/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010, 2011,2012 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** * @file uart.c * @brief UART Driver code. * * @addtogroup UART * @{ */ #include "ch.h" #include "hal.h" #if HAL_USE_UART || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver local definitions. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief UART Driver initialization. * @note This function is implicitly invoked by @p halInit(), there is * no need to explicitly initialize the driver. * * @init */ void uartInit(void) { uart_lld_init(); } /** * @brief Initializes the standard part of a @p UARTDriver structure. * * @param[out] uartp pointer to the @p UARTDriver object * * @init */ void uartObjectInit(UARTDriver *uartp) { uartp->state = UART_STOP; uartp->txstate = UART_TX_IDLE; uartp->rxstate = UART_RX_IDLE; uartp->config = NULL; /* Optional, user-defined initializer.*/ #if defined(UART_DRIVER_EXT_INIT_HOOK) UART_DRIVER_EXT_INIT_HOOK(uartp); #endif } /** * @brief Configures and activates the UART peripheral. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] config pointer to the @p UARTConfig object * * @api */ void uartStart(UARTDriver *uartp, const UARTConfig *config) { chDbgCheck((uartp != NULL) && (config != NULL), "uartStart"); chSysLock(); chDbgAssert((uartp->state == UART_STOP) || (uartp->state == UART_READY), "uartStart(), #1", "invalid state"); uartp->config = config; uart_lld_start(uartp); uartp->state = UART_READY; chSysUnlock(); } /** * @brief Deactivates the UART peripheral. * * @param[in] uartp pointer to the @p UARTDriver object * * @api */ void uartStop(UARTDriver *uartp) { chDbgCheck(uartp != NULL, "uartStop"); chSysLock(); chDbgAssert((uartp->state == UART_STOP) || (uartp->state == UART_READY), "uartStop(), #1", "invalid state"); uart_lld_stop(uartp); uartp->state = UART_STOP; uartp->txstate = UART_TX_IDLE; uartp->rxstate = UART_RX_IDLE; chSysUnlock(); } /** * @brief Starts a transmission on the UART peripheral. * @note The buffers are organized as uint8_t arrays for data sizes below * or equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] n number of data frames to send * @param[in] txbuf the pointer to the transmit buffer * * @api */ void uartStartSend(UARTDriver *uartp, size_t n, const void *txbuf) { chDbgCheck((uartp != NULL) && (n > 0) && (txbuf != NULL), "uartStartSend"); chSysLock(); chDbgAssert((uartp->state == UART_READY) && (uartp->txstate == UART_TX_IDLE), "uartStartSend(), #1", "not active"); uart_lld_start_send(uartp, n, txbuf); uartp->txstate = UART_TX_ACTIVE; chSysUnlock(); } /** * @brief Starts a transmission on the UART peripheral. * @note The buffers are organized as uint8_t arrays for data sizes below * or equal to 8 bits else it is organized as uint16_t arrays. * @note This function has to be invoked from a lock zone. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] n number of data frames to send * @param[in] txbuf the pointer to the transmit buffer * * @iclass */ void uartStartSendI(UARTDriver *uartp, size_t n, const void *txbuf) { chDbgCheckClassI(); chDbgCheck((uartp != NULL) && (n > 0) && (txbuf != NULL), "uartStartSendI"); chDbgAssert((uartp->state == UART_READY) && (uartp->txstate != UART_TX_ACTIVE), "uartStartSendI(), #1", "not active"); uart_lld_start_send(uartp, n, txbuf); uartp->txstate = UART_TX_ACTIVE; } /** * @brief Stops any ongoing transmission. * @note Stopping a transmission also suppresses the transmission callbacks. * * @param[in] uartp pointer to the @p UARTDriver object * * @return The number of data frames not transmitted by the * stopped transmit operation. * @retval 0 There was no transmit operation in