// TxBolt Codes
#define TXB_NUL 0
#define TXB_S_L 0b00000001
#define TXB_T_L 0b00000010
#define TXB_K_L 0b00000100
#define TXB_P_L 0b00001000
#define TXB_W_L 0b00010000
#define TXB_H_L 0b00100000
#define TXB_R_L 0b01000001
#define TXB_A_L 0b01000010
#define TXB_O_L 0b01000100
#define TXB_STR 0b01001000
#define TXB_E_R 0b01010000
#define TXB_U_R 0b01100000
#define TXB_F_R 0b10000001
#define TXB_R_R 0b10000010
#define TXB_P_R 0b10000100
#define TXB_B_R 0b10001000
#define TXB_L_R 0b10010000
#define TXB_G_R 0b10100000
#define TXB_T_R 0b11000001
#define TXB_S_R 0b11000010
#define TXB_D_R 0b11000100
#define TXB_Z_R 0b11001000
#define TXB_NUM 0b11010000
#define TXB_GRP0 0b00000000
#define TXB_GRP1 0b01000000
#define TXB_GRP2 0b10000000
#define TXB_GRP3 0b11000000
#define TXB_GRPMASK 0b11000000
#define TXB_GET_GROUP(code) ((code & TXB_GRPMASK) >> 6)
#define BOLT_STATE_SIZE 4
#define GEMINI_STATE_SIZE 6
#define MAX_STATE_SIZE GEMINI_STATE_SIZE
static uint8_t state[MAX_STATE_SIZE] = {0};
static uint8_t chord[MAX_STATE_SIZE] = {0};
static int8_t pressed = 0;
static steno_mode_t mode;
static const uint8_t boltmap[64] PROGMEM = {TXB_NUL, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_S_L, TXB_S_L, TXB_T_L, TXB_K_L, TXB_P_L, TXB_W_L, TXB_H_L, TXB_R_L, TXB_A_L, TXB_O_L, TXB_STR, TXB_STR, TXB_NUL, TXB_NUL, TXB_NUL, TXB_STR, TXB_STR, TXB_E_R, TXB_U_R, TXB_F_R, TXB_R_R, TXB_P_R, TXB_B_R, TXB_L_R, TXB_G_R, TXB_T_R, TXB_S_R, TXB_D_R, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_Z_R};
static void steno_clear_state(void) {
memset(state, 0, sizeof(state));
memset(chord, 0, sizeof(chord));
}
static void send_steno_state(uint8_t size, bool send_empty) {
for (uint8_t i = 0; i < size; ++i) {
if (chord[i] || send_empty) {
#ifdef VIRTSER_ENABLE
virtser_send(chord[i]);
#endif
}
}
}
void steno_init() {
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
mode = eeprom_read_byte(EECONFIG_STENOMODE);
}
void steno_set_mode(steno_mode_t new_mode) {
steno_clear_state();
mode = new_mode;
eeprom_update_byte(EECONFIG_STENOMODE, mode);
}
/* override to intercept chords right before they get sent.
* return zero to suppress normal sending behavior.
*/
__attribute__((weak)) bool send_steno_chord_user(steno_mode_t mode, uint8_t chord[6]) { return true; }
__attribute__((weak)) bool postprocess_steno_user(uint16_t keycode, keyrecord_t *record, steno_mode_t mode, uint8_t chord[6], int8_t pressed) { return true; }
__attribute__((weak)) bool process_steno_user(uint16_t keycode, keyrecord_t *record) { return true; }
static void send_steno_chord(void) {
if (send_steno_chord_user(mode, chord)) {
switch (mode) {
case STENO_MODE_BOLT:
send_steno_state(BOLT_STATE_SIZE, false);
#ifdef VIRTSER_ENABLE
virtser_send(0); // terminating byte
#endif
break;
case STENO_MODE_GEMINI:
chord[0] |= 0x80; // Indicate start of packet
send_steno_state(GEMINI_STATE_SIZE, true);
break;
}
}
steno_clear_state();
}
uint8_t *steno_get_state(void) { return &state[0]; }
uint8_t *steno_get_chord(void) { return &chord[0]; }
static bool update_state_bolt(uint8_t key, bool press) {
uint8_t boltcode = pgm_read_byte(boltmap + key);
if (press) {
state[TXB_GET_GROUP(boltcode)] |= boltcode;
chord[TXB_GET_GROUP(boltcode)] |= boltcode;
} else {
state[TXB_GET_GROUP(boltcode)] &= ~boltcode;
}
return false;
}
static bool update_state_gemini(uint8_t key, bool press) {
int idx = key / 7;
uint8_t bit = 1 << (6 - (key % 7));
