aboutsummaryrefslogtreecommitdiffstats
path: root/os/kernel/src/chmempools.c
blob: 44faa057af9f70ae2ac949387edf73030dfb12b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
    ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010,
                 2011,2012,2013 Giovanni Di Sirio.

    This file is part of ChibiOS/RT.

    ChibiOS/RT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    ChibiOS/RT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/**
 * @file    chmempools.c
 * @brief   Memory Pools code.
 *
 * @addtogroup pools
 * @details Memory Pools related APIs and services.
 *          <h2>Operation mode</h2>
 *          The Memory Pools APIs allow to allocate/free fixed size objects in
 *          <b>constant time</b> and reliably without memory fragmentation
 *          problems.<br>
 *          Memory Pools do not enforce any alignment constraint on the
 *          contained object however the objects must be properly aligned
 *          to contain a pointer to void.
 * @pre     In order to use the memory pools APIs the @p CH_USE_MEMPOOLS option
 *          must be enabled in @p chconf.h.
 * @{
 */

#include "ch.h"

#if CH_USE_MEMPOOLS || defined(__DOXYGEN__)
/**
 * @brief   Initializes an empty memory pool.
 *
 * @param[out] mp       pointer to a @p MemoryPool structure
 * @param[in] size      the size of the objects contained in this memory pool,
 *                      the minimum accepted size is the size of a pointer to
 *                      void.
 * @param[in] provider  memory provider function for the memory pool or
 *                      @p NULL if the pool is not allowed to grow
 *                      automatically
 *
 * @init
 */
void chPoolInit(MemoryPool *mp, size_t size, memgetfunc_t provider) {

  chDbgCheck((mp != NULL) && (size >= sizeof(void *)), "chPoolInit");

  mp->mp_next = NULL;
  mp->mp_object_size = size;
  mp->mp_provider = provider;
}

/**
 * @brief   Loads a memory pool with an array of static objects.
 * @pre     The memory pool must be already been initialized.
 * @pre     The array elements must be of the right size for the specified
 *          memory pool.
 * @post    The memory pool contains the elements of the input array.
 *
 * @param[in] mp        pointer to a @p MemoryPool structure
 * @param[in] p         pointer to the array first element
 * @param[in] n         number of elements in the array
 *
 * @api
 */
void chPoolLoadArray(MemoryPool *mp, void *p, size_t n) {

  chDbgCheck((mp != NULL) && (n != 0), "chPoolLoadArray");

  while (n) {
    chPoolAdd(mp, p);
    p = (void *)(((uint8_t *)p) + mp->mp_object_size);
    n--;
  }
}

/**
 * @brief   Allocates an object from a memory pool.
 * @pre     The memory pool must be already been initialized.
 *
 * @param[in] mp        pointer to a @p MemoryPool structure
 * @return              The pointer to the allocated object.
 * @retval NULL         if pool is empty.
 *
 * @iclass
 */
void *chPoolAllocI(MemoryPool *mp) {
  void *objp;

  chDbgCheckClassI();
  chDbgCheck(mp != NULL, "chPoolAllocI");

  if ((objp = mp->mp_next) != NULL)
    mp->mp_next = mp->mp_next->ph_next;
  else if (mp->mp_provider != NULL)
    objp = mp->mp_provider(mp->mp_object_size);
  return objp;
}

/**
 * @brief   Allocates an object from a memory pool.
 * @pre     The memory pool must be already been initialized.
 *
 * @param[in] mp        pointer to a @p MemoryPool structure
 * @return              The pointer to the allocated object.
 * @retval NULL         if pool is empty.
 *
 * @api
 */
void *chPoolAlloc(MemoryPool *mp) {
  void *objp;

  chSysLock();
  objp = chPoolAllocI(mp);
  chSysUnlock();
  return objp;
}

/**
 * @brief   Releases an object into a memory pool.
 * @pre     The memory pool must be already been initialized.
 * @pre     The freed object must be of the right size for the specified
 *          memory pool.
 * @pre     The object must be properly aligned to contain a pointer to void.
 *
 * @param[in] mp        pointer to a @p MemoryPool structure
 * @param[in] objp      the pointer to the object to be released
 *
 * @iclass
 */
void chPoolFreeI(MemoryPool *mp, void *objp) {
  struct pool_header *php = objp;

  chDbgCheckClassI();
  chDbgCheck((mp != NULL) && (objp != NULL), "chPoolFreeI");

