/****************************************************************************** * include/public/trace.h * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Mark Williamson, (C) 2004 Intel Research Cambridge * Copyright (C) 2005 Bin Ren */ #ifndef __XEN_PUBLIC_TRACE_H__ #define __XEN_PUBLIC_TRACE_H__ #define TRACE_EXTRA_MAX 7 #define TRACE_EXTRA_SHIFT 28 /* Trace classes */ #define TRC_CLS_SHIFT 16 #define TRC_GEN 0x0001f000 /* General trace */ #define TRC_SCHED 0x0002f000 /* Xen Scheduler trace */ #define TRC_DOM0OP 0x0004f000 /* Xen DOM0 operation trace */ #define TRC_HVM 0x0008f000 /* Xen HVM trace */ #define TRC_MEM 0x0010f000 /* Xen memory trace */ #define TRC_PV 0x0020f000 /* Xen PV traces */ #define TRC_SHADOW 0x0040f000 /* Xen shadow tracing */ #define TRC_PM 0x0080f000 /* Xen power management trace */ #define TRC_GUEST 0x0800f000 /* Guest-generated traces */ #define TRC_ALL 0x0ffff000 #define TRC_HD_TO_EVENT(x) ((x)&0x0fffffff) #define TRC_HD_CYCLE_FLAG (1UL<<31) #define TRC_HD_INCLUDES_CYCLE_COUNT(x) ( !!( (x) & TRC_HD_CYCLE_FLAG ) ) #define TRC_HD_EXTRA(x) (((x)>>TRACE_EXTRA_SHIFT)&TRACE_EXTRA_MAX) /* Trace subclasses */ #define TRC_SUBCLS_SHIFT 12 /* trace subclasses for SVM */ #define TRC_HVM_ENTRYEXIT 0x00081000 /* VMENTRY and #VMEXIT */ #define TRC_HVM_HANDLER 0x00082000 /* various HVM handlers */ #define TRC_SCHED_MIN 0x00021000 /* Just runstate changes */ #define TRC_SCHED_CLASS 0x00022000 /* Scheduler-specific */ #define TRC_SCHED_VERBOSE 0x00028000 /* More inclusive scheduling */ /* Trace events per class */ #define TRC_LOST_RECORDS (TRC_GEN + 1) #define TRC_TRACE_WRAP_BUFFER (TRC_GEN + 2) #define TRC_TRACE_CPU_CHANGE (TRC_GEN + 3) #define TRC_TRACE_IRQ (TRC_GEN + 4) #define TRC_SCHED_RUNSTATE_CHANGE (TRC_SCHED_MIN + 1) #define TRC_SCHED_CONTINUE_RUNNING (TRC_SCHED_MIN + 2) #define TRC_SCHED_DOM_ADD (TRC_SCHED_VERBOSE + 1) #define TRC_SCHED_DOM_REM (TRC_SCHED_VERBOSE + 2) #define TRC_SCHED_SLEEP (TRC_SCHED_VERBOSE + 3) #define TRC_SCHED_WAKE (TRC_SCHED_VERBOSE + 4) #define TRC_SCHED_YIELD (TRC_SCHED_VERBOSE + 5) #define TRC_SCHED_BLOCK (TRC_SCHED_VERBOSE + 6) #define TRC_SCHED_SHUTDOWN (TRC_SCHED_VERBOSE + 7) #define TRC_SCHED_CTL (TRC_SCHED_VERBOSE + 8) #define TRC_SCHED_ADJDOM (TRC_SCHED_VERBOSE + 9) #define TRC_SCHED_SWITCH (TRC_SCHED_VERBOSE + 10) #define TRC_SCHED_S_TIMER_FN (TRC_SCHED_VERBOSE + 11) #define TRC_SCHED_T_TIMER_FN (TRC_SCHED_VERBOSE + 12) #define TRC_SCHED_DOM_TIMER_FN (TRC_SCHED_VERBOSE + 13) #define TRC_SCHED_SWITCH_INFPREV (TRC_SCHED_VERBOSE + 14) #define TRC_SCHED_SWITCH_INFNEXT (TRC_SCHED_VERBOSE + 15) #define TRC_SCHED_SHUTDOWN_CODE (TRC_SCHED_VERBOSE + 16) #define TRC_MEM_PAGE_GRANT_MAP (TRC_MEM + 1) #define TRC_MEM_PAGE_GRANT_UNMAP (TRC_MEM + 2) #define TRC_MEM_PAGE_GRANT_TRANSFER (TRC_MEM + 3) #define TRC_MEM_SET_P2M_ENTRY (TRC_MEM + 4) #define TRC_MEM_DECREASE_RESERVATION (TRC_MEM + 5) #define TRC_MEM_POD_POPULATE (TRC_MEM + 16) #define TRC_MEM_POD_ZERO_RECLAIM (TRC_MEM + 17) #define TRC_MEM_POD_SUPERPAGE_SPLINTER (TRC_MEM + 18) #define TRC_PV_HYPERCALL (TRC_PV + 1) #define TRC_PV_TRAP (TRC_PV + 3) #define TRC_PV_PAGE_FAULT (TRC_PV + 4) #define TRC_PV_FORCED_INVALID_OP (TRC_PV + 5) #define TRC_PV_EMULATE_PRIVOP (TRC_PV + 6) #define TRC_PV_EMULATE_4GB (TRC_PV + 7) #define TRC_PV_MATH_STATE_RESTORE (TRC_PV + 8) #define TRC_PV_PAGING_FIXUP (TRC_PV + 9) #define TRC_PV_GDT_LDT_MAPPING_FAULT (TRC_PV + 10) #define TRC_PV_PTWR_EMULATION (TRC_PV + 11) #define TRC_PV_PTWR_EMULATION_PAE (TRC_PV + 12) /* Indicates that addresses in trace record are 64 bits */ #define TRC_64_FLAG (0x100) #define TRC_SHADOW_NOT_SHADOW (TRC_SHADOW + 1) #define TRC_SHADOW_FAST_PROPAGATE (TRC_SHADOW + 2) #define TRC_SHADOW_FAST_MMIO (TRC_SHADOW + 3) #define TRC_SHADOW_FALSE_FAST_PATH (TRC_SHADOW + 4) #define TRC_SHADOW_MMIO (TRC_SHADOW + 5) #define TRC_SHADOW_FIXUP (TRC_SHADOW + 6) #define TRC_SHADOW_DOMF_DYING (TRC_SHADOW + 7) #define TRC_SHADOW_EMULATE (TRC_SHADOW + 8) #define TRC_SHADOW_EMULATE_UNSHADOW_USER (TRC_SHADOW + 9) #define TRC_SHADOW_EMULATE_UNSHADOW_EVTINJ (TRC_SHADOW + 10) #define TRC_SHADOW_EMULATE_UNSHADOW_UNHANDLED (TRC_SHADOW + 11) #define TRC_SHADOW_WRMAP_BF (TRC_SHADOW + 12) #define TRC_SHADOW_PREALLOC_UNPIN (TRC_SHADOW + 13) #define TRC_SHADOW_RESYNC_FULL (TRC_SHADOW + 14) #define TRC_SHADOW_RESYNC_ONLY (TRC_SHADOW + 15) /* trace events per subclass */ #define TRC_HVM_VMENTRY (TRC_HVM_ENTRYEXIT + 0x01) #define TRC_HVM_VMEXIT (TRC_HVM_ENTRYEXIT + 0x02) #define TRC_HVM_VMEXIT64 (TRC_HVM_ENTRYEXIT + TRC_64_FLAG + 0x02) #define TRC_HVM_PF_XEN (TRC_HVM_HANDLER + 0x01) #define TRC_HVM_PF_XEN64 (TRC_HVM_HANDLER + TRC_64_FLAG + 0x01) #define TRC_HVM_PF_INJECT (TRC_HVM_HANDLER + 0x02) #define TRC_HVM_PF_INJECT64 (TRC_HVM_HANDLER + TRC_64_FLAG + 0x02) #define TRC_HVM_INJ_EXC (TRC_HVM_HANDLER + 0x03) #define TRC_HVM_INJ_VIRQ (TRC_HVM_HANDLER + 0x04) #define TRC_HVM_REINJ_VIRQ (TRC_HVM_HANDLER + 0x05) #define TRC_HVM_IO_READ (TRC_HVM_HANDLER + 0x06) #define TRC_HVM_IO_WRITE (TRC_HVM_HANDLER + 0x07) #define TRC_HVM_CR_READ (TRC_HVM_HANDLER + 0x08) #define TRC_HVM_CR_READ64 (TRC_HVM_HANDLER + TRC_64_FLAG + 0x08) #define TRC_HVM_CR_WRITE (TRC_HVM_HANDLER + 0x09) #define TRC_HVM_CR_WRITE64 (TRC_HVM_HANDLER + TRC_64_FLAG + 0x09) #define TRC_HVM_DR_READ (TRC_HVM_HANDLER + 0x0A) #define TRC_HVM_DR_WRITE (TRC_HVM_HANDLER + 0x0B) #define TRC_HVM_MSR_READ (TRC_HVM_HANDLER + 0x0C) #define TRC_HVM_MSR_WRITE (TRC_HVM_HANDLER + 0x0D) #define TRC_HVM_CPUID (TRC_HVM_HANDLER + 0x0E) #define TRC_HVM_INTR (TRC_HVM_HANDLER + 0x0F) #define TRC_HVM_NMI (TRC_HVM_HANDLER + 0x10) #define TRC_HVM_SMI (TRC_HVM_HANDLER + 0x11) #define TRC_HVM_VMMCALL (TRC_HVM_HANDLER + 0x12) #define TRC_HVM_HLT (TRC_HVM_HANDLER + 0x13) #define TRC_HVM_INVLPG (TRC_HVM_HANDLER + 0x14) #define TRC_HVM_INVLPG64 (TRC_HVM_HANDLER + TRC_64_FLAG + 0x14) #define TRC_HVM_MCE (TRC_HVM_HANDLER + 0x15) #define TRC_HVM_IOPORT_READ (TRC_HVM_HANDLER + 0x16) #define TRC_HVM_IOMEM_READ (TRC_HVM_HANDLER + 0x17) #define TRC_HVM_CLTS (TRC_HVM_HANDLER + 0x18) #define TRC_HVM_LMSW (TRC_HVM_HANDLER + 0x19) #define TRC_HVM_LMSW64 (TRC_HVM_HANDLER + TRC_64_FLAG + 0x19) #define TRC_HVM_RDTSC (TRC_HVM_HANDLER + 0x1a) #define TRC_HVM_INTR_WINDOW (TRC_HVM_HANDLER + 0x20) #define TRC_HVM_NPF (TRC_HVM_HANDLER + 0x21) #define TRC_HVM_IOPORT_WRITE (TRC_HVM_HANDLER + 0x216) #define TRC_HVM_IOMEM_WRITE (TRC_HVM_HANDLER + 0x217) /* trace subclasses for power management */ #define TRC_PM_FREQ 0x00801000 /* xen cpu freq events */ #define TRC_PM_IDLE 0x00802000 /* xen cpu idle events */ /* trace events for per class */ #define TRC_PM_FREQ_CHANGE (TRC_PM_FREQ + 0x01) #define TRC_PM_IDLE_ENTRY (TRC_PM_IDLE + 0x01) #define TRC_PM_IDLE_EXIT (TRC_PM_IDLE + 0x02) /* This structure represents a single trace buffer record. */ struct t_rec { uint32_t event:28; uint32_t extra_u32:3; /* # entries in trailing extra_u32[] array */ uint32_t cycles_included:1; /* u.cycles or u.no_cycles? */ union { struct { uint32_t cycles_lo, cycles_hi; /* cycle counter timestamp */ uint32_t extra_u32[7]; /* event data items */ } cycles; struct { uint32_t extra_u32[7]; /* event data items */ } nocycles; } u; }; /* * This structure contains the metadata for a single trace buffer. The head * field, indexes into an array of struct t_rec's. */ struct t_buf { /* Assume the data buffer size is X. X is generally not a power of 2. * CONS and PROD are incremented modulo (2*X): * 0 <= cons < 2*X * 0 <= prod < 2*X * This is done because addition modulo X breaks at 2^32 when X is not a * power of 2: * (((2^32 - 1) % X) + 1) % X != (2^32) % X */ uint32_t cons; /* Offset of next item to be consumed by control tools. */ uint32_t prod; /* Offset of next item to be produced by Xen. */ /* Records follow immediately after the meta-data header. */ }; /* Structure used to pass MFNs to the trace buffers back to trace consumers. * Offset is an offset into the mapped structure where the mfn list will be held. * MFNs will be at ((unsigned long *)(t_info))+(t_info->cpu_offset[cpu]). */ struct t_info { uint16_t tbuf_size; /* Size in pages of each trace buffer */ uint16_t mfn_offset[]; /* Offset within t_info structure of the page list per cpu */ /* MFN lists immediately after the header */ }; #endif /* __XEN_PUBLIC_TRACE_H__ */ /* * Local variables: * mode: C * c-set-style: "BSD" * c-basic-offset: 4 * tab-width: 4 * indent-tabs-mode: nil * End: */ d='n225' href='#n225'>225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
# キーボードの挙動をカスタマイズする方法