if (press) {
state[idx] |= bit;
chord[idx] |= bit;
} else {
state[idx] &= ~bit;
}
return false;
}
bool process_steno(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case QK_STENO_BOLT:
if (!process_steno_user(keycode, record)) {
return false;
}
if (IS_PRESSED(record->event)) {
steno_set_mode(STENO_MODE_BOLT);
}
return false;
case QK_STENO_GEMINI:
if (!process_steno_user(keycode, record)) {
return false;
}
if (IS_PRESSED(record->event)) {
steno_set_mode(STENO_MODE_GEMINI);
}
return false;
case STN__MIN ... STN__MAX:
if (!process_steno_user(keycode, record)) {
return false;
}
switch (mode) {
case STENO_MODE_BOLT:
update_state_bolt(keycode - QK_STENO, IS_PRESSED(record->event));
break;
case STENO_MODE_GEMINI:
update_state_gemini(keycode - QK_STENO, IS_PRESSED(record->event));
break;
}
// allow postprocessing hooks
if (postprocess_steno_user(keycode, record, mode, chord, pressed)) {
if (IS_PRESSED(record->event)) {
++pressed;
} else {
--pressed;
if (pressed <= 0) {
pressed = 0;
send_steno_chord();
}
}
}
return false;
}
return true;
}
='n92' href='#n92'>92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
/****************************************************************************
* (C) 2002-2003 - Rolf Neugebauer - Intel Research Cambridge
* (C) 2002-2003 University of Cambridge
* (C) 2004 - Mark Williamson - Intel Research Cambridge
****************************************************************************
*
* File: common/schedule.c
* Author: Rolf Neugebauer & Keir Fraser
* Updated for generic API by Mark Williamson
*
* Description: CPU scheduling
* implements A Borrowed Virtual Time scheduler.
* (see Duda & Cheriton SOSP'99)
*/
#include <xen/config.h>
#include <xen/init.h>
#include <xen/lib.h>
#include <xen/sched.h>
#include <xen/delay.h>
#include <xen/event.h>
#include <xen/time.h>
#include <xen/timer.h>
#include <xen/perfc.h>
#include <xen/sched-if.h>
#include <xen/softirq.h>
/* all per-domain BVT-specific scheduling info is stored here */
struct bvt_vcpu_info
{
struct list_head run_list; /* runqueue list pointers */
u32 avt; /* actual virtual time */
u32 evt; /* effective virtual time */
int migrated; /* migrated to a new CPU */
struct vcpu *vcpu;
struct bvt_dom_info *inf;
};
struct bvt_dom_info
{
struct domain *domain; /* domain this info belongs to */
u32 mcu_advance; /* inverse of weight */
int warpback; /* warp? */
int warp; /* warp set and within the warp
limits*/
s32 warp_value; /* virtual time warp */
s_time_t warpl; /* warp limit */
struct timer warp_timer; /* deals with warpl */
s_time_t warpu; /* unwarp time requirement */
struct timer unwarp_timer; /* deals with warpu */
struct bvt_vcpu_info vcpu_inf[MAX_VIRT_CPUS];
};
struct bvt_cpu_info
{
struct list_head runqueue;
unsigned long svt;
};
#define BVT_INFO(p) ((struct bvt_dom_info *)(p)->sched_priv)
#define EBVT_INFO(p) ((struct bvt_vcpu_info *)(p)->sched_priv)
#define CPU_INFO(cpu) ((struct bvt_cpu_info *)(schedule_data[cpu]).sched_priv)
#define RUNLIST(p) ((struct list_head *)&(EBVT_INFO(p)->run_list))
#define RUNQUEUE(cpu) ((struct list_head *)&(CPU_INFO(cpu)->runqueue))
#define CPU_SVT(cpu) (CPU_INFO(cpu)->svt)
#define MCU (s32)MICROSECS(100) /* Minimum unit */
#define MCU_ADVANCE 10 /* default weight */
#define TIME_SLOP (s32)MICROSECS(50) /* allow time to slip a bit */
#define CTX_MIN (s32)MICROSECS(10) /* Low limit for ctx_allow */
