#! /bin/sh # Attempt to guess a canonical system name. # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, # 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 # Free Software Foundation, Inc. timestamp='2010-04-03' # This file is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA # 02110-1301, USA. # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # Originally written by Per Bothner. Please send patches (context # diff format) to and include a ChangeLog # entry. # # This script attempts to guess a canonical system name similar to # config.sub. If it succeeds, it prints the system name on stdout, and # exits with 0. Otherwise, it exits with 1. # # You can get the latest version of this script from: # http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD me=`echo "$0" | sed -e 's,.*/,,'` usage="\ Usage: $0 [OPTION] Output the configuration name of the system \`$me' is run on. Operation modes: -h, --help print this help, then exit -t, --time-stamp print date of last modification, then exit -v, --version print version number, then exit Report bugs and patches to ." version="\ GNU config.guess ($timestamp) Originally written by Per Bothner. Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." help=" Try \`$me --help' for more information." # Parse command line while test $# -gt 0 ; do case $1 in --time-stamp | --time* | -t ) echo "$timestamp" ; exit ;; --version | -v ) echo "$version" ; exit ;; --help | --h* | -h ) echo "$usage"; exit ;; -- ) # Stop option processing shift; break ;; - ) # Use stdin as input. break ;; -* ) echo "$me: invalid option $1$help" >&2 exit 1 ;; * ) break ;; esac done if test $# != 0; then echo "$me: too many arguments$help" >&2 exit 1 fi trap 'exit 1' HUP INT TERM # CC_FOR_BUILD -- compiler used by this script. Note that the use of a # compiler to aid in system detection is discouraged as it requires # temporary files to be created and, as you can see below, it is a # headache to deal with in a portable fashion. # Historically, `CC_FOR_BUILD' used to be named `HOST_CC'. We still # use `HOST_CC' if defined, but it is deprecated. # Portable tmp directory creation inspired by the Autoconf team. set_cc_for_build=' trap "exitcode=\$?; (rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null) && exit \$exitcode" 0 ; trap "rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null; exit 1" HUP INT PIPE TERM ; : ${TMPDIR=/tmp} ; { tmp=`(umask 077 && mktemp -d "$TMPDIR/cgXXXXXX") 2>/dev/null` && test -n "$tmp" && test -d "$tmp" ; } || { test -n "$RANDOM" && tmp=$TMPDIR/cg$$-$RANDOM && (umask 077 && mkdir $tmp) ; } || { tmp=$TMPDIR/cg-$$ && (umask 077 && mkdir $tmp) && echo "Warning: creating insecure temp directory" >&2 ; } || { echo "$me: cannot create a temporary directory in $TMPDIR" >&2 ; exit 1 ; } ; dummy=$tmp/dummy ; tmpfiles="$dummy.c $dummy.o $dummy.rel $dummy" ; case $CC_FOR_BUILD,$HOST_CC,$CC in ,,) echo "int x;" > $dummy.c ; for c in cc gcc c89 c99 ; do if ($c -c -o $dummy.o $dummy.c) >/dev/null 2>&1 ; then CC_FOR_BUILD="$c"; break ; fi ; done ; if test x"$CC_FOR_BUILD" = x ; then CC_FOR_BUILD=no_compiler_found ; fi ;; ,,*) CC_FOR_BUILD=$CC ;; ,*,*) CC_FOR_BUILD=$HOST_CC ;; esac ; set_cc_for_build= ;' # This is needed to find uname on a Pyramid OSx when run in the BSD universe. # (ghazi@noc.rutgers.edu 1994-08-24) if (test -f /.attbin/uname) >/dev/null 2>&1 ; then PATH=$PATH:/.attbin ; export PATH fi UNAME_MACHINE=`(uname -m) 2>/dev/null` || UNAME_MACHINE=unknown UNAME_RELEASE=`(uname -r) 2>/dev/null` || UNAME_RELEASE=unknown UNAME_SYSTEM=`(uname -s) 2>/dev/null` || UNAME_SYSTEM=unknown UNAME_VERSION=`(uname -v) 2>/dev/null` || UNAME_VERSION=unknown # Note: order is significant - the case branches are not exclusive. case "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" in *:NetBSD:*:*) # NetBSD (nbsd) targets should (where applicable) match one or # more of the tupples: *-*-netbsdelf*, *-*-netbsdaout*, # *-*-netbsdecoff* and *-*-netbsd*. For targets that recently # switched to ELF, *-*-netbsd* would select the old # object file format. This provides both forward # compatibility and a consistent mechanism for selecting the # object file format. # # Note: NetBSD doesn't particularly care about the vendor # portion of the name. We always set it to "unknown". sysctl="sysctl -n hw.machine_arch" UNAME_MACHINE_ARCH=`(/sbin/$sysctl 2>/dev/null || \ /usr/sbin/$sysctl 2>/dev/null || echo unknown)` case "${UNAME_MACHINE_ARCH}" in armeb) machine=armeb-unknown ;; arm*) machine=arm-unknown ;; sh3el) machine=shl-unknown ;; sh3eb) machine=sh-unknown ;; sh5el) machine=sh5le-unknown ;; *) machine=${UNAME_MACHINE_ARCH}-unknown ;; esac # The Operating System