/* ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010, 2011 Giovanni Di Sirio. This file is part of ChibiOS/RT. ChibiOS/RT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/RT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "ch.h" #include "test.h" /** * @page test_benchmarks Kernel Benchmarks * * File: @ref testbmk.c * * <h2>Description</h2> * This module implements a series of system benchmarks. The benchmarks are * useful as a stress test and as a reference when comparing ChibiOS/RT * with similar systems. * * <h2>Objective</h2> * Objective of the test module is to provide a performance index for the * most critical system subsystems. The performance numbers allow to * discover performance regressions between successive ChibiOS/RT releases. * * <h2>Preconditions</h2> * None. * * <h2>Test Cases</h2> * - @subpage test_benchmarks_001 * - @subpage test_benchmarks_002 * - @subpage test_benchmarks_003 * - @subpage test_benchmarks_004 * - @subpage test_benchmarks_005 * - @subpage test_benchmarks_006 * - @subpage test_benchmarks_007 * - @subpage test_benchmarks_008 * - @subpage test_benchmarks_009 * - @subpage test_benchmarks_010 * - @subpage test_benchmarks_011 * - @subpage test_benchmarks_012 * - @subpage test_benchmarks_013 * . * @file testbmk.c Kernel Benchmarks * @brief Kernel Benchmarks source file * @file testbmk.h * @brief Kernel Benchmarks header file */ static Semaphore sem1; #if CH_USE_MUTEXES || defined(__DOXYGEN__) static Mutex mtx1; #endif static msg_t thread1(void *p) { Thread *tp; msg_t msg; (void)p; do { tp = chMsgWait(); msg = chMsgGet(tp); chMsgRelease(tp, msg); } while (msg); return 0; } #ifdef __GNUC__ __attribute__((noinline)) #endif static unsigned int msg_loop_test(Thread *tp) { uint32_t n = 0; test_wait_tick(); test_start_timer(1000); do { (void)chMsgSend(tp, 1); n++; #if defined(SIMULATOR) ChkIntSources(); #endif } while (!test_timer_done); (void)chMsgSend(tp, 0); return n; } /** * @page test_benchmarks_001 Messages performance #1 * * <h2>Description</h2> * A message server thread is created with a lower priority than the client * thread, the messages throughput per second is measured and the result * printed in the output log. */ static void bmk1_execute(void) { uint32_t n; threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()-1, thread1, NULL); n = msg_loop_test(threads[0]); test_wait_threads(); test_print("--- Score : "); test_printn(n); test_print(" msgs/S, "); test_printn(n << 1); test_println(" ctxswc/S"); } ROMCONST struct testcase testbmk1 = { "Benchmark, messages #1", NULL, NULL, bmk1_execute }; /** * @page test_benchmarks_002 Messages performance #2 * * <h2>Description</h2> * A message server thread is created with an higher priority than the client * thread, the messages throughput per second is measured and the result * printed in the output log. */ static void bmk2_execute(void) { uint32_t n; threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()+1, thread1, NULL); n = msg_loop_test(threads[0]); test_wait_threads(); test_print("--- Score : "); test_printn(n); test_print(" msgs/S, "); test_printn(n << 1); test_println(" ctxswc/S"); } ROMCONST struct testcase testbmk2 = { "Benchmark, messages #2", NULL, NULL, bmk2_execute }; static msg_t thread2(void *p) { return (msg_t)p; } /** * @page test_benchmarks_003 Messages performance #3 * * <h2>Description</h2> * A message server thread is created with an higher priority than the client * thread, four lower priority threads crowd the ready list, the messages * throughput per second is measured while the ready list and the result * printed in the output log. */ static void bmk3_execute(void) { uint32_t n; threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()+1, thread1, NULL); threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriority()-2, thread2, NULL); threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriority()-3, thread2, NULL); threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriority()-4, thread2, NULL); threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriority()-5, thread2, NULL); n = msg_loop_test(threads[0]); test_wait_threads(); test_print("--- Score : "); test_printn(n); test_print(" msgs/S, "); test_printn(n << 1); test_println(" ctxswc/S"); } ROMCONST struct testcase testbmk3 = { "Benchmark, messages #3", NULL, NULL, bmk3_execute }; /** * @page test_benchmarks_004 Context Switch performance * * <h2>Description</h2> * A thread is created that just performs a @p chSchGoSleepS() into a loop, * the thread is awakened as fast is possible by the tester thread.