#include #include #include #include #include #include #include "beeps.h" #include "keymap_common.h" #include "wave.h" #define PI 3.14159265 #define SAMPLE_DIVIDER 70 #define SAMPLE_RATE (2000000.0/SAMPLE_DIVIDER/256) // Resistor value of 1/ (2 * PI * 10nF * (2000000 hertz / SAMPLE_DIVIDER / 10)) for 10nF cap void delay_us(int count) { while(count--) { _delay_us(1); } } int voices = 0; double frequency = 0; int volume = 0; long position = 0; double frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0}; int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0}; bool sliding = false; #define RANGE 1000 volatile int i=0; //elements of the wave // uint8_t sine[128]; // uint8_t tri[128]; // uint8_t squ[128]; // uint8_t* sine_start; // uint8_t* sine_end; // uint8_t* tri_start; // uint8_t* tri_end; // uint8_t* s_start; // uint8_t* s_end; // uint8_t* s_ptr; void beeps() { play_notes(); } void send_freq(double freq, int vol) { int duty = (((double)F_CPU) / freq); ICR3 = duty; // Set max to the period OCR3A = duty >> (0x10 - vol); // Set compare to half the period } void stop_all_notes() { voices = 0; TIMSK0 &= ~_BV(OCIE0A); frequency = 0; volume = 0; for (int i = 0; i < 8; i++) { frequencies[i] = 0; volumes[i] = 0; } } void stop_note(double freq) { freq = freq / SAMPLE_RATE; for (int i = 7; i >= 0; i--) { if (frequencies[i] == freq) { frequencies[i] = 0; volumes[i] = 0; for (int j = i; (j < 7); j++) { frequencies[j] = frequencies[j+1]; frequencies[j+1] = 0; volumes[j] = volumes[j+1]; volumes[j+1] = 0; } } } voices--; if (voices < 0) voices = 0; if (voices == 0) { TIMSK0 &= ~_BV(OCIE0A); frequency = 0; volume = 0; } else { double freq = frequencies[voices - 1]; int vol = volumes[voices - 1]; double starting_f = frequency; if (frequency < freq) { sliding = true; for (double f = starting_f; f <= freq; f += ((freq - starting_f) / 500.0)) { frequency = f; } sliding = false; } else if (frequency > freq) { sliding = true; for (double f = starting_f; f >= freq; f -= ((starting_f - freq) / 500.0)) { frequency = f; } sliding = false; } // send_freq(freq, vol); frequency = freq; volume = vol; } } void init_notes() { // for(int i = 0; i < 128; i++) { // sine[i] = sin(i * PI / 64) * 128 + 128; // tri[i] = 256 - abs((i - 64) * 4); // } // sine_start = &sine; // sine_end = &sine + 128; // tri_start = &tri; // tri_end = &tri + 128; // new PLLFRQ = _BV(PDIV2); PLLCSR = _BV(PLLE); while(!(PLLCSR & _BV(PLOCK))); PLLFRQ |= _BV(PLLTM0); /* PCK 48MHz */ /* Init a fast PWM on Timer4 */ TCCR4A = _BV(COM4A0) | _BV(PWM4A); /* Clear OC4A on Compare Match */ TCCR4B = _BV(CS40); /* No prescaling => f = PCK/256 = 187500Hz */ OCR4A = 0; /* Enable the OC4A output */ DDRC |= _BV(PORTC6); /* First disable the timer overflow interrupt while we're configuring */ // TIMSK0 &= ~(1<= sine_end) { // sine_start = &sine[(sine_start - sine_end) % 128]; // } // OCR4A = pgm_read_byte(sine_start); // // sine_start = &sine[(sine_start - &sine[0] + (int)frequencies[0]) % 128]; // sine_start += (int)frequencies[0]; // if (sine_start >= sine_end) { // sine_start = &sine[(sine_start - sine_end) % 128]; // } // OCR4A = pgm_read_byte(s_ptr); // s_ptr = s_start + (uint8_t)place; // OCR4A = pgm_read_byte(s_ptr); // SINE OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]); // SQUARE // if (((int)place) >= 1024){ // OCR4A = 0xFF; // } else { // OCR4A = 0x00; // } // SAWTOOTH // OCR4A = (int)place / 4; // TRIANGLE // if (((int)place) >= 1024) { // OCR4A = (int)place / 2; // } else { // OCR4A = 2048 - (int)place / 2; // } place += frequency; if (place >= SINE_LENGTH) place -= SINE_LENGTH; } ISR(TIMER0_COMPB_vect) { /* Disable the interrupt */ TIMSK0 &= ~_BV(OCIE0B); } void play_note(double freq, int vol) { freq = freq / SAMPLE_RATE; if (freq > 0) { // TCCR3A = (1 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (1 << WGM30); // TCCR3B = (0 << WGM33) | (1 << WGM32) | (0 << CS32) | (0 << CS31) | (1 << CS30); // TIMSK3 = 0x0; if (frequency != 0) { double starting_f = frequency; if (frequency < freq) { for (double f = starting_f; f <= freq; f += ((freq - starting_f) / 500.0)) { frequency = f; } } else if (frequency > freq) { for (double f = starting_f; f >= freq; f -= ((starting_f - freq) / 500.0)) { frequency = f; } } } // send_freq(freq, vol); frequency = freq; volume = vol; frequencies[voices] = frequency; volumes[voices] = volume; voices++; // position = 0; // TCNT0 = 0; } // ICR3 = 0xFFFF; // for (int i = 0; i < 10000; i++) { // OCR3A = round((sin(i*freq)*.5)+.5)*0xFFFF; // // _delay_us(50); // } // TCCR3A = 0; // TCCR3B = 0; TIMSK0 &= ~_BV(OCIE0A) | ~_BV(OCIE0B); TCCR0A = _BV(WGM01); TCCR0B = _BV(CS01); OCR0A = SAMPLE_DIVIDER - 1; OCR0B = 1; TIMSK0 |= _BV(OCIE0A); // sei(); } // void note(int x, float length) { // DDRC |= (1<<6); // int t = (int)(440*pow(2,-x/12.0)); // starting note // for (int y = 0; y < length*1000/t; y++) { // note length // PORTC |= (1<<6); // delay_us(t); // PORTC &= ~(1<<6); // delay_us(t); // } // PORTC &= ~(1<<6); // } // void true_note(float x, float y, float length) { // for (uint32_t i = 0; i < length * 50; i++) { // uint32_t v = (uint32_t) (round(sin(PI*2*i*640000*pow(2, x/12.0))*.5+1 + sin(PI*2*i*640000*pow(2, y/12.0))*.5+1) / 2 * pow(2, 8)); // for (int u = 0; u < 8; u++) { // if (v & (1 << u) && !(PORTC&(1<<6))) // PORTC |= (1<<6); // else if (PORTC&(1<<6)) // PORTC &= ~(1<<6); // } // } // PORTC &= ~(1<<6); // }