/* * QEMU 8253/8254 interval timer emulation * * Copyright (c) 2003-2004 Fabrice Bellard * Copyright (c) 2006 Intel Corperation * Copyright (c) 2007 Keir Fraser, XenSource Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define domain_vpit(d) (&(d)->arch.hvm_domain.pl_time.vpit) #define vcpu_vpit(vcpu) (domain_vpit((vcpu)->domain)) #define vpit_domain(pit) (container_of((pit), struct domain, \ arch.hvm_domain.pl_time.vpit)) #define vpit_vcpu(pit) (vpit_domain(pit)->vcpu[0]) #define RW_STATE_LSB 1 #define RW_STATE_MSB 2 #define RW_STATE_WORD0 3 #define RW_STATE_WORD1 4 static int handle_pit_io( int dir, uint32_t port, uint32_t bytes, uint32_t *val); static int handle_speaker_io( int dir, uint32_t port, uint32_t bytes, uint32_t *val); #define get_guest_time(v) \ (is_hvm_vcpu(v) ? hvm_get_guest_time(v) : (u64)get_s_time()) /* Compute with 96 bit intermediate result: (a*b)/c */ static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { union { uint64_t ll; struct { #ifdef WORDS_BIGENDIAN uint32_t high, low; #else uint32_t low, high; #endif } l; } u, res; uint64_t rl, rh; u.ll = a; rl = (uint64_t)u.l.low * (uint64_t)b; rh = (uint64_t)u.l.high * (uint64_t)b; rh += (rl >> 32); res.l.high = rh / c; res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; return res.ll; } static int pit_get_count(PITState *pit, int channel) { uint64_t d; int counter; struct hvm_hw_pit_channel *c = &pit->hw.channels[channel]; struct vcpu *v = vpit_vcpu(pit); ASSERT(spin_is_locked(&pit->lock)); d = muldiv64(get_guest_time(v) - pit->count_load_time[channel], PIT_FREQ, SYSTEM_TIME_HZ); switch ( c->mode ) { case 0: case 1: case 4: case 5: counter = (c->count - d) & 0xffff; break; case 3: /* XXX: may be incorrect for odd counts */ counter = c->count - ((2 * d) % c->count); break; default: counter = c->count - (d % c->count); break; } return counter; } static int pit_get_out(PITState *pit, int channel) { struct hvm_hw_pit_channel *s = &pit->hw.channels[channel]; uint64_t d; int out; struct vcpu *v = vpit_vcpu(pit); ASSERT(spin_is_locked(&pit->lock)); d = muldiv64(get_guest_time(v) - pit->count_load_time[channel], PIT_FREQ, SYSTEM_TIME_HZ); switch ( s->mode ) { default: case 0: out = (d >= s->count); break; case 1: out = (d < s->count); break; case 2: out = (((d % s->count) == 0) && (d != 0)); break; case 3: out = ((d % s->count) < ((s->count + 1) >> 1)); break; case 4: case 5: out = (d == s->count); break; } return out; } static void pit_set_gate(PITState *pit, int channel, int val) { struct hvm_hw_pit_channel *s = &pit->hw.channels[channel]; struct vcpu *v = vpit_vcpu(pit); ASSERT(spin_is_locked(&pit->lock)); switch ( s->mode ) { default: case 0: case 4: /* XXX: just disable/enable counting */ break; case 1: case 5: case 2: case 3: /* Restart counting on rising edge. */ if ( s->gate < val ) pit->count_load_time[channel] = get_guest_time(v); break; } s->gate = val; } int pit_get_gate(PITState *pit, int channel) { ASSERT(spin_is_locked(&pit->lock)); return pit->hw.channels[channel].gate; } static void pit_time_fired(struct vcpu *v, void *priv) { uint64_t *count_load_time = priv; *count_load_time = get_guest_time(v); } static void pit_load_count(PITState *pit, int channel, int val) { u32 period; struct hvm_hw_pit_channel *s = &pit->hw.channels[channel]; struct vcpu *v = vpit_vcpu(pit); ASSERT(spin_is_locked(&pit->lock)); if ( val == 0 ) val = 0x10000; if ( v == NULL ) pit->count_load_time[channel] = 0; else pit->count_load_time[channel] = get_guest_time(v); s->count = val; period = DIV_ROUND(val * SYSTEM_TIME_HZ, PIT_FREQ); if ( (v == NULL) || !is_hvm_vcpu(v) || (channel != 0) ) return; switch ( s->mode ) { case 2: case 3: /* Periodic timer. */ create_periodic_time(v, &pit->pt0, period, period, 