<!---
  original document: 0.9.43:docs/custom_quantum_functions.md
  git diff 0.9.43 HEAD -- docs/custom_quantum_functions.md | cat
-->

多くの人にとって、カスタムキーボードはボタンの押下をコンピュータに送信するだけではありません。単純なボタンの押下やマクロよりも複雑なことを実行できるようにしたいでしょう。QMK にはコードを挿入したり、機能を上書きしたり、様々な状況でキーボードの挙動をカスタマイズできるフックがあります。

このページでは、QMK に関する特別な知識は想定していませんが、[QMK の理解](ja/understanding_qmk.md)を読むとより根本的なレベルで何が起きているかを理解するのに役立ちます。

## コア、キーボード、キーマップ階層 :id=a-word-on-core-vs-keyboards-vs-keymap

私たちは QMK を階層として構造化しました:

* コア (`_quantum`)
   * キーボード/リビジョン (`_kb`)
      * キーマップ (`_user`)

以下で説明される各関数は `_kb()` サフィックスあるいは `_user()` サフィックスを使って定義することができます。`_kb()` サフィックスはキーボード/リビジョンレベルで使うことを意図しており、一方で `_user()` サフィックスはキーマップレベルで使われるべきです。

キーボード/リビジョンレベルで関数を定義する場合、`_kb()` は他の何かを実行する前に `_user()` を呼び出すよう実装することが重要です。そうでなければ、キーマップレベル関数は呼ばれないでしょう。

# カスタムキーコード

最も一般的なタスクは、既存のキーコードの挙動を変更するか、新しいキーコードを作成することです。コードの観点からは、それぞれの仕組みは非常に似ています。

## 新しいキーコードの定義

独自のカスタムキーコードを作成する最初のステップは、それらを列挙することです。これは、カスタムキーコードに名前を付け、そのキーコードにユニークな番号を割り当てることの両方を意味します。QMK は、カスタムキーコードを固定範囲の番号に制限するのではなく、`SAFE_RANGE` マクロを提供します。カスタムキーコードを列挙する時に `SAFE_RANGE` を使うと、ユニークな番号を取得することが保証されます。


これは2つのキーコードを列挙する例です。このブロックを `keymap.c` に追加した後で、キーマップの中で `FOO``BAR` を使うことができます。

```c
enum my_keycodes {
  FOO = SAFE_RANGE,
  BAR
};
```

## 任意のキーコードの挙動のプログラミング :id=programming-the-behavior-of-any-keycode

既存のキーの挙動を上書きしたい場合、あるいは新しいキーについて挙動を定義する場合、`process_record_kb()` および `process_record_user()` 関数を使うべきです。これらは実際のキーイベントが処理される前のキー処理中に QMK によって呼び出されます。これらの関数が `true` を返す場合、QMK はキーコードを通常通りに処理します。これは、キーを置き換えるのではなく、キーの機能を拡張するのに便利です。これらの関数が `false` を返す場合、QMK は通常のキー処理をスキップし、必要なキーのアップまたはダウンイベントを送信するのかはユーザ次第です。

これらの関数はキーが押されるか放されるたびに呼び出されます。

### `process_record_user()` の実装例

この例は2つの事を行います。`FOO` と呼ばれるカスタムキーコードの挙動を定義し、Enter キーが押されるたびに音を再生します。

```c
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  switch (keycode) {
    case FOO:
      if (record->event.pressed) {
        // 押された時に何かをします
      } else {
        // 放された時に何かをします
      }
      return false; // このキーの以降の処理をスキップします
    case KC_ENTER:
      // enter が押された時に音を再生します
      if (record->event.pressed) {
        PLAY_SONG(tone_qwerty);
      }
      return true; // QMK に enter のプレスまたはリリースイベントを送信させます
    default:
      return true; // 他の全てのキーコードを通常通りに処理します
  }
}
```

### `process_record_*` 関数のドキュメント

* キーボード/リビジョン: `bool process_record_kb(uint16_t keycode, keyrecord_t *record)`
* キーマップ: `bool process_record_user(uint16_t keycode, keyrecord_t *record)`

`keycode` 引数はキーマップで定義されているものです。例えば `MO(1)``KC_L` など。これらのイベントを処理するには `switch...case` ブロックを使うべきです。

`record` 引数は実際のプレスに関する情報を含みます:

```c
keyrecord_t record {
  keyevent_t event {
    keypos_t key {
      uint8_t col
      uint8_t row
    }
    bool     pressed
    uint16_t time
  }
}
```

# LED 制御

QMK は HID 仕様で定義された5つの LED の読み取りメソッドを提供します:

* Num Lock
* Caps Lock
* Scroll Lock
* Compose
* Kana

ロック LED の状態を取得するには2つの方法があります:

* `bool led_update_kb(led_t led_state)` あるいは `_user(led_t led_state)` を実装する、または
* `led_t host_keyboard_led_state()` を呼び出す

!> `host_keyboard_led_state()``led_update_user()` が呼ばれる前に新しい値を既に反映している場合があります。

LED の状態を `uint8_t` として提供する2つの非推奨の関数があります:

* `uint8_t led_set_kb(uint8_t usb_led)` と `_user(uint8_t usb_led)`
* `uint8_t host_keyboard_leds()`

