/* LUFA Library Copyright (C) Dean Camera, 2017. dean [at] fourwalledcubicle [dot] com www.lufa-lib.org */ /* Copyright 2017 Dean Camera (dean [at] fourwalledcubicle [dot] com) Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation, and that the name of the author not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. The author disclaims all warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall the author be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software. */ /** \file * * Functions to manage the physical Dataflash media, including reading and writing of * blocks of data. These functions are called by the SCSI layer when data must be stored * or retrieved to/from the physical storage media. If a different media is used (such * as a SD card or EEPROM), functions similar to these will need to be generated. */ #define INCLUDE_FROM_DATAFLASHMANAGER_C #include "DataflashManager.h" /** Writes blocks (OS blocks, not Dataflash pages) to the storage medium, the board Dataflash IC(s), from * the pre-selected data OUT endpoint. This routine reads in OS sized blocks from the endpoint and writes * them to the Dataflash in Dataflash page sized blocks. * * \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state * \param[in] BlockAddress Data block starting address for the write sequence * \param[in] TotalBlocks Number of blocks of data to write */ void DataflashManager_WriteBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo, const uint32_t BlockAddress, uint16_t TotalBlocks) { uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE); uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE); uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4); bool UsingSecondBuffer = false; /* Select the correct starting Dataflash IC for the block requested */ Dataflash_SelectChipFromPage(CurrDFPage); #if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE) /* Copy selected dataflash's current page contents to the Dataflash buffer */ Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1); Dataflash_SendAddressBytes(CurrDFPage, 0); Dataflash_WaitWhileBusy(); #endif /* Send the Dataflash buffer write command */ Dataflash_SendByte(DF_CMD_BUFF1WRITE); Dataflash_SendAddressBytes(0, CurrDFPageByte); /* Wait until endpoint is ready before continuing */ if (Endpoint_WaitUntilReady()) return; while (TotalBlocks) { uint8_t BytesInBlockDiv16 = 0; /* Write an endpoint packet sized data block to the Dataflash */ while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) { /* Check if the endpoint is currently empty */ if (!(Endpoint_IsReadWriteAllowed())) { /* Clear the current endpoint bank */ Endpoint_ClearOUT(); /* Wait until the host has sent another packet */ if (Endpoint_WaitUntilReady()) return; } /* Check if end of Dataflash page reached */ if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4)) { /* Write the Dataflash buffer contents back to the Dataflash page */ Dataflash_WaitWhileBusy(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE); Dataflash_SendAddressBytes(CurrDFPage, 0); /* Reset the Dataflash buffer counter, increment the page counter */ CurrDFPageByteDiv16 = 0; CurrDFPage++; /* Once all the Dataflash ICs have had their first buffers filled, switch buffers to maintain throughput */ if (Dataflash_GetSelectedChip() == DATAFLASH_CHIP_MASK(DATAFLASH_TOTALCHIPS)) UsingSecondBuffer = !(UsingSecondBuffer); /* Select the next Dataflash chip based on the new Dataflash page index */ Dataflash_SelectChipFromPage(CurrDFPage); #if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE) /* If less than one Dataflash page remaining, copy over the existing page to preserve trailing data */ if ((TotalBlocks * (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) < (DATAFLASH_PAGE_SIZE >> 4)) { /* Copy selected dataflash's current page contents to the Dataflash buffer */ Dataflash_WaitWhileBusy(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_MAINMEMTOBUFF2 : DF_CMD_MAINMEMTOBUFF1); Dataflash_SendAddressBytes(CurrDFPage, 0); Dataflash_WaitWhileBusy(); } #endif /* Send the Dataflash buffer write command */ Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2WRITE : DF_CMD_BUFF1WRITE); Dataflash_SendAddressBytes(0, 0); } /* Write one 16-byte chunk of data to the Dataflash */ Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); Dataflash_SendByte(Endpoint_Read_8()); /* Increment the Dataflash page 16 byte block counter */ CurrDFPageByteDiv16++; /* Increment the block 16 byte block counter */ BytesInBlockDiv16++; /* Check if the current command is being aborted by the host */ if (MSInterfaceInfo->State.IsMassStoreReset) return; } /* Decrement the blocks remaining counter */ TotalBlocks--; } /* Write the Dataflash buffer contents back to the Dataflash page */ Dataflash_WaitWhileBusy(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE); Dataflash_SendAddressBytes(CurrDFPage, 0x00); Dataflash_WaitWhileBusy(); /* If the endpoint is empty, clear it ready for the next packet from the host */ if (!