0, pit_time_fired, &pit->count_load_time[channel]); break; case 1: case 4: /* One-shot timer. */ create_periodic_time(v, &pit->pt0, period, 0, 0, pit_time_fired, &pit->count_load_time[channel]); break; default: destroy_periodic_time(&pit->pt0); break; } } static void pit_latch_count(PITState *pit, int channel) { struct hvm_hw_pit_channel *c = &pit->hw.channels[channel]; ASSERT(spin_is_locked(&pit->lock)); if ( !c->count_latched ) { c->latched_count = pit_get_count(pit, channel); c->count_latched = c->rw_mode; } } static void pit_latch_status(PITState *pit, int channel) { struct hvm_hw_pit_channel *c = &pit->hw.channels[channel]; ASSERT(spin_is_locked(&pit->lock)); if ( !c->status_latched ) { /* TODO: Return NULL COUNT (bit 6). */ c->status = ((pit_get_out(pit, channel) << 7) | (c->rw_mode << 4) | (c->mode << 1) | c->bcd); c->status_latched = 1; } } static void pit_ioport_write(struct PITState *pit, uint32_t addr, uint32_t val) { int channel, access; struct hvm_hw_pit_channel *s; val &= 0xff; addr &= 3; spin_lock(&pit->lock); if ( addr == 3 ) { channel = val >> 6; if ( channel == 3 ) { /* Read-Back Command. */ for ( channel = 0; channel < 3; channel++ ) { s = &pit->hw.channels[channel]; if ( val & (2 << channel) ) { if ( !(val & 0x20) ) pit_latch_count(pit, channel); if ( !(val & 0x10) ) pit_latch_status(pit, channel); } } } else { /* Select Counter . */ s = &pit->hw.channels[channel]; access = (val >> 4) & 3; if ( access == 0 ) { pit_latch_count(pit, channel); } else { s->rw_mode = access; s->read_state = access; s->write_state = access; s->mode = (val >> 1) & 7; if ( s->mode > 5 ) s->mode -= 4; s->bcd = val & 1; /* XXX: update irq timer ? */ } } } else { /* Write Count. */ s = &pit->hw.channels[addr]; switch ( s->write_state ) { default: case RW_STATE_LSB: pit_load_count(pit, addr, val); break; case RW_STATE_MSB: pit_load_count(pit, addr, val << 8); break; case RW_STATE_WORD0: s->write_latch = val; s->write_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: pit_load_count(pit, addr, s->write_latch | (val << 8)); s->write_state = RW_STATE_WORD0; break; } } spin_unlock(&pit->lock); } static uint32_t pit_ioport_read(struct PITState *pit, uint32_t addr) { int ret, count; struct hvm_hw_pit_channel *s; addr &= 3; s = &pit->hw.channels[addr]; spin_lock(&pit->lock); if ( s->status_latched ) { s->status_latched = 0; ret = s->status; } else if ( s->count_latched ) { switch ( s->count_latched ) { default: case RW_STATE_LSB: ret = s->latched_count & 0xff; s->count_latched = 0; break; case RW_STATE_MSB: ret = s->latched_count >> 8; s->count_latched = 0; break; case RW_STATE_WORD0: ret = s->latched_count & 0xff; s->count_latched = RW_STATE_MSB; break; } } else { switch ( s->read_state ) { default: case RW_STATE_LSB: count = pit_get_count(pit, addr); ret = count & 0xff; break; case RW_STATE_MSB: count = pit_get_count(pit, addr); ret = (count >> 8) & 0xff; break; case RW_STATE_WORD0: count = pit_get_count(pit, addr); ret = count & 0xff; s->read_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: count = pit_get_count(pit, addr); ret = (count >> 8) & 0xff; s->read_state = RW_STATE_WORD0; break; } } spin_unlock(&pit->lock); return ret; } void pit_stop_channel0_irq(PITState *pit) { spin_lock(&pit->lock); destroy_periodic_time(&pit->pt0); spin_unlock(&pit->lock); } static int pit_save(struct domain *d, hvm_domain_context_t *h) { PITState *pit = domain_vpit(d); int rc; spin_lock(&pit->lock); rc = hvm_save_entry(PIT, 0, h, &pit->hw); spin_unlock(&pit->lock); return rc; } static int pit_load(struct domain *d, hvm_domain_context_t *h) { PITState *pit = domain_vpit(d); int i; spin_lock(&pit->lock); if ( hvm_load_entry(PIT, h, &pit->hw) ) { spin_unlock(&pit->lock); return 1; } /* * Recreate platform