual bool MatchAndExplain(int x, MatchResultListener* listener) const { const bool match = x % 2 == 0; // Verifies that we can stream to a listener directly. *listener << "value % " << 2; if (listener->stream() != NULL) { // Verifies that we can stream to a listener's underlying stream // too. *listener->stream() << " == " << (x % 2); } return match; } virtual void DescribeTo(::std::ostream* os) const { *os << "is an even number"; } }; TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) { Matcher m = MakeMatcher(new NewEvenMatcherImpl); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(3)); EXPECT_EQ("value % 2 == 0", Explain(m, 2)); EXPECT_EQ("value % 2 == 1", Explain(m, 3)); } // Tests default-constructing a matcher. TEST(MatcherTest, CanBeDefaultConstructed) { Matcher m; } // Tests that Matcher can be constructed from a MatcherInterface*. TEST(MatcherTest, CanBeConstructedFromMatcherInterface) { const MatcherInterface* impl = new EvenMatcherImpl; Matcher m(impl); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(5)); } // Tests that value can be used in place of Eq(value). TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) { Matcher m1 = 5; EXPECT_TRUE(m1.Matches(5)); EXPECT_FALSE(m1.Matches(6)); } // Tests that NULL can be used in place of Eq(NULL). TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) { Matcher m1 = NULL; EXPECT_TRUE(m1.Matches(NULL)); int n = 0; EXPECT_FALSE(m1.Matches(&n)); } // Tests that matchers are copyable. TEST(MatcherTest, IsCopyable) { // Tests the copy constructor. Matcher m1 = Eq(false); EXPECT_TRUE(m1.Matches(false)); EXPECT_FALSE(m1.Matches(true)); // Tests the assignment operator. m1 = Eq(true); EXPECT_TRUE(m1.Matches(true)); EXPECT_FALSE(m1.Matches(false)); } // Tests that Matcher::DescribeTo() calls // MatcherInterface::DescribeTo(). TEST(MatcherTest, CanDescribeItself) { EXPECT_EQ("is an even number", Describe(Matcher(new EvenMatcherImpl))); } // Tests Matcher::MatchAndExplain(). TEST(MatcherTest, MatchAndExplain) { Matcher m = GreaterThan(0); StringMatchResultListener listener1; EXPECT_TRUE(m.MatchAndExplain(42, &listener1)); EXPECT_EQ("which is 42 more than 0", listener1.str()); StringMatchResultListener listener2; EXPECT_FALSE(m.MatchAndExplain(-9, &listener2)); EXPECT_EQ("which is 9 less than 0", listener2.str()); } // Tests that a C-string literal can be implicitly converted to a // Matcher or Matcher. TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { Matcher m1 = "hi"; EXPECT_TRUE(m1.Matches("hi")); EXPECT_FALSE(m1.Matches("hello")); Matcher m2 = "hi"; EXPECT_TRUE(m2.Matches("hi")); EXPECT_FALSE(m2.Matches("hello")); } // Tests that a string object can be implicitly converted to a // Matcher or Matcher. TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) { Matcher m1 = string("hi"); EXPECT_TRUE(m1.Matches("hi")); EXPECT_FALSE(m1.Matches("hello")); Matcher m2 = string("hi"); EXPECT_TRUE(m2.Matches("hi")); EXPECT_FALSE(m2.Matches("hello")); } // Tests that MakeMatcher() constructs a Matcher from a // MatcherInterface* without requiring the user to explicitly // write the type. TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) { const MatcherInterface* dummy_impl = NULL; Matcher m = MakeMatcher(dummy_impl); } // Tests that MakePolymorphicMatcher() can construct a polymorphic // matcher from its implementation using the old API. const int bar = 1; class ReferencesBarOrIsZeroImpl { public: template bool MatchAndExplain(const T& x, MatchResultListener* /* listener */) const { const void* p = &x; return p == &bar || x == 0; } void DescribeTo(::std::ostream* os) const { *os << "bar or zero"; } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't reference bar and is not zero"; } }; // This function verifies that MakePolymorphicMatcher() returns a // PolymorphicMatcher where T is the argument's type. PolymorphicMatcher ReferencesBarOrIsZero() { return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl()); } TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) { // Using a polymorphic matcher to match a reference type. Matcher m1 = ReferencesBarOrIsZero(); EXPECT_TRUE(m1.Matches(0)); // Verifies that the identity of a by-reference argument is preserved. EXPECT_TRUE(m1.Matches(bar)); EXPECT_FALSE(m1.Matches(1)); EXPECT_EQ("bar or zero", Describe(m1)); // Using a polymorphic matcher to match a value type. Matcher m2 = ReferencesBarOrIsZero(); EXPECT_TRUE(m2.Matches(0.0)); EXPECT_FALSE(m2.Matches(0.1)); EXPECT_EQ("bar or zero", Describe(m2)); } // Tests implementing a polymorphic matcher using MatchAndExplain(). class PolymorphicIsEvenImpl { public: void DescribeTo(::std::ostream* os) const { *os << "is even"; } void DescribeNegationTo(::std::ostream* os) const { *os << "is odd"; } template bool MatchAndExplain(const T& x, MatchResultListener* listener) const { // Verifies that we can stream to the listener directly. *listener << "% " << 2; if (listener->stream() != NULL) { // Verifies that we can stream to the listener's underlying stream // too. *listener->stream() << " == " << (x % 2); } return (x % 2) == 0; } }; PolymorphicMatcher PolymorphicIsEven() { return MakePolymorphicMatcher(PolymorphicIsEvenImpl()); } TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) { // Using PolymorphicIsEven() as a Matcher. const Matcher m1 = PolymorphicIsEven(); EXPECT_TRUE(m1.Matches(42)); EXPECT_FALSE(m1.Matches(43)); EXPECT_EQ("is even", Describe(m1)); const Matcher not_m1 = Not(m1); EXPECT_EQ("is odd", Describe(not_m1)); EXPECT_EQ("% 2 == 0", Explain(m1, 42)); // Using PolymorphicIsEven() as a Matcher. const Matcher m2 = PolymorphicIsEven(); EXPECT_TRUE(m2.Matches('\x42')); EXPECT_FALSE(m2.Matches('\x43')); EXPECT_EQ("is even", Describe(m2)); const Matcher not_m2 = Not(m2); EXPECT_EQ("is odd", Describe(not_m2)); EXPECT_EQ("% 2 == 0", Explain(m2, '\x42')); } // Tests that MatcherCast(m) works when m is a polymorphic matcher. TEST(MatcherCastTest, FromPolymorphicMatcher) { Matcher m = MatcherCast(Eq(5)); EXPECT_TRUE(m.Matches(5)); EXPECT_FALSE(m.Matches(6)); } // For testing casting matchers between compatible types. class IntValue { public: // An int can be statically (although not implicitly) cast to a // IntValue. explicit IntValue(int a_value) : value_(a_value) {} int value() const { return value_; } private: int value_; }; // For testing casting matchers between compatible types. bool IsPositiveIntValue(const IntValue& foo) { return foo.value() > 0; } // Tests that MatcherCast(m) works when m is a Matcher where T // can be statically converted to U. TEST(MatcherCastTest, FromCompatibleType) { Matcher m1 = Eq(2.0); Matcher m2 = MatcherCast(m1); EXPECT_TRUE(m2.Matches(2)); EXPECT_FALSE(m2.Matches(3)); Matcher m3 = Truly(IsPositiveIntValue); Matcher m4 = MatcherCast(m3); // In the following, the arguments 1 and 0 are statically converted // to IntValue objects, and then tested by the IsPositiveIntValue() // predicate. EXPECT_TRUE(m4.Matches(1)); EXPECT_FALSE(m4.Matches(0)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(MatcherCastTest, FromConstReferenceToNonReference) { Matcher m1 = Eq(0); Matcher m2 = MatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(MatcherCastTest, FromReferenceToNonReference) { Matcher m1 = Eq(0); Matcher m2 = MatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(MatcherCastTest, FromNonReferenceToConstReference) { Matcher m1 = Eq(0); Matcher m2 = MatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(MatcherCastTest, FromNonReferenceToReference) { Matcher m1 = Eq(0); Matcher m2 = MatcherCast(m1); int n = 0; EXPECT_TRUE(m2.Matches(n)); n = 1; EXPECT_FALSE(m2.Matches(n)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(MatcherCastTest, FromSameType) { Matcher m1 = Eq(0); Matcher m2 = MatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } class Base {}; class Derived : public Base {}; // Tests that SafeMatcherCast(m) works when m is a polymorphic matcher. TEST(SafeMatcherCastTest, FromPolymorphicMatcher) { Matcher m2 = SafeMatcherCast(Eq(32)); EXPECT_TRUE(m2.Matches(' ')); EXPECT_FALSE(m2.Matches('\n')); } // Tests that SafeMatcherCast(m) works when m is a Matcher where // T and U are arithmetic types and T can be losslessly converted to // U. TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) { Matcher m1 = DoubleEq(1.0); Matcher m2 = SafeMatcherCast(m1); EXPECT_TRUE(m2.Matches(1.0f)); EXPECT_FALSE(m2.Matches(2.0f)); Matcher m3 = SafeMatcherCast(TypedEq('a')); EXPECT_TRUE(m3.Matches('a')); EXPECT_FALSE(m3.Matches('b')); } // Tests that SafeMatcherCast(m) works when m is a Matcher where T and U // are pointers or references to a derived and a base class, correspondingly. TEST(SafeMatcherCastTest, FromBaseClass) { Derived d, d2; Matcher m1 = Eq(&d); Matcher m2 = SafeMatcherCast(m1); EXPECT_TRUE(m2.Matches(&d)); EXPECT_FALSE(m2.Matches(&d2)); Matcher m3 = Ref(d); Matcher m4 = SafeMatcherCast(m3); EXPECT_TRUE(m4.Matches(d)); EXPECT_FALSE(m4.Matches(d2)); } // Tests that SafeMatcherCast(m) works when m is a Matcher. TEST(SafeMatcherCastTest, FromConstReferenceToReference) { int n = 0; Matcher m1 = Ref(n); Matcher m2 = SafeMatcherCast(m1); int n1 = 0; EXPECT_TRUE(m2.Matches(n)); EXPECT_FALSE(m2.Matches(n1)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) { Matcher m1 = Eq(0); Matcher m2 = SafeMatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that SafeMatcherCast(m) works when m is a Matcher. TEST(SafeMatcherCastTest, FromNonReferenceToReference) { Matcher m1 = Eq(0); Matcher m2 = SafeMatcherCast(m1); int n = 0; EXPECT_TRUE(m2.Matches(n)); n = 1; EXPECT_FALSE(m2.Matches(n)); } // Tests that SafeMatcherCast(m) works when m is a Matcher. TEST(SafeMatcherCastTest, FromSameType) { Matcher m1 = Eq(0); Matcher m2 = SafeMatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that A() matches any value of type T. TEST(ATest, MatchesAnyValue) { // Tests a matcher for a value type. Matcher m1 = A(); EXPECT_TRUE(m1.Matches(91.43)); EXPECT_TRUE(m1.Matches(-15.32)); // Tests a matcher for a reference type. int a = 2; int b = -6; Matcher m2 = A(); EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); } // Tests that A() describes itself properly. TEST(ATest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(A())); } // Tests that An() matches any value of type T. TEST(AnTest, MatchesAnyValue) { // Tests a matcher for a value type. Matcher m1 = An(); EXPECT_TRUE(m1.Matches(9143)); EXPECT_TRUE(m1.Matches(-1532)); // Tests a matcher for a reference type. int a = 2; int b = -6; Matcher m2 = An(); EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); } // Tests that An() describes itself properly. TEST(AnTest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(An())); } // Tests that _ can be used as a matcher for any type and matches any // value of that type. TEST(UnderscoreTest, MatchesAnyValue) { // Uses _ as a matcher for a value type. Matcher m1 = _; EXPECT_TRUE(m1.Matches(123)); EXPECT_TRUE(m1.Matches(-242)); // Uses _ as a matcher for a reference type. bool a = false; const bool b = true; Matcher m2 = _; EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); } // Tests that _ describes itself properly. TEST(UnderscoreTest, CanDescribeSelf) { Matcher m = _; EXPECT_EQ("is anything", Describe(m)); } // Tests that Eq(x) matches any value equal to x. TEST(EqTest, MatchesEqualValue) { // 2 C-strings with same content but different addresses. const char a1[] = "hi"; const char a2[] = "hi"; Matcher m1 = Eq(a1); EXPECT_TRUE(m1.Matches(a1)); EXPECT_FALSE(m1.Matches(a2)); } // Tests that Eq(v) describes itself properly. class Unprintable { public: Unprintable() : c_('a') {} bool operator==(const Unprintable& /* rhs */) { return true; } private: char c_; }; TEST(EqTest, CanDescribeSelf) { Matcher m = Eq(Unprintable()); EXPECT_EQ("is equal to 1-byte object <61>", Describe(m)); } // Tests that Eq(v) can be used to match any type that supports // comparing with type T, where T is v's type. TEST(EqTest, IsPolymorphic) { Matcher m1 = Eq(1); EXPECT_TRUE(m1.Matches(1)); EXPECT_FALSE(m1.Matches(2)); Matcher m2 = Eq(1); EXPECT_TRUE(m2.Matches('\1')); EXPECT_FALSE(m2.Matches('a')); } // Tests that TypedEq(v) matches values of type T that's equal to v. TEST(TypedEqTest, ChecksEqualityForGivenType) { Matcher m1 = TypedEq('a'); EXPECT_TRUE(m1.Matches('a')); EXPECT_FALSE(m1.Matches('b')); Matcher m2 = TypedEq(6); EXPECT_TRUE(m2.Matches(6)); EXPECT_FALSE(m2.Matches(7)); } // Tests that TypedEq(v) describes itself properly. TEST(TypedEqTest, CanDescribeSelf) { EXPECT_EQ("is equal to 2", Describe(TypedEq(2))); } // Tests that TypedEq(v) has type Matcher. // Type::IsTypeOf(v) compiles iff the type of value v is T, where T // is a "bare" type (i.e. not in the form of const U or U&). If v's // type is not T, the compiler will generate a message about // "undefined referece". template struct Type { static bool IsTypeOf(const T& /* v */) { return true; } template static void IsTypeOf(T2 v); }; TEST(TypedEqTest, HasSpecifiedType) { // Verfies that the type of TypedEq(v) is Matcher. Type >::IsTypeOf(TypedEq(5)); Type >::IsTypeOf(TypedEq(5)); } // Tests that Ge(v) matches anything >= v. TEST(GeTest, ImplementsGreaterThanOrEqual) { Matcher m1 = Ge(0); EXPECT_TRUE(m1.Matches(1)); EXPECT_TRUE(m1.Matches(0)); EXPECT_FALSE(m1.Matches(-1)); } // Tests that Ge(v) describes itself properly. TEST(GeTest, CanDescribeSelf) { Matcher m = Ge(5); EXPECT_EQ("is >= 5", Describe(m)); } // Tests that Gt(v) matches anything > v. TEST(GtTest, ImplementsGreaterThan) { Matcher m1 = Gt(0); EXPECT_TRUE(m1.Matches(1.0)); EXPECT_FALSE(m1.Matches(0.0)); EXPECT_FALSE(m1.Matches(-1.0)); } // Tests that Gt(v) describes itself properly. TEST(GtTest, CanDescribeSelf) { Matcher m = Gt(5); EXPECT_EQ("is > 5", Describe(m)); } // Tests that Le(v) matches anything <= v. TEST(LeTest, ImplementsLessThanOrEqual) { Matcher m1 = Le('b'); EXPECT_TRUE(m1.Matches('a')); EXPECT_TRUE(m1.Matches('b')); EXPECT_FALSE(m1.Matches('c')); } // Tests that Le(v) describes itself properly. TEST(LeTest, CanDescribeSelf) { Matcher m = Le(5); EXPECT_EQ("is <= 5", Describe(m)); } // Tests that Lt(v) matches anything < v. TEST(LtTest, ImplementsLessThan) { Matcher m1 = Lt("Hello"); EXPECT_TRUE(m1.Matches("Abc")); EXPECT_FALSE(m1.Matches("Hello")); EXPECT_FALSE(m1.Matches("Hello, world!")); } // Tests that Lt(v) describes itself properly. TEST(LtTest, CanDescribeSelf) { Matcher m = Lt(5); EXPECT_EQ("is < 5", Describe(m)); } // Tests that Ne(v) matches anything != v. TEST(NeTest, ImplementsNotEqual) { Matcher m1 = Ne(0); EXPECT_TRUE(m1.Matches(1)); EXPECT_TRUE(m1.Matches(-1)); EXPECT_FALSE(m1.Matches(0)); } // Tests that Ne(v) describes itself properly. TEST(NeTest, CanDescribeSelf) { Matcher m = Ne(5); EXPECT_EQ("isn't equal to 5", Describe(m)); } // Tests that IsNull() matches any NULL pointer of any type. TEST(IsNullTest, MatchesNullPointer) { Matcher m1 = IsNull(); int* p1 = NULL; int n = 0; EXPECT_TRUE(m1.Matches(p1)); EXPECT_FALSE(m1.Matches(&n)); Matcher m2 = IsNull(); const char* p2 = NULL; EXPECT_TRUE(m2.Matches(p2)); EXPECT_FALSE(m2.Matches("hi")); #if !GTEST_OS_SYMBIAN // Nokia's Symbian compiler generates: // gmock-matchers.h: ambiguous access to overloaded function // gmock-matchers.h: 'testing::Matcher::Matcher(void *)' // gmock-matchers.h: 'testing::Matcher::Matcher(const testing:: // MatcherInterface *)' // gmock-matchers.h: (point of instantiation: 'testing:: // gmock_matchers_test::IsNullTest_MatchesNullPointer_Test::TestBody()') // gmock-matchers.h: (instantiating: 'testing::PolymorphicMatc Matcher m3 = IsNull(); void* p3 = NULL; EXPECT_TRUE(m3.Matches(p3)); EXPECT_FALSE(m3.Matches(reinterpret_cast(0xbeef))); #endif } TEST(IsNullTest, LinkedPtr) { const Matcher > m = IsNull(); const linked_ptr null_p; const linked_ptr non_null_p(new int); EXPECT_TRUE(m.Matches(null_p)); EXPECT_FALSE(m.Matches(non_null_p)); } TEST(IsNullTest, ReferenceToConstLinkedPtr) { const Matcher&> m = IsNull(); const linked_ptr null_p; const linked_ptr non_null_p(new double); EXPECT_TRUE(m.Matches(null_p)); EXPECT_FALSE(m.Matches(non_null_p)); } TEST(IsNullTest, ReferenceToConstScopedPtr) { const Matcher&> m = IsNull(); const scoped_ptr null_p; const scoped_ptr non_null_p(new double); EXPECT_TRUE(m.Matches(null_p)); EXPECT_FALSE(m.Matches(non_null_p)); } // Tests that IsNull() describes itself properly. TEST(IsNullTest, CanDescribeSelf) { Matcher m = IsNull(); EXPECT_EQ("is NULL", Describe(m)); EXPECT_EQ("isn't NULL", DescribeNegation(m)); } // Tests that NotNull() matches any non-NULL pointer of any type. TEST(NotNullTest, MatchesNonNullPointer) { Matcher m1 = NotNull(); int* p1 = NULL; int n = 0; EXPECT_FALSE(m1.Matches(p1)); EXPECT_TRUE(m1.Matches(&n)); Matcher m2 = NotNull(); const char* p2 = NULL; EXPECT_FALSE(m2.Matches(p2)); EXPECT_TRUE(m2.Matches("hi")); } TEST(NotNullTest, LinkedPtr) { const Matcher > m = NotNull(); const linked_ptr null_p; const linked_ptr non_null_p(new int); EXPECT_FALSE(m.Matches(null_p)); EXPECT_TRUE(m.Matches(non_null_p)); } TEST(NotNullTest, ReferenceToConstLinkedPtr) { const Matcher&> m = NotNull(); const linked_ptr null_p; const linked_ptr non_null_p(new double); EXPECT_FALSE(m.Matches(null_p)); EXPECT_TRUE(m.Matches(non_null_p)); } TEST(NotNullTest, ReferenceToConstScopedPtr) { const Matcher&> m = NotNull(); const scoped_ptr null_p; const scoped_ptr non_null_p(new double); EXPECT_FALSE(m.Matches(null_p)); EXPECT_TRUE(m.Matches(non_null_p)); } // Tests that NotNull() describes itself properly. TEST(NotNullTest, CanDescribeSelf) { Matcher m = NotNull(); EXPECT_EQ("isn't NULL", Describe(m)); } // Tests that Ref(variable) matches an argument that references // 'variable'. TEST(RefTest, MatchesSameVariable) { int a = 0; int b = 0; Matcher m = Ref(a); EXPECT_TRUE(m.Matches(a)); EXPECT_FALSE(m.Matches(b)); } // Tests that Ref(variable) describes itself properly. TEST(RefTest, CanDescribeSelf) { int n = 5; Matcher m = Ref(n); stringstream ss; ss << "references the variable @" << &n << " 5"; EXPECT_EQ(string(ss.str()), Describe(m)); } // Test that Ref(non_const_varialbe) can be used as a matcher for a // const reference. TEST(RefTest, CanBeUsedAsMatcherForConstReference) { int a = 0; int b = 0; Matcher m = Ref(a); EXPECT_TRUE(m.Matches(a)); EXPECT_FALSE(m.Matches(b)); } // Tests that Ref(variable) is covariant, i.e. Ref(derived) can be // used wherever Ref(base) can be used (Ref(derived) is a sub-type // of Ref(base), but not vice versa. TEST(RefTest, IsCovariant) { Base base, base2; Derived derived; Matcher m1 = Ref(base); EXPECT_TRUE(m1.Matches(base)); EXPECT_FALSE(m1.Matches(base2)); EXPECT_FALSE(m1.Matches(derived)); m1 = Ref(derived); EXPECT_TRUE(m1.Matches(derived)); EXPECT_FALSE(m1.Matches(base)); EXPECT_FALSE(m1.Matches(base2)); } TEST(RefTest, ExplainsResult) { int n = 0; EXPECT_THAT(Explain(Matcher(Ref(n)), n), StartsWith("which is located @")); int m = 0; EXPECT_THAT(Explain(Matcher(Ref(n)), m), StartsWith("which is located @")); } // Tests string comparison matchers. TEST(StrEqTest, MatchesEqualString) { Matcher m = StrEq(string("Hello")); EXPECT_TRUE(m.Matches("Hello")); EXPECT_FALSE(m.Matches("hello")); EXPECT_FALSE(m.Matches(NULL)); Matcher m2 = StrEq("Hello"); EXPECT_TRUE(m2.Matches("Hello")); EXPECT_FALSE(m2.Matches("Hi")); } TEST(StrEqTest, CanDescribeSelf) { Matcher m = StrEq("Hi-\'\"\?