including object format, if it has switched # to ELF recently, or will in the future. case "${UNAME_MACHINE_ARCH}" in arm*|i386|m68k|ns32k|sh3*|sparc|vax) eval $set_cc_for_build if echo __ELF__ | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ELF__ then # Once all utilities can be ECOFF (netbsdecoff) or a.out (netbsdaout). # Return netbsd for either. FIX? os=netbsd else os=netbsdelf fi ;; *) os=netbsd ;; esac # The OS release # Debian GNU/NetBSD machines have a different userland, and # thus, need a distinct triplet. However, they do not need # kernel version information, so it can be replaced with a # suitable tag, in the style of linux-gnu. case "${UNAME_VERSION}" in Debian*) release='-gnu' ;; *) release=`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'` ;; esac # Since CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM: # contains redundant information, the shorter form: # CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM is used. echo "${machine}-${os}${release}" exit ;; *:OpenBSD:*:*) UNAME_MACHINE_ARCH=`arch | sed 's/OpenBSD.//'` echo ${UNAME_MACHINE_ARCH}-unknown-openbsd${UNAME_RELEASE} exit ;; *:ekkoBSD:*:*) echo ${UNAME_MACHINE}-unknown-ekkobsd${UNAME_RELEASE} exit ;; *:SolidBSD:*:*) echo ${UNAME_MACHINE}-unknown-solidbsd${UNAME_RELEASE} exit ;; macppc:MirBSD:*:*) echo powerpc-unknown-mirbsd${UNAME_RELEASE} exit ;; *:MirBSD:*:*) echo ${UNAME_MACHINE}-unknown-mirbsd${UNAME_RELEASE} exit ;; alpha:OSF1:*:*) case $UNAME_RELEASE in *4.0) UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $3}'` ;; *5.*) UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $4}'` ;; esac # According to Compaq, /usr/sbin/psrinfo has been available on # OSF/1 and Tru64 systems produced since 1995. I hope that # covers most systems running today. This code pipes the CPU # types through head -n 1, so we only detect the type of CPU 0. ALPHA_CPU_TYPE=`/usr/sbin/psrinfo -v | sed -n -e 's/^ The alpha \(.*\) processor.*$/\1/p' | head -n 1` case "$ALPHA_CPU_TYPE" in "EV4 (21064)") UNAME_MACHINE="alpha" ;; "EV4.5 (21064)") UNAME_MACHINE="alpha" ;; "LCA4 (21066/21068)") UNAME_MACHINE="alpha" ;; "EV5 (21164)") UNAME_MACHINE="alphaev5" ;; "EV5.6 (21164A)") UNAME_MACHINE="alphaev56" ;; "EV5.6 (21164PC)") UNAME_MACHINE="alphapca56" ;; "EV5.7 (21164PC)") UNAME_MACHINE="alphapca57" ;; "EV6 (21264)") UNAME_MACHINE="alphaev6" ;; "EV6.7 (21264A)") UNAME_MACHINE="alphaev67" ;; "EV6.8CB (21264C)") UNAME_MACHINE="alphaev68" ;; "EV6.8AL (21264B)") UNAME_MACHINE="alphaev68" ;; "EV6.8CX (21264D)") UNAME_MACHINE="alphaev68" ;; "EV6.9A (21264/EV69A)") UNAME_MACHINE="alphaev69" ;; "EV7 (21364)") UNAME_MACHINE="alphaev7" ;; "EV7.9 (21364A)") UNAME_MACHINE="alphaev79" ;; esac # A Pn.n version is a patched version. # A Vn.n version is a released version. # A Tn.n version is a released field test version. # A Xn.n version is an unreleased experimental baselevel. # 1.2 uses "1.2" for uname -r. echo ${UNAME_MACHINE}-dec-osf`echo ${UNAME_RELEASE} | sed -e 's/^[PVTX]//' | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'` exit ;; Alpha\ *:Windows_NT*:*) # How do we know it's Interix rather than the generic POSIX subsystem? # Should we change UNAME_MACHINE based on the output of uname instead # of the specific Alpha model? echo alpha-pc-interix exit ;; 21064:Windows_NT:50:3) echo alpha-dec-winnt3.5 exit ;; Amiga*:UNIX_System_V:4.0:*) echo m68k-unknown-sysv4 exit ;; *:[Aa]miga[Oo][Ss]:*:*) echo ${UNAME_MACHINE}-unknown-amigaos exit ;; *:[Mm]orph[Oo][Ss]:*:*) echo ${UNAME_MACHINE}-unknown-morphos exit ;; *:OS/390:*:*) echo i370-ibm-openedition exit ;; *:z/VM:*:*) echo s390-ibm-zvmoe exit ;; *:OS400:*:*) echo powerpc-ibm-os400 exit ;; arm:RISC*:1.[012]*:*|arm:riscix:1.[012]*:*) echo arm-acorn-riscix${UNAME_RELEASE} exit ;; arm:riscos:*:*|arm:RISCOS:*:*) echo arm-unknown-riscos exit ;; SR2?01:HI-UX/MPP:*:* | SR8000:HI-UX/MPP:*:*) echo hppa1.1-hitachi-hiuxmpp exit ;; Pyramid*:OSx*:*:* | MIS*:OSx*:*:* | MIS*:SMP_DC-OSx*:*:*) # akee@wpdis03.wpafb.af.mil (Earle F. Ake) contributed MIS and NILE. if test "`(/bin/universe) 2>/dev/null`" = att ; then echo pyramid-pyramid-sysv3 else echo pyramid-pyramid-bsd fi exit ;; NILE*:*:*:dcosx) echo pyramid-pyramid-svr4 exit ;; DRS?6000:unix:4.0:6*) echo sparc-icl-nx6 exit ;; DRS?6000:UNIX_SV:4.2*:7* | DRS?6000:isis:4.2*:7*) case `/usr/bin/uname -p` in sparc) echo sparc-icl-nx7; exit ;; esac ;; s390x:SunOS:*:*) echo ${UNAME_MACHINE}-ibm-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4H:SunOS:5.*:*) echo sparc-hal-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:5.*:* | tadpole*:SunOS:5.*:*) echo sparc-sun-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; i86pc:AuroraUX:5.