timers from hardware state. There will be some * time jitter here, but the wall-clock will have jumped massively, so * we hope the guest can handle it. */ pit->pt0.last_plt_gtime = get_guest_time(d->vcpu[0]); for ( i = 0; i < 3; i++ ) pit_load_count(pit, i, pit->hw.channels[i].count); spin_unlock(&pit->lock); return 0; } HVM_REGISTER_SAVE_RESTORE(PIT, pit_save, pit_load, 1, HVMSR_PER_DOM); void pit_reset(struct domain *d) { PITState *pit = domain_vpit(d); struct hvm_hw_pit_channel *s; int i; destroy_periodic_time(&pit->pt0); pit->pt0.source = PTSRC_isa; spin_lock(&pit->lock); for ( i = 0; i < 3; i++ ) { s = &pit->hw.channels[i]; s->mode = 0xff; /* the init mode */ s->gate = (i != 2); pit_load_count(pit, i, 0); } spin_unlock(&pit->lock); } void pit_init(struct vcpu *v, unsigned long cpu_khz) { PITState *pit = vcpu_vpit(v); spin_lock_init(&pit->lock); register_portio_handler(v->domain, PIT_BASE, 4, handle_pit_io); register_portio_handler(v->domain, 0x61, 1, handle_speaker_io); ticks_per_sec(v) = cpu_khz * (int64_t)1000; pit_reset(v->domain); } void pit_deinit(struct domain *d) { PITState *pit = domain_vpit(d); destroy_periodic_time(&pit->pt0); } /* the intercept action for PIT DM retval:0--not handled; 1--handled */ static int handle_pit_io( int dir, uint32_t port, uint32_t bytes, uint32_t *val) { struct PITState *vpit = vcpu_vpit(current); if ( bytes != 1 ) { gdprintk(XENLOG_WARNING, "PIT bad access\n"); return X86EMUL_OKAY; } if ( dir == IOREQ_WRITE ) { pit_ioport_write(vpit, port, *val); } else { if ( (port & 3) != 3 ) *val = pit_ioport_read(vpit, port); else gdprintk(XENLOG_WARNING, "PIT: read A1:A0=3!\n"); } return X86EMUL_OKAY; } static void speaker_ioport_write( struct PITState *pit, uint32_t addr, uint32_t val) { pit->hw.speaker_data_on = (val >> 1) & 1; pit_set_gate(pit, 2, val & 1); } static uint32_t speaker_ioport_read( struct PITState *pit, uint32_t addr) { /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ unsigned int refresh_clock = ((unsigned int)NOW() >> 14) & 1; return ((pit->hw.speaker_data_on << 1) | pit_get_gate(pit, 2) | (pit_get_out(pit, 2) << 5) | (refresh_clock << 4)); } static int handle_speaker_io( int dir, uint32_t port, uint32_t bytes, uint32_t *val) { struct PITState *vpit = vcpu_vpit(current); BUG_ON(bytes != 1); spin_lock(&vpit->lock); if ( dir == IOREQ_WRITE ) speaker_ioport_write(vpit, port, *val); else *val = speaker_ioport_read(vpit, port); spin_unlock(&vpit->lock); return X86EMUL_OKAY; } int pv_pit_handler(int port, int data, int write) { ioreq_t ioreq = { .size = 1, .type = IOREQ_TYPE_PIO, .addr = port, .dir = write ? IOREQ_WRITE : IOREQ_READ, .data = data }; if ( (current->domain->domain_id == 0) && dom0_pit_access(&ioreq) ) { /* nothing to do */; } else { uint32_t val = data; if ( port == 0x61 ) handle_speaker_io(ioreq.dir, port, 1, &val); else handle_pit_io(ioreq.dir, port, 1, &val); ioreq.data = val; } return !write ? ioreq.data : 0; } /a> 325 326 327 328 329 330 331 332 333 334 335 336 337
/*---------------------------------------------------------------------------/
/  FatFs - FAT file system module include file  R0.09a    (C)ChaN, 2012
/----------------------------------------------------------------------------/
/ FatFs module is a generic FAT file system module for small embedded systems.
/ This is a free software that opened for education, research and commercial
/ developments under license policy of following terms.
/
/  Copyright (C) 2012, ChaN, all right reserved.
/
/ * The FatFs module is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/   personal, non-profit or commercial product UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/----------------------------------------------------------------------------*/