(Endpoint_IsReadWriteAllowed())) Endpoint_ClearOUT(); /* Deselect all Dataflash chips */ Dataflash_DeselectChip(); } /** Reads blocks (OS blocks, not Dataflash pages) from the storage medium, the board Dataflash IC(s), into * the pre-selected data IN endpoint. This routine reads in Dataflash page sized blocks from the Dataflash * and writes them in OS sized blocks to the endpoint. * * \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state * \param[in] BlockAddress Data block starting address for the read sequence * \param[in] TotalBlocks Number of blocks of data to read */ void DataflashManager_ReadBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo, const uint32_t BlockAddress, uint16_t TotalBlocks) { uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE); uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE); uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4); /* Select the correct starting Dataflash IC for the block requested */ Dataflash_SelectChipFromPage(CurrDFPage); /* Send the Dataflash main memory page read command */ Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD); Dataflash_SendAddressBytes(CurrDFPage, CurrDFPageByte); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); /* Wait until endpoint is ready before continuing */ if (Endpoint_WaitUntilReady()) return; while (TotalBlocks) { uint8_t BytesInBlockDiv16 = 0; /* Read an endpoint packet sized data block from the Dataflash */ while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) { /* Check if the endpoint is currently full */ if (!(Endpoint_IsReadWriteAllowed())) { /* Clear the endpoint bank to send its contents to the host */ Endpoint_ClearIN(); /* Wait until the endpoint is ready for more data */ if (Endpoint_WaitUntilReady()) return; } /* Check if end of Dataflash page reached */ if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4)) { /* Reset the Dataflash buffer counter, increment the page counter */ CurrDFPageByteDiv16 = 0; CurrDFPage++; /* Select the next Dataflash chip based on the new Dataflash page index */ Dataflash_SelectChipFromPage(CurrDFPage); /* Send the Dataflash main memory page read command */ Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD); Dataflash_SendAddressBytes(CurrDFPage, 0); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); } /* Read one 16-byte chunk of data from the Dataflash */ Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); Endpoint_Write_8(Dataflash_ReceiveByte()); /* Increment the Dataflash page 16 byte block counter */ CurrDFPageByteDiv16++; /* Increment the block 16 byte block counter */ BytesInBlockDiv16++; /* Check if the current command is being aborted by the host */ if (MSInterfaceInfo->State.IsMassStoreReset) return; } /* Decrement the blocks remaining counter */ TotalBlocks--; } /* If the endpoint is full, send its contents to the host */ if (!(Endpoint_IsReadWriteAllowed())) Endpoint_ClearIN(); /* Deselect all Dataflash chips */ Dataflash_DeselectChip(); } /** Writes blocks (OS blocks, not Dataflash pages) to the storage medium, the board Dataflash IC(s), from * the given RAM buffer. This routine reads in OS sized blocks from the buffer and writes them to the * Dataflash in Dataflash page sized blocks. This can be linked to FAT libraries to write files to the * Dataflash. * * \param[in] BlockAddress Data block starting address for the write sequence * \param[in] TotalBlocks Number of blocks of data to write * \param[in] BufferPtr Pointer to the data source RAM buffer */ void DataflashManager_WriteBlocks_RAM(const uint32_t BlockAddress, uint16_t TotalBlocks, const uint8_t* BufferPtr) { uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE); uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE); uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4); bool UsingSecondBuffer = false; /* Select the correct starting Dataflash IC for the block requested */ Dataflash_SelectChipFromPage(CurrDFPage); #if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE) /* Copy selected dataflash's current page contents to the Dataflash buffer */ Dataflash_SendByte(DF_CMD_MAINMEMTOBUFF1); Dataflash_SendAddressBytes(CurrDFPage, 0); Dataflash_WaitWhileBusy(); #endif /* Send the Dataflash buffer write command */ Dataflash_SendByte(DF_CMD_BUFF1WRITE); Dataflash_SendAddressBytes(0, CurrDFPageByte); while (TotalBlocks) { uint8_t BytesInBlockDiv16 = 0; /* Write an endpoint packet sized data block to the Dataflash */ while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) { /* Check if end of Dataflash page reached */ if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4)) { /* Write the Dataflash buffer contents back to the Dataflash page */ Dataflash_WaitWhileBusy(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE); Dataflash_SendAddressBytes(CurrDFPage, 0); /* Reset the Dataflash buffer counter, increment the page counter */ CurrDFPageByteDiv16 = 0; CurrDFPage++; /* Once all the Dataflash ICs have had their first buffers filled, switch buffers to maintain throughput */ if (Dataflash_GetSelectedChip() == DATAFLASH_CHIP_MASK(DATAFLASH_TOTALCHIPS)) UsingSecondBuffer = !(UsingSecondBuffer); /* Select the next Dataflash chip based on the new Dataflash page index */ Dataflash_SelectChipFromPage(CurrDFPage); #if (DATAFLASH_PAGE_SIZE > VIRTUAL_MEMORY_BLOCK_SIZE) /* If less than one Dataflash page remaining, copy over the existing page to preserve trailing data */ if ((TotalBlocks * (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) < (DATAFLASH_PAGE_SIZE >> 4)) { /* Copy selected dataflash's current page contents to the Dataflash buffer */ Dataflash_WaitWhileBusy(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_MAINMEMTOBUFF2 : DF_CMD_MAINMEMTOBUFF1); Dataflash_SendAddressBytes(CurrDFPage, 0); Dataflash_WaitWhileBusy(); } #endif /* Send the Dataflash buffer write command */ Dataflash_ToggleSelectedChipCS(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2WRITE : DF_CMD_BUFF1WRITE); Dataflash_SendAddressBytes(0, 0); } /* Write one 16-byte chunk of data to the Dataflash */ for (uint8_t ByteNum = 0; ByteNum < 16; ByteNum++) Dataflash_SendByte(*(BufferPtr++)); /* Increment the Dataflash page 16 byte block counter */ CurrDFPageByteDiv16++; /* Increment the block 16 byte block counter */ BytesInBlockDiv16++; } /* Decrement the blocks remaining counter */ TotalBlocks--; } /* Write the Dataflash buffer contents back to the Dataflash page */ Dataflash_WaitWhileBusy(); Dataflash_SendByte(UsingSecondBuffer ? DF_CMD_BUFF2TOMAINMEMWITHERASE : DF_CMD_BUFF1TOMAINMEMWITHERASE); Dataflash_SendAddressBytes(CurrDFPage, 0x00); Dataflash_WaitWhileBusy(); /* Deselect all Dataflash chips */ Dataflash_DeselectChip(); } /** Reads blocks (OS blocks, not Dataflash pages) from the storage medium, the board Dataflash IC(s), into * the preallocated RAM buffer. This routine reads in Dataflash page sized blocks from the Dataflash * and writes them in OS sized blocks to the given buffer. This can be linked to FAT libraries to read * the files stored on the Dataflash. * * \param[in] BlockAddress Data block starting address for the read sequence * \param[in] TotalBlocks Number of blocks of data to read * \param[out] BufferPtr Pointer to the data destination RAM buffer */ void DataflashManager_ReadBlocks_RAM(const uint32_t BlockAddress, uint16_t TotalBlocks, uint8_t* BufferPtr) { uint16_t CurrDFPage = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) / DATAFLASH_PAGE_SIZE); uint16_t CurrDFPageByte = ((BlockAddress * VIRTUAL_MEMORY_BLOCK_SIZE) % DATAFLASH_PAGE_SIZE); uint8_t CurrDFPageByteDiv16 = (CurrDFPageByte >> 4); /* Select the correct starting Dataflash IC for the block requested */ Dataflash_SelectChipFromPage(CurrDFPage); /* Send the Dataflash main memory page read command */ Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD); Dataflash_SendAddressBytes(CurrDFPage, CurrDFPageByte); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); while (TotalBlocks) { uint8_t BytesInBlockDiv16 = 0; /* Read an endpoint packet sized data block from the Dataflash */ while (BytesInBlockDiv16 < (VIRTUAL_MEMORY_BLOCK_SIZE >> 4)) { /* Check if end of Dataflash page reached */ if (CurrDFPageByteDiv16 == (DATAFLASH_PAGE_SIZE >> 4)) { /* Reset the Dataflash buffer counter, increment the page counter */ CurrDFPageByteDiv16 = 0; CurrDFPage++; /* Select the next Dataflash chip based on the new Dataflash page index */ Dataflash_SelectChipFromPage(CurrDFPage); /* Send the Dataflash main memory page read command */ Dataflash_SendByte(DF_CMD_MAINMEMPAGEREAD); Dataflash_SendAddressBytes(CurrDFPage, 0); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); Dataflash_SendByte(0x00); } /* Read one 16-byte chunk of data from the Dataflash */ for (uint8_t ByteNum = 0; ByteNum < 16; ByteNum++) *(BufferPtr++) = Dataflash_ReceiveByte(); /* Increment the Dataflash page 16 byte block counter */ CurrDFPageByteDiv16++; /* Increment the block 16 byte block counter */ BytesInBlockDiv16++; } /* Decrement the blocks remaining counter */ TotalBlocks--; } /* Deselect all Dataflash chips */ Dataflash_DeselectChip(); } /** Disables the Dataflash memory write protection bits on the board Dataflash ICs, if enabled. */ void DataflashManager_ResetDataflashProtections(void) { /* Select first Dataflash chip, send the read status register command */ Dataflash_SelectChip(DATAFLASH_CHIP1); Dataflash_SendByte(DF_CMD_GETSTATUS); /* Check if sector protection is enabled */ if (Dataflash_ReceiveByte() & DF_STATUS_SECTORPROTECTION_ON) { Dataflash_ToggleSelectedChipCS(); /* Send the commands to disable sector protection */ Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[0]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[1]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[2]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[3]); } /* Select second Dataflash chip (if present on selected board), send read status register command */ #if (DATAFLASH_TOTALCHIPS == 2) Dataflash_SelectChip(DATAFLASH_CHIP2); Dataflash_SendByte(DF_CMD_GETSTATUS); /* Check if sector protection is enabled */ if (Dataflash_ReceiveByte() & DF_STATUS_SECTORPROTECTION_ON) { Dataflash_ToggleSelectedChipCS(); /* Send the commands to disable sector protection */ Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[0]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[1]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[2]); Dataflash_SendByte(DF_CMD_SECTORPROTECTIONOFF[3]); } #endif /* Deselect current Dataflash chip */ Dataflash_DeselectChip(); } /** Performs a simple test on the attached Dataflash IC(s) to ensure that they are working. * * \return Boolean \c true if all media chips are working, \c false otherwise */ bool DataflashManager_CheckDataflashOperation(void) { uint8_t ReturnByte; /* Test first Dataflash IC is present and responding to commands */ Dataflash_SelectChip(DATAFLASH_CHIP1); Dataflash_SendByte(DF_CMD_READMANUFACTURERDEVICEINFO); ReturnByte = Dataflash_ReceiveByte(); Dataflash_DeselectChip(); /* If returned data is invalid, fail the command */ if (ReturnByte != DF_MANUFACTURER_ATMEL) return false; #if (DATAFLASH_TOTALCHIPS == 2) /* Test second Dataflash IC is present and responding to commands */ Dataflash_SelectChip(DATAFLASH_CHIP2); Dataflash_SendByte(DF_CMD_READMANUFACTURERDEVICEINFO); ReturnByte = Dataflash_ReceiveByte(); Dataflash_DeselectChip(); /* If returned data is invalid, fail the command */ if (ReturnByte != DF_MANUFACTURER_ATMEL) return false; #endif return true; } >496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
#include <xen/config.h>
#include <xen/init.h>
#include <xen/lib.h>
#include <xen/mm.h>
#include <xen/compat.h>
#include <xen/dmi.h>
#include <asm/e820.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/mtrr.h>
#include <asm/msr.h>