## `led_update_user()`

この関数はこれら5つの LED のいずれかの状態が変化すると呼ばれます。LED の状態を構造体のパラメータとして受け取ります。

慣例により、`led_update_kb()` にそのコードを実行するようフックさせるために `led_update_user()` から `true` を返し、`led_update_kb()` でコードを実行したくない場合は `false` を返します。

以下はいくつかの例です:

- レイヤー表示のような何かのために LED を使うために LED を上書きする
   - `_kb()` 関数を実行したくないので、`false`  を返します。これはレイヤーの挙動を上書きするためです。
- LED がオンあるいはオフになった時に音楽を再生する。
   - `_kb` 関数を実行したいので、`true` を返します。これはデフォルトの LED の挙動に追加されます。

?> `led_set_*` 関数は `bool` の代わりに `void` を返すため、キーボードの LED 制御を上書きすることができません。従って、代わりに `led_update_*` を使うことをお勧めします。

### `led_update_kb()` の実装例

```c
bool led_update_kb(led_t led_state) {
    bool res = led_update_user(led_state);
    if(res) {
        // writePin は 1 でピンを high に、0 で low に設定します。
        // この例では、ピンは反転していて、
        // low/0 は LED がオンになり、high/1 は LED がオフになります。
        // この挙動は、LED がピンと VCC の間にあるか、ピンと GND の間にあるかどうかに依存します。
        writePin(B0, !led_state.num_lock);
        writePin(B1, !led_state.caps_lock);
        writePin(B2, !led_state.scroll_lock);
        writePin(B3, !led_state.compose);
        writePin(B4, !led_state.kana);
    }
    return res;
}
```

### `led_update_user()` の実装例

この不完全な例は Caps Lock がオンまたはオフになった場合に音を再生します。また LED の状態を保持する必要があるため、`true` を返します。

```c
#ifdef AUDIO_ENABLE
  float caps_on[][2] = SONG(CAPS_LOCK_ON_SOUND);
  float caps_off[][2] = SONG(CAPS_LOCK_OFF_SOUND);
#endif

bool led_update_user(led_t led_state) {
    #ifdef AUDIO_ENABLE
    static uint8_t caps_state = 0;
    if (caps_state != led_state.caps_lock) {
        led_state.caps_lock ? PLAY_SONG(caps_on) : PLAY_SONG(caps_off);
        caps_state = led_state.caps_lock;
    }
    #endif
    return true;
}
```

### `led_update_*` 関数のドキュメント

* キーボード/リビジョン: `bool led_update_kb(led_t led_state)`
* キーマップ: `bool led_update_user(led_t led_state)`

## `host_keyboard_led_state()`

最後に受信した LED の状態を `led_t` として取得するためにこの関数を呼びます。これは、`led_update_*` の外部から、例えば [`matrix_scan_user()`](#matrix-scanning-code) の中で LED の状態を読み取るのに便利です。

## 物理的な LED の状態の設定

一部のキーボードの実装は、物理的な LED の状態を設定するための便利なメソッドを提供しています。

### Ergodox キーボード

Ergodox の実装は、個々の LED をオンあるいはオフにするために `ergodox_right_led_1`/`2`/`3_on`/`off()` と、インデックスによってそれらをオンあるいはオフにするために `ergodox_right_led_on`/`off(uint8_t led)` を提供します。

さらに、LED の明度を指定することができます。全ての LED に同じ明度を指定するなら `ergodox_led_all_set(uint8_t n)` を使い、個別の LED の明度を指定するなら `ergodox_right_led_1`/`2`/`3_set(uint8_t n)` を使い、LED のインデックスを指定して明度を指定するには  `ergodox_right_led_set(uint8_t led, uint8_t n)` を使います。

Ergodox キーボードは、最低の明度として `LED_BRIGHTNESS_LO` を、最高の輝度(これはデフォルトです)として `LED_BRIGHTNESS_HI` も定義しています。

# キーボードの初期化コード

キーボードの初期化プロセスには幾つかのステップがあります。何をしたいかによって、どの関数を使うべきかに影響します。

3つの主な初期化関数があり、呼び出される順番にリストされています。

* `keyboard_pre_init_*` - ほとんどのものが開始される前に起こります。非常に早くに実行したいハードウェアのセットアップに適しています。
* `matrix_init_*` - ファームウェアのスタートアッププロセスの途中で起こります。ハードウェアは初期化されますが、機能はまだ初期化されていない場合があります。
* `keyboard_post_init_*` - ファームウェアのスタートアッププロセスの最後に起こります。これはほとんどの場合、 "カスタマイズ"コードを配置する場所です。

!> ほとんどの人にとって、`keyboard_post_init_user` が呼び出したいものです。例えば、ここで RGB アンダーグローのセットアップを行います。