  php->ph_next = mp->mp_next;
  mp->mp_next = php;
}

/**
 * @brief   Releases an object into a memory pool.
 * @pre     The memory pool must be already been initialized.
 * @pre     The freed object must be of the right size for the specified
 *          memory pool.
 * @pre     The object must be properly aligned to contain a pointer to void.
 *
 * @param[in] mp        pointer to a @p MemoryPool structure
 * @param[in] objp      the pointer to the object to be released
 *
 * @api
 */
void chPoolFree(MemoryPool *mp, void *objp) {

  chSysLock();
  chPoolFreeI(mp, objp);
  chSysUnlock();
}

#endif /* CH_USE_MEMPOOLS */

/** @} */
, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices. */ #include "ISPProtocol.h" #if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__) /** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on * the attached device, returning success or failure back to the host. */ void ISPProtocol_EnterISPMode(void) { struct { uint8_t TimeoutMS; uint8_t PinStabDelayMS; uint8_t ExecutionDelayMS; uint8_t SynchLoops; uint8_t ByteDelay; uint8_t PollValue; uint8_t PollIndex; uint8_t EnterProgBytes[4]; } Enter_ISP_Params; Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); uint8_t ResponseStatus = STATUS_CMD_FAILED; CurrentAddress = 0; /* Perform execution delay, initialize SPI bus */ ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS); ISPTarget_EnableTargetISP(); ISPTarget_ChangeTargetResetLine(true); ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS); /* Continuously attempt to synchronize with the target until either the number of attempts specified * by the host has exceeded, or the the device sends back the expected response values */ while (Enter_ISP_Params.SynchLoops-- && TimeoutTicksRemaining) { uint8_t ResponseBytes[4]; for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++) { ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay); ResponseBytes[RByte] = ISPTarget_TransferByte(Enter_ISP_Params.EnterProgBytes[RByte]); } /* Check if polling disabled, or if the polled value matches the expected value */ if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue)) { ResponseStatus = STATUS_CMD_OK; break; } else { ISPTarget_ChangeTargetResetLine(false); ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS); ISPTarget_ChangeTargetResetLine(true); ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS); } } Endpoint_Write_8(CMD_ENTER_PROGMODE_ISP); Endpoint_Write_8(ResponseStatus); Endpoint_ClearIN(); } /** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */ void ISPProtocol_LeaveISPMode(void) { struct { uint8_t PreDelayMS; uint8_t PostDelayMS; } Leave_ISP_Params; Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); /* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */ ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS); ISPTarget_ChangeTargetResetLine(false); ISPTarget_DisableTargetISP(); ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS); Endpoint_Write_8(CMD_LEAVE_PROGMODE_ISP); Endpoint_Write_8(STATUS_CMD_OK); Endpoint_ClearIN(); } /** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes, * words or pages of data to the attached device. * * \param[in] V2Command Issued V2 Protocol command byte from the host */ void ISPProtocol_ProgramMemory(uint8_t V2Command) { struct { uint16_t BytesToWrite; uint8_t ProgrammingMode; uint8_t DelayMS; uint8_t ProgrammingCommands[3]; uint8_t PollValue1; uint8_t PollValue2; uint8_t ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the } Write_Memory_Params; // whole page and ACK the packet as fast as possible to prevent it from aborting Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) - sizeof(Write_Memory_Params.ProgData)), NULL); Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite); if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData)) { Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); Endpoint_Write_8(V2Command); Endpoint_Write_8(STATUS_CMD_FAILED); Endpoint_ClearIN(); return; } Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NULL); // The driver will terminate transfers that are a round multiple of the endpoint bank in size with a ZLP, need // to catch this and discard it before continuing on with packet processing to prevent communication issues if (((sizeof(uint8_t) + sizeof(Write_Memory_Params) - sizeof(Write_Memory_Params.ProgData)) + Write_Memory_Params.BytesToWrite) % AVRISP_DATA_EPSIZE == 0) { Endpoint_ClearOUT(); Endpoint_WaitUntilReady(); } Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); uint8_t ProgrammingStatus = STATUS_CMD_OK; uint8_t PollValue = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 : Write_Memory_Params.PollValue2; uint16_t PollAddress = 0; uint8_t* NextWriteByte = Write_Memory_Params.ProgData; uint16_t PageStartAddress = (CurrentAddress & 