/* Copyright 2012-2018 Jun Wako, Jack Humbert, Yiancar This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdint.h> #include <stdbool.h> #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "debounce.h" #include "quantum.h" #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define matrix_bitpop(i) bitpop(matrix[i]) # define ROW_SHIFTER ((uint8_t)1) #elif (MATRIX_COLS <= 16) # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) # define matrix_bitpop(i) bitpop16(matrix[i]) # define ROW_SHIFTER ((uint16_t)1) #elif (MATRIX_COLS <= 32) # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) # define matrix_bitpop(i) bitpop32(matrix[i]) # define ROW_SHIFTER ((uint32_t)1) #endif #ifdef MATRIX_MASKED extern const matrix_row_t matrix_mask[]; #endif #ifdef DIRECT_PINS static pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS; #elif (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW) static const pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; //static const pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; #endif /* matrix state(1:on, 0:off) */ static matrix_row_t raw_matrix[MATRIX_ROWS]; //raw values static matrix_row_t matrix[MATRIX_ROWS]; //debounced values __attribute__ ((weak)) void matrix_init_quantum(void) { matrix_init_kb(); } __attribute__ ((weak)) void matrix_scan_quantum(void) { matrix_scan_kb(); } __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } //Deprecated. bool matrix_is_modified(void) { if (debounce_active()) return false; return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { // Matrix mask lets you disable switches in the returned matrix data. For example, if you have a // switch blocker installed and the switch is always pressed. #ifdef MATRIX_MASKED return matrix[row] & matrix_mask[row]; #else return matrix[row]; #endif } void matrix_print(void) { print_matrix_header(); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); print_matrix_row(row); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += matrix_bitpop(i); } return count; } #ifdef DIRECT_PINS static void init_pins(void) { for (int row = 0; row < MATRIX_ROWS; row++) { for (int col = 0; col < MATRIX_COLS; col++) { pin_t pin = direct_pins[row][col]; if (pin != NO_PIN) { setPinInputHigh(pin); } } } } static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { matrix_row_t last_row_value = current_matrix[current_row]; current_matrix[current_row] = 0; for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { pin_t pin = direct_pins[current_row][col_index]; if (pin != NO_PIN) { current_matrix[current_row] |= readPin(pin) ? 0 : (ROW_SHIFTER << col_index); } } return (last_row_value != current_matrix[current_row]); } #elif (DIODE_DIRECTION == COL2ROW) static void select_row(uint8_t row) { setPinOutput(row_pins[row]); writePinLow(row_pins[row]); } static void unselect_row(uint8_t row) { setPinInputHigh(row_pins[row]); } static void unselect_rows(void) { for(uint8_t x = 0; x < MATRIX_ROWS; x++) { setPinInput(row_pins[x]); } } static void init_pins(void) { unselect_rows(); for (uint8_t x = 0; x < MATRIX_COLS; x++) { setPinInputHigh(col_pins[x]); } } static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[current_row]; // Clear data in matrix row current_matrix[current_row] = 0; // Select row and wait for row selecton to stabilize select_row(current_row); wait_us(30); // For each col... for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { // Select the col pin to read (active low) uint8_t pin_state = readPin(col_pins[col_index]); // Populate the matrix row with the state of the col pin current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index); } // Unselect row unselect_row(current_row); return (last_row_value != current_matrix[current_row]); } #elif (DIODE_DIRECTION == ROW2COL) /* Cols 0 - 15 * col 0: C7 * col 1: B6 * col 2: C6 * col 3: B4 * col 4: B5 * col 5: D7 * These columns use a 74HC237D 3 to 8 bit demultiplexer. * A0 A1 A2 * col / pin: PD2 PD1 PD0 * 6: 1 1 1 * 7: 0 1 1 * 8: 1 0 1 * 9: 0 0 1 * 10: 1 1 0 * 11: 0 1 0 * 12: 1 0 0 * col 13: D3 * col 14: B7 * col 15: B3 */ static void select_col(uint8_t col) { switch (col) { case 0: writePinLow(C7); break; case 1: writePinLow(B6); break; case 2: writePinLow(C6); break; case 3: writePinLow(B4); break; case 4: writePinLow(B5); break; case 5: writePinLow(D7); break; case 6: writePinHigh(D0); writePinHigh(D1); writePinHigh(D2); break; case 7: writePinHigh(D0); writePinHigh(D1); break; case 8: writePinHigh(D0); writePinHigh(D2); break; case 9: writePinHigh(D0); break; case 10: writePinHigh(D1); writePinHigh(D2); break; case 11: writePinHigh(D1); break; case 12: writePinHigh(D2); break; case 13: writePinLow(D3); break; case 14: writePinLow(B7); break; case 15: writePinLow(B3); break; } } static void unselect_col(uint8_t col) { switch (col) { case 0: writePinHigh(C7); break; case 1: writePinHigh(B6); break; case 2: writePinHigh(C6); break; case 3: writePinHigh(B4); break; case 4: writePinHigh(B5); break; case 5: writePinHigh(D7); break; case 6: writePinLow(D0); writePinLow(D1); writePinLow(D2); break; case 7: writePinLow(D0); writePinLow(D1); break; case 8: writePinLow(D0); writePinLow(D2); break; case 9: writePinLow(D0); break; case 10: writePinLow(D1); writePinLow(D2); break; case 11: writePinLow(D1); break; case 12: writePinLow(D2); break; case 13: writePinHigh(D3); break; case 14: writePinHigh(B7); break; case 15: writePinHigh(B3); break; } } static void unselect_cols(void) { //Native setPinOutput(D3); setPinOutput(D7); writePinHigh(D3); writePinHigh(D7); setPinOutput(C6); setPinOutput(C7); writePinHigh(C6); writePinHigh(C7); setPinOutput(B3); setPinOutput(B4); setPinOutput(B5); setPinOutput(B6); setPinOutput(B7); writePinHigh(B3); writePinHigh(B4); writePinHigh(B5); writePinHigh(B6); writePinHigh(B7); //Demultiplexer setPinOutput(D0); setPinOutput(D1); setPinOutput(D2); writePinLow(D0); writePinLow(D1); writePinLow(D2); } static void init_pins(void) { unselect_cols(); for (uint8_t x = 0; x < MATRIX_ROWS; x++) { setPinInputHigh(row_pins[x]); } } static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) { bool matrix_changed = false; // Select col and wait for col selecton to stabilize select_col(current_col); wait_us(30); // For each row... for(uint8_t row_index = 0; row_index < MATRIX_ROWS; row_index++) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[row_index]; // Check row pin state if (readPin(row_pins[row_index]) == 0) { // Pin LO, set col bit current_matrix[row_index] |= (ROW_SHIFTER << current_col); } else { // Pin HI, clear col bit current_matrix[row_index] &= ~(ROW_SHIFTER << current_col); } // Determine if the matrix changed state if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) { matrix_changed = true; } } // Unselect col unselect_col(current_col); return matrix_changed; } #endif void matrix_init(void) { // initialize key pins init_pins(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { raw_matrix[i] = 0; matrix[i] = 0; } debounce_init(MATRIX_ROWS); matrix_init_quantum(); } uint8_t matrix_scan(void) { bool changed = false; #if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW) // Set row, read cols for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) { changed |= read_cols_on_row(raw_matrix, current_row); } #elif (DIODE_DIRECTION == ROW2COL) // Set col, read rows for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { changed |= read_rows_on_col(raw_matrix, current_col); } #endif debounce(raw_matrix, matrix, MATRIX_ROWS, changed); matrix_scan_quantum(); return 1; }