progress. * * @api */ size_t uartStopSend(UARTDriver *uartp) { size_t n; chDbgCheck(uartp != NULL, "uartStopSend"); chSysLock(); chDbgAssert(uartp->state == UART_READY, "uartStopSend(), #1", "not active"); if (uartp->txstate == UART_TX_ACTIVE) { n = uart_lld_stop_send(uartp); uartp->txstate = UART_TX_IDLE; } else n = 0; chSysUnlock(); return n; } /** * @brief Stops any ongoing transmission. * @note Stopping a transmission also suppresses the transmission callbacks. * @note This function has to be invoked from a lock zone. * * @param[in] uartp pointer to the @p UARTDriver object * * @return The number of data frames not transmitted by the * stopped transmit operation. * @retval 0 There was no transmit operation in progress. * * @iclass */ size_t uartStopSendI(UARTDriver *uartp) { chDbgCheckClassI(); chDbgCheck(uartp != NULL, "uartStopSendI"); chDbgAssert(uartp->state == UART_READY, "uartStopSendI(), #1", "not active"); if (uartp->txstate == UART_TX_ACTIVE) { size_t n = uart_lld_stop_send(uartp); uartp->txstate = UART_TX_IDLE; return n; } return 0; } /** * @brief Starts a receive operation on the UART peripheral. * @note The buffers are organized as uint8_t arrays for data sizes below * or equal to 8 bits else it is organized as uint16_t arrays. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] n number of data frames to send * @param[in] rxbuf the pointer to the receive buffer * * @api */ void uartStartReceive(UARTDriver *uartp, size_t n, void *rxbuf) { chDbgCheck((uartp != NULL) && (n > 0) && (rxbuf != NULL), "uartStartReceive"); chSysLock(); chDbgAssert((uartp->state == UART_READY) && (uartp->rxstate == UART_RX_IDLE), "uartStartReceive(), #1", "not active"); uart_lld_start_receive(uartp, n, rxbuf); uartp->rxstate = UART_RX_ACTIVE; chSysUnlock(); } /** * @brief Starts a receive operation on the UART peripheral. * @note The buffers are organized as uint8_t arrays for data sizes below * or equal to 8 bits else it is organized as uint16_t arrays. * @note This function has to be invoked from a lock zone. * * @param[in] uartp pointer to the @p UARTDriver object * @param[in] n number of data frames to send * @param[out] rxbuf the pointer to the receive buffer * * @iclass */ void uartStartReceiveI(UARTDriver *uartp, size_t n, void *rxbuf) { chDbgCheckClassI(); chDbgCheck((uartp != NULL) && (n > 0) && (rxbuf != NULL), "uartStartReceiveI"); chDbgAssert((uartp->state == UART_READY) && (uartp->rxstate == UART_RX_IDLE), "uartStartReceiveI(), #1", "not active"); uart_lld_start_receive(uartp, n, rxbuf); uartp->rxstate = UART_RX_ACTIVE; } /** * @brief Stops any ongoing receive operation. * @note Stopping a receive operation also suppresses the receive callbacks. * * @param[in] uartp pointer to the @p UARTDriver object * * @return The number of data frames not received by the * stopped receive operation. * @retval 0 There was no receive operation in progress. * * @api */ size_t uartStopReceive(UARTDriver *uartp) { size_t n; chDbgCheck(uartp != NULL, "uartStopReceive"); chSysLock(); chDbgAssert(uartp->state == UART_READY, "uartStopReceive(), #1", "not active"); if (uartp->rxstate == UART_RX_ACTIVE) { n = uart_lld_stop_receive(uartp); uartp->rxstate = UART_RX_IDLE; } else n = 0; chSysUnlock(); return n; } /** * @brief Stops any ongoing receive operation. * @note Stopping a receive operation also suppresses the receive callbacks. * @note This function has to be invoked from a lock zone. * * @param[in] uartp pointer to the @p UARTDriver object * * @return The number of data frames not received by the * stopped receive operation. * @retval 0 There
/*
    ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010 Giovanni Di Sirio.