/*
 * opt_mem: Limit maximum address of physical RAM.
 *          Any RAM beyond this address limit is ignored.
 */
static unsigned long long __initdata opt_mem;
size_param("mem", opt_mem);

/*
 * opt_availmem: Limit maximum usable amount of physical RAM.
 *               Any RAM beyond this limited amount is ignored.
 */
static unsigned long long __initdata opt_availmem;
size_param("availmem", opt_availmem);

/* opt_nomtrr_check: Don't clip ram to highest cacheable MTRR. */
static int __initdata e820_mtrr_clip = -1;
boolean_param("e820-mtrr-clip", e820_mtrr_clip);

/* opt_e820_verbose: Be verbose about clipping, the original e820, &c */
static int __initdata e820_verbose;
boolean_param("e820-verbose", e820_verbose);

struct e820map e820;

/*
 * This function checks if the entire range <start,end> is mapped with type.
 *
 * Note: this function only works correct if the e820 table is sorted and
 * not-overlapping, which is the case
 */
int __init e820_all_mapped(u64 start, u64 end, unsigned type)
{
	int i;

	for (i = 0; i < e820.nr_map; i++) {
		struct e820entry *ei = &e820.map[i];

		if (type && ei->type != type)
			continue;
		/* is the region (part) in overlap with the current region ?*/
		if (ei->addr >= end || ei->addr + ei->size <= start)
			continue;

		/* if the region is at the beginning of <start,end> we move
		 * start to the end of the region since it's ok until there
		 */
		if (ei->addr <= start)
			start = ei->addr + ei->size;
		/*
		 * if start is now at or beyond end, we're done, full
		 * coverage
		 */
		if (start >= end)
			return 1;
	}
	return 0;
}

static void __init add_memory_region(unsigned long long start,
                                     unsigned long long size, int type)
{
    int x;