#ifndef _FATFS
#define _FATFS	4004	/* Revision ID */

#ifdef __cplusplus
extern "C" {
#endif

#include "integer.h"	/* Basic integer types */
#include "ffconf.h"		/* FatFs configuration options */

#if _FATFS != _FFCONF
#error Wrong configuration file (ffconf.h).
#endif



/* Definitions of volume management */

#if _MULTI_PARTITION		/* Multiple partition configuration */
typedef struct {
	BYTE pd;	/* Physical drive number */
	BYTE pt;	/* Partition: 0:Auto detect, 1-4:Forced partition) */
} PARTITION;
extern PARTITION VolToPart[];	/* Volume - Partition resolution table */
#define LD2PD(vol) (VolToPart[vol].pd)	/* Get physical drive number */
#define LD2PT(vol) (VolToPart[vol].pt)	/* Get partition index */

#else							/* Single partition configuration */
#define LD2PD(vol) (BYTE)(vol)	/* Each logical drive is bound to the same physical drive number */
#define LD2PT(vol) 0			/* Always mounts the 1st partition or in SFD */

#endif



/* Type of path name strings on FatFs API */

#if _LFN_UNICODE			/* Unicode string */
#if !_USE_LFN
#error _LFN_UNICODE must be 0 in non-LFN cfg.
#endif
#ifndef _INC_TCHAR
typedef WCHAR TCHAR;
#define _T(x) L ## x
#define _TEXT(x) L ## x
#endif

#else						/* ANSI/OEM string */
#ifndef _INC_TCHAR
typedef char TCHAR;
#define _T(x) x
#define _TEXT(x) x
#endif