    This file is part of ChibiOS/RT.

    ChibiOS/RT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    ChibiOS/RT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/**
 * @file    chbsem.h
 * @brief   Binary semaphores structures and macros.
 *
 * @addtogroup binary_semaphores
 * @details Binary semaphores related APIs and services.
 *
 *          <h2>Operation mode</h2>
 *          Binary semaphores are implemented as a set of macros that use the
 *          existing counting semaphores primitives. The difference between
 *          counting and binary semaphores is that the counter of binary
 *          semaphores is not allowed to grow above the value 1. Repeated
 *          signal operation are ignored. A binary semaphore can thus have
 *          only two defined states:
 *          - <b>Taken</b>, when its counter has a value of zero or lower
 *            than zero. A negative number represent the number of threads
 *            queued on the binary semaphore.
 *          - <b>Not taken</b>, when its counter has a value of one.
 *          .
 *          Binary semaphores are different from mutexes because there is no
 *          the concept of ownership, a binary semaphore can be taken by a
 *          thread and signaled by another thread or an interrupt handler,
 *          mutexes can only be taken and released by the same thread. Another
 *          difference is that binary semaphores, unlike mutexes, do not
 *          implement the priority inheritance protocol.<br>
 *          In order to use the binary semaphores APIs the @p CH_USE_SEMAPHORES
 *          option must be enabled in @p chconf.h.
 * @{
 */

#ifndef _CHBSEM_H_
#define _CHBSEM_H_

#if CH_USE_SEMAPHORES

/**
 * @extends Semaphore
 *
 * @brief   Binary semaphore type.
 */
typedef struct  {
  Semaphore             bs_sem;
} BinarySemaphore;

/**
 * @brief   Data part of a static semaphore initializer.
 * @details This macro should be used when statically initializing a semaphore
 *          that is part of a bigger structure.
 *
 * @param[in] name      the name of the semaphore variable
 * @param[in] taken     the semaphore initial state
 */
#define _BSEMAPHORE_DATA(name, taken)                                       \
  {_SEMAPHORE_DATA(name.bs_sem), ((taken) ? 0 : 1)}

/**
 * @brief   Static semaphore initializer.
 * @details Statically initialized semaphores require no explicit
 *          initialization using @p chSemInit().
 *
 * @param[in] name      the name of the semaphore variable
 * @param[in] taken     the semaphore initial state
 */
#define BSEMAPHORE_DECL(name, taken)                                        \
  BinarySemaphore name = _BSEMAPHORE_DATA(name, taken)

/**
 * @brief   Initializes a binary semaphore.
 *
 * @param[out] bsp      pointer to a @p BinarySemaphore structure
 * @param[in] taken     initial state of the binary semaphore:
 *                      - @a FALSE, the initial state is not taken.
 *                      - @a TRUE, the initial state is taken.
 *                      .
 */
#define chBSemInit(bsp, taken) chSemInit(&bsp->bs_sem, taken ? 0 : 1)

/**
 * @brief   Wait operation on the binary semaphore.
 *
 * @param[in] bsp       pointer to a @p BinarySemaphore structure
 * @retval RDY_OK       if the binary semaphore had been successfully taken.
 * @retval RDY_RESET    if the binary semaphore has been reset using
 *                      @p bsemReset().
 */
#define chBSemWait(bsp) chSemWait(&bsp->bs_sem)

/**
 * @brief   Wait operation on the binary semaphore.
 *
 * @param[in] bsp       pointer to a @p BinarySemaphore structure
 * @retval RDY_OK       if the binary semaphore had been successfully taken.
 * @retval RDY_RESET    if the binary semaphore has been reset using
 *                      @p bsemReset().
 */
#define chBSemWaitS(bsp) chSemWaitS(&bsp->bs_sem)