    /*if (!efi_enabled)*/ {
        x = e820.nr_map;

        if (x == E820MAX) {
            printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
            return;
        }

        e820.map[x].addr = start;
        e820.map[x].size = size;
        e820.map[x].type = type;
        e820.nr_map++;
    }
} /* add_memory_region */

static void __init print_e820_memory_map(struct e820entry *map, int entries)
{
    int i;

    for (i = 0; i < entries; i++) {
        printk(" %016Lx - %016Lx ",
               (unsigned long long)(map[i].addr),
               (unsigned long long)(map[i].addr + map[i].size));
        switch (map[i].type) {
        case E820_RAM:
            printk("(usable)\n");
            break;
        case E820_RESERVED:
            printk("(reserved)\n");
            break;
        case E820_ACPI:
            printk("(ACPI data)\n");
            break;
        case E820_NVS:
            printk("(ACPI NVS)\n");
            break;
        case E820_UNUSABLE:
            printk("(unusable)\n");
            break;
        default:
            printk("type %u\n", map[i].type);
            break;
        }
    }
}

/*
 * Sanitize the BIOS e820 map.
 *
 * Some e820 responses include overlapping entries.  The following 
 * replaces the original e820 map with a new one, removing overlaps.
 *
 */
struct change_member {
    struct e820entry *pbios; /* pointer to original bios entry */
    unsigned long long addr; /* address for this change point */
};
static struct change_member change_point_list[2*E820MAX] __initdata;
static struct change_member *change_point[2*E820MAX] __initdata;
static struct e820entry *overlap_list[E820MAX] __initdata;
static struct e820entry new_bios[E820MAX] __initdata;

static int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map)
{
    struct change_member *change_tmp;
    unsigned long current_type, last_type;
    unsigned long long last_addr;
    int chgidx, still_changing;
    int overlap_entries;
    int new_bios_entry;
    int old_nr, new_nr, chg_nr;
    int i;

    /*
      Visually we're performing the following (1,2,3,4 = memory types)...

      Sample memory map (w/overlaps):
      ____22__________________
      ______________________4_
      ____1111________________
      _44_____________________
      11111111________________
      ____________________33__
      ___________44___________
      __________33333_________
      ______________22________
      ___________________2222_
      _________111111111______
      _____________________11_
      _________________4______

      Sanitized equivalent (no overlap):
      1_______________________
      _44_____________________
      ___1____________________
      ____22__________________
      ______11________________
      _________1______________
      __________3_____________
      ___________44___________
      _____________33_________
      _______________2________
      ________________1_______
      _________________4______
      ___________________2____
      ____________________33__
      ______________________4_
    */

    /* if there's only one memory region, don't bother */
    if (*pnr_map < 2)
        return -1;

    old_nr = *pnr_map;

    /* bail out if we find any unreasonable addresses in bios map */
    for (i=0; i<old_nr; i++)
        if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
            return -1;

    /* create pointers for initial change-point information (for sorting) */
    for (i=0; i < 2*old_nr; i++)
        change_point[i] = &change_point_list[i];

    /* record all known change-points (starting and ending addresses),
       omitting those that are for empty memory regions */
    chgidx = 0;
    for (i=0; i < old_nr; i++)	{
        if (biosmap[i].size != 0) {
            change_point[chgidx]->addr = biosmap[i].addr;
            change_point[chgidx++]->pbios = &biosmap[i];
            change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size;
            change_point[chgidx++]->pbios = &biosmap[i];
        }
    }
    chg_nr = chgidx;    	/* true number of change-points */

    /* sort change-point list by memory addresses (low -> high) */
    still_changing = 1;
    while (still_changing)	{
        still_changing = 0;
        for (i=1; i < chg_nr; i++)  {
            /* if <current_addr> > <last_addr>, swap */
            /* or, if current=<start_addr> & last=<end_addr>, swap */
            if ((change_point[i]->addr < change_point[i-1]->addr) ||
                ((change_point[i]->addr == change_point[i-1]->addr) &&
                 (change_point[i]->addr == change_point[i]->pbios->addr) &&
                 (change_point[i-1]->addr != change_point[i-1]->pbios->addr))
                )
            {
                change_tmp = change_point[i];
                change_point[i] = change_point[i-1];
                change_point[i-1] = change_tmp;
                still_changing=1;
            }
        }
    }