#endif



/* File system object structure (FATFS) */

typedef struct {
	BYTE	fs_type;		/* FAT sub-type (0:Not mounted) */
	BYTE	drv;			/* Physical drive number */
	BYTE	csize;			/* Sectors per cluster (1,2,4...128) */
	BYTE	n_fats;			/* Number of FAT copies (1,2) */
	BYTE	wflag;			/* win[] dirty flag (1:must be written back) */
	BYTE	fsi_flag;		/* fsinfo dirty flag (1:must be written back) */
	WORD	id;				/* File system mount ID */
	WORD	n_rootdir;		/* Number of root directory entries (FAT12/16) */
#if _MAX_SS != 512
	WORD	ssize;			/* Bytes per sector (512, 1024, 2048 or 4096) */
#endif
#if _FS_REENTRANT
	_SYNC_t	sobj;			/* Identifier of sync object */
#endif
#if !_FS_READONLY
	DWORD	last_clust;		/* Last allocated cluster */
	DWORD	free_clust;		/* Number of free clusters */
	DWORD	fsi_sector;		/* fsinfo sector (FAT32) */
#endif
#if _FS_RPATH
	DWORD	cdir;			/* Current directory start cluster (0:root) */
#endif
	DWORD	n_fatent;		/* Number of FAT entries (= number of clusters + 2) */
	DWORD	fsize;			/* Sectors per FAT */
	DWORD	fatbase;		/* FAT start sector */
	DWORD	dirbase;		/* Root directory start sector (FAT32:Cluster#) */
	DWORD	database;		/* Data start sector */
	DWORD	winsect;		/* Current sector appearing in the win[] */
	BYTE	win[_MAX_SS];	/* Disk access window for Directory, FAT (and Data on tiny cfg) */
} FATFS;



/* File object structure (FIL) */

typedef struct {
	FATFS*	fs;				/* Pointer to the related file system object */
	WORD	id;				/* File system mount ID of the related file system object */
	BYTE	flag;			/* File status flags */
	BYTE	pad1;
	DWORD	fptr;			/* File read/write pointer (0ed on file open) */
	DWORD	fsize;			/* File size */
	DWORD	sclust;			/* File data start cluster (0:no data cluster, always 0 when fsize is 0) */
	DWORD	clust;			/* Current cluster of fpter */
	DWORD	dsect;			/* Current data sector of fpter */
#if !_FS_READONLY
	DWORD	dir_sect;		/* Sector containing the directory entry */
	BYTE*	dir_ptr;		/* Pointer to the directory entry in the window */
#endif
#if _USE_FASTSEEK
	DWORD*	cltbl;			/* Pointer to the cluster link map table (null on file open) */
#endif
#if _FS_LOCK
	UINT	lockid;			/* File lock ID (index of file semaphore table Files[]) */
#endif
#if !_FS_TINY
	BYTE	buf[_MAX_SS];	/* File data read/write buffer */
#endif
} FIL;



/* Directory object structure (DIR) */

typedef struct {
	FATFS*	fs;				/* Pointer to the owner file system object */
	WORD	id;				/* Owner file system mount ID */
	WORD	index;			/* Current read/write index number */
	DWORD	sclust;			/* Table start cluster (0:Root dir) */
	DWORD	clust;			/* Current cluster */
	DWORD	sect;			/* Current sector */
	BYTE*	dir;			/* Pointer to the current SFN entry in the win[] */
	BYTE*	fn;				/* Pointer to the SFN (in/out) {file[8],ext[3],status[1]} */
#if _USE_LFN
	WCHAR*	lfn;			/* Pointer to the LFN working buffer */
	WORD	lfn_idx;		/* Last matched LFN index number (0xFFFF:No LFN) */
#endif
} DIR;



/* File status structure (FILINFO) */

typedef struct {
	DWORD	fsize;			/* File size */
	WORD	fdate;			/* Last modified date */
	WORD	ftime;			/* Last modified time */
	BYTE	fattrib;		/* Attribute */
	TCHAR	fname[13];		/* Short file name (8.3 format) */
#if _USE_LFN
	TCHAR*	lfname;			/* Pointer to the LFN buffer */
	UINT 	lfsize;			/* Size of LFN buffer in TCHAR */
#endif
} FILINFO;



