/* * Intel SMP support routines. * * (c) 1995 Alan Cox, Building #3 * (c) 1998-99, 2000 Ingo Molnar * * This code is released under the GNU General Public License version 2 or * later. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * send_IPI_mask(cpumask, vector): sends @vector IPI to CPUs in @cpumask, * excluding the local CPU. @cpumask may be empty. */ void send_IPI_mask(const cpumask_t *mask, int vector) { genapic->send_IPI_mask(mask, vector); } /* * Some notes on x86 processor bugs affecting SMP operation: * * Pentium, Pentium Pro, II, III (and all CPUs) have bugs. * The Linux implications for SMP are handled as follows: * * Pentium III / [Xeon] * None of the E1AP-E3AP errata are visible to the user. * * E1AP. see PII A1AP * E2AP. see PII A2AP * E3AP. see PII A3AP * * Pentium II / [Xeon] * None of the A1AP-A3AP errata are visible to the user. * * A1AP. see PPro 1AP * A2AP. see PPro 2AP * A3AP. see PPro 7AP * * Pentium Pro * None of 1AP-9AP errata are visible to the normal user, * except occasional delivery of 'spurious interrupt' as trap #15. * This is very rare and a non-problem. * * 1AP. Linux maps APIC as non-cacheable * 2AP. worked around in hardware * 3AP. fixed in C0 and above steppings microcode update. * Linux does not use excessive STARTUP_IPIs. * 4AP. worked around in hardware * 5AP. symmetric IO mode (normal Linux operation) not affected. * 'noapic' mode has vector 0xf filled out properly. * 6AP. 'noapic' mode might be affected - fixed in later steppings * 7AP. We do not assume writes to the LVT deassering IRQs * 8AP. We do not enable low power mode (deep sleep) during MP bootup * 9AP. We do not use mixed mode */ /* * The following functions deal with sending IPIs between CPUs. */ static inline int __prepare_ICR (unsigned int shortcut, int vector) { return APIC_DM_FIXED | shortcut | vector; } static inline int __prepare_ICR2 (unsigned int mask) { return SET_xAPIC_DEST_FIELD(mask); } void apic_wait_icr_idle(void) { if ( x2apic_enabled ) return; while ( apic_read( APIC_ICR ) & APIC_ICR_BUSY ) cpu_relax(); } static void __default_send_IPI_shortcut(unsigned int shortcut, int vector, unsigned int dest) { unsigned int cfg; /* * Wait for idle. */ apic_wait_icr_idle(); /* * prepare target chip field */ cfg = __prepare_ICR(shortcut, vector) | dest; /* * Send the IPI. The write to APIC_ICR fires this off. */ apic_write_around(APIC_ICR, cfg); } void send_IPI_self_flat(int vector) { __default_send_IPI_shortcut(APIC_DEST_SELF, vector, APIC_DEST_PHYSICAL); } void send_IPI_self_phys(int vector) { __default_send_IPI_shortcut(APIC_DEST_SELF, vector, APIC_DEST_PHYSICAL); } void send_IPI_self_x2apic(int vector) { apic_write(APIC_SELF_IPI, vector); } void send_IPI_mask_flat(const cpumask_t *cpumask, int vector) { unsigned long mask = cpus_addr(*cpumask)[0]; unsigned long cfg; unsigned long flags; mask &= ~(1UL << smp_processor_id()); if ( mask == 0 ) return; local_irq_save(flags); /* * Wait for idle. */ apic_wait_icr_idle(); /* * prepare target chip field */ cfg = __prepare_ICR2(mask); apic_write_around(APIC_ICR2, cfg); /* * program the ICR */ cfg = __prepare_ICR(0, vector) | APIC_DEST_LOGICAL; /* * Send the IPI. The write to APIC_ICR fires this off. */ apic_write_around(APIC_ICR, cfg); local_irq_restore(flags); } void send_IPI_mask_phys(const cpumask_t *mask, int vector) { unsigned long cfg, flags; unsigned int query_cpu; local_irq_save(flags); for_each_cpu_mask ( query_cpu, *mask ) { if ( query_cpu == smp_processor_id() ) continue; /* * Wait for idle. */ apic_wait_icr_idle(); /* * prepare target chip field */ cfg = __prepare_ICR2(cpu_physical_id(query_cpu)); apic_write_around(APIC_ICR2, cfg); /* * program the ICR */ cfg = __prepare_ICR(0, vector) | APIC_DEST_PHYSICAL; /* * Send the IPI. The write to APIC_ICR fires this off. */ apic_write_around(APIC_ICR, cfg); } local_irq_restore(flags); } static DEFINE_SPINLOCK(flush_lock); static cpumask_t flush_cpumask; static const void *flush_va; static unsigned int flush_flags; fastcall void smp_invalidate_interrupt(void) { ack_APIC_irq(); perfc_incr(ipis); irq_enter(); if ( !