<br> * The Context Switch performance is calculated by measuring the number of * iterations after a second of continuous operations. */ msg_t thread4(void *p) { msg_t msg; Thread *self = chThdSelf(); (void)p; chSysLock(); do { chSchGoSleepS(THD_STATE_SUSPENDED); msg = self->p_u.rdymsg; } while (msg == RDY_OK); chSysUnlock(); return 0; } static void bmk4_execute(void) { Thread *tp; uint32_t n; tp = threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()+1, thread4, NULL); n = 0; test_wait_tick(); test_start_timer(1000); do { chSysLock(); chSchWakeupS(tp, RDY_OK); chSchWakeupS(tp, RDY_OK); chSchWakeupS(tp, RDY_OK); chSchWakeupS(tp, RDY_OK); chSysUnlock(); n += 4; #if defined(SIMULATOR) ChkIntSources(); #endif } while (!test_timer_done); chSysLock(); chSchWakeupS(tp, RDY_TIMEOUT); chSysUnlock(); test_wait_threads(); test_print("--- Score : "); test_printn(n * 2); test_println(" ctxswc/S"); } ROMCONST struct testcase testbmk4 = { "Benchmark, context switch", NULL, NULL, bmk4_execute }; /** * @page test_benchmarks_005 Threads performance, full cycle * * <h2>Description</h2> * Threads are continuously created and terminated into a loop. A full * @p chThdCreateStatic() / @p chThdExit() / @p chThdWait() cycle is performed * in each iteration.<br> * The performance is calculated by measuring the number of iterations after * a second of continuous operations. */ static void bmk5_execute(void) { uint32_t n = 0; void *wap = wa[0]; tprio_t prio = chThdGetPriority() - 1; test_wait_tick(); test_start_timer(1000); do { chThdWait(chThdCreateStatic(wap, WA_SIZE, prio, thread2, NULL)); n++; #if defined(SIMULATOR) ChkIntSources(); #endif } while (!test_timer_done); test_print("--- Score : "); test_printn(n); test_println(" threads/S"); } ROMCONST struct testcase testbmk5 = { "Benchmark, threads, full cycle", NULL, NULL, bmk5_execute }; /** * @page test_benchmarks_006 Threads performance, create/exit only * * <h2>Description</h2> * Threads are continuously created and terminated into a loop. A partial * @p chThdCreateStatic() / @p chThdExit() cycle is performed in each * iteration, the @p chThdWait() is not necessary because the thread is * created at an higher priority so there is no need to wait for it to * terminate.<br> * The performance is calculated by measuring the number of iterations after * a second of continuous operations. */ static void bmk6_execute(void) { uint32_t n = 0; void *wap = wa[0]; tprio_t prio = chThdGetPriority() + 1; test_wait_tick(); test_start_timer(1000); do { chThdCreateStatic(wap, WA_SIZE, prio, thread2, NULL); n++; #if defined(SIMULATOR) ChkIntSources(); #endif } while (!test_timer_done); test_print("--- Score : "); test_printn(n); test_println(" threads/S"); } ROMCONST struct testcase testbmk6 = { "Benchmark, threads, create only", NULL, NULL, bmk6_execute }; /** * @page test_benchmarks_007 Mass reschedule performance * * <h2>Description</h2> * Five threads are created and atomically rescheduled by resetting the * semaphore where they are waiting on. The operation is performed into a * continuous loop.<br> * The performance is calculated by measuring the number of iterations after * a second of continuous operations. */ static msg_t thread3(void *p) { (void)p; while (!chThdShouldTerminate()) chSemWait(&sem1); return 0; } static void bmk7_setup(void) { chSemInit(&sem1, 0); } static void bmk7_execute(void) { uint32_t n; threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()+5, thread3, NULL); threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriority()+4, thread3, NULL); threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriority()+3, thread3, NULL); threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriority()+2, thread3, NULL); threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriority()+1, thread3, NULL); n = 0; test_wait_tick(); test_start_timer(1000); do { chSemReset(&sem1, 0); n++; #if defined(SIMULATOR) ChkIntSources(); #endif } while (!test_timer_done); test_terminate_threads(); chSemReset(&sem1, 0); test_wait_threads(); test_print("--- Score : "); test_printn(n); test_print(" reschedules/S, "); test_printn(n * 6); test_println(" ctxswc/S"); } ROMCONST struct testcase testbmk7 = { "Benchmark, mass reschedule, 5 threads", bmk7_setup, NULL, bmk7_execute }; /** * @page test_benchmarks_008 I/O Round-Robin voluntary reschedule. * * <h2>Description</h2> * Five threads are created at equal priority, each thread just increases a * variable and yields.