## キーボードの事前初期化コード

これは USB さえ起動する前の、起動中の非常に早い段階で実行されます。

この直後にマトリックスが初期化されます。

これは主にハードウェア向きの初期化のためであるため、ほとんどのユーザは使うべきではありません。

ただし、初期化が必要なハードウェアがある場合には、これが最適な場所です (LED ピンの初期化など)。

### `keyboard_pre_init_user()` の実装例

この例は、キーボードレベルで、LED ピンとして B0、B1、B2、B3 および B4 をセットアップします。

```c
void keyboard_pre_init_user(void) {
  // キーボードの事前初期コードを呼び出します。

  // LED ピンを出力として設定します
  setPinOutput(B0);
  setPinOutput(B1);
  setPinOutput(B2);
  setPinOutput(B3);
  setPinOutput(B4);
}
```

### `keyboard_pre_init_*` 関数のドキュメント

* キーボード/リビジョン: `void keyboard_pre_init_kb(void)`
* キーマップ: `void keyboard_pre_init_user(void)`

## マトリックスの初期化コード

これは、マトリックスが初期化され、ハードウェアの一部がセットアップされた後で、ただし機能の多くが初期化される前に、呼び出されます。

他の場所で必要になるかもしれないものをセットアップするのに役立ちますが、ハードウェアに関連するものではなく、開始場所に依存するものでもありません。


### `matrix_init_*` 関数のドキュメント

* キーボード/リビジョン: `void matrix_init_kb(void)`
* キーマップ: `void matrix_init_user(void)`


## キーボードの事後初期化コード

キーボードの初期化プロセスの極めて最後のタスクとして実行されます。この時点で初期化される必要があるような、特定の機能を変更したい場合に便利です。


### `keyboard_post_init_user()` の実装例

この例は、他の全てのものが初期化された後で実行され、rgb アンダーグローの設定をセットアップします。

```c
void keyboard_post_init_user(void) {
  // post init コードを呼びます
  rgblight_enable_noeeprom(); // 設定を保存せずに Rgb を有効にします
  rgblight_sethsv_noeeprom(180, 255, 255); // 保存せずに色を青緑/シアンに設定します
  rgblight_mode_noeeprom(RGBLIGHT_MODE_BREATHING + 3); // 保存せずにモードを高速なブリージングに設定します
}
```

### `keyboard_post_init_*` 関数のドキュメント

* キーボード/リビジョン: `void keyboard_post_init_kb(void)`
* キーマップ: `void keyboard_post_init_user(void)`

# マトリックススキャンコード :id=matrix-scanning-code

可能であれば常に `process_record_*()` を使ってキーボードをカスタマイズし、その方法でイベントをフックし、コードがキーボードのパフォーマンスに悪影響を与えないようにします。ただし、まれにマトリックススキャンにフックする必要があります。これらの関数は1秒あたり少なくとも10回は呼び出されるため、これらの関数のコードのパフォーマンスに非常に注意してください。

### `matrix_scan_*` の実装例

この例は意図的に省略されています。このようなパフォーマンスに敏感な領域にフックする前に、例を使わずにこれを書くために、QMK 内部について十分理解する必要があります。助けが必要であれば、[issue を開く](https://github.com/qmk/qmk_firmware/issues/new) か [Discord で会話](https://discord.gg/Uq7gcHh)してください。

### `matrix_scan_*` 関数のドキュメント

* キーボード/リビジョン: `void matrix_scan_kb(void)`
* キーマップ: `void matrix_scan_user(void)`

この関数はマトリックススキャンのたびに呼び出されます。これは基本的に MCU が処理できる頻度です。大量に実行されるため、ここに何を置くかについては注意してください。

カスタムマトリックススキャンコードが必要な場合は、この関数を使う必要があります。また、カスタムステータス出力 (LED あるいはディスプレイなど)や、ユーザが入力していない場合でも定期的にトリガーするその他の機能のために使うことができます。


# キーボードアイドリング/ウェイクコード

キーボードがサポートしている場合、多くの機能を停止することで"アイドル"にすることができます。これの良い例は、RGB ライトあるいはバックライトです。これにより、電力消費を節約できるか、キーボードの動作が改善されるかもしれません。

これは2つの関数によって制御されます: `suspend_power_down_*` および `suspend_wakeup_init_*`。これらはシステムキーボードがアイドルになった時と、起動した時のそれぞれで呼ばれます。


### suspend_power_down_user() と suspend_wakeup_init_user() の実装例


```c
void suspend_power_down_user(void) {
    rgb_matrix_set_suspend_state(true);
}

void suspend_wakeup_init_user(void) {
    rgb_matrix_set_suspend_state(false);
}
```

### キーボードサスペンド/ウェイク関数のドキュメント

* キーボード/リビジョン : `void suspend_power_down_kb(void)` および `void suspend_wakeup_init_user(void)`
* キーマップ: `void suspend_power_down_kb(void)` および `void suspend_wakeup_init_user(void)`