\\\a\b\f\n\r\t\v\xD3"); EXPECT_EQ("is equal to \"Hi-\'\\\"\\?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"", Describe(m)); string str("01204500800"); str[3] = '\0'; Matcher m2 = StrEq(str); EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2)); str[0] = str[6] = str[7] = str[9] = str[10] = '\0'; Matcher m3 = StrEq(str); EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3)); } TEST(StrNeTest, MatchesUnequalString) { Matcher m = StrNe("Hello"); EXPECT_TRUE(m.Matches("")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches("Hello")); Matcher m2 = StrNe(string("Hello")); EXPECT_TRUE(m2.Matches("hello")); EXPECT_FALSE(m2.Matches("Hello")); } TEST(StrNeTest, CanDescribeSelf) { Matcher m = StrNe("Hi"); EXPECT_EQ("isn't equal to \"Hi\"", Describe(m)); } TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) { Matcher m = StrCaseEq(string("Hello")); EXPECT_TRUE(m.Matches("Hello")); EXPECT_TRUE(m.Matches("hello")); EXPECT_FALSE(m.Matches("Hi")); EXPECT_FALSE(m.Matches(NULL)); Matcher m2 = StrCaseEq("Hello"); EXPECT_TRUE(m2.Matches("hello")); EXPECT_FALSE(m2.Matches("Hi")); } TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { string str1("oabocdooeoo"); string str2("OABOCDOOEOO"); Matcher m0 = StrCaseEq(str1); EXPECT_FALSE(m0.Matches(str2 + string(1, '\0'))); str1[3] = str2[3] = '\0'; Matcher m1 = StrCaseEq(str1); EXPECT_TRUE(m1.Matches(str2)); str1[0] = str1[6] = str1[7] = str1[10] = '\0'; str2[0] = str2[6] = str2[7] = str2[10] = '\0'; Matcher m2 = StrCaseEq(str1); str1[9] = str2[9] = '\0'; EXPECT_FALSE(m2.Matches(str2)); Matcher m3 = StrCaseEq(str1); EXPECT_TRUE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(str2 + "x")); str2.append(1, '\0'); EXPECT_FALSE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(string(str2, 0, 9))); } TEST(StrCaseEqTest, CanDescribeSelf) { Matcher m = StrCaseEq("Hi"); EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m)); } TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) { Matcher m = StrCaseNe("Hello"); EXPECT_TRUE(m.Matches("Hi")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches("Hello")); EXPECT_FALSE(m.Matches("hello")); Matcher m2 = StrCaseNe(string("Hello")); EXPECT_TRUE(m2.Matches("")); EXPECT_FALSE(m2.Matches("Hello")); } TEST(StrCaseNeTest, CanDescribeSelf) { Matcher m = StrCaseNe("Hi"); EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m)); } // Tests that HasSubstr() works for matching string-typed values. TEST(HasSubstrTest, WorksForStringClasses) { const Matcher m1 = HasSubstr("foo"); EXPECT_TRUE(m1.Matches(string("I love food."))); EXPECT_FALSE(m1.Matches(string("tofo"))); const Matcher m2 = HasSubstr("foo"); EXPECT_TRUE(m2.Matches(std::string("I love food."))); EXPECT_FALSE(m2.Matches(std::string("tofo"))); } // Tests that HasSubstr() works for matching C-string-typed values. TEST(HasSubstrTest, WorksForCStrings) { const Matcher m1 = HasSubstr("foo"); EXPECT_TRUE(m1.Matches(const_cast("I love food."))); EXPECT_FALSE(m1.Matches(const_cast("tofo"))); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = HasSubstr("foo"); EXPECT_TRUE(m2.Matches("I love food.")); EXPECT_FALSE(m2.Matches("tofo")); EXPECT_FALSE(m2.Matches(NULL)); } // Tests that HasSubstr(s) describes itself properly. TEST(HasSubstrTest, CanDescribeSelf) { Matcher m = HasSubstr("foo\n\""); EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m)); } TEST(KeyTest, CanDescribeSelf) { Matcher&> m = Key("foo"); EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m)); EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m)); } TEST(KeyTest, ExplainsResult) { Matcher > m = Key(GreaterThan(10)); EXPECT_EQ("whose first field is a value which is 5 less than 10", Explain(m, make_pair(5, true))); EXPECT_EQ("whose first field is a value which is 5 more than 10", Explain(m, make_pair(15, true))); } TEST(KeyTest, MatchesCorrectly) { pair p(25, "foo"); EXPECT_THAT(p, Key(25)); EXPECT_THAT(p, Not(Key(42))); EXPECT_THAT(p, Key(Ge(20))); EXPECT_THAT(p, Not(Key(Lt(25)))); } TEST(KeyTest, SafelyCastsInnerMatcher) { Matcher is_positive = Gt(0); Matcher is_negative = Lt(0); pair p('a', true); EXPECT_THAT(p, Key(is_positive)); EXPECT_THAT(p, Not(Key(is_negative))); } TEST(KeyTest, InsideContainsUsingMap) { std::map container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Contains(Key(1))); EXPECT_THAT(container, Not(Contains(Key(3)))); } TEST(KeyTest, InsideContainsUsingMultimap) { std::multimap container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Not(Contains(Key(25)))); container.insert(make_pair(25, 'd')); EXPECT_THAT(container, Contains(Key(25))); container.insert(make_pair(25, 'e')); EXPECT_THAT(container, Contains(Key(25))); EXPECT_THAT(container, Contains(Key(1))); EXPECT_THAT(container, Not(Contains(Key(3)))); } TEST(PairTest, Typing) { // Test verifies the following type conversions can be compiled. Matcher&> m1 = Pair("foo", 42); Matcher > m2 = Pair("foo", 42); Matcher > m3 = Pair("foo", 42); Matcher > m4 = Pair(25, "42"); Matcher > m5 = Pair("25", 42); } TEST(PairTest, CanDescribeSelf) { Matcher&> m1 = Pair("foo", 42); EXPECT_EQ("has a first field that is equal to \"foo\"" ", and has a second field that is equal to 42", Describe(m1)); EXPECT_EQ("has a first field that isn't equal to \"foo\"" ", or has a second field that isn't equal to 42", DescribeNegation(m1)); // Double and triple negation (1 or 2 times not and description of negation). Matcher&> m2 = Not(Pair(Not(13), 42)); EXPECT_EQ("has a first field that isn't equal to 13" ", and has a second field that is equal to 42", DescribeNegation(m2)); } TEST(PairTest, CanExplainMatchResultTo) { // If neither field matches, Pair() should explain about the first // field. const Matcher > m = Pair(GreaterThan(0), GreaterThan(0)); EXPECT_EQ("whose first field does not match, which is 1 less than 0", Explain(m, make_pair(-1, -2))); // If the first field matches but the second doesn't, Pair() should // explain about the second field. EXPECT_EQ("whose second field does not match, which is 2 less than 0", Explain(m, make_pair(1, -2))); // If the first field doesn't match but the second does, Pair() // should explain about the first field. EXPECT_EQ("whose first field does not match, which is 1 less than 0", Explain(m, make_pair(-1, 2))); // If both fields match, Pair() should explain about them both. EXPECT_EQ("whose both fields match, where the first field is a value " "which is 1 more than 0, and the second field is a value " "which is 2 more than 0", Explain(m, make_pair(1, 2))); // If only the first match has an explanation, only this explanation should // be printed. const Matcher > explain_first = Pair(GreaterThan(0), 0); EXPECT_EQ("whose both fields match, where the first field is a value " "which is 1 more than 0", Explain(explain_first, make_pair(1, 0))); // If only the second match has an explanation, only this explanation should // be printed. const Matcher > explain_second = Pair(0, GreaterThan(0)); EXPECT_EQ("whose both fields match, where the second field is a value " "which is 1 more than 0", Explain(explain_second, make_pair(0, 1))); } TEST(PairTest, MatchesCorrectly) { pair p(25, "foo"); // Both fields match. EXPECT_THAT(p, Pair(25, "foo")); EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o"))); // 'first' doesnt' match, but 'second' matches. EXPECT_THAT(p, Not(Pair(42, "foo"))); EXPECT_THAT(p, Not(Pair(Lt(25), "foo"))); // 'first' matches, but 'second' doesn't match. EXPECT_THAT(p, Not(Pair(25, "bar"))); EXPECT_THAT(p, Not(Pair(25, Not("foo")))); // Neither field matches. EXPECT_THAT(p, Not(Pair(13, "bar"))); EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a")))); } TEST(PairTest, SafelyCastsInnerMatchers) { Matcher is_positive = Gt(0); Matcher is_negative = Lt(0); pair p('a', true); EXPECT_THAT(p, Pair(is_positive, _)); EXPECT_THAT(p, Not(Pair(is_negative, _))); EXPECT_THAT(p, Pair(_, is_positive)); EXPECT_THAT(p, Not(Pair(_, is_negative))); } TEST(PairTest, InsideContainsUsingMap) { std::map container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Contains(Pair(1, 'a'))); EXPECT_THAT(container, Contains(Pair(1, _))); EXPECT_THAT(container, Contains(Pair(_, 'a'))); EXPECT_THAT(container, Not(Contains(Pair(3, _)))); } // Tests StartsWith(s). TEST(StartsWithTest, MatchesStringWithGivenPrefix) { const Matcher m1 = StartsWith(string("")); EXPECT_TRUE(m1.Matches("Hi")); EXPECT_TRUE(m1.Matches("")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = StartsWith("Hi"); EXPECT_TRUE(m2.Matches("Hi")); EXPECT_TRUE(m2.Matches("Hi Hi!")); EXPECT_TRUE(m2.Matches("High")); EXPECT_FALSE(m2.Matches("H")); EXPECT_FALSE(m2.Matches(" Hi")); } TEST(StartsWithTest, CanDescribeSelf) { Matcher m = StartsWith("Hi"); EXPECT_EQ("starts with \"Hi\"", Describe(m)); } // Tests EndsWith(s). TEST(EndsWithTest, MatchesStringWithGivenSuffix) { const Matcher m1 = EndsWith(""); EXPECT_TRUE(m1.Matches("Hi")); EXPECT_TRUE(m1.Matches("")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = EndsWith(string("Hi")); EXPECT_TRUE(m2.Matches("Hi")); EXPECT_TRUE(m2.Matches("Wow Hi Hi")); EXPECT_TRUE(m2.Matches("Super Hi")); EXPECT_FALSE(m2.Matches("i")); EXPECT_FALSE(m2.Matches("Hi ")); } TEST(EndsWithTest, CanDescribeSelf) { Matcher m = EndsWith("Hi"); EXPECT_EQ("ends with \"Hi\"", Describe(m)); } // Tests MatchesRegex(). TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) { const Matcher m1 = MatchesRegex("a.*z"); EXPECT_TRUE(m1.Matches("az")); EXPECT_TRUE(m1.Matches("abcz")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = MatchesRegex(new RE("a.*z")); EXPECT_TRUE(m2.Matches("azbz")); EXPECT_FALSE(m2.Matches("az1")); EXPECT_FALSE(m2.Matches("1az")); } TEST(MatchesRegexTest, CanDescribeSelf) { Matcher m1 = MatchesRegex(string("Hi.*")); EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1)); Matcher m2 = MatchesRegex(new RE("a.*")); EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2)); } // Tests ContainsRegex(). TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) { const Matcher m1 = ContainsRegex(string("a.*z")); EXPECT_TRUE(m1.Matches("az")); EXPECT_TRUE(m1.Matches("0abcz1")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = ContainsRegex(new RE("a.*z")); EXPECT_TRUE(m2.Matches("azbz")); EXPECT_TRUE(m2.Matches("az1")); EXPECT_FALSE(m2.Matches("1a")); } TEST(ContainsRegexTest, CanDescribeSelf) { Matcher m1 = ContainsRegex("Hi.*"); EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1)); Matcher m2 = ContainsRegex(new RE("a.*")); EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2)); } // Tests for wide strings. #if GTEST_HAS_STD_WSTRING TEST(StdWideStrEqTest, MatchesEqual) { Matcher m = StrEq(::std::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(NULL)); Matcher m2 = StrEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"Hello")); EXPECT_FALSE(m2.Matches(L"Hi")); Matcher m3 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D")); EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E")); ::std::wstring str(L"01204500800"); str[3] = L'\0'; Matcher m4 = StrEq(str); EXPECT_TRUE(m4.Matches(str)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher m5 = StrEq(str); EXPECT_TRUE(m5.Matches(str)); } TEST(StdWideStrEqTest, CanDescribeSelf) { Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"\?\\\a\b\f\n\r\t\v"); EXPECT_EQ("is equal to L\"Hi-\'\\\"\\?\\\\\\a\\b\\f\\n\\r\\t\\v\"", Describe(m)); Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", Describe(m2)); ::std::wstring str(L"01204500800"); str[3] = L'\0'; Matcher m4 = StrEq(str); EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher m5 = StrEq(str); EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5)); } TEST(StdWideStrNeTest, MatchesUnequalString) { Matcher m = StrNe(L"Hello"); EXPECT_TRUE(m.Matches(L"")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches(L"Hello")); Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hello")); } TEST(StdWideStrNeTest, CanDescribeSelf) { Matcher m = StrNe(L"Hi"); EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m)); } TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) { Matcher m = StrCaseEq(::std::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_TRUE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(L"Hi")); EXPECT_FALSE(m.Matches(NULL)); Matcher m2 = StrCaseEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hi")); } TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { ::std::wstring str1(L"oabocdooeoo"); ::std::wstring str2(L"OABOCDOOEOO"); Matcher m0 = StrCaseEq(str1); EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0'))); str1[3] = str2[3] = L'\0'; Matcher m1 = StrCaseEq(str1); EXPECT_TRUE(m1.Matches(str2)); str1[0] = str1[6] = str1[7] = str1[10] = L'\0'; str2[0] = str2[6] = str2[7] = str2[10] = L'\0'; Matcher m2 = StrCaseEq(str1); str1[9] = str2[9] = L'\0'; EXPECT_FALSE(m2.Matches(str2)); Matcher m3 = StrCaseEq(str1); EXPECT_TRUE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(str2 + L"x")); str2.append(1, L'\0'); EXPECT_FALSE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9))); } TEST(StdWideStrCaseEqTest, CanDescribeSelf) { Matcher< ::std::wstring> m = StrCaseEq(L"Hi"); EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m)); } TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) { Matcher m = StrCaseNe(L"Hello"); EXPECT_TRUE(m.Matches(L"Hi")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"")); EXPECT_FALSE(m2.Matches(L"Hello")); } TEST(StdWideStrCaseNeTest, CanDescribeSelf) { Matcher m = StrCaseNe(L"Hi"); EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m)); } // Tests that HasSubstr() works for matching wstring-typed values. TEST(StdWideHasSubstrTest, WorksForStringClasses) { const Matcher< ::std::wstring> m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food."))); EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo"))); const Matcher m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food."))); EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo"))); } // Tests that HasSubstr() works for matching C-wide-string-typed values. TEST(StdWideHasSubstrTest, WorksForCStrings) { const Matcher m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(const_cast(L"I love food."))); EXPECT_FALSE(m1.Matches(const_cast(L"tofo"))); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(L"I love food.")); EXPECT_FALSE(m2.Matches(L"tofo")); EXPECT_FALSE(m2.Matches(NULL)); } // Tests that HasSubstr(s) describes itself properly. TEST(StdWideHasSubstrTest, CanDescribeSelf) { Matcher< ::std::wstring> m = HasSubstr(L"foo\n\""); EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m)); } // Tests StartsWith(s). TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) { const Matcher m1 = StartsWith(::std::wstring(L"")); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = StartsWith(L"Hi"); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi Hi!")); EXPECT_TRUE(m2.Matches(L"High")); EXPECT_FALSE(m2.Matches(L"H")); EXPECT_FALSE(m2.Matches(L" Hi")); } TEST(StdWideStartsWithTest, CanDescribeSelf) { Matcher m = StartsWith(L"Hi"); EXPECT_EQ("starts with L\"Hi\"", Describe(m)); } // Tests EndsWith(s). TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) { const Matcher m1 = EndsWith(L""); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = EndsWith(::std::wstring(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Wow Hi Hi")); EXPECT_TRUE(m2.Matches(L"Super Hi")); EXPECT_FALSE(m2.Matches(L"i")); EXPECT_FALSE(m2.Matches(L"Hi ")); } TEST(StdWideEndsWithTest, CanDescribeSelf) { Matcher m = EndsWith(L"Hi"); EXPECT_EQ("ends with L\"Hi\"", Describe(m)); } #endif // GTEST_HAS_STD_WSTRING #if GTEST_HAS_GLOBAL_WSTRING TEST(GlobalWideStrEqTest, MatchesEqual) { Matcher m = StrEq(::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(NULL)); Matcher m2 = StrEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"Hello")); EXPECT_FALSE(m2.Matches(L"Hi")); Matcher m3 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D")); EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E")); ::wstring str(L"01204500800"); str[3] = L'\0'; Matcher m4 = StrEq(str); EXPECT_TRUE(m4.Matches(str)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher m5 = StrEq(str); EXPECT_TRUE(m5.Matches(str)); } TEST(GlobalWideStrEqTest, CanDescribeSelf) { Matcher< ::wstring> m = StrEq(L"Hi-\'\"\?