/**
 * @brief   Wait operation on the binary semaphore.
 *
 * @param[in] bsp       pointer to a @p BinarySemaphore structure
 * @param[in] time      the number of ticks before the operation timeouts,
 *                      the following special values are allowed:
 *                      - @a TIME_IMMEDIATE immediate timeout.
 *                      - @a TIME_INFINITE no timeout.
 *                      .
 * @retval RDY_OK       if the binary semaphore had been successfully taken.
 * @retval RDY_RESET    if the binary semaphore has been reset using
 *                      @p bsemReset().
 * @retval RDY_TIMEOUT  if the binary semaphore was not signaled or reset
 *                      within the specified timeout.
 */
#define chBSemWaitTimeout(bsp, time) chSemWaitTimeout(&bsp->bs_sem, time)

/**
 * @brief   Wait operation on the binary semaphore.
 *
 * @param[in] bsp       pointer to a @p BinarySemaphore structure
 * @param[in] time      the number of ticks before the operation timeouts,
 *                      the following special values are allowed:
 *                      - @a TIME_IMMEDIATE immediate timeout.
 *                      - @a TIME_INFINITE no timeout.
 *                      .
 * @retval RDY_OK       if the binary semaphore had been successfully taken.
 * @retval RDY_RESET    if the binary semaphore has been reset using
 *                      @p bsemReset().
 * @retval RDY_TIMEOUT  if the binary semaphore was not signaled or reset
 *                      within the specified timeout.
 */
#define chBSemWaitTimeoutS(bsp, time) chSemWaitTimeoutS(&bsp->bs_sem, time)

/**
 * @brief   Reset operation on the binary semaphore.
 * @note    The released threads can recognize they were waked up by a reset
 *          rather than a signal because the @p bsemWait() will return
 *          @p RDY_RESET instead of @p RDY_OK.
 *
 * @param[in] bsp       pointer to a @p BinarySemaphore structure
 * @param[in] taken     new state of the binary semaphore
 *                      - @a FALSE, the new state is not taken.
 *                      - @a TRUE, the new state is taken.
 *                      .
 */
#define chBSemReset(bsp, taken) chSemReset(&bsp->bs_sem, taken ? 0 : 1)

/**
 * @brief   Reset operation on the binary semaphore.
 * @note    The released threads can recognize they were waked up by a reset
 *          rather than a signal because the @p bsemWait() will return
 *          @p RDY_RESET instead of @p RDY_OK.
 * @note    This function does not reschedule.
 *
 * @param[in] bsp       pointer to a @p BinarySemaphore structure
 * @param[in] taken     new state of the binary semaphore
 *                      - @a FALSE, the new state is not taken.
 *                      - @a TRUE, the new state is taken.
 *                      .
 */
#define chBSemResetI(bsp, taken) chSemResetI(&bsp->bs_sem, taken ? 0 : 1)

/**
 * @brief   Performs a signal operation on a binary semaphore.
 *
 * @param[in] bsp       pointer to a @p BinarySemaphore structure
 */
#define chBSemSignal(bsp) {                                                 \
  chSysLock();                                                              \
  chBSemSignalI(bsp);                                                       \
  chSchRescheduleS();                                                       \
  chSysUnlock();                                                            \
}

/**
 * @brief   Performs a signal operation on a binary semaphore.
 * @note    This function does not reschedule.
 *
 * @param[in] bsp       pointer to a @p BinarySemaphore structure
 */
#define chBSemSignalI(bsp) {                                                \
  if (bsp->bs_sem.s_cnt < 1)                                                \
    chSemSignalI(&bsp->bs_sem);                                             \
}

/**
 * @brief   Returns the binary semaphore current state.
 *
 * @param[in] bsp       pointer to a @p BinarySemaphore structure
 * @return              The binary semaphore current state.
 * @retval FALSE        if the binary semaphore is not taken.
 * @retval TRUE         if the binary semaphore is taken.
 */
#define chBSemGetStateI(bsp) ((bsp)->bs_sem.s_cnt > 0 ? 0 : 1)

#endif /* CH_USE_SEMAPHORES */

#endif /* _CHBSEM_H_ */

/** @} */