0xFFFF); for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++) { uint8_t ByteToWrite = *(NextWriteByte++); uint8_t ProgrammingMode = Write_Memory_Params.ProgrammingMode; /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */ if (MustLoadExtendedAddress) { ISPTarget_LoadExtendedAddress(); MustLoadExtendedAddress = false; } ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[0]); ISPTarget_SendByte(CurrentAddress >> 8); ISPTarget_SendByte(CurrentAddress & 0xFF); ISPTarget_SendByte(ByteToWrite); /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high * or low byte at the current word address */ if (V2Command == CMD_PROGRAM_FLASH_ISP) Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK; /* Check to see if we have a valid polling address */ if (!(PollAddress) && (ByteToWrite != PollValue)) { if ((CurrentByte & 0x01) && (V2Command == CMD_PROGRAM_FLASH_ISP)) Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK; else Write_Memory_Params.ProgrammingCommands[2] &= ~READ_WRITE_HIGH_BYTE_MASK; PollAddress = (CurrentAddress & 0xFFFF); } /* If in word programming mode, commit the byte to the target's memory */ if (!(ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK)) { /* If the current polling address is invalid, switch to timed delay write completion mode */ if (!(PollAddress) && !(ProgrammingMode & PROG_MODE_WORD_READYBUSY_MASK)) ProgrammingMode = (ProgrammingMode & ~PROG_MODE_WORD_VALUE_MASK) | PROG_MODE_WORD_TIMEDELAY_MASK; ProgrammingStatus = ISPTarget_WaitForProgComplete(ProgrammingMode, PollAddress, PollValue, Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]); /* Abort the programming loop early if the byte/word programming failed */ if (ProgrammingStatus != STATUS_CMD_OK) break; /* Must reset the polling address afterwards, so it is not erroneously used for the next byte */ PollAddress = 0; } /* EEPROM just increments the address each byte, flash needs to increment on each word and * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended * address boundary has been crossed during FLASH memory programming */ if ((CurrentByte & 0x01) || (V2Command == CMD_PROGRAM_EEPROM_ISP)) { CurrentAddress++; if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF)) MustLoadExtendedAddress = true; } } /* If the current page must be committed, send the PROGRAM PAGE command to the target */ if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK) { ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[1]); ISPTarget_SendByte(PageStartAddress >> 8); ISPTarget_SendByte(PageStartAddress & 0xFF); ISPTarget_SendByte(0x00); /* Check if polling is enabled and possible, if not switch to timed delay mode */ if ((Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_VALUE_MASK) && !(PollAddress)) { Write_Memory_Params.ProgrammingMode = (Write_Memory_Params.ProgrammingMode & ~PROG_MODE_PAGED_VALUE_MASK) | PROG_MODE_PAGED_TIMEDELAY_MASK; } ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue, Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]); /* Check to see if the FLASH address has crossed the extended address boundary */ if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF)) MustLoadExtendedAddress = true; } Endpoint_Write_8(V2Command); Endpoint_Write_8(ProgrammingStatus); Endpoint_ClearIN(); } /** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes, * words or pages of data from the attached device. * * \param[in] V2Command Issued V2 Protocol command byte from the host */ void ISPProtocol_ReadMemory(uint8_t V2Command) { struct { uint16_t BytesToRead; uint8_t ReadMemoryCommand; } Read_Memory_Params; Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NULL); Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); Endpoint_Write_8(V2Command); Endpoint_Write_8(STATUS_CMD_OK); /* Read each byte from the device and write them to the packet for the host */ for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++) { /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */ if (MustLoadExtendedAddress) { ISPTarget_LoadExtendedAddress(); MustLoadExtendedAddress = false; } /* Read the next byte from the desired memory space in the device */ ISPTarget_SendByte(Read_Memory_Params.ReadMemoryCommand); ISPTarget_SendByte(CurrentAddress >> 8); ISPTarget_SendByte(CurrentAddress & 0xFF); Endpoint_Write_8(ISPTarget_ReceiveByte()); /* Check if the endpoint bank is currently full, if so send the packet */ if (!(Endpoint_IsReadWriteAllowed())) { Endpoint_ClearIN(); Endpoint_WaitUntilReady(); } /* AVR FLASH addressing requires us to modify the read command based on if we are reading a high * or low byte at the current word address */ if (V2Command == CMD_READ_FLASH_ISP) Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK; /* EEPROM just increments the address each byte, flash needs to increment on each word and * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended * address boundary has been crossed */ if ((CurrentByte & 0x01) || (V2Command == CMD_READ_EEPROM_ISP)) { CurrentAddress++; if ((V2Command != CMD_READ_EEPROM_ISP) && !