*:* | i86xen:AuroraUX:5.*:*) echo i386-pc-auroraux${UNAME_RELEASE} exit ;; i86pc:SunOS:5.*:* | i86xen:SunOS:5.*:*) eval $set_cc_for_build SUN_ARCH="i386" # If there is a compiler, see if it is configured for 64-bit objects. # Note that the Sun cc does not turn __LP64__ into 1 like gcc does. # This test works for both compilers. if [ "$CC_FOR_BUILD" != 'no_compiler_found' ]; then if (echo '#ifdef __amd64'; echo IS_64BIT_ARCH; echo '#endif') | \ (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | \ grep IS_64BIT_ARCH >/dev/null then SUN_ARCH="x86_64" fi fi echo ${SUN_ARCH}-pc-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:6*:*) # According to config.sub, this is the proper way to canonicalize # SunOS6. Hard to guess exactly what SunOS6 will be like, but # it's likely to be more like Solaris than SunOS4. echo sparc-sun-solaris3`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:*:*) case "`/usr/bin/arch -k`" in Series*|S4*) UNAME_RELEASE=`uname -v` ;; esac # Japanese Language versions have a version number like `4.1.3-JL'. echo sparc-sun-sunos`echo ${UNAME_RELEASE}|sed -e 's/-/_/'` exit ;; sun3*:SunOS:*:*) echo m68k-sun-sunos${UNAME_RELEASE} exit ;; sun*:*:4.2BSD:*) UNAME_RELEASE=`(sed 1q /etc/motd | awk '{print substr($5,1,3)}') 2>/dev/null` test "x${UNAME_RELEASE}" = "x" && UNAME_RELEASE=3 case "`/bin/arch`" in sun3) echo m68k-sun-sunos${UNAME_RELEASE} ;; sun4) echo sparc-sun-sunos${UNAME_RELEASE} ;; esac exit ;; aushp:SunOS:*:*) echo sparc-auspex-sunos${UNAME_RELEASE} exit ;; # The situation for MiNT is a little confusing. The machine name # can be virtually everything (everything which is not # "atarist" or "atariste" at least should have a processor # > m68000). The system name ranges from "MiNT" over "FreeMiNT" # to the lowercase version "mint" (or "freemint"). Finally # the system name "TOS" denotes a system which is actually not # MiNT. But MiNT is downward compatible to TOS, so this should # be no problem. atarist[e]:*MiNT:*:* | atarist[e]:*mint:*:* | atarist[e]:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; atari*:*MiNT:*:* | atari*:*mint:*:* | atarist[e]:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; *falcon*:*MiNT:*:* | *falcon*:*mint:*:* | *falcon*:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; milan*:*MiNT:*:* | milan*:*mint:*:* | *milan*:*TOS:*:*) echo m68k-milan-mint${UNAME_RELEASE} exit ;; hades*:*MiNT:*:* | hades*:*mint:*:* | *hades*:*TOS:*:*) echo m68k-hades-mint${UNAME_RELEASE} exit ;; *:*MiNT:*:* | *:*mint:*:* | *:*TOS:*:*) echo m68k-unknown-mint${UNAME_RELEASE} exit ;; m68k:machten:*:*) echo m68k-apple-machten${UNAME_RELEASE} exit ;; powerpc:machten:*:*) echo powerpc-apple-machten${UNAME_RELEASE} exit ;; RISC*:Mach:*:*) echo mips-dec-mach_bsd4.3 exit ;; RISC*:ULTRIX:*:*) echo mips-dec-ultrix${UNAME_RELEASE} exit ;; VAX*:ULTRIX*:*:*) echo vax-dec-ultrix${UNAME_RELEASE} exit ;; 2020:CLIX:*:* | 2430:CLIX:*:*) echo clipper-intergraph-clix${UNAME_RELEASE} exit ;; mips:*:*:UMIPS | mips:*:*:RISCos) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #ifdef __cplusplus #include /* for printf() prototype */ int main (int argc, char *argv[]) { #else int main (argc, argv) int argc; char *argv[]; { #endif #if defined (host_mips) && defined (MIPSEB) #if defined (SYSTYPE_SYSV) printf ("mips-mips-riscos%ssysv\n", argv[1]); exit (0); #endif #if defined (SYSTYPE_SVR4) printf ("mips-mips-riscos%ssvr4\n", argv[1]); exit (0); #endif #if defined (SYSTYPE_BSD43) || defined(SYSTYPE_BSD) printf ("mips-mips-riscos%sbsd\n", argv[1]); exit (0); #endif #endif exit (-1); } EOF $CC_FOR_BUILD -o $dummy $dummy.c && dummyarg=`echo "${UNAME_RELEASE}" | sed -n 's/\([0-9]*\).*/\1/p'` && SYSTEM_NAME=`$dummy $dummyarg` && { echo "$SYSTEM_NAME"; exit; } echo mips-mips-riscos${UNAME_RELEASE} exit ;; Motorola:PowerMAX_OS:*:*) echo powerpc-motorola-powermax exit ;; Motorola:*:4.3:PL8-*) echo powerpc-harris-powermax exit ;; Night_Hawk:*:*:PowerMAX_OS | Synergy:PowerMAX_OS:*:*) echo powerpc-harris-powermax exit ;; Night_Hawk:Power_UNIX:*:*) echo powerpc-harris-powerunix exit ;; m88k:CX/UX:7*:*) echo m88k-harris-cxux7 exit ;; m88k:*:4*:R4*) echo m88k-motorola-sysv4 exit ;; m88k:*:3*:R3*) echo m88k-motorola-sysv3 exit ;; AViiON:dgux:*:*) # DG/UX returns AViiON for all architectures UNAME_PROCESSOR=`/usr/bin/uname -p` if [ $UNAME_PROCESSOR = mc88100 ] || [ $UNAME_PROCESSOR = mc88110 ] then if [ ${TARGET_BINARY_INTERFACE}x = m88kdguxelfx ] || \ [ ${TARGET_BINARY_INTERFACE}x = x ] then echo m88k-dg-dgux${UNAME_RELEASE} else echo m88k-dg-dguxbcs${UNAME_RELEASE} fi else echo i586-dg-dgux${UNAME_RELEASE} fi exit ;; M88*:DolphinOS:*:*) # DolphinOS (SVR3) echo m88k-dolphin-sysv3 exit ;; M88*:*:R3*:*) # Delta 88k system running SVR3 echo m88k-motorola-sysv3 exit ;; XD88*:*:*:*) # Tektronix XD88 system running UTekV (SVR3) echo m88k-tektronix-sysv3 exit ;; Tek43[0-9][0-9]:UTek:*:*) # Tektronix 4300 system running UTek (BSD) echo m68k-tektronix-bsd exit ;; *:IRIX*:*:*) echo mips-sgi-irix`echo ${UNAME_RELEASE}|sed -e 's/-/_/g'` exit ;; ????????:AIX?:[12].1:2) # AIX 2.2.1 or AIX 2.1.1 is RT/PC AIX. echo romp-ibm-aix # uname -m gives an 8 hex-code CPU id exit ;; # Note that: echo "'`uname -s`'" gives 'AIX ' i*86:AIX:*:*) echo i386-ibm-aix exit ;; ia64:AIX:*:*) if [ -x /usr/bin/oslevel ] ; then IBM_REV=`/usr/bin/oslevel` else IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE} fi echo ${UNAME_MACHINE}-ibm-aix${IBM_REV} exit ;; *:AIX:2:3) if grep bos325 /usr/include/stdio.h >/dev/null 2>&1; then eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include main() { if (!__power_pc()) exit(1); puts("powerpc-ibm-aix3.2.5"); exit(0); } EOF if $CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy` then echo "$SYSTEM_NAME" else echo rs6000-ibm-aix3.2.5 fi elif grep bos324 /usr/include/stdio.h >/dev/null 2>&1; then echo rs6000-ibm-aix3.2.4 else echo rs6000-ibm-aix3.2 fi exit ;; *:AIX:*:[456]) IBM_CPU_ID=`/usr/sbin/lsdev -C -c processor -S available | sed 1q | awk '{ print $1 }'` if /usr/sbin/lsattr -El ${IBM_CPU_ID} | grep ' POWER' >/dev/null 2>&1; then IBM_ARCH=rs6000 else IBM_ARCH=powerpc fi if [ -x /usr/bin/oslevel ] ; then IBM_REV=`/usr/bin/oslevel` else IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE} fi echo ${IBM_ARCH}-ibm-aix${IBM_REV} exit ;; *:AIX:*:*) echo rs6000-ibm-aix exit ;; ibmrt:4.4BSD:*|romp-ibm:BSD:*) echo romp-ibm-bsd4.4 exit ;; ibmrt:*BSD:*|romp-ibm:BSD:*) # covers RT/PC BSD and echo romp-ibm-bsd${UNAME_RELEASE} # 4.3 with uname added to exit ;; # report: romp-ibm BSD 4.3 *:BOSX:*:*) echo rs6000-bull-bosx exit ;; DPX/2?00:B.O.S.:*:*) echo m68k-bull-sysv3 exit ;; 9000/[34]??:4.3bsd:1.*:*) echo m68k-hp-bsd exit ;; hp300:4.4BSD:*:* | 9000/[34]??:4.3bsd:2.*:*) echo m68k-hp-bsd4.4 exit ;; 9000/[34678]??:HP-UX:*:*) HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'` case "${UNAME_MACHINE}" in 9000/31? ) HP_ARCH=m68000 ;; 9000/[34]?? ) HP_ARCH=m68k ;; 9000/[678][0-9][0-9]) if [ -x /usr/bin/getconf ]; then sc_cpu_version=`/usr/bin/getconf SC_CPU_VERSION 2>/dev/null` sc_kernel_bits=`/usr/bin/getconf SC_KERNEL_BITS 2>/dev/null` case "${sc_cpu_version}" in 523) HP_ARCH="hppa1.0" ;; # CPU_PA_RISC1_0 528) HP_ARCH="hppa1.1" ;; # CPU_PA_RISC1_1 532) # CPU_PA_RISC2_0 case "${sc_kernel_bits}" in 32) HP_ARCH="hppa2.0n" ;; 64) HP_ARCH="hppa2.0w" ;; '') HP_ARCH="hppa2.0" ;; # HP-UX 10.20 esac ;; esac fi if [ "${HP_ARCH}" = "" ]; then eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #define _HPUX_SOURCE #include #include int main () { #if defined(_SC_KERNEL_BITS) long bits = sysconf(_SC_KERNEL_BITS); #endif long cpu = sysconf (_SC_CPU_VERSION); switch (cpu) { case CPU_PA_RISC1_0: puts ("hppa1.0"); break; case CPU_PA_RISC1_1: puts ("hppa1.1"); break; case CPU_PA_RISC2_0: #if defined(_SC_KERNEL_BITS) switch (bits) { case 64: puts ("hppa2.0w"); break; case 32: puts ("hppa2.0n"); break; default: puts ("hppa2.0"); break; } break; #else /* !defined(_SC_KERNEL_BITS) */ puts ("hppa2.0"); break; #endif default: puts ("hppa1.0"); break; } exit (0); } EOF (CCOPTS= $CC_FOR_BUILD -o $dummy $dummy.c 2>/dev/null) && HP_ARCH=`$dummy` test -z "$HP_ARCH" && HP_ARCH=hppa fi ;; esac if [ ${HP_ARCH} = "hppa2.0w" ] then eval $set_cc_for_build # hppa2.0w-hp-hpux* has a 64-bit kernel and a compiler generating # 32-bit code. hppa64-hp-hpux* has the same kernel and a compiler # generating 64-bit code. GNU and HP use different nomenclature: # # $ CC_FOR_BUILD=cc ./config.guess # => hppa2.0w-hp-hpux11.23 # $ CC_FOR_BUILD="cc +DA2.0w" ./config.guess # => hppa64-hp-hpux11.23 if echo __LP64__ | (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | grep -q __LP64__ then HP_ARCH="hppa2.0w" else HP_ARCH="hppa64" fi fi echo ${HP_ARCH}-hp-hpux${HPUX_REV} exit ;; ia64:HP-UX:*:*) HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'` echo ia64-hp-hpux${HPUX_REV} exit ;; 3050*:HI-UX:*:*) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include int main () { long cpu = sysconf (_SC_CPU_VERSION); /* The o
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Functions to manage the physical Dataflash media, including reading and writing of
 *  blocks of data. These functions are called by the SCSI layer when data must be stored
 *  or retrieved to/from the physical storage media. If a different media is used (such
 *  as a SD card or EEPROM), functions similar to these will need to be generated.
 */