\\\a\b\f\n\r\t\v"); EXPECT_EQ("is equal to L\"Hi-\'\\\"\\?\\\\\\a\\b\\f\\n\\r\\t\\v\"", Describe(m)); Matcher< ::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", Describe(m2)); ::wstring str(L"01204500800"); str[3] = L'\0'; Matcher m4 = StrEq(str); EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher m5 = StrEq(str); EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5)); } TEST(GlobalWideStrNeTest, MatchesUnequalString) { Matcher m = StrNe(L"Hello"); EXPECT_TRUE(m.Matches(L"")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches(L"Hello")); Matcher< ::wstring> m2 = StrNe(::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hello")); } TEST(GlobalWideStrNeTest, CanDescribeSelf) { Matcher m = StrNe(L"Hi"); EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m)); } TEST(GlobalWideStrCaseEqTest, MatchesEqualStringIgnoringCase) { Matcher m = StrCaseEq(::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_TRUE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(L"Hi")); EXPECT_FALSE(m.Matches(NULL)); Matcher m2 = StrCaseEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hi")); } TEST(GlobalWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { ::wstring str1(L"oabocdooeoo"); ::wstring str2(L"OABOCDOOEOO"); Matcher m0 = StrCaseEq(str1); EXPECT_FALSE(m0.Matches(str2 + ::wstring(1, L'\0'))); str1[3] = str2[3] = L'\0'; Matcher m1 = StrCaseEq(str1); EXPECT_TRUE(m1.Matches(str2)); str1[0] = str1[6] = str1[7] = str1[10] = L'\0'; str2[0] = str2[6] = str2[7] = str2[10] = L'\0'; Matcher m2 = StrCaseEq(str1); str1[9] = str2[9] = L'\0'; EXPECT_FALSE(m2.Matches(str2)); Matcher m3 = StrCaseEq(str1); EXPECT_TRUE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(str2 + L"x")); str2.append(1, L'\0'); EXPECT_FALSE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(::wstring(str2, 0, 9))); } TEST(GlobalWideStrCaseEqTest, CanDescribeSelf) { Matcher< ::wstring> m = StrCaseEq(L"Hi"); EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m)); } TEST(GlobalWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) { Matcher m = StrCaseNe(L"Hello"); EXPECT_TRUE(m.Matches(L"Hi")); EXPECT_TRUE(m.Matches(NULL)); EXPECT_FALSE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); Matcher< ::wstring> m2 = StrCaseNe(::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"")); EXPECT_FALSE(m2.Matches(L"Hello")); } TEST(GlobalWideStrCaseNeTest, CanDescribeSelf) { Matcher m = StrCaseNe(L"Hi"); EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m)); } // Tests that HasSubstr() works for matching wstring-typed values. TEST(GlobalWideHasSubstrTest, WorksForStringClasses) { const Matcher< ::wstring> m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(::wstring(L"I love food."))); EXPECT_FALSE(m1.Matches(::wstring(L"tofo"))); const Matcher m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(::wstring(L"I love food."))); EXPECT_FALSE(m2.Matches(::wstring(L"tofo"))); } // Tests that HasSubstr() works for matching C-wide-string-typed values. TEST(GlobalWideHasSubstrTest, WorksForCStrings) { const Matcher m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(const_cast(L"I love food."))); EXPECT_FALSE(m1.Matches(const_cast(L"tofo"))); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(L"I love food.")); EXPECT_FALSE(m2.Matches(L"tofo")); EXPECT_FALSE(m2.Matches(NULL)); } // Tests that HasSubstr(s) describes itself properly. TEST(GlobalWideHasSubstrTest, CanDescribeSelf) { Matcher< ::wstring> m = HasSubstr(L"foo\n\""); EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m)); } // Tests StartsWith(s). TEST(GlobalWideStartsWithTest, MatchesStringWithGivenPrefix) { const Matcher m1 = StartsWith(::wstring(L"")); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = StartsWith(L"Hi"); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi Hi!")); EXPECT_TRUE(m2.Matches(L"High")); EXPECT_FALSE(m2.Matches(L"H")); EXPECT_FALSE(m2.Matches(L" Hi")); } TEST(GlobalWideStartsWithTest, CanDescribeSelf) { Matcher m = StartsWith(L"Hi"); EXPECT_EQ("starts with L\"Hi\"", Describe(m)); } // Tests EndsWith(s). TEST(GlobalWideEndsWithTest, MatchesStringWithGivenSuffix) { const Matcher m1 = EndsWith(L""); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(NULL)); const Matcher m2 = EndsWith(::wstring(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Wow Hi Hi")); EXPECT_TRUE(m2.Matches(L"Super Hi")); EXPECT_FALSE(m2.Matches(L"i")); EXPECT_FALSE(m2.Matches(L"Hi ")); } TEST(GlobalWideEndsWithTest, CanDescribeSelf) { Matcher m = EndsWith(L"Hi"); EXPECT_EQ("ends with L\"Hi\"", Describe(m)); } #endif // GTEST_HAS_GLOBAL_WSTRING typedef ::std::tr1::tuple Tuple2; // NOLINT // Tests that Eq() matches a 2-tuple where the first field == the // second field. TEST(Eq2Test, MatchesEqualArguments) { Matcher m = Eq(); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); } // Tests that Eq() describes itself properly. TEST(Eq2Test, CanDescribeSelf) { Matcher m = Eq(); EXPECT_EQ("are a pair (x, y) where x == y", Describe(m)); } // Tests that Ge() matches a 2-tuple where the first field >= the // second field. TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) { Matcher m = Ge(); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); } // Tests that Ge() describes itself properly. TEST(Ge2Test, CanDescribeSelf) { Matcher m = Ge(); EXPECT_EQ("are a pair (x, y) where x >= y", Describe(m)); } // Tests that Gt() matches a 2-tuple where the first field > the // second field. TEST(Gt2Test, MatchesGreaterThanArguments) { Matcher m = Gt(); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); } // Tests that Gt() describes itself properly. TEST(Gt2Test, CanDescribeSelf) { Matcher m = Gt(); EXPECT_EQ("are a pair (x, y) where x > y", Describe(m)); } // Tests that Le() matches a 2-tuple where the first field <= the // second field. TEST(Le2Test, MatchesLessThanOrEqualArguments) { Matcher m = Le(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); } // Tests that Le() describes itself properly. TEST(Le2Test, CanDescribeSelf) { Matcher m = Le(); EXPECT_EQ("are a pair (x, y) where x <= y", Describe(m)); } // Tests that Lt() matches a 2-tuple where the first field < the // second field. TEST(Lt2Test, MatchesLessThanArguments) { Matcher m = Lt(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); } // Tests that Lt() describes itself properly. TEST(Lt2Test, CanDescribeSelf) { Matcher m = Lt(); EXPECT_EQ("are a pair (x, y) where x < y", Describe(m)); } // Tests that Ne() matches a 2-tuple where the first field != the // second field. TEST(Ne2Test, MatchesUnequalArguments) { Matcher m = Ne(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); } // Tests that Ne() describes itself properly. TEST(Ne2Test, CanDescribeSelf) { Matcher m = Ne(); EXPECT_EQ("are a pair (x, y) where x != y", Describe(m)); } // Tests that Not(m) matches any value that doesn't match m. TEST(NotTest, NegatesMatcher) { Matcher m; m = Not(Eq(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); } // Tests that Not(m) describes itself properly. TEST(NotTest, CanDescribeSelf) { Matcher m = Not(Eq(5)); EXPECT_EQ("isn't equal to 5", Describe(m)); } // Tests that monomorphic matchers are safely cast by the Not matcher. TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 is a monomorphic matcher. Matcher greater_than_5 = Gt(5); Matcher m = Not(greater_than_5); Matcher m2 = Not(greater_than_5); Matcher m3 = Not(m); } // Tests that AllOf(m1, ..., mn) matches any value that matches all of // the given matchers. TEST(AllOfTest, MatchesWhenAllMatch) { Matcher m; m = AllOf(Le(2), Ge(1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(0)); EXPECT_FALSE(m.Matches(3)); m = AllOf(Gt(0), Ne(1), Ne(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); EXPECT_FALSE(m.Matches(1)); EXPECT_FALSE(m.Matches(0)); m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); EXPECT_FALSE(m.Matches(1)); EXPECT_FALSE(m.Matches(0)); m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); EXPECT_TRUE(m.Matches(0)); EXPECT_TRUE(m.Matches(1)); EXPECT_FALSE(m.Matches(3)); } // Tests that AllOf(m1, ..., mn) describes itself properly. TEST(AllOfTest, CanDescribeSelf) { Matcher m; m = AllOf(Le(2), Ge(1)); EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m)); m = AllOf(Gt(0), Ne(1), Ne(2)); EXPECT_EQ("(is > 0) and " "((isn't equal to 1) and " "(isn't equal to 2))", Describe(m)); m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); EXPECT_EQ("(is > 0) and " "((isn't equal to 1) and " "((isn't equal to 2) and " "(isn't equal to 3)))", Describe(m)); m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); EXPECT_EQ("(is >= 0) and " "((is < 10) and " "((isn't equal to 3) and " "((isn't equal to 5) and " "(isn't equal to 7))))", Describe(m)); } // Tests that AllOf(m1, ..., mn) describes its negation properly. TEST(AllOfTest, CanDescribeNegation) { Matcher m; m = AllOf(Le(2), Ge(1)); EXPECT_EQ("(isn't <= 2) or " "(isn't >= 1)", DescribeNegation(m)); m = AllOf(Gt(0), Ne(1), Ne(2)); EXPECT_EQ("(isn't > 0) or " "((is equal to 1) or " "(is equal to 2))", DescribeNegation(m)); m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); EXPECT_EQ("(isn't > 0) or " "((is equal to 1) or " "((is equal to 2) or " "(is equal to 3)))", DescribeNegation(m)); m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); EXPECT_EQ("(isn't >= 0) or " "((isn't < 10) or " "((is equal to 3) or " "((is equal to 5) or " "(is equal to 7))))", DescribeNegation(m)); } // Tests that monomorphic matchers are safely cast by the AllOf matcher. TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 and less_than_10 are monomorphic matchers. Matcher greater_than_5 = Gt(5); Matcher less_than_10 = Lt(10); Matcher m = AllOf(greater_than_5, less_than_10); Matcher m2 = AllOf(greater_than_5, less_than_10); Matcher m3 = AllOf(greater_than_5, m2); // Tests that BothOf works when composing itself. Matcher m4 = AllOf(greater_than_5, less_than_10, less_than_10); Matcher m5 = AllOf(greater_than_5, less_than_10, less_than_10); } TEST(AllOfTest, ExplainsResult) { Matcher m; // Successful match. Both matchers need to explain. The second // matcher doesn't give an explanation, so only the first matcher's // explanation is printed. m = AllOf(GreaterThan(10), Lt(30)); EXPECT_EQ("which is 15 more than 10", Explain(m, 25)); // Successful match. Both matchers need to explain. m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20", Explain(m, 30)); // Successful match. All matchers need to explain. The second // matcher doesn't given an explanation. m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20)); EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20", Explain(m, 25)); // Successful match. All matchers need to explain. m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, " "and which is 10 more than 30", Explain(m, 40)); // Failed match. The first matcher, which failed, needs to // explain. m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); // Failed match. The second matcher, which failed, needs to // explain. Since it doesn't given an explanation, nothing is // printed. m = AllOf(GreaterThan(10), Lt(30)); EXPECT_EQ("", Explain(m, 40)); // Failed match. The second matcher, which failed, needs to // explain. m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 20", Explain(m, 15)); } // Tests that AnyOf(m1, ..., mn) matches any value that matches at // least one of the given matchers. TEST(AnyOfTest, MatchesWhenAnyMatches) { Matcher m; m = AnyOf(Le(1), Ge(3)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(2)); m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_TRUE(m.Matches(-1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(0)); m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_TRUE(m.Matches(-1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(0)); m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_TRUE(m.Matches(0)); EXPECT_TRUE(m.Matches(11)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); } // Tests that AnyOf(m1, ..., mn) describes itself properly. TEST(AnyOfTest, CanDescribeSelf) { Matcher m; m = AnyOf(Le(1), Ge(3)); EXPECT_EQ("(is <= 1) or (is >= 3)", Describe(m)); m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_EQ("(is < 0) or " "((is equal to 1) or (is equal to 2))", Describe(m)); m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_EQ("(is < 0) or " "((is equal to 1) or " "((is equal to 2) or " "(is equal to 3)))", Describe(m)); m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_EQ("(is <= 0) or " "((is > 10) or " "((is equal to 3) or " "((is equal to 5) or " "(is equal to 7))))", Describe(m)); } // Tests that AnyOf(m1, ..., mn) describes its negation properly. TEST(AnyOfTest, CanDescribeNegation) { Matcher m; m = AnyOf(Le(1), Ge(3)); EXPECT_EQ("(isn't <= 1) and (isn't >= 3)", DescribeNegation(m)); m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_EQ("(isn't < 0) and " "((isn't equal to 1) and (isn't equal to 2))", DescribeNegation(m)); m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_EQ("(isn't < 0) and " "((isn't equal to 1) and " "((isn't equal to 2) and " "(isn't equal to 3)))", DescribeNegation(m)); m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_EQ("(isn't <= 0) and " "((isn't > 10) and " "((isn't equal to 3) and " "((isn't equal to 5) and " "(isn't equal to 7))))", DescribeNegation(m)); } // Tests that monomorphic matchers are safely cast by the AnyOf matcher. TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 and less_than_10 are monomorphic matchers. Matcher greater_than_5 = Gt(5); Matcher less_than_10 = Lt(10); Matcher m = AnyOf(greater_than_5, less_than_10); Matcher m2 = AnyOf(greater_than_5, less_than_10); Matcher m3 = AnyOf(greater_than_5, m2); // Tests that EitherOf works when composing itself. Matcher m4 = AnyOf(greater_than_5, less_than_10, less_than_10); Matcher m5 = AnyOf(greater_than_5, less_than_10, less_than_10); } TEST(AnyOfTest, ExplainsResult) { Matcher m; // Failed match. Both matchers need to explain. The second // matcher doesn't give an explanation, so only the first matcher's // explanation is printed. m = AnyOf(GreaterThan(10), Lt(0)); EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); // Failed match. Both matchers need to explain. m = AnyOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20", Explain(m, 5)); // Failed match. All matchers need to explain. The second // matcher doesn't given an explanation. m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30)); EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30", Explain(m, 5)); // Failed match. All matchers need to explain. m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, " "and which is 25 less than 30", Explain(m, 5)); // Successful match. The first matcher, which succeeded, needs to // explain. m = AnyOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 more than 10", Explain(m, 15)); // Successful match. The second matcher, which succeeded, needs to // explain. Since it doesn't given an explanation, nothing is // printed. m = AnyOf(GreaterThan(10), Lt(30)); EXPECT_EQ("", Explain(m, 0)); // Successful match. The second matcher, which succeeded, needs to // explain. m = AnyOf(GreaterThan(30), GreaterThan(20)); EXPECT_EQ("which is 5 more than 20", Explain(m, 25)); } // The following predicate function and predicate functor are for // testing the Truly(predicate) matcher. // Returns non-zero if the input is positive. Note that the return // type of this function is not bool. It's OK as Truly() accepts any // unary function or functor whose return type can be implicitly // converted to bool. int IsPositive(double x) { return x > 0 ? 