# レイヤー切り替えコード :id=layer-change-code

これはレイヤーが切り替えられるたびにコードを実行します。レイヤー表示あるいはカスタムレイヤー処理に役立ちます。

### `layer_state_set_*` の実装例

この例は、レイヤーに基づいて [RGB アンダーグロー](ja/feature_rgblight.md)を設定する方法を示していて、Planck を例として使っています。

```c
layer_state_t layer_state_set_user(layer_state_t state) {
    switch (get_highest_layer(state)) {
    case _RAISE:
        rgblight_setrgb (0x00,  0x00, 0xFF);
        break;
    case _LOWER:
        rgblight_setrgb (0xFF,  0x00, 0x00);
        break;
    case _PLOVER:
        rgblight_setrgb (0x00,  0xFF, 0x00);
        break;
    case _ADJUST:
        rgblight_setrgb (0x7A,  0x00, 0xFF);
        break;
    default: //  他の全てのレイヤーあるいはデフォルトのレイヤー
        rgblight_setrgb (0x00,  0xFF, 0xFF);
        break;
    }
  return state;
}
```

特定のレイヤーの状態を確認するには、 `IS_LAYER_ON_STATE(state, layer)``IS_LAYER_OFF_STATE(state, layer)` マクロを使います。

`layer_state_set_*` 関数の外では、グローバルなレイヤー状態を確認するために `IS_LAYER_ON(layer)``IS_LAYER_OFF(layer)` マクロを使えます。

### `layer_state_set_*` 関数のドキュメント

* キーボード/リビジョン: `layer_state_t layer_state_set_kb(layer_state_t state)`
* キーマップ: `layer_state_t layer_state_set_user(layer_state_t state)`


[キーマップの概要](ja/keymap.md#keymap-layer-status)で説明されるように、`state` はアクティブなレイヤーのビットマスクです。


# 永続的な設定 (EEPROM)

これによりキーボードのための永続的な設定を設定することができます。これらの設定はコントローラの EEPROM に保存され、電源が落ちた後であっても保持されます。設定は `eeconfig_read_kb` および `eeconfig_read_user` を使って読み取ることができ、`eeconfig_update_kb` および `eeconfig_update_user` を使って書きこむことができます。これは切り替え可能な機能 (rgb レイヤーの表示の切り替えなど)に役立ちます。さらに、`eeconfig_init_kb` および `eeconfig_init_user` を使って EEPROM のデフォルト値を設定できます。

ここでの複雑な部分は、EEPROM を介してデータを保存およびアクセスできる方法がたくさんあり、これを行うための"正しい"方法が無いということです。ただし、各関数には DWORD (4 バイト)しかありません。

EEPROM の書き込み回数には制限があることに注意してください。これは非常に高い値ですが、EEPROM に書き込むのはこれだけではなく、もし頻繁に書き込むと、MCU の寿命を大幅に短くする可能性があります。

* この例を理解していない場合は、この機能はかなり複雑なため、この機能を使うことを避けても構いません。

### 実装例

これは、設定を追加し、読み書きする例です。この例では、ユーザキーマップを使っています。これは複雑な機能で、多くのことが行われています。実際、動作のために上記の多くの関数を使います!


keymap.c ファイルの中で、先頭にこれを追加します:
```c
typedef union {
  uint32_t raw;
  struct {
    bool     rgb_layer_change :1;
  };
} user_config_t;

user_config_t user_config;
```

これは、設定をメモリ内に保存し、EEPROM に書き込むことができる32ビット構造体をセットアップします。これを使うと、この構造体に変数が定義されるため、変数を定義する必要が無くなります。`bool` (boolean) の値は1ビットを使い、`uint8_t` は8ビットを使い、`uint16_t` は16ビットを使うことに注意してください。組み合わせて使うことができますが、順番の変更は読み書きされる値が変更されるため、問題が発生するかもしれません。

`layer_state_set_*` 関数のために `rgb_layer_change` を使い、全てを設定するために `keyboard_post_init_user` および `process_record_user` を使います。