__sync_lazy_execstate() || (flush_flags & (FLUSH_TLB_GLOBAL | FLUSH_CACHE)) ) flush_area_local(flush_va, flush_flags); cpu_clear(smp_processor_id(), flush_cpumask); irq_exit(); } void flush_area_mask(const cpumask_t *mask, const void *va, unsigned int flags) { ASSERT(local_irq_is_enabled()); if ( cpu_isset(smp_processor_id(), *mask) ) flush_area_local(va, flags); if ( !cpus_subset(*mask, *cpumask_of(smp_processor_id())) ) { spin_lock(&flush_lock); cpus_andnot(flush_cpumask, *mask, *cpumask_of(smp_processor_id())); flush_va = va; flush_flags = flags; send_IPI_mask(&flush_cpumask, INVALIDATE_TLB_VECTOR); while ( !cpus_empty(flush_cpumask) ) cpu_relax(); spin_unlock(&flush_lock); } } /* Call with no locks held and interrupts enabled (e.g., softirq context). */ void new_tlbflush_clock_period(void) { cpumask_t allbutself; /* Flush everyone else. We definitely flushed just before entry. */ allbutself = cpu_online_map; cpu_clear(smp_processor_id(), allbutself); flush_mask(&allbutself, FLUSH_TLB); /* No need for atomicity: we are the only possible updater. */ ASSERT(tlbflush_clock == 0); tlbflush_clock++; } void smp_send_event_check_mask(const cpumask_t *mask) { send_IPI_mask(mask, EVENT_CHECK_VECTOR); } /* * Structure and data for smp_call_function()/on_selected_cpus(). */ static void __smp_call_function_interrupt(void); static DEFINE_SPINLOCK(call_lock); static struct call_data_struct { void (*func) (void *info); void *info; int wait; atomic_t started; atomic_t finished; cpumask_t selected; } call_data; int smp_call_function( void (*func) (void *info), void *info, int wait) { cpumask_t allbutself = cpu_online_map; cpu_clear(smp_processor_id(), allbutself); return on_selected_cpus(&allbutself, func, info, wait); } int on_selected_cpus( const cpumask_t *selected, void (*func) (void *info), void *info, int wait) { unsigned int nr_cpus; ASSERT(local_irq_is_enabled()); spin_lock(&call_lock); call_data.selected = *selected; nr_cpus = cpus_weight(call_data.selected); if ( nr_cpus == 0 ) goto out; call_data.func = func; call_data.info = info; call_data.wait = wait; atomic_set(&call_data.started, 0); atomic_set(&call_data.finished, 0); send_IPI_mask(&call_data.selected, CALL_FUNCTION_VECTOR); if ( cpu_isset(smp_processor_id(), call_data.selected) ) { local_irq_disable(); __smp_call_function_interrupt(); local_irq_enable(); } while ( atomic_read(wait ? &call_data.finished : &call_data.started) != nr_cpus ) cpu_relax(); out: spin_unlock(&call_lock); return 0; } static void __stop_this_cpu(void) { ASSERT(!local_irq_is_enabled()); disable_local_APIC(); hvm_cpu_down(); /* * Clear FPU, zapping any pending exceptions. Needed for warm reset with * some BIOSes. */ clts(); asm volatile ( "fninit" ); } static void stop_this_cpu(void *dummy) { __stop_this_cpu(); cpu_clear(smp_processor_id(), cpu_online_map); for ( ; ; ) halt(); } /* * Stop all CPUs and turn off local APICs and the IO-APIC, so other OSs see a * clean IRQ state. */ void smp_send_stop(void) { int timeout = 10; smp_call_function(stop_this_cpu, NULL, 0); /* Wait 10ms for all other CPUs to go offline. */ while ( (num_online_cpus() > 1) && (timeout-- > 0) ) mdelay(1); local_irq_disable(); __stop_this_cpu(); disable_IO_APIC(); local_irq_enable(); } void smp_send_nmi_allbutself(void) { send_IPI_mask(&cpu_online_map, APIC_DM_NMI); } fastcall void smp_event_check_interrupt(struct cpu_user_regs *regs) { struct cpu_user_regs *old_regs = set_irq_regs(regs); ack_APIC_irq(); perfc_incr(ipis); set_irq_regs(old_regs); } static void __smp_call_function_interrupt(void) { void (*func)(void *info) = call_data.func; void *info = call_data.info; if ( !cpu_isset(smp_processor_id(), call_data.selected) ) return; irq_enter(); if ( call_data.wait ) { (*func)(info); mb(); atomic_inc(&call_data.finished); } else { mb(); atomic_inc(&call_data.started); (*func)(info); } irq_exit(); } fastcall void smp_call_function_interrupt(struct cpu_user_regs *regs) { struct cpu_user_regs *old_regs = set_irq_regs(regs); ack_APIC_irq(); perfc_incr(ipis); __smp_call_function_interrupt(); set_irq_regs(old_regs); } 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Main source file for the AudioOutput demo. This file contains the main tasks of
 *  the demo and is responsible for the initial application hardware configuration.
 */