1 : 0; } // This functor returns true if the input is greater than the given // number. class IsGreaterThan { public: explicit IsGreaterThan(int threshold) : threshold_(threshold) {} bool operator()(int n) const { return n > threshold_; } private: int threshold_; }; // For testing Truly(). const int foo = 0; // This predicate returns true iff the argument references foo and has // a zero value. bool ReferencesFooAndIsZero(const int& n) { return (&n == &foo) && (n == 0); } // Tests that Truly(predicate) matches what satisfies the given // predicate. TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) { Matcher m = Truly(IsPositive); EXPECT_TRUE(m.Matches(2.0)); EXPECT_FALSE(m.Matches(-1.5)); } // Tests that Truly(predicate_functor) works too. TEST(TrulyTest, CanBeUsedWithFunctor) { Matcher m = Truly(IsGreaterThan(5)); EXPECT_TRUE(m.Matches(6)); EXPECT_FALSE(m.Matches(4)); } // Tests that Truly(predicate) can describe itself properly. TEST(TrulyTest, CanDescribeSelf) { Matcher m = Truly(IsPositive); EXPECT_EQ("satisfies the given predicate", Describe(m)); } // Tests that Truly(predicate) works when the matcher takes its // argument by reference. TEST(TrulyTest, WorksForByRefArguments) { Matcher m = Truly(ReferencesFooAndIsZero); EXPECT_TRUE(m.Matches(foo)); int n = 0; EXPECT_FALSE(m.Matches(n)); } // Tests that Matches(m) is a predicate satisfied by whatever that // matches matcher m. TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) { EXPECT_TRUE(Matches(Ge(0))(1)); EXPECT_FALSE(Matches(Eq('a'))('b')); } // Tests that Matches(m) works when the matcher takes its argument by // reference. TEST(MatchesTest, WorksOnByRefArguments) { int m = 0, n = 0; EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n)); EXPECT_FALSE(Matches(Ref(m))(n)); } // Tests that a Matcher on non-reference type can be used in // Matches(). TEST(MatchesTest, WorksWithMatcherOnNonRefType) { Matcher eq5 = Eq(5); EXPECT_TRUE(Matches(eq5)(5)); EXPECT_FALSE(Matches(eq5)(2)); } // Tests Value(value, matcher). Since Value() is a simple wrapper for // Matches(), which has been tested already, we don't spend a lot of // effort on testing Value(). TEST(ValueTest, WorksWithPolymorphicMatcher) { EXPECT_TRUE(Value("hi", StartsWith("h"))); EXPECT_FALSE(Value(5, Gt(10))); } TEST(ValueTest, WorksWithMonomorphicMatcher) { const Matcher is_zero = Eq(0); EXPECT_TRUE(Value(0, is_zero)); EXPECT_FALSE(Value('a', is_zero)); int n = 0; const Matcher ref_n = Ref(n); EXPECT_TRUE(Value(n, ref_n)); EXPECT_FALSE(Value(1, ref_n)); } TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) { StringMatchResultListener listener1; EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1)); EXPECT_EQ("% 2 == 0", listener1.str()); StringMatchResultListener listener2; EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2)); EXPECT_EQ("", listener2.str()); } TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) { const Matcher is_even = PolymorphicIsEven(); StringMatchResultListener listener1; EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1)); EXPECT_EQ("% 2 == 0", listener1.str()); const Matcher is_zero = Eq(0); StringMatchResultListener listener2; EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2)); EXPECT_EQ("", listener2.str()); } MATCHER_P(Really, inner_matcher, "") { return ExplainMatchResult(inner_matcher, arg, result_listener); } TEST(ExplainMatchResultTest, WorksInsideMATCHER) { EXPECT_THAT(0, Really(Eq(0))); } TEST(AllArgsTest, WorksForTuple) { EXPECT_THAT(make_tuple(1, 2L), AllArgs(Lt())); EXPECT_THAT(make_tuple(2L, 1), Not(AllArgs(Lt()))); } TEST(AllArgsTest, WorksForNonTuple) { EXPECT_THAT(42, AllArgs(Gt(0))); EXPECT_THAT('a', Not(AllArgs(Eq('b')))); } class AllArgsHelper { public: AllArgsHelper() {} MOCK_METHOD2(Helper, int(char x, int y)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper); }; TEST(AllArgsTest, WorksInWithClause) { AllArgsHelper helper; ON_CALL(helper, Helper(_, _)) .With(AllArgs(Lt())) .WillByDefault(Return(1)); EXPECT_CALL(helper, Helper(_, _)); EXPECT_CALL(helper, Helper(_, _)) .With(AllArgs(Gt())) .WillOnce(Return(2)); EXPECT_EQ(1, helper.Helper('\1', 2)); EXPECT_EQ(2, helper.Helper('a', 1)); } // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value // matches the matcher. TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) { ASSERT_THAT(5, Ge(2)) << "This should succeed."; ASSERT_THAT("Foo", EndsWith("oo")); EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too."; EXPECT_THAT("Hello", StartsWith("Hell")); } // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value // doesn't match the matcher. TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) { // 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(), // which cannot reference auto variables. static int n; n = 5; // VC++ prior to version 8.0 SP1 has a bug where it will not see any // functions declared in the namespace scope from within nested classes. // EXPECT/ASSERT_(NON)FATAL_FAILURE macros use nested classes so that all // namespace-level functions invoked inside them need to be explicitly // resolved. EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Gt(10)), "Value of: n\n" "Expected: is > 10\n" " Actual: 5"); n = 0; EXPECT_NONFATAL_FAILURE( EXPECT_THAT(n, ::testing::AllOf(::testing::Le(7), ::testing::Ge(5))), "Value of: n\n" "Expected: (is <= 7) and (is >= 5)\n" " Actual: 0"); } // Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument // has a reference type. TEST(MatcherAssertionTest, WorksForByRefArguments) { // We use a static variable here as EXPECT_FATAL_FAILURE() cannot // reference auto variables. static int n; n = 0; EXPECT_THAT(n, AllOf(Le(7), Ref(n))); EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))), "Value of: n\n" "Expected: does not reference the variable @"); // Tests the "Actual" part. EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))), "Actual: 0, which is located @"); } #if !GTEST_OS_SYMBIAN // Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is // monomorphic. // ASSERT_THAT("hello", starts_with_he) fails to compile with Nokia's // Symbian compiler: it tries to compile // template class MatcherCastImpl { ... // virtual bool MatchAndExplain(T x, ...) const { // return source_matcher_.MatchAndExplain(static_cast(x), ...); // with U == string and T == const char* // With ASSERT_THAT("hello"...) changed to ASSERT_THAT(string("hello") ... ) // the compiler silently crashes with no output. // If MatcherCastImpl is changed to use U(x) instead of static_cast(x) // the code compiles but the converted string is bogus. TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) { Matcher starts_with_he = StartsWith("he"); ASSERT_THAT("hello", starts_with_he); Matcher ends_with_ok = EndsWith("ok"); ASSERT_THAT("book", ends_with_ok); Matcher is_greater_than_5 = Gt(5); EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5), "Value of: 5\n" "Expected: is > 5\n" " Actual: 5"); } #endif // !GTEST_OS_SYMBIAN // Tests floating-point matchers. template class FloatingPointTest : public testing::Test { protected: typedef typename testing::internal::FloatingPoint Floating; typedef typename Floating::Bits Bits; virtual void SetUp() { const size_t max_ulps = Floating::kMaxUlps; // The bits that represent 0.0. const Bits zero_bits = Floating(0).bits(); // Makes some numbers close to 0.0. close_to_positive_zero_ = Floating::ReinterpretBits(zero_bits + max_ulps/2); close_to_negative_zero_ = -Floating::ReinterpretBits( zero_bits + max_ulps - max_ulps/2); further_from_negative_zero_ = -Floating::ReinterpretBits( zero_bits + max_ulps + 1 - max_ulps/2); // The bits that represent 1.0. const Bits one_bits = Floating(1).bits(); // Makes some numbers close to 1.0. close_to_one_ = Floating::ReinterpretBits(one_bits + max_ulps); further_from_one_ = Floating::ReinterpretBits(one_bits + max_ulps + 1); // +infinity. infinity_ = Floating::Infinity(); // The bits that represent +infinity. const Bits infinity_bits = Floating(infinity_).bits(); // Makes some numbers close to infinity. close_to_infinity_ = Floating::ReinterpretBits(infinity_bits - max_ulps); further_from_infinity_ = Floating::ReinterpretBits( infinity_bits - max_ulps - 1); // Makes some NAN's. nan1_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 1); nan2_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 200); } void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); } // A battery of tests for FloatingEqMatcher::Matches. // matcher_maker is a pointer to a function which creates a FloatingEqMatcher. void TestMatches( testing::internal::FloatingEqMatcher (*matcher_maker)(RawType)) { Matcher m1 = matcher_maker(0.0); EXPECT_TRUE(m1.Matches(-0.0)); EXPECT_TRUE(m1.Matches(close_to_positive_zero_)); EXPECT_TRUE(m1.Matches(close_to_negative_zero_)); EXPECT_FALSE(m1.Matches(1.0)); Matcher m2 = matcher_maker(close_to_positive_zero_); EXPECT_FALSE(m2.Matches(further_from_negative_zero_)); Matcher m3 = matcher_maker(1.0); EXPECT_TRUE(m3.Matches(close_to_one_)); EXPECT_FALSE(m3.Matches(further_from_one_)); // Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above. EXPECT_FALSE(m3.Matches(0.0)); Matcher m4 = matcher_maker(-infinity_); EXPECT_TRUE(m4.Matches(-close_to_infinity_)); Matcher m5 = matcher_maker(infinity_); EXPECT_TRUE(m5.Matches(close_to_infinity_)); // This is interesting as the representations of infinity_ and nan1_ // are only 1 DLP apart. EXPECT_FALSE(m5.Matches(nan1_)); // matcher_maker can produce a Matcher, which is needed in // some cases. Matcher m6 = matcher_maker(0.0); EXPECT_TRUE(m6.Matches(-0.0)); EXPECT_TRUE(m6.Matches(close_to_positive_zero_)); EXPECT_FALSE(m6.Matches(1.0)); // matcher_maker can produce a Matcher, which is needed in some // cases. Matcher m7 = matcher_maker(0.0); RawType x = 0.0; EXPECT_TRUE(m7.Matches(x)); x = 0.01f; EXPECT_FALSE(m7.Matches(x)); } // Pre-calculated numbers to be used by the tests. static RawType close_to_positive_zero_; static RawType close_to_negative_zero_; static RawType further_from_negative_zero_; static RawType close_to_one_; static RawType further_from_one_; static RawType infinity_; static RawType close_to_infinity_; static RawType further_from_infinity_; static RawType nan1_; static RawType nan2_; }; template RawType FloatingPointTest::close_to_positive_zero_; template RawType FloatingPointTest::close_to_negative_zero_; template RawType FloatingPointTest::further_from_negative_zero_; template RawType FloatingPointTest::close_to_one_; template RawType FloatingPointTest::further_from_one_; template RawType FloatingPointTest::infinity_; template RawType FloatingPointTest::close_to_infinity_; template RawType FloatingPointTest::further_from_infinity_; template RawType FloatingPointTest::nan1_; template RawType FloatingPointTest::nan2_; // Instantiate FloatingPointTest for testing floats. typedef FloatingPointTest FloatTest; TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) { TestMatches(&FloatEq); } TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) { TestMatches(&NanSensitiveFloatEq); } TEST_F(FloatTest, FloatEqCannotMatchNaN) { // FloatEq never matches NaN. Matcher m = FloatEq(nan1_); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) { // NanSensitiveFloatEq will match NaN. Matcher m = NanSensitiveFloatEq(nan1_); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(FloatTest, FloatEqCanDescribeSelf) { Matcher m1 = FloatEq(2.0f); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher m2 = FloatEq(0.5f); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher m3 = FloatEq(nan1_); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); } TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) { Matcher m1 = NanSensitiveFloatEq(2.0f); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher m2 = NanSensitiveFloatEq(0.5f); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher m3 = NanSensitiveFloatEq(nan1_); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); } // Instantiate FloatingPointTest for testing doubles. typedef FloatingPointTest DoubleTest; TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) { TestMatches(&DoubleEq); } TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) { TestMatches(&NanSensitiveDoubleEq); } TEST_F(DoubleTest, DoubleEqCannotMatchNaN) { // DoubleEq never matches NaN. Matcher m = DoubleEq(nan1_); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) { // NanSensitiveDoubleEq will match NaN. Matcher m = NanSensitiveDoubleEq(nan1_); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(DoubleTest, DoubleEqCanDescribeSelf) { Matcher m1 = DoubleEq(2.0); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher m2 = DoubleEq(0.5); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher m3 = DoubleEq(nan1_); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); } TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) { Matcher m1 = NanSensitiveDoubleEq(2.0); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher m2 = NanSensitiveDoubleEq(0.5); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher m3 = NanSensitiveDoubleEq(nan1_); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); } TEST(PointeeTest, RawPointer) { const Matcher m = Pointee(Ge(0)); int n = 1; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(NULL)); } TEST(PointeeTest, RawPointerToConst) { const Matcher m = Pointee(Ge(0)); double x = 1; EXPECT_TRUE(m.Matches(&x)); x = -1; EXPECT_FALSE(m.Matches(&x)); EXPECT_FALSE(m.Matches(NULL)); } TEST(PointeeTest, ReferenceToConstRawPointer) { const Matcher m = Pointee(Ge(0)); int n = 1; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(NULL)); } TEST(PointeeTest, ReferenceToNonConstRawPointer) { const Matcher m = Pointee(Ge(0)); double x = 1.0; double* p = &x; EXPECT_TRUE(m.Matches(p)); x = -1; EXPECT_FALSE(m.Matches(p)); p = NULL; EXPECT_FALSE(m.Matches(p)); } TEST(PointeeTest, NeverMatchesNull) { const Matcher m = Pointee(_); EXPECT_FALSE(m.Matches(NULL)); } // Tests that we can write Pointee(value) instead of Pointee(Eq(value)). TEST(PointeeTest, MatchesAgainstAValue) { const Matcher m = Pointee(5); int n = 5; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(NULL)); } TEST(PointeeTest, CanDescribeSelf) { const Matcher m = Pointee(Gt(3)); EXPECT_EQ("points to a value that is > 3", Describe(m)); EXPECT_EQ("does not point to a value that is > 3", DescribeNegation(m)); } TEST(PointeeTest, CanExplainMatchResult) { const Matcher m = Pointee(StartsWith("Hi")); EXPECT_EQ("", Explain(m, static_cast(NULL))); const Matcher m2 = Pointee(GreaterThan(1)); int n = 3; EXPECT_EQ("which points to 3, which is 2 more than 1", Explain(m2, &n)); } TEST(PointeeTest, AlwaysExplainsPointee) { const Matcher m = Pointee(0); int n = 42; EXPECT_EQ("which points to 42", Explain(m, &n)); } // An uncopyable class. class Uncopyable { public: explicit Uncopyable(int a_value) : value_(a_value) {} int value() const { return value_; } private: const int value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable); }; // Returns true iff x.value() is positive. bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; } // A user-defined struct for testing Field(). struct AStruct { AStruct() : x(0), y(1.0), z(5), p(NULL) {} AStruct(const AStruct& rhs) : x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {} int x; // A non-const field. const double y; // A const field. Uncopyable z; // An uncopyable field. const char* p; // A pointer field. private: GTEST_DISALLOW_ASSIGN_(AStruct); }; // A derived struct for testing Field(). struct DerivedStruct : public AStruct { char ch; private: GTEST_DISALLOW_ASSIGN_(DerivedStruct); }; // Tests that Field(&Foo::field, ...) works when field is non-const. TEST(FieldTest, WorksForNonConstField) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); } // Tests that Field(&Foo::field, ...) works when field is const. TEST(FieldTest, WorksForConstField) { AStruct a; Matcher m = Field(&AStruct::y, Ge(0.0)); EXPECT_TRUE(m.Matches(a)); m = Field(&AStruct::y, Le(0.0)); EXPECT_FALSE(m.Matches(a)); } // Tests that Field(&Foo::field, ...) works when field is not copyable. TEST(FieldTest, WorksForUncopyableField) { AStruct a; Matcher m = Field(&AStruct::z, Truly(ValueIsPositive)); EXPECT_TRUE(m.Matches(a)); m = Field(&AStruct::z, Not(Truly(ValueIsPositive))); EXPECT_FALSE(m.Matches(a)); } // Tests that Field(&Foo::field, ...) works when field is a pointer. TEST(FieldTest, WorksForPointerField) { // Matching against NULL. Matcher m = Field(&AStruct::p, static_cast(NULL)); AStruct a; EXPECT_TRUE(m.Matches(a)); a.p = "hi"; EXPECT_FALSE(m.Matches(a)); // Matching a pointer that is not NULL. m = Field(&AStruct::p, StartsWith("hi")); a.p = "hill"; EXPECT_TRUE(m.Matches(a)); a.p = "hole"; EXPECT_FALSE(m.Matches(a)); } // Tests that Field() works when the object is passed by reference. TEST(FieldTest, WorksForByRefArgument) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); } // Tests that Field(&Foo::field, ...) works when the argument's type // is a sub-type of Foo. TEST(FieldTest, WorksForArgumentOfSubType) { // Note that the matcher expects DerivedStruct but we say AStruct // inside Field(). Matcher m = Field(&AStruct::x, Ge(0)); DerivedStruct d; EXPECT_TRUE(m.Matches(d)); d.x = -1; EXPECT_FALSE(m.Matches(d)); } // Tests that Field(&Foo::field, m) works when field's type and m's // argument type are compatible but not the same. TEST(FieldTest, WorksForCompatibleMatcherType) { // The field is an int, but the inner matcher expects a signed char. Matcher m = Field(&AStruct::x, Matcher(Ge(0))); AStruct a; EXPECT_TRUE(m.