#define  INCLUDE_FROM_DATAFLASHMANAGER_C
#include "DataflashManager.h"

/** Writes blocks (OS blocks, not Dataflash pages) to the storage medium, the board Dataflash IC(s), from
 *  the pre-selected data OUT endpoint. This routine reads in OS sized blocks from the endpoint and writes
 *  them to the Dataflash in Dataflash page sized blocks.
 *
 *  \param[in] MSInterfaceInfo  Pointer to a structure containing a Mass Storage Class configuration and state
 *  \param[in] BlockAddress  Data block starting address for the write sequence
 *  \param[in] TotalBlocks   Number of blocks of data to write
 */
void DataflashManager_WriteBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
                                  const uint32_t BlockAddress,
                                  uint16_t TotalBlocks)
{
	uint16_t CurrDFPage          = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
	uint16_t CurrDFPageByte      = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
	uint8_t  CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);
	bool     UsingSecondBuffer   = false;

	/* Select the correct starting Dataflash IC for the block requested */
	Dataflash_SelectChipFromPage(CurrDFPage);

#if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE)
	/* Copy selected dataflash's current page contents to the Dataflash buffer */
	Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1);
	Dataflash_SendAddressBytes(CurrDFPage, 0);
	Dataflash_WaitWhileBusy();
#endif

	/* Send the Dataflash buffer write command */
	Dataflash_SendByte(DF_CMD_BUFF1WRITE);
	Dataflash_SendAddressBytes(0, CurrDFPageByte);

	/* Wait until endpoint is ready before continuing */
	if (Endpoint_WaitUntilReady())
	  return;

	while (TotalBlocks)
	{
		uint8_t BytesInBlockDiv16 = 0;