ここで、上の `keyboard_post_init_user` コードを使って、作成したばかりの構造体を設定するために `eeconfig_read_user()` を追加します。そして、この構造体をすぐに使ってキーマップの機能を制御することができます。それは以下のようになります:
```c
void keyboard_post_init_user(void) {
  // キーマップレベルのマトリックスの初期化処理を呼びます

  // EEPROM からユーザ設定を読み込みます
  user_config.raw = eeconfig_read_user();

  // 有効な場合はデフォルトレイヤーを設定します
  if (user_config.rgb_layer_change) {
    rgblight_enable_noeeprom();
    rgblight_sethsv_noeeprom_cyan();
    rgblight_mode_noeeprom(1);
  }
}
```
上記の関数は読み取ったばかりの EEPROM 設定を使い、デフォルトのレイヤーの RGB 色を設定します。その「生の」値は、上で作成した「共用体」に基づいて使用可能な構造に変換されます。

```c
layer_state_t layer_state_set_user(layer_state_t state) {
    switch (get_highest_layer(state)) {
    case _RAISE:
        if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_magenta(); rgblight_mode_noeeprom(1); }
        break;
    case _LOWER:
        if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_red(); rgblight_mode_noeeprom(1); }
        break;
    case _PLOVER:
        if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_green(); rgblight_mode_noeeprom(1); }
        break;
    case _ADJUST:
        if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_white(); rgblight_mode_noeeprom(1); }
        break;
    default: //  他の全てのレイヤーあるいはデフォルトのレイヤー
        if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_cyan(); rgblight_mode_noeeprom(1); }
        break;
    }
  return state;
}
```
これにより、値が有効になっていた場合のみ、RGB アンダーグローが変更されます。この値を設定するために、`RGB_LYR` と呼ばれる `process_record_user` 用の新しいキーコードを作成します。さらに、通常の RGB コードを使う場合、上記の例を使ってオフになることを確認します。以下のようになります:
```c
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  switch (keycode) {
    case FOO:
      if (record->event.pressed) {
        // 押された時に何かをします
      } else {
        // 放された時に何かをします
      }
      return false; // このキーの以降の処理をスキップします
    case KC_ENTER:
        // enter が押された時に音を再生します
        if (record->event.pressed) {
            PLAY_SONG(tone_qwerty);
        }
        return true; // QMK に enter のプレスまたはリリースイベントを送信させます
    case RGB_LYR:  // これにより、アンダーグローをレイヤー表示として、あるいは通常通りに使うことができます。
        if (record->event.pressed) {
            user_config.rgb_layer_change ^= 1; // 状態を切り替えます
            eeconfig_update_user(user_config.raw); // 新しい状態を EEPROM に書き込みます
            if (user_config.rgb_layer_change) { // レイヤーの状態表示が有効な場合
                layer_state_set(layer_state);   // すぐにレイヤーの色を更新します
            }
        }
        return false;
    case RGB_MODE_FORWARD ... RGB_MODE_GRADIENT: // 任意の RGB コード に対して(quantum_keycodes.h を見てください。400行目参照)
        if (record->event.pressed) { // これはレイヤー表示を無効にします。これを変更する場合は、無効にしたいだろうため。
            if (user_config.rgb_layer_change) {        // 有効な場合のみ
                user_config.rgb_layer_change = false;  // 無効にします
                eeconfig_update_user(user_config.raw); // 設定を EEPROM に書き込みます
            }
        }
        return true; break;
    default:
      return true; // 他の全てのキーコードを通常通りに処理します
  }
}
```
最後に、`eeconfig_init_user` 関数を追加して、EEPROM がリセットされた時にデフォルト値、さらにはカスタムアクションを指定できるようにします。EEPROM を強制的にリセットするには、`EEP_RST` キーコードあるいは[ブートマジック](ja/feature_bootmagic.md)機能を使います。例えば、デフォルトで rgb レイヤー表示を設定し、デフォルト値を保存したい場合。

```c
void eeconfig_init_user(void) {  // EEPROM がリセットされます!
  user_config.raw = 0;
  user_config.rgb_layer_change = true; // デフォルトでこれを有効にします
  eeconfig_update_user(user_config.raw); // デフォルト値を EEPROM に書き込みます

  // これらの値も EEPROM に書き込むためには、noeeprom 以外のバージョンを使います
  rgblight_enable(); // デフォルトで RGB を有効にします
  rgblight_sethsv_cyan();  // デフォルトでシアンに設定します
  rgblight_mode(1); // デフォルトでソリッドに設定します
}
```

これで完了です。RGB レイヤー表示は必要な場合にのみ機能します。キーボードを取り外した後でも保存されます。RGB コードのいずれかを使うと、レイヤー表示が無効になり、設定したモードと色がそのままになります。

### 'EECONFIG' 関数のドキュメント

* キーボード/リビジョン: `void eeconfig_init_kb(void)``uint32_t eeconfig_read_kb(void)` および `void eeconfig_update_kb(uint32_t val)`
* キーマップ: `void eeconfig_init_user(void)``uint32_t eeconfig_read_user(void)` および `void eeconfig_update_user(uint32_t val)`

`val` は EEPROM に書き込みたいデータの値です。`eeconfig_read_*` 関数は EEPROM から32ビット(DWORD) 値を返します。