#include "AudioOutput.h"

/** LUFA Audio Class driver interface configuration and state information. This structure is
 *  passed to all Audio Class driver functions, so that multiple instances of the same class
 *  within a device can be differentiated from one another.
 */
USB_ClassInfo_Audio_Device_t Speaker_Audio_Interface =
	{
		.Config =
			{
				.ControlInterfaceNumber   = INTERFACE_ID_AudioControl,
				.StreamingInterfaceNumber = INTERFACE_ID_AudioStream,
				.DataOUTEndpoint          =
					{
						.Address          = AUDIO_STREAM_EPADDR,
						.Size             = AUDIO_STREAM_EPSIZE,
						.Banks            = 2,
					},
			},
	};

/** Current audio sampling frequency of the streaming audio endpoint. */
static uint32_t CurrentAudioSampleFrequency = 48000;


/** Main program entry point. This routine contains the overall program flow, including initial
 *  setup of all components and the main program loop.
 */
int main(void)
{
	SetupHardware();

	LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
	GlobalInterruptEnable();

	for (;;)
	{
		Audio_Device_USBTask(&Speaker_Audio_Interface);
		USB_USBTask();
	}
}

/** Configures the board hardware and chip peripherals for the demo's functionality. */
void SetupHardware(void)
{
#if (ARCH == ARCH_AVR8)
	/* Disable watchdog if enabled by bootloader/fuses */
	MCUSR &= ~(1 << WDRF);
	wdt_disable();

	/* Disable clock division */
	clock_prescale_set(clock_div_1);
#endif

	/* Hardware Initialization */
	LEDs_Init();
	USB_Init();
}

/** ISR to handle the reloading of the PWM timer with the next sample. */
ISR(TIMER0_COMPA_vect, ISR_BLOCK)
{
	uint8_t PrevEndpoint = Endpoint_GetCurrentEndpoint();

	/* Check that the USB bus is ready for the next sample to read */
	if (Audio_Device_IsSampleReceived(&Speaker_Audio_Interface))
	{
		/* Retrieve the signed 16-bit left and right audio samples, convert to 8-bit */
		int8_t LeftSample_8Bit  = (Audio_Device_ReadSample16(&Speaker_Audio_Interface) >> 8);
		int8_t RightSample_8Bit = (Audio_Device_ReadSample16(&Speaker_Audio_Interface) >> 8);

		/* Mix the two channels together to produce a mono, 8-bit sample */
		int8_t MixedSample_8Bit = (((int16_t)LeftSample_8Bit + (int16_t)RightSample_8Bit) >> 1);

		#if defined(AUDIO_OUT_MONO)
		/* Load the sample into the PWM timer channel */
		OCR3A = (MixedSample_8Bit ^ (1 << 7));
		#elif defined(AUDIO_OUT_STEREO)
		/* Load the dual 8-bit samples into the PWM timer channels */
		OCR3A = (LeftSample_8Bit  ^ (1 << 7));
		OCR3B = (RightSample_8Bit ^ (1 << 7));
		#elif defined(AUDIO_OUT_PORTC)
		/* Load the 8-bit mixed sample into PORTC */
		PORTC = MixedSample_8Bit;
		#endif

		uint8_t LEDMask = LEDS_NO_LEDS;