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); } // Tests that Field() can describe itself. TEST(FieldTest, CanDescribeSelf) { Matcher m = Field(&AStruct::x, Ge(0)); EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); } // Tests that Field() can explain the match result. TEST(FieldTest, CanExplainMatchResult) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; a.x = 1; EXPECT_EQ("whose given field is 1", Explain(m, a)); m = Field(&AStruct::x, GreaterThan(0)); EXPECT_EQ("whose given field is 1, which is 1 more than 0", Explain(m, a)); } // Tests that Field() works when the argument is a pointer to const. TEST(FieldForPointerTest, WorksForPointerToConst) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); } // Tests that Field() works when the argument is a pointer to non-const. TEST(FieldForPointerTest, WorksForPointerToNonConst) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); } // Tests that Field() works when the argument is a reference to a const pointer. TEST(FieldForPointerTest, WorksForReferenceToConstPointer) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); } // Tests that Field() does not match the NULL pointer. TEST(FieldForPointerTest, DoesNotMatchNull) { Matcher m = Field(&AStruct::x, _); EXPECT_FALSE(m.Matches(NULL)); } // Tests that Field(&Foo::field, ...) works when the argument's type // is a sub-type of const Foo*. TEST(FieldForPointerTest, WorksForArgumentOfSubType) { // Note that the matcher expects DerivedStruct but we say AStruct // inside Field(). Matcher m = Field(&AStruct::x, Ge(0)); DerivedStruct d; EXPECT_TRUE(m.Matches(&d)); d.x = -1; EXPECT_FALSE(m.Matches(&d)); } // Tests that Field() can describe itself when used to match a pointer. TEST(FieldForPointerTest, CanDescribeSelf) { Matcher m = Field(&AStruct::x, Ge(0)); EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); } // Tests that Field() can explain the result of matching a pointer. TEST(FieldForPointerTest, CanExplainMatchResult) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; a.x = 1; EXPECT_EQ("", Explain(m, static_cast(NULL))); EXPECT_EQ("which points to an object whose given field is 1", Explain(m, &a)); m = Field(&AStruct::x, GreaterThan(0)); EXPECT_EQ("which points to an object whose given field is 1, " "which is 1 more than 0", Explain(m, &a)); } // A user-defined class for testing Property(). class AClass { public: AClass() : n_(0) {} // A getter that returns a non-reference. int n() const { return n_; } void set_n(int new_n) { n_ = new_n; } // A getter that returns a reference to const. const string& s() const { return s_; } void set_s(const string& new_s) { s_ = new_s; } // A getter that returns a reference to non-const. double& x() const { return x_; } private: int n_; string s_; static double x_; }; double AClass::x_ = 0.0; // A derived class for testing Property(). class DerivedClass : public AClass { private: int k_; }; // Tests that Property(&Foo::property, ...) works when property() // returns a non-reference. TEST(PropertyTest, WorksForNonReferenceProperty) { Matcher m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_TRUE(m.Matches(a)); a.set_n(-1); EXPECT_FALSE(m.Matches(a)); } // Tests that Property(&Foo::property, ...) works when property() // returns a reference to const. TEST(PropertyTest, WorksForReferenceToConstProperty) { Matcher m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(a)); } // Tests that Property(&Foo::property, ...) works when property() // returns a reference to non-const. TEST(PropertyTest, WorksForReferenceToNonConstProperty) { double x = 0.0; AClass a; Matcher m = Property(&AClass::x, Ref(x)); EXPECT_FALSE(m.Matches(a)); m = Property(&AClass::x, Not(Ref(x))); EXPECT_TRUE(m.Matches(a)); } // Tests that Property(&Foo::property, ...) works when the argument is // passed by value. TEST(PropertyTest, WorksForByValueArgument) { Matcher m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(a)); } // Tests that Property(&Foo::property, ...) works when the argument's // type is a sub-type of Foo. TEST(PropertyTest, WorksForArgumentOfSubType) { // The matcher expects a DerivedClass, but inside the Property() we // say AClass. Matcher m = Property(&AClass::n, Ge(0)); DerivedClass d; d.set_n(1); EXPECT_TRUE(m.Matches(d)); d.set_n(-1); EXPECT_FALSE(m.Matches(d)); } // Tests that Property(&Foo::property, m) works when property()'s type // and m's argument type are compatible but different. TEST(PropertyTest, WorksForCompatibleMatcherType) { // n() returns an int but the inner matcher expects a signed char. Matcher m = Property(&AClass::n, Matcher(Ge(0))); AClass a; EXPECT_TRUE(m.Matches(a)); a.set_n(-1); EXPECT_FALSE(m.Matches(a)); } // Tests that Property() can describe itself. TEST(PropertyTest, CanDescribeSelf) { Matcher m = Property(&AClass::n, Ge(0)); EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); EXPECT_EQ("is an object whose given property isn't >= 0", DescribeNegation(m)); } // Tests that Property() can explain the match result. TEST(PropertyTest, CanExplainMatchResult) { Matcher m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_EQ("whose given property is 1", Explain(m, a)); m = Property(&AClass::n, GreaterThan(0)); EXPECT_EQ("whose given property is 1, which is 1 more than 0", Explain(m, a)); } // Tests that Property() works when the argument is a pointer to const. TEST(PropertyForPointerTest, WorksForPointerToConst) { Matcher m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_TRUE(m.Matches(&a)); a.set_n(-1); EXPECT_FALSE(m.Matches(&a)); } // Tests that Property() works when the argument is a pointer to non-const. TEST(PropertyForPointerTest, WorksForPointerToNonConst) { Matcher m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(&a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(&a)); } // Tests that Property() works when the argument is a reference to a // const pointer. TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) { Matcher m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(&a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(&a)); } // Tests that Property() does not match the NULL pointer. TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) { Matcher m = Property(&AClass::x, _); EXPECT_FALSE(m.Matches(NULL)); } // Tests that Property(&Foo::property, ...) works when the argument's // type is a sub-type of const Foo*. TEST(PropertyForPointerTest, WorksForArgumentOfSubType) { // The matcher expects a DerivedClass, but inside the Property() we // say AClass. Matcher m = Property(&AClass::n, Ge(0)); DerivedClass d; d.set_n(1); EXPECT_TRUE(m.Matches(&d)); d.set_n(-1); EXPECT_FALSE(m.Matches(&d)); } // Tests that Property() can describe itself when used to match a pointer. TEST(PropertyForPointerTest, CanDescribeSelf) { Matcher m = Property(&AClass::n, Ge(0)); EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); EXPECT_EQ("is an object whose given property isn't >= 0", DescribeNegation(m)); } // Tests that Property() can explain the result of matching a pointer. TEST(PropertyForPointerTest, CanExplainMatchResult) { Matcher m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_EQ("", Explain(m, static_cast(NULL))); EXPECT_EQ("which points to an object whose given property is 1", Explain(m, &a)); m = Property(&AClass::n, GreaterThan(0)); EXPECT_EQ("which points to an object whose given property is 1, " "which is 1 more than 0", Explain(m, &a)); } // Tests ResultOf. // Tests that ResultOf(f, ...) compiles and works as expected when f is a // function pointer. string IntToStringFunction(int input) { return input == 1 ? "foo" : "bar"; } TEST(ResultOfTest, WorksForFunctionPointers) { Matcher matcher = ResultOf(&IntToStringFunction, Eq(string("foo"))); EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); } // Tests that ResultOf() can describe itself. TEST(ResultOfTest, CanDescribeItself) { Matcher matcher = ResultOf(&IntToStringFunction, StrEq("foo")); EXPECT_EQ("is mapped by the given callable to a value that " "is equal to \"foo\"", Describe(matcher)); EXPECT_EQ("is mapped by the given callable to a value that " "isn't equal to \"foo\"", DescribeNegation(matcher)); } // Tests that ResultOf() can explain the match result. int IntFunction(int input) { return input == 42 ? 80 : 90; } TEST(ResultOfTest, CanExplainMatchResult) { Matcher matcher = ResultOf(&IntFunction, Ge(85)); EXPECT_EQ("which is mapped by the given callable to 90", Explain(matcher, 36)); matcher = ResultOf(&IntFunction, GreaterThan(85)); EXPECT_EQ("which is mapped by the given callable to 90, " "which is 5 more than 85", Explain(matcher, 36)); } // Tests that ResultOf(f, ...) compiles and works as expected when f(x) // returns a non-reference. TEST(ResultOfTest, WorksForNonReferenceResults) { Matcher matcher = ResultOf(&IntFunction, Eq(80)); EXPECT_TRUE(matcher.Matches(42)); EXPECT_FALSE(matcher.Matches(36)); } // Tests that ResultOf(f, ...) compiles and works as expected when f(x) // returns a reference to non-const. double& DoubleFunction(double& input) { return input; } Uncopyable& RefUncopyableFunction(Uncopyable& obj) { return obj; } TEST(ResultOfTest, WorksForReferenceToNonConstResults) { double x = 3.14; double x2 = x; Matcher matcher = ResultOf(&DoubleFunction, Ref(x)); EXPECT_TRUE(matcher.Matches(x)); EXPECT_FALSE(matcher.Matches(x2)); // Test that ResultOf works with uncopyable objects Uncopyable obj(0); Uncopyable obj2(0); Matcher matcher2 = ResultOf(&RefUncopyableFunction, Ref(obj)); EXPECT_TRUE(matcher2.Matches(obj)); EXPECT_FALSE(matcher2.Matches(obj2)); } // Tests that ResultOf(f, ...) compiles and works as expected when f(x) // returns a reference to const. const string& StringFunction(const string& input) { return input; } TEST(ResultOfTest, WorksForReferenceToConstResults) { string s = "foo"; string s2 = s; Matcher matcher = ResultOf(&StringFunction, Ref(s)); EXPECT_TRUE(matcher.Matches(s)); EXPECT_FALSE(matcher.Matches(s2)); } // Tests that ResultOf(f, m) works when f(x) and m's // argument types are compatible but different. TEST(ResultOfTest, WorksForCompatibleMatcherTypes) { // IntFunction() returns int but the inner matcher expects a signed char. Matcher matcher = ResultOf(IntFunction, Matcher(Ge(85))); EXPECT_TRUE(matcher.Matches(36)); EXPECT_FALSE(matcher.Matches(42)); } // Tests that the program aborts when ResultOf is passed // a NULL function pointer. TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) { EXPECT_DEATH_IF_SUPPORTED( ResultOf(static_cast(NULL), Eq(string("foo"))), "NULL function pointer is passed into ResultOf\\(\\)\\."); } // Tests that ResultOf(f, ...) compiles and works as expected when f is a // function reference. TEST(ResultOfTest, WorksForFunctionReferences) { Matcher matcher = ResultOf(IntToStringFunction, StrEq("foo")); EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); } // Tests that ResultOf(f, ...) compiles and works as expected when f is a // function object. struct Functor : public ::std::unary_function { result_type operator()(argument_type input) const { return IntToStringFunction(input); } }; TEST(ResultOfTest, WorksForFunctors) { Matcher matcher = ResultOf(Functor(), Eq(string("foo"))); EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); } // Tests that ResultOf(f, ...) compiles and works as expected when f is a // functor with more then one operator() defined. ResultOf() must work // for each defined operator(). struct PolymorphicFunctor { typedef int result_type; int operator()(int n) { return n; } int operator()(const char* s) { return static_cast(strlen(s)); } }; TEST(ResultOfTest, WorksForPolymorphicFunctors) { Matcher matcher_int = ResultOf(PolymorphicFunctor(), Ge(5)); EXPECT_TRUE(matcher_int.Matches(10)); EXPECT_FALSE(matcher_int.Matches(2)); Matcher matcher_string = ResultOf(PolymorphicFunctor(), Ge(5)); EXPECT_TRUE(matcher_string.Matches("long string")); EXPECT_FALSE(matcher_string.Matches("shrt")); } const int* ReferencingFunction(const int& n) { return &n; } struct ReferencingFunctor { typedef const int* result_type; result_type operator()(const int& n) { return &n; } }; TEST(ResultOfTest, WorksForReferencingCallables) { const int n = 1; const int n2 = 1; Matcher matcher2 = ResultOf(ReferencingFunction, Eq(&n)); EXPECT_TRUE(matcher2.Matches(n)); EXPECT_FALSE(matcher2.Matches(n2)); Matcher matcher3 = ResultOf(ReferencingFunctor(), Eq(&n)); EXPECT_TRUE(matcher3.Matches(n)); EXPECT_FALSE(matcher3.Matches(n2)); } class DivisibleByImpl { public: explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {} // For testing using ExplainMatchResultTo() with polymorphic matchers. template bool MatchAndExplain(const T& n, MatchResultListener* listener) const { *listener << "which is " << (n % divider_) << " modulo " << divider_; return (n % divider_) == 0; } void DescribeTo(::std::ostream* os) const { *os << "is divisible by " << divider_; } void DescribeNegationTo(::std::ostream* os) const { *os << "is not divisible by " << divider_; } void set_divider(int a_divider) { divider_ = a_divider; } int divider() const { return divider_; } private: int divider_; }; PolymorphicMatcher DivisibleBy(int n) { return MakePolymorphicMatcher(DivisibleByImpl(n)); } // Tests that when AllOf() fails, only the first failing matcher is // asked to explain why. TEST(ExplainMatchResultTest, AllOf_False_False) { const Matcher m = AllOf(DivisibleBy(4), DivisibleBy(3)); EXPECT_EQ("which is 1 modulo 4", Explain(m, 5)); } // Tests that when AllOf() fails, only the first failing matcher is // asked to explain why. TEST(ExplainMatchResultTest, AllOf_False_True) { const Matcher m = AllOf(DivisibleBy(4), DivisibleBy(3)); EXPECT_EQ("which is 2 modulo 4", Explain(m, 6)); } // Tests that when AllOf() fails, only the first failing matcher is // asked to explain why. TEST(ExplainMatchResultTest, AllOf_True_False) { const Matcher m = AllOf(Ge(1), DivisibleBy(3)); EXPECT_EQ("which is 2 modulo 3", Explain(m, 5)); } // Tests that when AllOf() succeeds, all matchers are asked to explain // why. TEST(ExplainMatchResultTest, AllOf_True_True) { const Matcher m = AllOf(DivisibleBy(2), DivisibleBy(3)); EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6)); } TEST(ExplainMatchResultTest, AllOf_True_True_2) { const Matcher m = AllOf(Ge(2), Le(3)); EXPECT_EQ("", Explain(m, 2)); } TEST(ExplainmatcherResultTest, MonomorphicMatcher) { const Matcher m = GreaterThan(5); EXPECT_EQ("which is 1 more than 5", Explain(m, 6)); } // The following two tests verify that values without a public copy // ctor can be used as arguments to matchers like Eq(), Ge(), and etc // with the help of ByRef(). class NotCopyable { public: explicit NotCopyable(int a_value) : value_(a_value) {} int value() const { return value_; } bool operator==(const NotCopyable& rhs) const { return value() == rhs.value(); } bool operator>=(const NotCopyable& rhs) const { return value() >= rhs.value(); } private: int value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable); }; TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) { const NotCopyable const_value1(1); const Matcher m = Eq(ByRef(const_value1)); const NotCopyable n1(1), n2(2); EXPECT_TRUE(m.Matches(n1)); EXPECT_FALSE(m.Matches(n2)); } TEST(ByRefTest, AllowsNotCopyableValueInMatchers) { NotCopyable value2(2); const Matcher m = Ge(ByRef(value2)); NotCopyable