    /* create a new bios memory map, removing overlaps */
    overlap_entries=0;	 /* number of entries in the overlap table */
    new_bios_entry=0;	 /* index for creating new bios map entries */
    last_type = 0;		 /* start with undefined memory type */
    last_addr = 0;		 /* start with 0 as last starting address */
    /* loop through change-points, determining affect on the new bios map */
    for (chgidx=0; chgidx < chg_nr; chgidx++)
    {
        /* keep track of all overlapping bios entries */
        if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr)
        {
            /* add map entry to overlap list (> 1 entry implies an overlap) */
            overlap_list[overlap_entries++]=change_point[chgidx]->pbios;
        }
        else
        {
            /* remove entry from list (order independent, so swap with last) */
            for (i=0; i<overlap_entries; i++)
            {
                if (overlap_list[i] == change_point[chgidx]->pbios)
                    overlap_list[i] = overlap_list[overlap_entries-1];
            }
            overlap_entries--;
        }
        /* if there are overlapping entries, decide which "type" to use */
        /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
        current_type = 0;
        for (i=0; i<overlap_entries; i++)
            if (overlap_list[i]->type > current_type)
                current_type = overlap_list[i]->type;
        /* continue building up new bios map based on this information */
        if (current_type != last_type)	{
            if (last_type != 0)	 {
                new_bios[new_bios_entry].size =
                    change_point[chgidx]->addr - last_addr;
				/* move forward only if the new size was non-zero */
                if (new_bios[new_bios_entry].size != 0)
                    if (++new_bios_entry >= E820MAX)
                        break; 	/* no more space left for new bios entries */
            }
            if (current_type != 0)	{
                new_bios[new_bios_entry].addr = change_point[chgidx]->addr;
                new_bios[new_bios_entry].type = current_type;
                last_addr=change_point[chgidx]->addr;
            }
            last_type = current_type;
        }
    }
    new_nr = new_bios_entry;   /* retain count for new bios entries */

    /* copy new bios mapping into original location */
    memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry));
    *pnr_map = new_nr;

    return 0;
}

/*
 * Copy the BIOS e820 map into a safe place.
 *
 * Sanity-check it while we're at it..
 *
 * If we're lucky and live on a modern system, the setup code
 * will have given us a memory map that we can use to properly
 * set up memory.  If we aren't, we'll fake a memory map.
 *
 * We check to see that the memory map contains at least 2 elements
 * before we'll use it, because the detection code in setup.S may
 * not be perfect and most every PC known to man has two memory
 * regions: one from 0 to 640k, and one from 1mb up.  (The IBM
 * thinkpad 560x, for example, does not cooperate with the memory
 * detection code.)
 */
static int __init copy_e820_map(struct e820entry * biosmap, int nr_map)
{
    /* Only one memory region (or negative)? Ignore it */
    if (nr_map < 2)
        return -1;

    do {
        unsigned long long start = biosmap->addr;
        unsigned long long size = biosmap->size;
        unsigned long long end = start + size;
        unsigned long type = biosmap->type;

        /* Overflow in 64 bits? Ignore the memory map. */
        if (start > end)
            return -1;

        /*
         * Some BIOSes claim RAM in the 640k - 1M region.
         * Not right. Fix it up.
         */
        if (type == E820_RAM) {
            if (start < 0x100000ULL && end > 0xA0000ULL) {
                if (start < 0xA0000ULL)
                    add_memory_region(start, 0xA0000ULL-start, type);
                if (end <= 0x100000ULL)
                    continue;
                start = 0x100000ULL;
                size = end - start;
            }
        }
        add_memory_region(start, size, type);
    } while (biosmap++,--nr_map);
    return 0;
}


/*
 * Find the highest page frame number we have available
 */
static unsigned long __init find_max_pfn(void)
{
    int i;
    unsigned long max_pfn = 0;

#if 0
    if (efi_enabled) {
        efi_memmap_walk(efi_find_max_pfn, &max_pfn);
        return;
    }
#endif

    for (i = 0; i < e820.nr_map; i++) {
        unsigned long start, end;
        /* RAM? */
        if (e820.map[i].type != E820_RAM)
            continue;
        start = PFN_UP(e820.map[i].addr);
        end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
        if (start >= end)
            continue;
        if (end > max_pfn)
            max_pfn = end;
    }

    return max_pfn;
}

static void __init clip_to_limit(uint64_t limit, char *warnmsg)
{
    int i;
    char _warnmsg[160];
    uint64_t old_limit = 0;

    for ( ; ; )
    {
        /* Find a RAM region needing clipping. */
        for ( i = 0; i < e820.nr_map; i++ )
            if ( (e820.map[i].type == E820_RAM) &&
                 ((e820.map[i].addr + e820.map[i].size) > limit) )
                break;

        /* If none found, we are done. */
        if ( i == e820.nr_map )
            break;        

        old_limit = max_t(
            uint64_t, old_limit, e820.map[i].addr + e820.map[i].size);

        /* We try to convert clipped RAM areas to E820_UNUSABLE. */
        if ( e820_change_range_type(&e820, max(e820.map[i].addr, limit),
                                    e820.map[i].addr + e820.map[i].size,
                                    E820_RAM, E820_UNUSABLE) )
            continue;