(CurrentAddress & 0xFFFF)) MustLoadExtendedAddress = true; } } Endpoint_Write_8(STATUS_CMD_OK); bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed()); Endpoint_ClearIN(); /* Ensure last packet is a short packet to terminate the transfer */ if (IsEndpointFull) { Endpoint_WaitUntilReady(); Endpoint_ClearIN(); Endpoint_WaitUntilReady(); } } /** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */ void ISPProtocol_ChipErase(void) { struct { uint8_t EraseDelayMS; uint8_t PollMethod; uint8_t EraseCommandBytes[4]; } Erase_Chip_Params; Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); uint8_t ResponseStatus = STATUS_CMD_OK; /* Send the chip erase commands as given by the host to the device */ for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++) ISPTarget_SendByte(Erase_Chip_Params.EraseCommandBytes[SByte]); /* Use appropriate command completion check as given by the host (delay or busy polling) */ if (!(Erase_Chip_Params.PollMethod)) ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS); else ResponseStatus = ISPTarget_WaitWhileTargetBusy(); Endpoint_Write_8(CMD_CHIP_ERASE_ISP); Endpoint_Write_8(ResponseStatus); Endpoint_ClearIN(); } /** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands, * reading the requested configuration byte from the device. * * \param[in] V2Command Issued V2 Protocol command byte from the host */ void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command) { struct { uint8_t RetByte; uint8_t ReadCommandBytes[4]; } Read_FuseLockSigOSCCAL_Params; Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); uint8_t ResponseBytes[4]; /* Send the Fuse or Lock byte read commands as given by the host to the device, store response */ for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++) ResponseBytes[RByte] = ISPTarget_TransferByte(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]); Endpoint_Write_8(V2Command); Endpoint_Write_8(STATUS_CMD_OK); Endpoint_Write_8(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]); Endpoint_Write_8(STATUS_CMD_OK); Endpoint_ClearIN(); } /** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration * byte to the device. * * \param[in] V2Command Issued V2 Protocol command byte from the host */ void ISPProtocol_WriteFuseLock(uint8_t V2Command) { struct { uint8_t WriteCommandBytes[4]; } Write_FuseLockSig_Params; Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); /* Send the Fuse or Lock byte program commands as given by the host to the device */ for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++) ISPTarget_SendByte(Write_FuseLockSig_Params.WriteCommandBytes[SByte]); Endpoint_Write_8(V2Command); Endpoint_Write_8(STATUS_CMD_OK); Endpoint_Write_8(STATUS_CMD_OK); Endpoint_ClearIN(); } /** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */ void ISPProtocol_SPIMulti(void) { struct { uint8_t TxBytes; uint8_t RxBytes; uint8_t RxStartAddr; uint8_t TxData[255]; } SPI_Multi_Params; Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NULL); Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); Endpoint_Write_8(CMD_SPI_MULTI); Endpoint_Write_8(STATUS_CMD_OK); uint8_t CurrTxPos = 0; uint8_t CurrRxPos = 0; /* Write out bytes to transmit until the start of the bytes to receive is met */ while (CurrTxPos < SPI_Multi_Params.RxStartAddr) { if (CurrTxPos < SPI_Multi_Params.TxBytes) ISPTarget_SendByte(SPI_Multi_Params.TxData[CurrTxPos]); else ISPTarget_SendByte(0); CurrTxPos++; } /* Transmit remaining bytes with padding as needed, read in response bytes */ while (CurrRxPos < SPI_Multi_Params.RxBytes) { if (CurrTxPos < SPI_Multi_Params.TxBytes) Endpoint_Write_8(ISPTarget_TransferByte(SPI_Multi_Params.TxData[CurrTxPos++])); else Endpoint_Write_8(ISPTarget_ReceiveByte()); /* Check to see if we have filled the endpoint bank and need to send the packet */ if (!(Endpoint_IsReadWriteAllowed())) { Endpoint_ClearIN(); Endpoint_WaitUntilReady(); } CurrRxPos++; } Endpoint_Write_8(STATUS_CMD_OK); bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed()); Endpoint_ClearIN(); /* Ensure last packet is a short packet to terminate the transfer */ if (IsEndpointFull) { Endpoint_WaitUntilReady(); Endpoint_ClearIN(); Endpoint_WaitUntilReady(); } } /** Blocking delay for a given number of milliseconds. This provides a simple wrapper around * the avr-libc provided delay function, so that the delay function can be called with a * constant value (to prevent run-time floating point operations being required). * * \param[in] DelayMS Number of milliseconds to delay for */ void ISPProtocol_DelayMS(uint8_t DelayMS) { while (DelayMS-- && TimeoutTicksRemaining) Delay_MS(1); } #endif