n1(1), n2(2); EXPECT_FALSE(m.Matches(n1)); EXPECT_TRUE(m.Matches(n2)); } #if GTEST_HAS_TYPED_TEST // Tests ContainerEq with different container types, and // different element types. template class ContainerEqTest : public testing::Test {}; typedef testing::Types< std::set, std::vector, std::multiset, std::list > ContainerEqTestTypes; TYPED_TEST_CASE(ContainerEqTest, ContainerEqTestTypes); // Tests that the filled container is equal to itself. TYPED_TEST(ContainerEqTest, EqualsSelf) { static const int vals[] = {1, 1, 2, 3, 5, 8}; TypeParam my_set(vals, vals + 6); const Matcher m = ContainerEq(my_set); EXPECT_TRUE(m.Matches(my_set)); EXPECT_EQ("", Explain(m, my_set)); } // Tests that missing values are reported. TYPED_TEST(ContainerEqTest, ValueMissing) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {2, 1, 8, 5}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 4); const Matcher m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which doesn't have these expected elements: 3", Explain(m, test_set)); } // Tests that added values are reported. TYPED_TEST(ContainerEqTest, ValueAdded) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8, 46}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 6); const Matcher m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set)); } // Tests that added and missing values are reported together. TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 8, 46}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 5); const Matcher m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 46,\n" "and doesn't have these expected elements: 5", Explain(m, test_set)); } // Tests duplicated value -- expect no explanation. TYPED_TEST(ContainerEqTest, DuplicateDifference) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 5); const Matcher m = ContainerEq(my_set); // Depending on the container, match may be true or false // But in any case there should be no explanation. EXPECT_EQ("", Explain(m, test_set)); } #endif // GTEST_HAS_TYPED_TEST // Tests that mutliple missing values are reported. // Using just vector here, so order is predicatble. TEST(ContainerEqExtraTest, MultipleValuesMissing) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {2, 1, 5}; std::vector my_set(vals, vals + 6); std::vector test_set(test_vals, test_vals + 3); const Matcher > m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which doesn't have these expected elements: 3, 8", Explain(m, test_set)); } // Tests that added values are reported. // Using just vector here, so order is predicatble. TEST(ContainerEqExtraTest, MultipleValuesAdded) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46}; std::list my_set(vals, vals + 6); std::list test_set(test_vals, test_vals + 7); const Matcher&> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 92, 46", Explain(m, test_set)); } // Tests that added and missing values are reported together. TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 92, 46}; std::list my_set(vals, vals + 6); std::list test_set(test_vals, test_vals + 5); const Matcher > m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 92, 46,\n" "and doesn't have these expected elements: 5, 8", Explain(m, test_set)); } // Tests to see that duplicate elements are detected, // but (as above) not reported in the explanation. TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8}; std::vector my_set(vals, vals + 6); std::vector test_set(test_vals, test_vals + 5); const Matcher > m = ContainerEq(my_set); EXPECT_TRUE(m.Matches(my_set)); EXPECT_FALSE(m.Matches(test_set)); // There is nothing to report when both sets contain all the same values. EXPECT_EQ("", Explain(m, test_set)); } // Tests that ContainerEq works for non-trivial associative containers, // like maps. TEST(ContainerEqExtraTest, WorksForMaps) { std::map my_map; my_map[0] = "a"; my_map[1] = "b"; std::map test_map; test_map[0] = "aa"; test_map[1] = "b"; const Matcher&> m = ContainerEq(my_map); EXPECT_TRUE(m.Matches(my_map)); EXPECT_FALSE(m.Matches(test_map)); EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n" "and doesn't have these expected elements: (0, \"a\")", Explain(m, test_map)); } TEST(ContainerEqExtraTest, WorksForNativeArray) { int a1[] = { 1, 2, 3 }; int a2[] = { 1, 2, 3 }; int b[] = { 1, 2, 4 }; EXPECT_THAT(a1, ContainerEq(a2)); EXPECT_THAT(a1, Not(ContainerEq(b))); } TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) { const char a1[][3] = { "hi", "lo" }; const char a2[][3] = { "hi", "lo" }; const char b[][3] = { "lo", "hi" }; // Tests using ContainerEq() in the first dimension. EXPECT_THAT(a1, ContainerEq(a2)); EXPECT_THAT(a1, Not(ContainerEq(b))); // Tests using ContainerEq() in the second dimension. EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1]))); EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1]))); } TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) { const int a1[] = { 1, 2, 3 }; const int a2[] = { 1, 2, 3 }; const int b[] = { 1, 2, 3, 4 }; const int* const p1 = a1; EXPECT_THAT(make_tuple(p1, 3), ContainerEq(a2)); EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(b))); const int c[] = { 1, 3, 2 }; EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(c))); } TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) { std::string a1[][3] = { { "hi", "hello", "ciao" }, { "bye", "see you", "ciao" } }; std::string a2[][3] = { { "hi", "hello", "ciao" }, { "bye", "see you", "ciao" } }; const Matcher m = ContainerEq(a2); EXPECT_THAT(a1, m); a2[0][0] = "ha"; EXPECT_THAT(a1, m); } // Tests GetParamIndex(). TEST(GetParamIndexTest, WorksForEmptyParamList) { const char* params[] = { NULL }; EXPECT_EQ(kTupleInterpolation, GetParamIndex(params, "*")); EXPECT_EQ(kInvalidInterpolation, GetParamIndex(params, "a")); } TEST(GetParamIndexTest, RecognizesStar) { const char* params[] = { "a", "b", NULL }; EXPECT_EQ(kTupleInterpolation, GetParamIndex(params, "*")); } TEST(GetParamIndexTest, RecognizesKnownParam) { const char* params[] = { "foo", "bar", NULL }; EXPECT_EQ(0, GetParamIndex(params, "foo")); EXPECT_EQ(1, GetParamIndex(params, "bar")); } TEST(GetParamIndexTest, RejectsUnknownParam) { const char* params[] = { "foo", "bar", NULL }; EXPECT_EQ(kInvalidInterpolation, GetParamIndex(params, "foobar")); } // Tests SkipPrefix(). TEST(SkipPrefixTest, SkipsWhenPrefixMatches) { const char* const str = "hello"; const char* p = str; EXPECT_TRUE(SkipPrefix("", &p)); EXPECT_EQ(str, p); p = str; EXPECT_TRUE(SkipPrefix("hell", &p)); EXPECT_EQ(str + 4, p); } TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) { const char* const str = "world"; const char* p = str; EXPECT_FALSE(SkipPrefix("W", &p)); EXPECT_EQ(str, p); p = str; EXPECT_FALSE(SkipPrefix("world!", &p)); EXPECT_EQ(str, p); } // Tests FormatMatcherDescriptionSyntaxError(). TEST(FormatMatcherDescriptionSyntaxErrorTest, FormatsCorrectly) { const char* const description = "hello%world"; EXPECT_EQ("Syntax error at index 5 in matcher description \"hello%world\": ", FormatMatcherDescriptionSyntaxError(description, description + 5)); } // Tests ValidateMatcherDescription(). TEST(ValidateMatcherDescriptionTest, AcceptsEmptyDescription) { const char* params[] = { "foo", "bar", NULL }; EXPECT_THAT(ValidateMatcherDescription(params, ""), ElementsAre()); } TEST(ValidateMatcherDescriptionTest, AcceptsNonEmptyDescriptionWithNoInterpolation) { const char* params[] = { "foo", "bar", NULL }; EXPECT_THAT(ValidateMatcherDescription(params, "a simple description"), ElementsAre()); } // The MATCHER*() macros trigger warning C4100 (unreferenced formal // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in // the macro definition, as the warnings are generated when the macro // is expanded and macro expansion cannot contain #pragma. Therefore // we suppress them here. #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable:4100) #endif // We use MATCHER_P3() to define a matcher for testing // ValidateMatcherDescription(); otherwise we'll end up with much // plumbing code. This is not circular as // ValidateMatcherDescription() doesn't affect whether the matcher // matches a value or not. MATCHER_P3(EqInterpolation, start, end, index, "equals Interpolation%(*)s") { return arg.start_pos == start && arg.end_pos == end && arg.param_index == index; } #ifdef _MSC_VER #pragma warning(pop) #endif TEST(ValidateMatcherDescriptionTest, AcceptsPercentInterpolation) { const char* params[] = { "foo", NULL }; const char* const desc = "one %%"; EXPECT_THAT(ValidateMatcherDescription(params, desc), ElementsAre(EqInterpolation(desc + 4, desc + 6, kPercentInterpolation))); } TEST(ValidateMatcherDescriptionTest, AcceptsTupleInterpolation) { const char* params[] = { "foo", "bar", "baz", NULL }; const char* const desc = "%(*)s after"; EXPECT_THAT(ValidateMatcherDescription(params, desc), ElementsAre(EqInterpolation(desc, desc + 5, kTupleInterpolation))); } TEST(ValidateMatcherDescriptionTest, AcceptsParamInterpolation) { const char* params[] = { "foo", "bar", "baz", NULL }; const char* const desc = "a %(bar)s."; EXPECT_THAT(ValidateMatcherDescription(params, desc), ElementsAre(EqInterpolation(desc + 2, desc + 9, 1))); } TEST(ValidateMatcherDescriptionTest, AcceptsMultiplenterpolations) { const char* params[] = { "foo", "bar", "baz", NULL }; const char* const desc = "%(baz)s %(foo)s %(bar)s"; EXPECT_THAT(ValidateMatcherDescription(params, desc), ElementsAre(EqInterpolation(desc, desc + 7, 2), EqInterpolation(desc + 8, desc + 15, 0), EqInterpolation(desc + 16, desc + 23, 1))); } TEST(ValidateMatcherDescriptionTest, AcceptsRepeatedParams) { const char* params[] = { "foo", "bar", NULL }; const char* const desc = "%(foo)s and %(foo)s"; EXPECT_THAT(ValidateMatcherDescription(params, desc), ElementsAre(EqInterpolation(desc, desc + 7, 0), EqInterpolation(desc + 12, desc + 19, 0))); } TEST(ValidateMatcherDescriptionTest, RejectsUnknownParam) { const char* params[] = { "a", "bar", NULL }; EXPECT_NONFATAL_FAILURE({ EXPECT_THAT(ValidateMatcherDescription(params, "%(foo)s"), ElementsAre()); }, "Syntax error at index 2 in matcher description \"%(foo)s\": " "\"foo\" is an invalid parameter name."); } TEST(ValidateMatcherDescriptionTest, RejectsUnfinishedParam) { const char* params[] = { "a", "bar", NULL }; EXPECT_NONFATAL_FAILURE({ EXPECT_THAT(ValidateMatcherDescription(params, "%(foo)"), ElementsAre()); }, "Syntax error at index 0 in matcher description \"%(foo)\": " "an interpolation must end with \")s\", but \"%(foo)\" does not."); EXPECT_NONFATAL_FAILURE({ EXPECT_THAT(ValidateMatcherDescription(params, "x%(a"), ElementsAre()); }, "Syntax error at index 1 in matcher description \"x%(a\": " "an interpolation must end with \")s\", but \"%(a\" does not."); } TEST(ValidateMatcherDescriptionTest, RejectsSinglePercent) { const char* params[] = { "a", NULL }; EXPECT_NONFATAL_FAILURE({ EXPECT_THAT(ValidateMatcherDescription(params, "a %."), ElementsAre()); }, "Syntax error at index 2 in matcher description \"a %.\": " "use \"%%\" instead of \"%\" to print \"%\"."); } // Tests JoinAsTuple(). TEST(JoinAsTupleTest, JoinsEmptyTuple) { EXPECT_EQ("", JoinAsTuple(Strings())); } TEST(JoinAsTupleTest, JoinsOneTuple) { const char* fields[] = { "1" }; EXPECT_EQ("1", JoinAsTuple(Strings(fields, fields + 1))); } TEST(JoinAsTupleTest, JoinsTwoTuple) { const char* fields[] = { "1", "a" }; EXPECT_EQ("(1, a)", JoinAsTuple(Strings(fields, fields + 2))); } TEST(JoinAsTupleTest, JoinsTenTuple) { const char* fields[] = { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10" }; EXPECT_EQ("(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)", JoinAsTuple(Strings(fields, fields + 10))); } // Tests FormatMatcherDescription(). TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) { EXPECT_EQ("is even", FormatMatcherDescription("IsEven", "", Interpolations(), Strings())); const char* params[] = { "5" }; EXPECT_EQ("equals 5", FormatMatcherDescription("Equals", "", Interpolations(), Strings(params, params + 1))); const char* params2[] = { "5", "8" }; EXPECT_EQ("is in range (5, 8)", FormatMatcherDescription("IsInRange", "", Interpolations(), Strings(params2, params2 + 2))); } TEST(FormatMatcherDescriptionTest, WorksForDescriptionWithNoInterpolation) { EXPECT_EQ("is positive", FormatMatcherDescription("Gt0", "is positive", Interpolations(), Strings())); const char* params[] = { "5", "6" }; EXPECT_EQ("is negative", FormatMatcherDescription("Lt0", "is negative", Interpolations(), Strings(params, params + 2))); } TEST(FormatMatcherDescriptionTest, WorksWhenDescriptionStartsWithInterpolation) { const char* params[] = { "5" }; const char* const desc = "%(num)s times bigger"; const Interpolation interp[] = { Interpolation(desc, desc + 7, 0) }; EXPECT_EQ("5 times bigger", FormatMatcherDescription("Foo", desc, Interpolations(interp, interp + 1), Strings(params, params + 1))); } TEST(FormatMatcherDescriptionTest, WorksWhenDescriptionEndsWithInterpolation) { const char* params[] = { "5", "6" }; const char* const desc = "is bigger than %(y)s"; const Interpolation interp[] = { Interpolation(desc + 15, desc + 20, 1) }; EXPECT_EQ("is bigger than 6", FormatMatcherDescription("Foo", desc, Interpolations(interp, interp + 1), Strings(params, params + 2))); } TEST(FormatMatcherDescriptionTest, WorksWhenDescriptionStartsAndEndsWithInterpolation) { const char* params[] = { "5", "6" }; const char* const desc = "%(x)s <= arg <= %(y)s"; const Interpolation interp[] = { Interpolation(desc, desc + 5, 0), Interpolation(desc + 16, desc + 21, 1) }; EXPECT_EQ("5 <= arg <= 6", FormatMatcherDescription("Foo", desc, Interpolations(interp, interp + 2), Strings(params, params + 2))); } TEST(FormatMatcherDescriptionTest, WorksWhenDescriptionDoesNotStartOrEndWithInterpolation) { const char* params[] = { "5.2" }; const char* const desc = "has %(x)s cents"; const Interpolation interp[] = { Interpolation(desc + 4, desc + 9, 0) }; EXPECT_EQ("has 5.2 cents", FormatMatcherDescription("Foo", desc, Interpolations(interp, interp + 1), Strings(params, params + 1))); } TEST(FormatMatcherDescriptionTest, WorksWhenDescriptionContainsMultipleInterpolations) { const char* params[] = { "5", "6" }; const char* const desc = "in %(*)s or [%(x)s, %(y)s]"; const Interpolation interp[] = { Interpolation(desc + 3, desc + 8, kTupleInterpolation), Interpolation(desc + 13, desc + 18, 0), Interpolation(desc + 20, desc + 25, 1) }; EXPECT_EQ("in (5, 6) or [5, 6]", FormatMatcherDescription("Foo", desc, Interpolations(interp, interp + 3), Strings(params, params + 2))); } TEST(FormatMatcherDescriptionTest, WorksWhenDescriptionContainsRepeatedParams) { const char* params[] = { "9" }; const char* const desc = "in [-%(x)s, %(x)s]"; const Interpolation interp[] = { Interpolation(desc + 5, desc + 10, 0), Interpolation(desc + 12, desc + 17, 0) }; EXPECT_EQ("in [-9, 9]", FormatMatcherDescription("Foo", desc, Interpolations(interp, interp + 2), Strings(params, params + 1))); } TEST(FormatMatcherDescriptionTest, WorksForDescriptionWithInvalidInterpolation) { const char* params[] = { "9" }; const char* const desc = "> %(x)s %(x)"; const Interpolation interp[] = { Interpolation(desc + 2, desc + 7, 0) }; EXPECT_EQ("> 9 %(x)", FormatMatcherDescription("Foo", desc, Interpolations(interp, interp + 1), Strings(params, params + 1))); } // Tests PolymorphicMatcher::mutable_impl(). TEST(PolymorphicMatcherTest, CanAccessMutableImpl) { PolymorphicMatcher m(DivisibleByImpl(42)); DivisibleByImpl& impl = m.mutable_impl(); EXPECT_EQ(42, impl.divider()); impl.set_divider(0); EXPECT_EQ(0, m.mutable_impl().divider()); } // Tests PolymorphicMatcher::impl(). TEST(PolymorphicMatcherTest, CanAccessImpl) { const PolymorphicMatcher m(DivisibleByImpl(42)); const DivisibleByImpl& impl = m.impl(); EXPECT_EQ(42, impl.divider()); } TEST(MatcherTupleTest, ExplainsMatchFailure) { stringstream ss1; ExplainMatchFailureTupleTo(make_tuple(Matcher(Eq('a')), GreaterThan(5)), make_tuple('a', 10), &ss1); EXPECT_EQ("", ss1.str()); // Successful match. stringstream ss2; ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher(Eq('a'))), make_tuple(2, 'b'), &ss2); EXPECT_EQ(" Expected arg #0: is > 5\n" " Actual: 2, which is 3 less than 5\n" " Expected arg #1: is equal to 'a' (97)\n" " Actual: 'b' (98)\n", ss2.str()); // Failed match where both arguments need explanation. stringstream ss3; ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher(Eq('a'))), make_tuple(2, 'a'), &ss3); EXPECT_EQ(" Expected arg #0: is > 5\n" " Actual: 2, which is 3 less than 5\n", ss3.str()); // Failed match where only one argument needs // explanation. } } // namespace gmock_matchers_test } // namespace testing ref='#n3432'>3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
You can find recipes for using Google Mock here. If you haven't yet,
please read the [ForDummies](ForDummies.md) document first to make sure you understand
the basics.