static s32 ctx_allow = (s32)MILLISECS(5); /* context switch allowance */
static inline void __add_to_runqueue_head(struct vcpu *d)
{
list_add(RUNLIST(d), RUNQUEUE(d->processor));
}
static inline void __add_to_runqueue_tail(struct vcpu *d)
{
list_add_tail(RUNLIST(d), RUNQUEUE(d->processor));
}
static inline void __del_from_runqueue(struct vcpu *d)
{
struct list_head *runlist = RUNLIST(d);
list_del(runlist);
runlist->next = NULL;
}
static inline int __task_on_runqueue(struct vcpu *d)
{
return (RUNLIST(d))->next != NULL;
}
/* Warp/unwarp timer functions */
static void warp_timer_fn(void *data)
{
struct bvt_dom_info *inf = data;
struct vcpu *v = inf->domain->vcpu[0];
vcpu_schedule_lock_irq(v);
inf->warp = 0;
/* unwarp equal to zero => stop warping */
if ( inf->warpu == 0 )
{
inf->warpback = 0;
cpu_raise_softirq(v->processor, SCHEDULE_SOFTIRQ);
}
set_timer(&inf->unwarp_timer, NOW() + inf->warpu);
vcpu_schedule_unlock_irq(v);
}
static void unwarp_timer_fn(void *data)
{
struct bvt_dom_info *inf = data;
struct vcpu *v = inf->domain->vcpu[0];
vcpu_schedule_lock_irq(v);
if ( inf->warpback )
{
inf->warp = 1;
cpu_raise_softirq(v->processor, SCHEDULE_SOFTIRQ);
}
vcpu_schedule_unlock_irq(v);
}
static inline u32 calc_avt(struct vcpu *v, s_time_t now)
{
u32 ranfor, mcus;
struct bvt_dom_info *inf = BVT_INFO(v->domain);
struct bvt_vcpu_info *einf = EBVT_INFO(v);
ranfor = (u32)(now - v->runstate.state_entry_time);
mcus = (ranfor + MCU - 1)/MCU;
return einf->avt + mcus * inf->mcu_advance;
}
/*
* Calculate the effective virtual time for a domain. Take into account
* warping limits
*/
static inline u32 calc_evt(struct vcpu *d, u32 avt)
{
struct bvt_dom_info *inf = BVT_INFO(d->domain);
/* TODO The warp routines need to be rewritten GM */
if ( inf->warp )
return avt - inf->warp_value;
else
return avt;
}
/**
* bvt_init_vcpu - allocate BVT private structures for a VCPU.
* Returns non-zero on failure.
*/
static int bvt_init_vcpu(struct vcpu *v)
{
struct domain *d = v->domain;
struct bvt_dom_info *inf;
struct bvt_vcpu_info *einf;
if ( (d->sched_priv == NULL) )
{
if ( (d->sched_priv = xmalloc(struct bvt_dom_info)) == NULL )
return -1;
memset(d->sched_priv, 0, sizeof(struct bvt_dom_info));
}
inf = BVT_INFO(d);
v->sched_priv = &inf->vcpu_inf[v->vcpu_id];
inf->vcpu_inf[v->vcpu_id].inf = BVT_INFO(d);
inf->vcpu_inf[v->vcpu_id].vcpu = v;
if ( v->vcpu_id == 0 )
{
inf->mcu_advance = MCU_ADVANCE;
inf->domain = v->domain;
inf->warpback = 0;
/* Set some default values here. */
inf->warp = 0;
inf->warp_value = 0;
inf->warpl = MILLISECS(2000);
inf->warpu = MILLISECS(1000);
/* Initialise the warp timers. */
init_timer(&inf->warp_timer, warp_timer_fn, inf, v->processor);
init_timer(&inf->unwarp_timer, unwarp_timer_fn, inf, v->processor);
}
einf = EBVT_INFO(v);
/* Allocate per-CPU context if this is the first domain to be added. */
if ( CPU_INFO(v->processor) == NULL )
{
schedule_data[v->processor].sched_priv = xmalloc(struct bvt_cpu_info);
BUG_ON(CPU_INFO(v->processor) == NULL);
INIT_LIST_HEAD(RUNQUEUE(v->processor));
CPU_SVT(v->processor) = 0;
}
if ( is_idle_vcpu(v) )
{
einf->avt = einf->evt = ~0U;
BUG_ON(__task_on_runqueue(v));
__add_to_runqueue_head(v);
}
else
{
/* Set avt and evt to system virtual time. */
einf->avt = CPU_SVT(v->processor);
einf->evt = CPU_SVT(v->processor);
}
return 0;
}
static void bvt_wake(struct vcpu *v)
{
struct bvt_vcpu_info *einf = EBVT_INFO(v);
struct vcpu *curr;
s_time_t now, r_time;
|