        /*
         * If the type change fails (e.g., not space in table) then we clip or 
         * delete the region as appropriate.
         */
        if ( e820.map[i].addr < limit )
        {
            e820.map[i].size = limit - e820.map[i].addr;
        }
        else
        {
            memmove(&e820.map[i], &e820.map[i+1],
                    (e820.nr_map - i - 1) * sizeof(struct e820entry));
            e820.nr_map--;
        }
    }

    if ( old_limit )
    {
        if ( warnmsg )
        {
            snprintf(_warnmsg, sizeof(_warnmsg), warnmsg, (long)(limit>>30));
            printk("WARNING: %s\n", _warnmsg);
        }
        printk("Truncating RAM from %lukB to %lukB\n",
               (unsigned long)(old_limit >> 10), (unsigned long)(limit >> 10));
    }
}

/* Conservative estimate of top-of-RAM by looking for MTRR WB regions. */
#define MSR_MTRRphysBase(reg) (0x200 + 2 * (reg))
#define MSR_MTRRphysMask(reg) (0x200 + 2 * (reg) + 1)
static uint64_t mtrr_top_of_ram(void)
{
    uint32_t eax, ebx, ecx, edx;
    uint64_t mtrr_cap, mtrr_def, addr_mask, base, mask, top;
    unsigned int i, phys_bits = 36;

    /* By default we check only Intel systems. */
    if ( e820_mtrr_clip == -1 )
    {
        char vendor[13];
        cpuid(0x00000000, &eax,
              (uint32_t *)&vendor[0],
              (uint32_t *)&vendor[8],
              (uint32_t *)&vendor[4]);
        vendor[12] = '\0';
        e820_mtrr_clip = !strcmp(vendor, "GenuineIntel");
    }

    if ( !e820_mtrr_clip )
        return 0;

    if ( e820_verbose )
        printk("Checking MTRR ranges...\n");

    /* Does the CPU support architectural MTRRs? */
    cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
    if ( !test_bit(X86_FEATURE_MTRR & 31, &edx) )
         return 0;

    /* Find the physical address size for this CPU. */
    cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
    if ( eax >= 0x80000008 )
    {
        cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
        phys_bits = (uint8_t)eax;
    }
    addr_mask = ((1ull << phys_bits) - 1) & ~((1ull << 12) - 1);

    rdmsrl(MSR_MTRRcap, mtrr_cap);
    rdmsrl(MSR_MTRRdefType, mtrr_def);

    if ( e820_verbose )
        printk(" MTRR cap: %"PRIx64" type: %"PRIx64"\n", mtrr_cap, mtrr_def);

    /* MTRRs enabled, and default memory type is not writeback? */
    if ( !test_bit(11, &mtrr_def) || ((uint8_t)mtrr_def == MTRR_TYPE_WRBACK) )
        return 0;

    /*
     * Find end of highest WB-type range. This is a conservative estimate
     * of the highest WB address since overlapping UC/WT ranges dominate.
     */
    top = 0;
    for ( i = 0; i < (uint8_t)mtrr_cap; i++ )
    {
        rdmsrl(MSR_MTRRphysBase(i), base);
        rdmsrl(MSR_MTRRphysMask(i), mask);

        if ( e820_verbose )
            printk(" MTRR[%d]: base %"PRIx64" mask %"PRIx64"\n",
                   i, base, mask);

        if ( !test_bit(11, &mask) || ((uint8_t)base != MTRR_TYPE_WRBACK) )
            continue;
        base &= addr_mask;
        mask &= addr_mask;
        top = max_t(uint64_t, top, ((base | ~mask) & addr_mask) + PAGE_SIZE);
    }

    return top;
}

static void __init reserve_dmi_region(void)
{
    u32 base, len;
    if ( (dmi_get_table(&base, &len) == 0) && ((base + len) > base) &&
         reserve_e820_ram(&e820, base, base + len) )
        printk("WARNING: DMI table located in E820 RAM %08x-%08x. Fixed.\n",
               base, base+len);
}

static void __init machine_specific_memory_setup(
    struct e820entry *raw, int *raw_nr)
{
    uint64_t top_of_ram, size;
    int i;

    char nr = (char)*raw_nr;
    sanitize_e820_map(raw, &nr);
    *raw_nr = nr;
    (void)copy_e820_map(raw, nr);

    if ( opt_mem )
        clip_to_limit(opt_mem, NULL);

    if ( opt_availmem )
    {
        for ( i = size = 0; (i < e820.nr_map) && (size <= opt_availmem); i++ )
            if ( e820.map[i].type == E820_RAM )
                size += e820.map[i].size;
        if ( size > opt_availmem )
            clip_to_limit(
                e820.map[i-1].addr + e820.map[i-1].size - (size-opt_availmem),
                NULL);
    }