		/* Turn on LEDs as the sample amplitude increases */
		if (MixedSample_8Bit > 16)
		  LEDMask = (LEDS_LED1 | LEDS_LED2 | LEDS_LED3 | LEDS_LED4);
		else if (MixedSample_8Bit > 8)
		  LEDMask = (LEDS_LED1 | LEDS_LED2 | LEDS_LED3);
		else if (MixedSample_8Bit > 4)
		  LEDMask = (LEDS_LED1 | LEDS_LED2);
		else if (MixedSample_8Bit > 2)
		  LEDMask = (LEDS_LED1);

		LEDs_SetAllLEDs(LEDMask);
	}

	Endpoint_SelectEndpoint(PrevEndpoint);
}

/** Event handler for the library USB Connection event. */
void EVENT_USB_Device_Connect(void)
{
	LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);

	/* Sample reload timer initialization */
	TIMSK0  = (1 << OCIE0A);
	OCR0A   = ((F_CPU / 8 / CurrentAudioSampleFrequency) - 1);
	TCCR0A  = (1 << WGM01);  // CTC mode
	TCCR0B  = (1 << CS01);   // Fcpu/8 speed

	#if defined(AUDIO_OUT_MONO)
	/* Set speaker as output */
	DDRC   |= (1 << 6);
	#elif defined(AUDIO_OUT_STEREO)
	/* Set speakers as outputs */
	DDRC   |= ((1 << 6) | (1 << 5));
	#elif defined(AUDIO_OUT_PORTC)
	/* Set PORTC as outputs */
	DDRC   |= 0xFF;
	#endif

	#if (defined(AUDIO_OUT_MONO) || defined(AUDIO_OUT_STEREO))
	/* PWM speaker timer initialization */
	TCCR3A  = ((1 << WGM30) | (1 << COM3A1) | (1 << COM3A0)
	        | (1 << COM3B1) | (1 << COM3B0)); // Set on match, clear on TOP
	TCCR3B  = ((1 << WGM32) | (1 << CS30));  // Fast 8-Bit PWM, F_CPU speed
	#endif
}

/** Event handler for the library USB Disconnection event. */
void EVENT_USB_Device_Disconnect(void)
{
	LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);

	/* Stop the sample reload timer */
	TCCR0B = 0;

	#if (defined(AUDIO_OUT_MONO) || defined(AUDIO_OUT_STEREO))
	/* Stop the PWM generation timer */
	TCCR3B = 0;
	#endif

	#if defined(AUDIO_OUT_MONO)
	/* Set speaker as input to reduce current draw */
	DDRC  &= ~(1 << 6);
	#elif defined(AUDIO_OUT_STEREO)
	/* Set speakers as inputs to reduce current draw */
	DDRC  &= ~((1 << 6) | (1 << 5));
	#elif defined(AUDIO_OUT_PORTC)
	/* Set PORTC low */
	PORTC = 0x00;
	#endif
}

/** Event handler for the library USB Configuration Changed event. */
void EVENT_USB_Device_ConfigurationChanged(void)
{
	bool ConfigSuccess = true;

	ConfigSuccess &= Audio_Device_ConfigureEndpoints(&Speaker_Audio_Interface);

	LEDs_SetAllLEDs(ConfigSuccess ? LEDMASK_USB_READY : LEDMASK_USB_ERROR);
}

/** Event handler for the library USB Control Request reception event. */
void EVENT_USB_Device_ControlRequest(void)
{
	Audio_Device_ProcessControlRequest(&Speaker_Audio_Interface);
}