**Note:** Google Mock lives in the `testing` name space. For
readability, it is recommended to write `using ::testing::Foo;` once in
your file before using the name `Foo` defined by Google Mock. We omit
such `using` statements in this page for brevity, but you should do it
in your own code.

# Creating Mock Classes #

## Mocking Private or Protected Methods ##

You must always put a mock method definition (`MOCK_METHOD*`) in a
`public:` section of the mock class, regardless of the method being
mocked being `public`, `protected`, or `private` in the base class.
This allows `ON_CALL` and `EXPECT_CALL` to reference the mock function
from outside of the mock class.  (Yes, C++ allows a subclass to specify
a different access level than the base class on a virtual function.)
Example:

```
class Foo {
 public:
  ...
  virtual bool Transform(Gadget* g) = 0;

 protected:
  virtual void Resume();

 private:
  virtual int GetTimeOut();
};

class MockFoo : public Foo {
 public:
  ...
  MOCK_METHOD1(Transform, bool(Gadget* g));

  // The following must be in the public section, even though the
  // methods are protected or private in the base class.
  MOCK_METHOD0(Resume, void());
  MOCK_METHOD0(GetTimeOut, int());
};
```

## Mocking Overloaded Methods ##

You can mock overloaded functions as usual. No special attention is required:

```
class Foo {
  ...

  // Must be virtual as we'll inherit from Foo.
  virtual ~Foo();

  // Overloaded on the types and/or numbers of arguments.
  virtual int Add(Element x);
  virtual int Add(int times, Element x);

  // Overloaded on the const-ness of this object.
  virtual Bar& GetBar();
  virtual const Bar& GetBar() const;
};

class MockFoo : public Foo {
  ...
  MOCK_METHOD1(Add, int(Element x));
  MOCK_METHOD2(Add, int(int times, Element x);

  MOCK_METHOD0(GetBar, Bar&());
  MOCK_CONST_METHOD0(GetBar, const Bar&());
};
```

**Note:** if you don't mock all versions of the overloaded method, the
compiler will give you a warning about some methods in the base class
being hidden. To fix that, use `using` to bring them in scope:

```
class MockFoo : public Foo {
  ...
  using Foo::Add;
  MOCK_METHOD1(Add, int(Element x));
  // We don't want to mock int Add(int times, Element x);
  ...
};
```

## Mocking Class Templates ##

To mock a class template, append `_T` to the `MOCK_*` macros:

```
template <typename Elem>
class StackInterface {
  ...
  // Must be virtual as we'll inherit from StackInterface.
  virtual ~StackInterface();

  virtual int GetSize() const = 0;
  virtual void Push(const Elem& x) = 0;
};

template <typename Elem>
class MockStack : public StackInterface<Elem> {
  ...
  MOCK_CONST_METHOD0_T(GetSize, int());
  MOCK_METHOD1_T(Push, void(const Elem& x));
};
```

## Mocking Nonvirtual Methods ##

Google Mock can mock non-virtual functions to be used in what we call _hi-perf
dependency injection_.

In this case, instead of sharing a common base class with the real
class, your mock class will be _unrelated_ to the real class, but
contain methods with the same signatures.  The syntax for mocking
non-virtual methods is the _same_ as mocking virtual methods:

```
// A simple packet stream class.  None of its members is virtual.
class ConcretePacketStream {
 public:
  void AppendPacket(Packet* new_packet);
  const Packet* GetPacket(size_t packet_number) const;
  size_t NumberOfPackets() const;
  ...
};

// A mock packet stream class.  It inherits from no other, but defines
// GetPacket() and NumberOfPackets().
class MockPacketStream {
 public:
  MOCK_CONST_METHOD1(GetPacket, const Packet*(size_t packet_number));
  MOCK_CONST_METHOD0(NumberOfPackets, size_t());
  ...
};
```

Note that the mock class doesn't define `AppendPacket()`, unlike the
real class. That's fine as long as the test doesn't need to call it.

Next, you need a way to say that you want to use
`ConcretePacketStream` in production code and to use `MockPacketStream`
in tests.  Since the functions are not virtual and the two classes are
unrelated, you must specify your choice at _compile time_ (as opposed
to run time).

One way to do it is to templatize your code that needs to use a packet
stream.  More specifically, you will give your code a template type
argument for the type of the packet stream.  In production, you will
instantiate your template with `ConcretePacketStream` as the type
argument.  In tests, you will instantiate the same template with
`MockPacketStream`.  For example, you may write:

```
template <class PacketStream>
void CreateConnection(PacketStream* stream) { ... }

template <class PacketStream>
class PacketReader {
 public:
  void ReadPackets(PacketStream* stream, size_t packet_num);
};
```

Then you can use `CreateConnection<ConcretePacketStream>()` and
`PacketReader<ConcretePacketStream>` in production code, and use
`CreateConnection<MockPacketStream>()` and
`PacketReader<MockPacketStream>` in tests.

```
  MockPacketStream mock_stream;
  EXPECT_CALL(mock_stream, ...)...;
  .. set more expectations on mock_stream ...
  PacketReader<MockPacketStream> reader(&mock_stream);
  ... exercise reader ...
```

## Mocking Free Functions ##

It's possible to use Google Mock to mock a free function (i.e. a
C-style function or a static method).  You just need to rewrite your
code to use an interface (abstract class).

Instead of calling a free function (say, `OpenFile`) directly,
introduce an interface for it and have a concrete subclass that calls
the free function:

```
class FileInterface {
 public:
  ...
  virtual bool Open(const char* path, const char* mode) = 0;
};

class File : public FileInterface {
 public:
  ...
  virtual bool Open(const char* path, const char* mode) {
    return OpenFile(path, mode);
  }
};
```

Your code should talk to `FileInterface` to open a file.  Now it's
easy to mock out the function.

This may seem much hassle, but in practice you often have multiple
related functions that you can put in the same interface, so the
per-function syntactic overhead will be much lower.

If you are concerned about the performance overhead incurred by
virtual functions, and profiling confirms your concern, you can
combine this with the recipe for [mocking non-virtual methods](#mocking-nonvirtual-methods).

## The Nice, the Strict, and the Naggy ##

If a mock method has no `EXPECT_CALL` spec but is called, Google Mock
will print a warning about the "uninteresting call". The rationale is:

  * New methods may be added to an interface after a test is written. We shouldn't fail a test just because a method it doesn't know about is called.
  * However, this may also mean there's a bug in the test, so Google Mock shouldn't be silent either. If the user believes these calls are harmless, they can add an `EXPECT_CALL()` to suppress the warning.

However, sometimes you may want to suppress all "uninteresting call"
warnings, while sometimes you may want the opposite, i.e. to treat all
of them as errors. Google Mock lets you make the decision on a
per-mock-object basis.

Suppose your test uses a mock class `MockFoo`:

```
TEST(...) {
  MockFoo mock_foo;
  EXPECT_CALL(mock_foo, DoThis());
  ... code that uses mock_foo ...
}
```

If a method of `mock_foo` other than `DoThis()` is called, it will be
reported by Google Mock as a warning. However, if you rewrite your
test to use `NiceMock<MockFoo>` instead, the warning will be gone,
resulting in a cleaner test output:

```
using ::testing::NiceMock;

TEST(...) {
  NiceMock<MockFoo> mock_foo;
  EXPECT_CALL(mock_foo, DoThis());
  ... code that uses mock_foo ...
}
```

`NiceMock<MockFoo>` is a subclass of `MockFoo`, so it can be used
wherever `MockFoo` is accepted.

It also works if `MockFoo`'s constructor takes some arguments, as
`NiceMock<MockFoo>` "inherits" `MockFoo`'s constructors:

```
using ::testing::NiceMock;

TEST(...) {
  NiceMock<MockFoo> mock_foo(5, "hi");  // Calls MockFoo(5, "hi").
  EXPECT_CALL(mock_foo, DoThis());
  ... code that uses mock_foo ...
}
```

The usage of `StrictMock` is similar, except that it makes all
uninteresting calls failures:

```
using ::testing::StrictMock;

TEST(...) {
  StrictMock<MockFoo> mock_foo;
  EXPECT_CALL(mock_foo, DoThis());
  ... code that uses mock_foo ...

  // The test will fail if a method of mock_foo other than DoThis()
  // is called.
}
```

There are some caveats though (I don't like them just as much as the
next guy, but sadly they are side effects of C++'s limitations):

  1. `NiceMock<MockFoo>` and `StrictMock<MockFoo>` only work for mock methods defined using the `MOCK_METHOD*` family of macros **directly** in the `MockFoo` class. If a mock method is defined in a **base class** of `MockFoo`, the "nice" or "strict" modifier may not affect it, depending on the compiler. In particular, nesting `NiceMock` and `StrictMock` (e.g. `NiceMock<StrictMock<MockFoo> >`) is **not** supported.
  1. The constructors of the base mock (`MockFoo`) cannot have arguments passed by non-const reference, which happens to be banned by the [Google C++ style guide](https://google.github.io/styleguide/cppguide.html).
  1. During the constructor or destructor of `MockFoo`, the mock object is _not_ nice or strict.  This may cause surprises if the constructor or destructor calls a mock method on `this` object. (This behavior, however, is consistent with C++'s general rule: if a constructor or destructor calls a virtual method of `this` object, that method is treated as non-virtual.  In other words, to the base class's constructor or destructor, `this` object behaves like an instance of the base class, not the derived class.  This rule is required for safety.  Otherwise a base constructor may use members of a derived class before they are initialized, or a base destructor may use members of a derived class after they have been destroyed.)

Finally, you should be **very cautious** about when to use naggy or strict mocks, as they tend to make tests more brittle and harder to maintain. When you refactor your code without changing its externally visible behavior, ideally you should't need to update any tests. If your code interacts with a naggy mock, however, you may start to get spammed with warnings as the result of your change. Worse, if your code interacts with a strict mock, your tests may start to fail and you'll be forced to fix them. Our general recommendation is to use nice mocks (not yet the default) most of the time, use naggy mocks (the current default) when developing or debugging tests, and use strict mocks only as the last resort.

## Simplifying the Interface without Breaking Existing Code ##

Sometimes a method has a long list of arguments that is mostly
uninteresting. For example,

```
class LogSink {
 public:
  ...
  virtual void send(LogSeverity severity, const char* full_filename,
                    const char* base_filename, int line,
                    const struct tm* tm_time,
                    const char* message, size_t message_len) = 0;
};
```

This method's argument list is lengthy and hard to work with (let's
say that the `message` argument is not even 0-terminated). If we mock
it as is, using the mock will be awkward. If, however, we try to
simplify this interface, we'll need to fix all clients depending on
it, which is often infeasible.