		/* Write an endpoint packet sized data block to the Dataflash */
		while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
		{
			/* Check if the endpoint is currently empty */
			if (!(Endpoint_IsReadWriteAllowed()))
			{
				/* Clear the current endpoint bank */
				Endpoint_ClearOUT();

				/* Wait until the host has sent another packet */
				if (Endpoint_WaitUntilReady())
				  return;
			}

			/* Check if end of Dataflash page reached */
			if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
			{
				/* Write the Dataflash buffer contents back to the Dataflash page */
				Dataflash_WaitWhileBusy();
				Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE);
				Dataflash_SendAddressBytes(CurrDFPage, 0);

				/* Reset the Dataflash buffer counter, increment the page counter */
				CurrDFPageByteDiv16 = 0;
				CurrDFPage++;

				/* Once all the Dataflash ICs have had their first buffers filled, switch buffers to maintain throughput */
				if (Dataflash_GetSelectedChip() == DATAFLASH_CHIP_MASK(DATAFLASH_TOTALCHIPS))
				  UsingSecondBuffer = !(UsingSecondBuffer);

				/* Select the next Dataflash chip based on the new Dataflash page index */
				Dataflash_SelectChipFromPage(CurrDFPage);

#if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE)
				/* If less than one Dataflash page remaining, copy over the existing page to preserve trailing data */
				if ((TotalBlocks * (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) < (DATAFLASH_PAGE_SIZE >> 4))
				{
					/* Copy selected dataflash's current page contents to the Dataflash buffer */
					Dataflash_WaitWhileBusy();
					Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_MAINMEMTOBUFF2 : DF_CMD_MAINMEMTOBUFF1);
					Dataflash_SendAddressBytes(CurrDFPage, 0);
					Dataflash_WaitWhileBusy();
				}
#endif

				/* Send the Dataflash buffer write command */
				Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2WRITE : DF_CMD_BUFF1WRITE);
				Dataflash_SendAddressBytes(0, 0);
			}

			/* Write one 16-byte chunk of data to the Dataflash */
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());
			Dataflash_SendByte(Endpoint_Read_8());

			/* Increment the Dataflash page 16 byte block counter */
			CurrDFPageByteDiv16++;

			/* Increment the block 16 byte block counter */
			BytesInBlockDiv16++;

			/* Check if the current command is being aborted by the host */
			if (MSInterfaceInfo->State.IsMassStoreReset)
			  return;
		}

		/* Decrement the blocks remaining counter */
		TotalBlocks--;
	}

	/* Write the Dataflash buffer contents back to the Dataflash page */
	Dataflash_WaitWhileBusy();
	Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE);
	Dataflash_SendAddressBytes(CurrDFPage, 0x00);
	Dataflash_WaitWhileBusy();

	/* If the endpoint is empty, clear it ready for the next packet from the host */
	if (!(Endpoint_IsReadWriteAllowed()))
	  Endpoint_ClearOUT();

	/* Deselect all Dataflash chips */
	Dataflash_DeselectChip();
}

/** Reads blocks (OS blocks, not Dataflash pages) from the storage medium, the board Dataflash IC(s), into
 *  the pre-selected data IN endpoint. This routine reads in Dataflash page sized blocks from the Dataflash
 *  and writes them in OS sized blocks to the endpoint.
 *
 *  \param[in] MSInterfaceInfo  Pointer to a structure containing a Mass Storage Class configuration and state
 *  \param[in] BlockAddress  Data block starting address for the read sequence
 *  \param[in] TotalBlocks   Number of blocks of data to read
 */
void DataflashManager_ReadBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo,
                                 const uint32_t BlockAddress,
                                 uint16_t TotalBlocks)
{
	uint16_t CurrDFPage          = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
	uint16_t CurrDFPageByte      = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
	uint8_t  CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);

	/* Select the correct starting Dataflash IC for the block requested */
	Dataflash_SelectChipFromPage(CurrDFPage);

	/* Send the Dataflash main memory page read command */
	Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
	Dataflash_SendAddressBytes(CurrDFPage, CurrDFPageByte);
	Dataflash_SendByte(0x00);
	Dataflash_SendByte(0x00);
	Dataflash_SendByte(0x00);
	Dataflash_SendByte(0x00);

	/* Wait until endpoint is ready before continuing */
	if (Endpoint_WaitUntilReady())
	  return;

	while (TotalBlocks)
	{
		uint8_t BytesInBlockDiv16 = 0;

		/* Read an endpoint packet sized data block from the Dataflash */
		while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
		{
			/* Check if the endpoint is currently full */
			if (!(Endpoint_IsReadWriteAllowed()))
			{
				/* Clear the endpoint bank to send its contents to the host */
				Endpoint_ClearIN();

				/* Wait until the endpoint is ready for more data */
				if (Endpoint_WaitUntilReady())
				  return;
			}

			/* Check if end of Dataflash page reached */
			if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
			{
				/* Reset the Dataflash buffer counter, increment the page counter */
				CurrDFPageByteDiv16 = 0;
				CurrDFPage++;

				/* Select the next Dataflash chip based on the new Dataflash page index */
				Dataflash_SelectChipFromPage(CurrDFPage);

