/*
ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio.
This file is part of ChibiOS.
ChibiOS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/**
* @file chbsem.h
* @brief Binary semaphores structures and macros.
*
* @addtogroup binary_semaphores
* @details Binary semaphores related APIs and services.
*
Operation mode
* Binary semaphores are implemented as a set of inline functions
* that use the existing counting semaphores primitives. The
* difference between counting and binary semaphores is that the
* counter of binary semaphores is not allowed to grow above the
* value 1. Repeated signal operation are ignored. A binary
* semaphore can thus have only two defined states:
* - Taken, when its counter has a value of zero or lower
* than zero. A negative number represent the number of threads
* queued on the binary semaphore.
* - Not taken, when its counter has a value of one.
* .
* Binary semaphores are different from mutexes because there is no
* concept of ownership, a binary semaphore can be taken by a
* thread and signaled by another thread or an interrupt handler,
* mutexes can only be taken and released by the same thread. Another
* difference is that binary semaphores, unlike mutexes, do not
* implement the priority inheritance protocol.
* In order to use the binary semaphores APIs the
* @p CH_CFG_USE_SEMAPHORES option must be enabled in @p chconf.h.
* @{
*/
#ifndef CHBSEM_H
#define CHBSEM_H
#if (CH_CFG_USE_SEMAPHORES == TRUE) || defined(__DOXYGEN__)
/*===========================================================================*/
/* Module constants. */
/*===========================================================================*/
/*===========================================================================*/
/* Module pre-compile time settings. */
/*===========================================================================*/
/*===========================================================================*/
/* Derived constants and error checks. */
/*===========================================================================*/
/*===========================================================================*/
/* Module data structures and types. */
/*===========================================================================*/
/**
* @extends semaphore_t
*
* @brief Binary semaphore type.
*/
typedef struct {
semaphore_t sem;
} binary_semaphore_t;
/*===========================================================================*/
/* Module macros. */
/*===========================================================================*/
/**
* @brief Data part of a static semaphore initializer.
* @details This macro should be used when statically initializing a semaphore
* that is part of a bigger structure.
*
* @param[in] name the name of the semaphore variable
* @param[in] taken the semaphore initial state
*/
#define _BSEMAPHORE_DATA(name, taken) \
{_SEMAPHORE_DATA(name.sem, ((taken) ? 0 : 1))}
/**
* @brief Static semaphore initializer.
* @details Statically initialized semaphores require no explicit
* initialization using @p chBSemInit().
*
* @param[in] name the name of the semaphore variable
* @param[in] taken the semaphore initial state
*/
#define BSEMAPHORE_DECL(name, taken) \
binary_semaphore_t name = _BSEMAPHORE_DATA(name, taken)
/*===========================================================================*/
/* External declarations. */
/*===========================================================================*/
/*===========================================================================*/
/* Module inline functions. */
/*===========================================================================*/
/**
* @brief Initializes a binary semaphore.
*
* @param[out] bsp pointer to a @p binary_semaphore_t structure
* @param[in] taken initial state of the binary semaphore:
* - @a false, the initial state is not taken.
* - @a true, the initial state is taken.
* .
*
* @init
*/
static inline void chBSemObjectInit(binary_semaphore_t *bsp, bool taken) {
chSemObjectInit(&bsp->sem, taken ? (cnt_t)0 : (cnt_t)1);
}
/**
* @brief Wait operation on the binary semaphore.
*
* @param[in] bsp pointer to a @p binary_semaphore_t structure
* @return /* Copyright 2016 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef LEADER_ENABLE
#include "process_leader.h"
#ifndef LEADER_TIMEOUT
#define LEADER_TIMEOUT 300
#endif
__attribute__ ((weak))
void leader_start(void) {}
__attribute__ ((weak))
void leader_end(void) {}
// Leader key stuff
bool leading = false;
uint16_t leader_time = 0;
uint16_t leader_sequence[5] = {0, 0, 0, 0, 0};
uint8_t leader_sequence_size = 0;
void qk_leader_start(void) {
if (leading) { return; }
leader_start();
leading = true;
leader_time = timer_read();
leader_sequence_size = 0;
leader_sequence[0] = 0;
leader_sequence[1] = 0;
leader_sequence[2] = 0;
leader_sequence[3] = 0;
leader_sequence[4] = 0;
}
bool process_leader(uint16_t keycode, keyrecord_t *record) {
// Leader key set-up
if (record->event.pressed) {
if (leading) {
if (timer_elapsed(leader_time) < LEADER_TIMEOUT) {
#ifndef LEADER_KEY_STRICT_KEY_PROCESSING
if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX)) {
keycode = keycode & 0xFF;
}
#endif // LEADER_KEY_STRICT_KEY_PROCESSING
leader_sequence[leader_sequence_size] = keycode;
leader_sequence_size++;
#ifdef LEADER_PER_KEY_TIMING
leader_time = timer_read();
#endif
return false;
}
} else {
if (keycode == KC_LEAD) {
qk_leader_start();
}
}
}
return true;
}
#endif