The trick is to re-dispatch the method in the mock class:

```
class ScopedMockLog : public LogSink {
 public:
  ...
  virtual void send(LogSeverity severity, const char* full_filename,
                    const char* base_filename, int line, const tm* tm_time,
                    const char* message, size_t message_len) {
    // We are only interested in the log severity, full file name, and
    // log message.
    Log(severity, full_filename, std::string(message, message_len));
  }

  // Implements the mock method:
  //
  //   void Log(LogSeverity severity,
  //            const string& file_path,
  //            const string& message);
  MOCK_METHOD3(Log, void(LogSeverity severity, const string& file_path,
                         const string& message));
};
```

By defining a new mock method with a trimmed argument list, we make
the mock class much more user-friendly.

## Alternative to Mocking Concrete Classes ##

Often you may find yourself using classes that don't implement
interfaces. In order to test your code that uses such a class (let's
call it `Concrete`), you may be tempted to make the methods of
`Concrete` virtual and then mock it.

Try not to do that.

Making a non-virtual function virtual is a big decision. It creates an
extension point where subclasses can tweak your class' behavior. This
weakens your control on the class because now it's harder to maintain
the class' invariants. You should make a function virtual only when
there is a valid reason for a subclass to override it.

Mocking concrete classes directly is problematic as it creates a tight
coupling between the class and the tests - any small change in the
class may invalidate your tests and make test maintenance a pain.

To avoid such problems, many programmers have been practicing "coding
to interfaces": instead of talking to the `Concrete` class, your code
would define an interface and talk to it. Then you implement that
interface as an adaptor on top of `Concrete`. In tests, you can easily
mock that interface to observe how your code is doing.

This technique incurs some overhead:

  * You pay the cost of virtual function calls (usually not a problem).
  * There is more abstraction for the programmers to learn.

However, it can also bring significant benefits in addition to better
testability:

  * `Concrete`'s API may not fit your problem domain very well, as you may not be the only client it tries to serve. By designing your own interface, you have a chance to tailor it to your need - you may add higher-level functionalities, rename stuff, etc instead of just trimming the class. This allows you to write your code (user of the interface) in a more natural way, which means it will be more readable, more maintainable, and you'll be more productive.
  * If `Concrete`'s implementation ever has to change, you don't have to rewrite everywhere it is used. Instead, you can absorb the change in your implementation of the interface, and your other code and tests will be insulated from this change.

Some people worry that if everyone is practicing this technique, they
will end up writing lots of redundant code. This concern is totally
understandable. However, there are two reasons why it may not be the
case:

  * Different projects may need to use `Concrete` in different ways, so the best interfaces for them will be different. Therefore, each of them will have its own domain-specific interface on top of `Concrete`, and they will not be the same code.
  * If enough projects want to use the same interface, they can always share it, just like they have been sharing `Concrete`. You can check in the interface and the adaptor somewhere near `Concrete` (perhaps in a `contrib` sub-directory) and let many projects use it.

You need to weigh the pros and cons carefully for your particular
problem, but I'd like to assure you that the Java community has been
practicing this for a long time and it's a proven effective technique
applicable in a wide variety of situations. :-)

## Delegating Calls to a Fake ##

Some times you have a non-trivial fake implementation of an
interface. For example:

```
class Foo {
 public:
  virtual ~Foo() {}
  virtual char DoThis(int n) = 0;
  virtual void DoThat(const char* s, int* p) = 0;
};

class FakeFoo : public Foo {
 public:
  virtual char DoThis(int n) {
    return (n > 0) ? '+' :
        (n < 0) ? '-' : '0';
  }

  virtual void DoThat(const char* s, int* p) {
    *p = strlen(s);
  }
};
```

Now you want to mock this interface such that you can set expectations
on it. However, you also want to use `FakeFoo` for the default
behavior, as duplicating it in the mock object is, well, a lot of
work.

When you define the mock class using Google Mock, you can have it
delegate its default action to a fake class you already have, using
this pattern:

```
using ::testing::_;
using ::testing::Invoke;

class MockFoo : public Foo {
 public:
  // Normal mock method definitions using Google Mock.
  MOCK_METHOD1(DoThis, char(int n));
  MOCK_METHOD2(DoThat, void(const char* s, int* p));

  // Delegates the default actions of the methods to a FakeFoo object.
  // This must be called *before* the custom ON_CALL() statements.
  void DelegateToFake() {
    ON_CALL(*this, DoThis(_))
        .WillByDefault(Invoke(&fake_, &FakeFoo::DoThis));
    ON_CALL(*this, DoThat(_, _))
        .WillByDefault(Invoke(&fake_, &FakeFoo::DoThat));
  }
 private:
  FakeFoo fake_;  // Keeps an instance of the fake in the mock.
};
```

With that, you can use `MockFoo` in your tests as usual. Just remember
that if you don't explicitly set an action in an `ON_CALL()` or
`EXPECT_CALL()`, the fake will be called upon to do it:

```
using ::testing::_;

TEST(AbcTest, Xyz) {
  MockFoo foo;
  foo.DelegateToFake(); // Enables the fake for delegation.

  // Put your ON_CALL(foo, ...)s here, if any.

  // No action specified, meaning to use the default action.
  EXPECT_CALL(foo, DoThis(5));
  EXPECT_CALL(foo, DoThat(_, _));

  int n = 0;
  EXPECT_EQ('+', foo.DoThis(5));  // FakeFoo::DoThis() is invoked.
  foo.DoThat("Hi", &n);           // FakeFoo::DoThat() is invoked.
  EXPECT_EQ(2, n);
}
```

**Some tips:**

  * If you want, you can still override the default action by providing your own `ON_CALL()` or using `.WillOnce()` / `.WillRepeatedly()` in `EXPECT_CALL()`.
  * In `DelegateToFake()`, you only need to delegate the methods whose fake implementation you intend to use.
  * The general technique discussed here works for overloaded methods, but you'll need to tell the compiler which version you mean. To disambiguate a mock function (the one you specify inside the parentheses of `ON_CALL()`), see the "Selecting Between Overloaded Functions" section on this page; to disambiguate a fake function (the one you place inside `Invoke()`), use a `static_cast` to specify the function's type. For instance, if class `Foo` has methods `char DoThis(int n)` and `bool DoThis(double x) const`, and you want to invoke the latter, you need to write `Invoke(&fake_, static_cast<bool (FakeFoo::*)(double) const>(&FakeFoo::DoThis))` instead of `Invoke(&fake_, &FakeFoo::DoThis)` (The strange-looking thing inside the angled brackets of `static_cast` is the type of a function pointer to the second `DoThis()` method.).
  * Having to mix a mock and a fake is often a sign of something gone wrong. Perhaps you haven't got used to the interaction-based way of testing yet. Or perhaps your interface is taking on too many roles and should be split up. Therefore, **don't abuse this**. We would only recommend to do it as an intermediate step when you are refactoring your code.

Regarding the tip on mixing a mock and a fake, here's an example on
why it may be a bad sign: Suppose you have a class `System` for
low-level system operations. In particular, it does file and I/O
operations. And suppose you want to test how your code uses `System`
to do I/O, and you just want the file operations to work normally. If
you mock out the entire `System` class, you'll have to provide a fake
implementation for the file operation part, which suggests that
`System` is taking on too many roles.

Instead, you can define a `FileOps` interface and an `IOOps` interface
and split `System`'s functionalities into the two. Then you can mock
`IOOps` without mocking `FileOps`.

## Delegating Calls to a Real Object ##

When using testing doubles (mocks, fakes, stubs, and etc), sometimes
their behaviors will differ from those of the real objects. This
difference could be either intentional (as in simulating an error such
that you can test the error handling code) or unintentional. If your
mocks have different behaviors than the real objects by mistake, you
could end up with code that passes the tests but fails in production.

You can use the _delegating-to-real_ technique to ensure that your
mock has the same behavior as the real object while retaining the
ability to validate calls. This technique is very similar to the
delegating-to-fake technique, the difference being that we use a real
object instead of a fake. Here's an example:

```
using ::testing::_;
using ::testing::AtLeast;
using ::testing::Invoke;

class MockFoo : public Foo {
 public:
  MockFoo() {
    // By default, all calls are delegated to the real object.
    ON_CALL(*this, DoThis())
        .WillByDefault(Invoke(&real_, &Foo::DoThis));
    ON_CALL(*this, DoThat(_))
        .WillByDefault(Invoke(&real_, &Foo::DoThat));
    ...
  }
  MOCK_METHOD0(DoThis, ...);
  MOCK_METHOD1(DoThat, ...);
  ...
 private:
  Foo real_;
};
...

  MockFoo mock;

  EXPECT_CALL(mock, DoThis())
      .Times(3);
  EXPECT_CALL(mock, DoThat("Hi"))
      .Times(AtLeast(1));
  ... use mock in test ...
```

With this, Google Mock will verify that your code made the right calls
(with the right arguments, in the right order, called the right number
of times, etc), and a real object will answer the calls (so the
behavior will be the same as in production). This gives you the best
of both worlds.

## Delegating Calls to a Parent Class ##

Ideally, you should code to interfaces, whose methods are all pure
virtual. In reality, sometimes you do need to mock a virtual method
that is not pure (i.e, it already has an implementation). For example:

```
class Foo {
 public:
  virtual ~Foo();

  virtual void Pure(int n) = 0;
  virtual int Concrete(const char* str) { ... }
};

class MockFoo : public Foo {
 public:
  // Mocking a pure method.
  MOCK_METHOD1(Pure, void(int n));
  // Mocking a concrete method.  Foo::Concrete() is shadowed.
  MOCK_METHOD1(Concrete, int(const char* str));
};
```

Sometimes you may want to call `Foo::Concrete()` instead of
`MockFoo::Concrete()`. Perhaps you want to do it as part of a stub
action, or perhaps your test doesn't need to mock `Concrete()` at all
(but it would be oh-so painful to have to define a new mock class
whenever you don't need to mock one of its methods).

The trick is to leave a back door in your mock class for accessing the
real methods in the base class:

```
class MockFoo : public Foo {
 public:
  // Mocking a pure method.
  MOCK_METHOD1(Pure, void(int n));
  // Mocking a concrete method.  Foo::Concrete() is shadowed.
  MOCK_METHOD1(Concrete, int(const char* str));

  // Use this to call Concrete() defined in Foo.
  int FooConcrete(const char* str) { return Foo::Concrete(str); }
};
```

Now, you can call `Foo::Concrete()` inside an action by:

```
using ::testing::_;
using ::testing::Invoke;
...
  EXPECT_CALL(foo, Concrete(_))
      .WillOnce(Invoke(&foo, &MockFoo::FooConcrete));
```

or tell the mock object that you don't want to mock `Concrete()`:

```
using ::testing::Invoke;
...
  ON_CALL(foo, Concrete(_))
      .WillByDefault(Invoke(&foo, &MockFoo::FooConcrete));
```

(Why don't we just write `Invoke(&foo, &Foo::Concrete)`? If you do
that, `MockFoo::Concrete()` will be called (and cause an infinite
recursion) since `Foo::Concrete()` is virtual. That's just how C++
works.)

# Using Matchers #

## Matching Argument Values Exactly ##

You can specify exactly which arguments a mock method is expecting:

```
using ::testing::Return;
...
  EXPECT_CALL(foo, DoThis(5))
      .WillOnce(Return('a'));
  EXPECT_CALL(foo, DoThat("Hello", bar));
```

## Using Simple Matchers ##

You can use matchers to match arguments that have a certain property:

```
using ::testing::Ge;
using ::testing::NotNull;
using ::testing::Return;
...
  EXPECT_CALL(foo, DoThis(Ge(5)))  // The argument must be >= 5.
      .WillOnce(Return('a'));
  EXPECT_CALL(foo, DoThat("Hello", NotNull()));
  // The second argument must not be NULL.
```

A frequently used matcher is `_`, which matches anything:

```
using ::testing::_;
using ::testing::NotNull;
...
  EXPECT_CALL(foo, DoThat(_, NotNull()));
```

## Combining Matchers ##

You can build complex matchers from existing ones using `AllOf()`,
`AnyOf()`, and `Not()`:

```
using ::testing::AllOf;
using ::testing::Gt;
using ::testing::HasSubstr;
using ::testing::Ne;
using ::testing::Not;
...
  // The argument must be > 5 and != 10.
  EXPECT_CALL(foo, DoThis(AllOf(Gt(5),
                                Ne(10))));

  // The first argument must not contain sub-string "blah".
  EXPECT_CALL(foo, DoThat(Not(HasSubstr("blah")),
                          NULL));
```

## Casting Matchers ##

Google Mock matchers are statically typed, meaning that the compiler
can catch your mistake if you use a matcher of the wrong type (for
example, if you use `Eq(5)` to match a `string` argument). Good for
you!

Sometimes, however, you know what you're doing and want the compiler
to give you some slack. One example is that you have a matcher for
`long` and the argument you want to match is `int`. While the two
types aren't exactly the same, there is nothing really wrong with
using a `Matcher<long>` to match an `int` - after all, we can first
convert the `int` argument to a `long` before giving it to the
matcher.

To support this need, Google Mock gives you the
`SafeMatcherCast<T>(m)` function. It casts a matcher `m` to type
`Matcher<T>`. To ensure safety, Google Mock checks that (let `U` be the
type `m` accepts):

  1. Type `T` can be implicitly cast to type `U`;
  1. When both `T` and `U` are built-in arithmetic types (`bool`, integers, and floating-point numbers), the conversion from `T` to `U` is not lossy (in other words, any value representable by `T` can also be represented by `U`); and
  1. When `U` is a reference, `T` must also be a reference (as the underlying matcher may be interested in the address of the `U` value).

The code won't compile if any of these conditions aren't met.

Here's one example:

```
using ::testing::SafeMatcherCast;

// A base class and a child class.
class Base { ... };
class Derived : public Base { ... };

class MockFoo : public Foo {
 public:
  MOCK_METHOD1(DoThis, void(Derived* derived));
};
...

  MockFoo foo;
  // m is a Matcher<Base*> we got from somewhere.
  EXPECT_CALL(foo, DoThis(SafeMatcherCast<Derived*>(m)));
```

If you find `SafeMatcherCast<T>(m)` too limiting, you can use a similar
function `MatcherCast<T>(m)`. The difference is that `MatcherCast` works
as long as you can `static_cast` type `T` to type `U`.

`MatcherCast` essentially lets you bypass C++'s type system
(`static_cast` isn't always safe as it could throw away information,
for example), so be careful not to misuse/abuse it.

## Selecting Between Overloaded Functions ##

If you expect an overloaded function to be called, the compiler may
need some help on which overloaded version it is.

To disambiguate functions overloaded on the const-ness of this object,
use the `Const()` argument wrapper.

```
using ::testing::ReturnRef;

class MockFoo : public Foo {
  ...
  MOCK_METHOD0(GetBar, Bar&());
  MOCK_CONST_METHOD0(GetBar, const Bar&());
};
...

  MockFoo foo;
  Bar bar1, bar2;
  EXPECT_CALL(foo, GetBar())         // The non-const GetBar().
      .WillOnce(ReturnRef(bar1));
  EXPECT_CALL(Const(foo), GetBar())  // The const GetBar().
      .WillOnce(ReturnRef(bar2));
```

(`Const()` is defined by Google Mock and returns a `const` reference
to its argument.)

To disambiguate overloaded functions with the same number of arguments
but different argument types, you may need to specify the exact type
of a matcher, either by wrapping your matcher in `Matcher<type>()`, or
using a matcher whose type is fixed (`TypedEq<type>`, `An<type>()`,
etc):

```
using ::testing::An;
using ::testing::Lt;
using ::testing::Matcher;
using ::testing::TypedEq;

class MockPrinter : public Printer {
 public:
  MOCK_METHOD1(Print, void(int n));
  MOCK_METHOD1(Print, void(char c));
};

TEST(PrinterTest, Print) {
  MockPrinter printer;

  EXPECT_CALL(printer, Print(An<int>()));            // void Print(int);
  EXPECT_CALL(printer, Print(Matcher<int>(Lt(5))));  // void Print(int);
  EXPECT_CALL(printer, Print(TypedEq<char>('a')));   // void Print(char);

  printer.Print(3);
  printer.Print(6);
  printer.Print('a');
}
```

## Performing Different Actions Based on the Arguments ##

When a mock method is called, the _last_ matching expectation that's
still active will be selected (think "newer overrides older"). So, you
can make a method do different things depending on its argument values
like this:

```
using ::testing::_;
using ::testing::Lt;
using ::testing::Return;
...
  // The default case.
  EXPECT_CALL(foo, DoThis(_))
      .WillRepeatedly(Return('b'));

  // The more specific case.
  EXPECT_CALL(foo, DoThis(Lt(5)))
      .WillRepeatedly(Return('a'));
```

Now, if `foo.DoThis()` is called with a value less than 5, `'a'` will