				/* Send the Dataflash main memory page read command */
				Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
				Dataflash_SendAddressBytes(CurrDFPage, 0);
				Dataflash_SendByte(0x00);
				Dataflash_SendByte(0x00);
				Dataflash_SendByte(0x00);
				Dataflash_SendByte(0x00);
			}

			/* Read one 16-byte chunk of data from the Dataflash */
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());
			Endpoint_Write_8(Dataflash_ReceiveByte());

			/* Increment the Dataflash page 16 byte block counter */
			CurrDFPageByteDiv16++;

			/* Increment the block 16 byte block counter */
			BytesInBlockDiv16++;

			/* Check if the current command is being aborted by the host */
			if (MSInterfaceInfo->State.IsMassStoreReset)
			  return;
		}

		/* Decrement the blocks remaining counter */
		TotalBlocks--;
	}

	/* If the endpoint is full, send its contents to the host */
	if (!(Endpoint_IsReadWriteAllowed()))
	  Endpoint_ClearIN();

	/* Deselect all Dataflash chips */
	Dataflash_DeselectChip();
}

/** Writes blocks (OS blocks, not Dataflash pages) to the storage medium, the board Dataflash IC(s), from
 *  the given RAM buffer. This routine reads in OS sized blocks from the buffer and writes them to the
 *  Dataflash in Dataflash page sized blocks. This can be linked to FAT libraries to write files to the
 *  Dataflash.
 *
 *  \param[in] BlockAddress  Data block starting address for the write sequence
 *  \param[in] TotalBlocks   Number of blocks of data to write
 *  \param[in] BufferPtr     Pointer to the data source RAM buffer
 */
void DataflashManager_WriteBlocks_RAM(const uint32_t BlockAddress,
                                      uint16_t TotalBlocks,
                                      const uint8_t* BufferPtr)
{
	uint16_t CurrDFPage          = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
	uint16_t CurrDFPageByte      = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
	uint8_t  CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);
	bool     UsingSecondBuffer   = false;

	/* Select the correct starting Dataflash IC for the block requested */
	Dataflash_SelectChipFromPage(CurrDFPage);

#if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE)
	/* Copy selected dataflash's current page contents to the Dataflash buffer */
	Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1);
	Dataflash_SendAddressBytes(CurrDFPage, 0);
	Dataflash_WaitWhileBusy();
#endif

	/* Send the Dataflash buffer write command */
	Dataflash_SendByte(DF_CMD_BUFF1WRITE);
	Dataflash_SendAddressBytes(0, CurrDFPageByte);

	while (TotalBlocks)
	{
		uint8_t BytesInBlockDiv16 = 0;

		/* Write an endpoint packet sized data block to the Dataflash */
		while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
		{
			/* Check if end of Dataflash page reached */
			if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
			{
				/* Write the Dataflash buffer contents back to the Dataflash page */
				Dataflash_WaitWhileBusy();
				Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE);
				Dataflash_SendAddressBytes(CurrDFPage, 0);

				/* Reset the Dataflash buffer counter, increment the page counter */
				CurrDFPageByteDiv16 = 0;
				CurrDFPage++;

				/* Once all the Dataflash ICs have had their first buffers filled, switch buffers to maintain throughput */
				if (Dataflash_GetSelectedChip() == DATAFLASH_CHIP_MASK(DATAFLASH_TOTALCHIPS))
				  UsingSecondBuffer = !(UsingSecondBuffer);

				/* Select the next Dataflash chip based on the new Dataflash page index */
				Dataflash_SelectChipFromPage(CurrDFPage);

#if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE)
				/* If less than one Dataflash page remaining, copy over the existing page to preserve trailing data */
				if ((TotalBlocks * (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) < (DATAFLASH_PAGE_SIZE >> 4))
				{
					/* Copy selected dataflash's current page contents to the Dataflash buffer */
					Dataflash_WaitWhileBusy();
					Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_MAINMEMTOBUFF2 : DF_CMD_MAINMEMTOBUFF1);
					Dataflash_SendAddressBytes(CurrDFPage, 0);
					Dataflash_WaitWhileBusy();
				}
#endif

				/* Send the Dataflash buffer write command */
				Dataflash_ToggleSelectedChipCS();
				Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2WRITE : DF_CMD_BUFF1WRITE);
				Dataflash_SendAddressBytes(0, 0);
			}

			/* Write one 16-byte chunk of data to the Dataflash */
			for (uint8_t ByteNum = 0; ByteNum < 16; ByteNum++)
			  Dataflash_SendByte(*(BufferPtr++));

			/* Increment the Dataflash page 16 byte block counter */
			CurrDFPageByteDiv16++;

			/* Increment the block 16 byte block counter */
			BytesInBlockDiv16++;
		}

		/* Decrement the blocks remaining counter */
		TotalBlocks--;
	}

	/* Write the Dataflash buffer contents back to the Dataflash page */
	Dataflash_WaitWhileBusy();
	Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE);
	Dataflash_SendAddressBytes(CurrDFPage, 0x00);
	Dataflash_WaitWhileBusy();