/** Audio class driver callback for the setting and retrieval of streaming endpoint properties. This callback must be implemented
 *  in the user application to handle property manipulations on streaming audio endpoints.
 *
 *  When the DataLength parameter is NULL, this callback should only indicate whether the specified operation is valid for
 *  the given endpoint index, and should return as fast as possible. When non-NULL, this value may be altered for GET operations
 *  to indicate the size of the retrieved data.
 *
 *  \note The length of the retrieved data stored into the Data buffer on GET operations should not exceed the initial value
 *        of the \c DataLength parameter.
 *
 *  \param[in,out] AudioInterfaceInfo  Pointer to a structure containing an Audio Class configuration and state.
 *  \param[in]     EndpointProperty    Property of the endpoint to get or set, a value from Audio_ClassRequests_t.
 *  \param[in]     EndpointAddress     Address of the streaming endpoint whose property is being referenced.
 *  \param[in]     EndpointControl     Parameter of the endpoint to get or set, a value from Audio_EndpointControls_t.
 *  \param[in,out] DataLength          For SET operations, the length of the parameter data to set. For GET operations, the maximum
 *                                     length of the retrieved data. When NULL, the function should return whether the given property
 *                                     and parameter is valid for the requested endpoint without reading or modifying the Data buffer.
 *  \param[in,out] Data                Pointer to a location where the parameter data is stored for SET operations, or where
 *                                     the retrieved data is to be stored for GET operations.
 *
 *  \return Boolean \c true if the property get/set was successful, \c false otherwise
 */
bool CALLBACK_Audio_Device_GetSetEndpointProperty(USB_ClassInfo_Audio_Device_t* const AudioInterfaceInfo,
                                                  const uint8_t EndpointProperty,
                                                  const uint8_t EndpointAddress,
                                                  const uint8_t EndpointControl,
                                                  uint16_t* const DataLength,
                                                  uint8_t* Data)
{
	/* Check the requested endpoint to see if a supported endpoint is being manipulated */
	if (EndpointAddress == Speaker_Audio_Interface.Config.DataOUTEndpoint.Address)
	{
		/* Check the requested control to see if a supported control is being manipulated */
		if (EndpointControl == AUDIO_EPCONTROL_SamplingFreq)
		{
			switch (EndpointProperty)
			{
				case AUDIO_REQ_SetCurrent:
					/* Check if we are just testing for a valid property, or actually adjusting it */
					if (DataLength != NULL)
					{
						/* Set the new sampling frequency to the value given by the host */
						CurrentAudioSampleFrequency = (((uint32_t)Data[2] << 16) | ((uint32_t)Data[1] << 8) | (uint32_t)Data[0]);

						/* Adjust sample reload timer to the new frequency */
						OCR0A = ((F_CPU / 8 / CurrentAudioSampleFrequency) - 1);
					}

					return true;
				case AUDIO_REQ_GetCurrent:
					/* Check if we are just testing for a valid property, or actually reading it */
					if (DataLength != NULL)
					{
						*DataLength = 3;

						Data[2] = (CurrentAudioSampleFrequency >> 16);
						Data[1] = (CurrentAudioSampleFrequency >> 8);
						Data[0] = (CurrentAudioSampleFrequency &  0xFF);
					}

					return true;
			}
		}
	}

	return false;
}

/** Audio class driver callback for the setting and retrieval of streaming interface properties. This callback must be implemented
 *  in the user application to handle property manipulations on streaming audio interfaces.
 *
 *  When the DataLength parameter is NULL, this callback should only indicate whether the specified operation is valid for
 *  the given entity and should return as fast as possible. When non-NULL, this value may be altered for GET operations
 *  to indicate the size of the retrieved data.
 *
 *  \note The length of the retrieved data stored into the Data buffer on GET operations should not exceed the initial value
 *        of the \c DataLength parameter.
 *
 *  \param[in,out] AudioInterfaceInfo  Pointer to a structure containing an Audio Class configuration and state.
 *  \param[in]     Property            Property of the interface to get or set, a value from Audio_ClassRequests_t.
 *  \param[in]     EntityAddress       Address of the audio entity whose property is being referenced.
 *  \param[in]     Parameter           Parameter of the entity to get or set, specific to each type of entity (see USB Audio specification).
 *  \param[in,out] DataLength          For SET operations, the length of the parameter data to set. For GET operations, the maximum
 *                                     length of the retrieved data. When NULL, the function should return whether the given property
 *                                     and parameter is valid for the requested endpoint without reading or modifying the Data buffer.
 *  \param[in,out] Data                Pointer to a location where the parameter data is stored for SET operations, or where
 *                                     the retrieved data is to be stored for GET operations.
 *
 *  \return Boolean \c true if the property GET/SET was successful, \c false otherwise
 */
bool CALLBACK_Audio_Device_GetSetInterfaceProperty(USB_ClassInfo_Audio_Device_t* const AudioInterfaceInfo,
                                                   const uint8_t Property,
                                                   const uint8_t EntityAddress,
                                                   const uint16_t Parameter,
                                                   uint16_t* const DataLength,
                                                   uint8_t* Data)
{
	/* No audio interface entities in the device descriptor, thus no properties to get or set. */
	return false;
}