/* File function return code (FRESULT) */

typedef enum {
	FR_OK = 0,				/* (0) Succeeded */
	FR_DISK_ERR,			/* (1) A hard error occurred in the low level disk I/O layer */
	FR_INT_ERR,				/* (2) Assertion failed */
	FR_NOT_READY,			/* (3) The physical drive cannot work */
	FR_NO_FILE,				/* (4) Could not find the file */
	FR_NO_PATH,				/* (5) Could not find the path */
	FR_INVALID_NAME,		/* (6) The path name format is invalid */
	FR_DENIED,				/* (7) Access denied due to prohibited access or directory full */
	FR_EXIST,				/* (8) Access denied due to prohibited access */
	FR_INVALID_OBJECT,		/* (9) The file/directory object is invalid */
	FR_WRITE_PROTECTED,		/* (10) The physical drive is write protected */
	FR_INVALID_DRIVE,		/* (11) The logical drive number is invalid */
	FR_NOT_ENABLED,			/* (12) The volume has no work area */
	FR_NO_FILESYSTEM,		/* (13) There is no valid FAT volume */
	FR_MKFS_ABORTED,		/* (14) The f_mkfs() aborted due to any parameter error */
	FR_TIMEOUT,				/* (15) Could not get a grant to access the volume within defined period */
	FR_LOCKED,				/* (16) The operation is rejected according to the file sharing policy */
	FR_NOT_ENOUGH_CORE,		/* (17) LFN working buffer could not be allocated */
	FR_TOO_MANY_OPEN_FILES,	/* (18) Number of open files > _FS_SHARE */
	FR_INVALID_PARAMETER	/* (19) Given parameter is invalid */
} FRESULT;



/*--------------------------------------------------------------*/
/* FatFs module application interface                           */

FRESULT f_mount (BYTE, FATFS*);						/* Mount/Unmount a logical drive */
FRESULT f_open (FIL*, const TCHAR*, BYTE);			/* Open or create a file */
FRESULT f_read (FIL*, void*, UINT, UINT*);			/* Read data from a file */
FRESULT f_lseek (FIL*, DWORD);						/* Move file pointer of a file object */
FRESULT f_close (FIL*);								/* Close an open file object */
FRESULT f_opendir (DIR*, const TCHAR*);				/* Open an existing directory */
FRESULT f_readdir (DIR*, FILINFO*);					/* Read a directory item */
FRESULT f_stat (const TCHAR*, FILINFO*);			/* Get file status */
FRESULT f_write (FIL*, const void*, UINT, UINT*);	/* Write data to a file */
FRESULT f_getfree (const TCHAR*, DWORD*, FATFS**);	/* Get number of free clusters on the drive */
FRESULT f_truncate (FIL*);							/* Truncate file */
FRESULT f_sync (FIL*);								/* Flush cached data of a writing file */
FRESULT f_unlink (const TCHAR*);					/* Delete an existing file or directory */
FRESULT	f_mkdir (const TCHAR*);						/* Create a new directory */
FRESULT f_chmod (const TCHAR*, BYTE, BYTE);			/* Change attribute of the file/dir */
FRESULT f_utime (const TCHAR*, const FILINFO*);		/* Change times-tamp of the file/dir */
FRESULT f_rename (const TCHAR*, const TCHAR*);		/* Rename/Move a file or directory */
FRESULT f_chdrive (BYTE);							/* Change current drive */
FRESULT f_chdir (const TCHAR*);						/* Change current directory */
FRESULT f_getcwd (TCHAR*, UINT);					/* Get current directory */
FRESULT f_forward (FIL*, UINT(*)(const BYTE*,UINT), UINT, UINT*);	/* Forward data to the stream */
FRESULT f_mkfs (BYTE, BYTE, UINT);					/* Create a file system on the drive */
FRESULT	f_fdisk (BYTE, const DWORD[], void*);		/* Divide a physical drive into some partitions */
int f_putc (TCHAR, FIL*);							/* Put a character to the file */
int f_puts (const TCHAR*, FIL*);					/* Put a string to the file */
int f_printf (FIL*, const TCHAR*, ...);				/* Put a formatted string to the file */
TCHAR* f_gets (TCHAR*, int, FIL*);					/* Get a string from the file */

#define f_eof(fp) (((fp)->fptr == (fp)->fsize) ? 1 : 0)
#define f_error(fp) (((fp)->flag & FA__ERROR) ? 1 : 0)
#define f_tell(fp) ((fp)->fptr)
#define f_size(fp) ((fp)->fsize)

#ifndef EOF
#define EOF (-1)
#endif




/*--------------------------------------------------------------*/
/* Additional user defined functions                            */