	/* Deselect all Dataflash chips */
	Dataflash_DeselectChip();
}

/** Reads blocks (OS blocks, not Dataflash pages) from the storage medium, the board Dataflash IC(s), into
 *  the preallocated RAM buffer. This routine reads in Dataflash page sized blocks from the Dataflash
 *  and writes them in OS sized blocks to the given buffer. This can be linked to FAT libraries to read
 *  the files stored on the Dataflash.
 *
 *  \param[in] BlockAddress  Data block starting address for the read sequence
 *  \param[in] TotalBlocks   Number of blocks of data to read
 *  \param[out] BufferPtr    Pointer to the data destination RAM buffer
 */
void DataflashManager_ReadBlocks_RAM(const uint32_t BlockAddress,
                                     uint16_t TotalBlocks,
                                     uint8_t* BufferPtr)
{
	uint16_t CurrDFPage          = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE);
	uint16_t CurrDFPageByte      = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE);
	uint8_t  CurrDFPageByteDiv16 = (CurrDFPageByte >> 4);

	/* Select the correct starting Dataflash IC for the block requested */
	Dataflash_SelectChipFromPage(CurrDFPage);

	/* Send the Dataflash main memory page read command */
	Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
	Dataflash_SendAddressBytes(CurrDFPage, CurrDFPageByte);
	Dataflash_SendByte(0x00);
	Dataflash_SendByte(0x00);
	Dataflash_SendByte(0x00);
	Dataflash_SendByte(0x00);

	while (TotalBlocks)
	{
		uint8_t BytesInBlockDiv16 = 0;

		/* Read an endpoint packet sized data block from the Dataflash */
		while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4))
		{
			/* Check if end of Dataflash page reached */
			if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4))
			{
				/* Reset the Dataflash buffer counter, increment the page counter */
				CurrDFPageByteDiv16 = 0;
				CurrDFPage++;

				/* Select the next Dataflash chip based on the new Dataflash page index */
				Dataflash_SelectChipFromPage(CurrDFPage);

				/* Send the Dataflash main memory page read command */
				Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD);
				Dataflash_SendAddressBytes(CurrDFPage, 0);
				Dataflash_SendByte(0x00);
				Dataflash_SendByte(0x00);
				Dataflash_SendByte(0x00);
				Dataflash_SendByte(0x00);
			}

			/* Read one 16-byte chunk of data from the Dataflash */
			for (uint8_t ByteNum = 0; ByteNum < 16; ByteNum++)
			  *(BufferPtr++) = Dataflash_ReceiveByte();

			/* Increment the Dataflash page 16 byte block counter */
			CurrDFPageByteDiv16++;

			/* Increment the block 16 byte block counter */
			BytesInBlockDiv16++;
		}

		/* Decrement the blocks remaining counter */
		TotalBlocks--;
	}

	/* Deselect all Dataflash chips */
	Dataflash_DeselectChip();
}

/** Disables the Dataflash memory write protection bits on the board Dataflash ICs, if enabled. */
void DataflashManager_ResetDataflashProtections(void)
{
	/* Select first Dataflash chip, send the read status register command */
	Dataflash_SelectChip(DATAFLASH_CHIP1);
	Dataflash_SendByte(DF_CMD_GETSTATUS);

	/* Check if sector protection is enabled */
	if (Dataflash_ReceiveByte() & DF_STATUS_SECTORPROTECTION_ON)
	{
		Dataflash_ToggleSelectedChipCS();

		/* Send the commands to disable sector protection */
		Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[0]);
		Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[1]);
		Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[2]);
		Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[3]);
	}

	/* Select second Dataflash chip (if present on selected board), send read status register command */
	#if (DATAFLASH_TOTALCHIPS == 2)
	Dataflash_SelectChip(DATAFLASH_CHIP2);
	Dataflash_SendByte(DF_CMD_GETSTATUS);

	/* Check if sector protection is enabled */
	if (Dataflash_ReceiveByte() & DF_STATUS_SECTORPROTECTION_ON)
	{
		Dataflash_ToggleSelectedChipCS();

		/* Send the commands to disable sector protection */
		Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[0]);
		Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[1]);
		Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[2]);
		Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[3]);
	}
	#endif

	/* Deselect current Dataflash chip */
	Dataflash_DeselectChip();
}

/** Performs a simple test on the attached Dataflash IC(s) to ensure that they are working.
 *
 *  \return Boolean \c true if all media chips are working, \c false otherwise
 */
bool DataflashManager_CheckDataflashOperation(void)
{
	uint8_t ReturnByte;

	/* Test first Dataflash IC is present and responding to commands */
	Dataflash_SelectChip(DATAFLASH_CHIP1);
	Dataflash_SendByte(DF_CMD_READMANUFACTURERDEVICEINFO);
	ReturnByte = Dataflash_ReceiveByte();
	Dataflash_DeselectChip();

	/* If returned data is invalid, fail the command */
	if (ReturnByte != DF_MANUFACTURER_ATMEL)
	  return false;

	#if (DATAFLASH_TOTALCHIPS == 2)
	/* Test second Dataflash IC is present and responding to commands */
	Dataflash_SelectChip(DATAFLASH_CHIP2);
	Dataflash_SendByte(DF_CMD_READMANUFACTURERDEVICEINFO);
	ReturnByte = Dataflash_ReceiveByte();
	Dataflash_DeselectChip();

	/* If returned data is invalid, fail the command */
	if (ReturnByte != DF_MANUFACTURER_ATMEL)
	  return false;
	#endif

	return true;
}