#include #include #include #include #include #include #include "i2c.h" #ifdef USE_I2C // Limits the amount of we wait for any one i2c transaction. // Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is // 9 bits, a single transaction will take around 90μs to complete. // // (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit // poll loop takes at least 8 clock cycles to execute #define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8 #define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE) volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE]; static volatile uint8_t slave_buffer_pos; static volatile bool slave_has_register_set = false; // Wait for an i2c operation to finish inline static void i2c_delay(void) { uint16_t lim = 0; while(!(TWCR & (1<10. // Check datasheets for more info. TWBR = ((F_CPU/SCL_CLOCK)-16)/2; } // Start a transaction with the given i2c slave address. The direction of the // transfer is set with I2C_READ and I2C_WRITE. // returns: 0 => success // 1 => error uint8_t i2c_master_start(uint8_t address) { TWCR = (1< slave ACK // 1 => slave NACK uint8_t i2c_master_write(uint8_t data) { TWDR = data; TWCR = (1<= SLAVE_BUFFER_SIZE ) { ack = 0; slave_buffer_pos = 0; } slave_has_register_set = true; } else { i2c_slave_buffer[slave_buffer_pos] = TWDR; BUFFER_POS_INC(); } break; case TW_ST_SLA_ACK: case TW_ST_DATA_ACK: // master has addressed this device as a slave transmitter and is // requesting data. TWDR = i2c_slave_buffer[slave_buffer_pos]; BUFFER_POS_INC(); break; case TW_BUS_ERROR: // something went wrong, reset twi state TWCR = 0; default: break; } // Reset everything, so we are ready for the next TWI interrupt TWCR |= (1<
blob: d283e8559ca8091e1e1951a4a799b3436448b2e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72