#ifdef __i386__
    clip_to_limit((1ULL << 30) * MACHPHYS_MBYTES,
                  "Only the first %lu GB of the physical memory map "
                  "can be accessed by Xen in 32-bit mode.");
#else
    {
        unsigned long mpt_limit, ro_mpt_limit;

        mpt_limit = ((RDWR_MPT_VIRT_END - RDWR_MPT_VIRT_START)
                     / sizeof(unsigned long)) << PAGE_SHIFT;
        ro_mpt_limit = ((RO_MPT_VIRT_END - RO_MPT_VIRT_START)
                        / sizeof(unsigned long)) << PAGE_SHIFT;
        if ( mpt_limit > ro_mpt_limit )
            mpt_limit = ro_mpt_limit;
        clip_to_limit(mpt_limit,
                      "Only the first %lu GB of the physical "
                      "memory map can be accessed by Xen.");
    }
#endif

    reserve_dmi_region();

    top_of_ram = mtrr_top_of_ram();
    if ( top_of_ram )
        clip_to_limit(top_of_ram, "MTRRs do not cover all of memory.");
}

int __init e820_change_range_type(
    struct e820map *e820, uint64_t s, uint64_t e,
    uint32_t orig_type, uint32_t new_type)
{
    uint64_t rs = 0, re = 0;
    int i;

    for ( i = 0; i < e820->nr_map; i++ )
    {
        /* Have we found the e820 region that includes the specified range? */
        rs = e820->map[i].addr;
        re = rs + e820->map[i].size;
        if ( (s >= rs) && (e <= re) )
            break;
    }

    if ( (i == e820->nr_map) || (e820->map[i].type != orig_type) )
        return 0;

    if ( (s == rs) && (e == re) )
    {
        e820->map[i].type = new_type;
    }
    else if ( (s == rs) || (e == re) )
    {
        if ( (e820->nr_map + 1) > ARRAY_SIZE(e820->map) )
            goto overflow;

        memmove(&e820->map[i+1], &e820->map[i],
                (e820->nr_map-i) * sizeof(e820->map[0]));
        e820->nr_map++;

        if ( s == rs )
        {
            e820->map[i].size = e - s;
            e820->map[i].type = new_type;
            e820->map[i+1].addr = e;
            e820->map[i+1].size = re - e;
        }
        else
        {
            e820->map[i].size = s - rs;
            e820->map[i+1].addr = s;
            e820->map[i+1].size = e - s;
            e820->map[i+1].type = new_type;
        }
    }
    else
    {
        if ( (e820->nr_map + 2) > ARRAY_SIZE(e820->map) )
            goto overflow;

        memmove(&e820->map[i+2], &e820->map[i],
                (e820->nr_map-i) * sizeof(e820->map[0]));
        e820->nr_map += 2;

        e820->map[i].size = s - rs;
        e820->map[i+1].addr = s;
        e820->map[i+1].size = e - s;
        e820->map[i+1].type = new_type;
        e820->map[i+2].addr = e;
        e820->map[i+2].size = re - e;
    }

    /* Finally, look for any opportunities to merge adjacent e820 entries. */
    for ( i = 0; i < (e820->nr_map - 1); i++ )
    {
        if ( (e820->map[i].type != e820->map[i+1].type) ||
             ((e820->map[i].addr + e820->map[i].size) != e820->map[i+1].addr) )
            continue;
        e820->map[i].size += e820->map[i+1].size;
        memmove(&e820->map[i+1], &e820->map[i+2],
                (e820->nr_map-i-2) * sizeof(e820->map[0]));
        e820->nr_map--;
        i--;
    }

    return 1;

 overflow:
    printk("Overflow in e820 while reserving region %"PRIx64"-%"PRIx64"\n",
           s, e);
    return 0;
}

/* Set E820_RAM area (@s,@e) as RESERVED in specified e820 map. */
int __init reserve_e820_ram(struct e820map *e820, uint64_t s, uint64_t e)
{
    return e820_change_range_type(e820, s, e, E820_RAM, E820_RESERVED);
}

unsigned long __init init_e820(
    const char *str, struct e820entry *raw, int *raw_nr)
{
    if ( e820_verbose )
    {
        printk("Initial %s RAM map:\n", str);
        print_e820_memory_map(raw, *raw_nr);
    }

    machine_specific_memory_setup(raw, raw_nr);

    printk("%s RAM map:\n", str);
    print_e820_memory_map(e820.map, e820.nr_map);

    return find_max_pfn();
}