/* RTC function */
#if !_FS_READONLY
DWORD get_fattime (void);
#endif

/* Unicode support functions */
#if _USE_LFN						/* Unicode - OEM code conversion */
WCHAR ff_convert (WCHAR, UINT);		/* OEM-Unicode bidirectional conversion */
WCHAR ff_wtoupper (WCHAR);			/* Unicode upper-case conversion */
#if _USE_LFN == 3					/* Memory functions */
void* ff_memalloc (UINT);			/* Allocate memory block */
void ff_memfree (void*);			/* Free memory block */
#endif
#endif

/* Sync functions */
#if _FS_REENTRANT
int ff_cre_syncobj (BYTE, _SYNC_t*);/* Create a sync object */
int ff_req_grant (_SYNC_t);			/* Lock sync object */
void ff_rel_grant (_SYNC_t);		/* Unlock sync object */
int ff_del_syncobj (_SYNC_t);		/* Delete a sync object */
#endif




/*--------------------------------------------------------------*/
/* Flags and offset address                                     */


/* File access control and file status flags (FIL.flag) */

#define	FA_READ				0x01
#define	FA_OPEN_EXISTING	0x00
#define FA__ERROR			0x80

#if !_FS_READONLY
#define	FA_WRITE			0x02
#define	FA_CREATE_NEW		0x04
#define	FA_CREATE_ALWAYS	0x08
#define	FA_OPEN_ALWAYS		0x10
#define FA__WRITTEN			0x20
#define FA__DIRTY			0x40
#endif


/* FAT sub type (FATFS.fs_type) */

#define FS_FAT12	1
#define FS_FAT16	2
#define FS_FAT32	3


/* File attribute bits for directory entry */

#define	AM_RDO	0x01	/* Read only */
#define	AM_HID	0x02	/* Hidden */
#define	AM_SYS	0x04	/* System */
#define	AM_VOL	0x08	/* Volume label */
#define AM_LFN	0x0F	/* LFN entry */
#define AM_DIR	0x10	/* Directory */
#define AM_ARC	0x20	/* Archive */
#define AM_MASK	0x3F	/* Mask of defined bits */


/* Fast seek feature */
#define CREATE_LINKMAP	0xFFFFFFFF



/*--------------------------------*/
/* Multi-byte word access macros  */

#if _WORD_ACCESS == 1	/* Enable word access to the FAT structure */
#define	LD_WORD(ptr)		(WORD)(*(WORD*)(BYTE*)(ptr))
#define	LD_DWORD(ptr)		(DWORD)(*(DWORD*)(BYTE*)(ptr))
#define	ST_WORD(ptr,val)	*(WORD*)(BYTE*)(ptr)=(WORD)(val)
#define	ST_DWORD(ptr,val)	*(DWORD*)(BYTE*)(ptr)=(DWORD)(val)
#else					/* Use byte-by-byte access to the FAT structure */
#define	LD_WORD(ptr)		(WORD)(((WORD)*((BYTE*)(ptr)+1)<<8)|(WORD)*(BYTE*)(ptr))
#define	LD_DWORD(ptr)		(DWORD)(((DWORD)*((BYTE*)(ptr)+3)<<24)|((DWORD)*((BYTE*)(ptr)+2)<<16)|((WORD)*((BYTE*)(ptr)+1)<<8)|*(BYTE*)(ptr))
#define	ST_WORD(ptr,val)	*(BYTE*)(ptr)=(BYTE)(val); *((BYTE*)(ptr)+1)=(BYTE)((WORD)(val)>>8)
#define	ST_DWORD(ptr,val)	*(BYTE*)(ptr)=(BYTE)(val); *((BYTE*)(ptr)+1)=(BYTE)((WORD)(val)>>8); *((BYTE*)(ptr)+2)=(BYTE)((DWORD)(val)>>16); *((BYTE*)(ptr)+3)=(BYTE)((DWORD)(val)>>24)
#endif

#ifdef __cplusplus
}
#endif

#endif /* _FATFS */