<br> * The performance is calculated by measuring the number of iterations after * a second of continuous operations. */ static msg_t thread8(void *p) { do { chThdYield(); chThdYield(); chThdYield(); chThdYield(); (*(uint32_t *)p) += 4; #if defined(SIMULATOR) ChkIntSources(); #endif } while(!chThdShouldTerminate()); return 0; } static void bmk8_execute(void) { uint32_t n; n = 0; test_wait_tick(); threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriority()-1, thread8, (void *)&n); threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriority()-1, thread8, (void *)&n); threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriority()-1, thread8, (void *)&n); threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriority()-1, thread8, (void *)&n); threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriority()-1, thread8, (void *)&n); chThdSleepSeconds(1); test_terminate_threads(); test_wait_threads(); test_print("--- Score : "); test_printn(n); test_println(" ctxswc/S"); } ROMCONST struct testcase testbmk8 = { "Benchmark, round robin context switching", NULL, NULL, bmk8_execute }; /** * @page test_benchmarks_009 I/O Queues throughput * * <h2>Description</h2> * Four bytes are written and then read from an @p InputQueue into a continuous * loop.<br> * The performance is calculated by measuring the number of iterations after * a second of continuous operations. */ static void bmk9_execute(void) { uint32_t n; static uint8_t ib[16]; static InputQueue iq; chIQInit(&iq, ib, sizeof(ib), NULL); n = 0; test_wait_tick(); test_start_timer(1000); do { chSysLock(); chIQPutI(&iq, 0); chIQPutI(&iq, 1); chIQPutI(&iq, 2); chIQPutI(&iq, 3); chSysUnlock(); (void)chIQGet(&iq); (void)chIQGet(&iq); (void)chIQGet(&iq); (void)chIQGet(&iq); n++; #if defined(SIMULATOR) ChkIntSources(); #endif } while (!test_timer_done); test_print("--- Score : "); test_printn(n * 4); test_println(" bytes/S"); } ROMCONST struct testcase testbmk9 = { "Benchmark, I/O Queues throughput", NULL, NULL, bmk9_execute }; /** * @page test_benchmarks_010 Virtual Timers set/reset performance * * <h2>Description</h2> * A virtual timer is set and immediately reset into a continuous loop.<br> * The performance is calculated by measuring the number of iterations after * a second of continuous operations. */ static void tmo(void *param) {(void)param;} static void bmk10_execute(void) { static VirtualTimer vt1, vt2; uint32_t n = 0; test_wait_tick(); test_start_timer(1000); do { chSysLock(); chVTSetI(&vt1, 1, tmo, NULL); chVTSetI(&vt2, 10000, tmo, NULL); chVTResetI(&vt1); chVTResetI(&vt2); chSysUnlock(); n++; #if defined(SIMULATOR) ChkIntSources(); #endif } while (!test_timer_done); test_print("--- Score : "); test_printn(n * 2); test_println(" timers/S"); } ROMCONST struct testcase testbmk10 = { "Benchmark, virtual timers set/reset", NULL, NULL, bmk10_execute }; /** * @page test_benchmarks_011 Semaphores wait/signal performance * * <h2>Description</h2> * A counting semaphore is taken/released into a continuous loop, no Context * Switch happens because the counter is always non negative.<br> * The performance is calculated by measuring the number of iterations after * a second of continuous operations. */ static void bmk11_setup(void) { chSemInit(&sem1, 1); } static void bmk11_execute(void) { uint32_t n = 0; test_wait_tick(); test_start_timer(1000); do { chSemWait(&sem1); chSemSignal(&sem1); chSemWait(&sem1); chSemSignal(&sem1); chSemWait(&sem1); chSemSignal(&sem1); chSemWait(&sem1); chSemSignal(&sem1); n++; #if defined(SIMULATOR) ChkIntSources(); #endif } while (!test_timer_done); test_print("--- Score : "); test_printn(n * 4); test_println(" wait+signal/S"); } ROMCONST struct testcase testbmk11 = { "Benchmark, semaphores wait/signal", bmk11_setup, NULL, bmk11_execute }; #if CH_USE_MUTEXES || defined(__DOXYGEN__) /** * @page test_benchmarks_012 Mutexes lock/unlock performance * * <h2>Description</h2> * A mutex is locked/unlocked into a continuous loop, no Context Switch happens * because there are no other threads asking for the mutex.<br> * The performance is calculated by measuring the number of iterations after * a second of continuous operations. */ static void bmk12_setup(void) { chMtxInit(&mtx1); } static void bmk12_execute(void) { uint32_t n = 0; test_wait_tick(); test_start_timer(1000); do { chMtxLock(&mtx1); chMtxUnlock(); chMtxLock(&mtx1); chMtxUnlock(); chMtxLock(&mtx1); chMtxUnlock(); chMtxLock(&mtx1); chMtxUnlock(); n++; #if defined(SIMULATOR) ChkIntSources(); #endif } while (!test_timer_done); test_print("--- Score : "); test_printn(n * 4); test_println(" lock+unlock/S"); } ROMCONST struct testcase testbmk12 = { "Benchmark, mutexes lock/unlock", bmk12_setup, NULL, bmk12_execute }; #endif /** * @page test_benchmarks_013 RAM Footprint * * <h2>Description</h2> * The memory size of the various kernel objects is printed. */ static void bmk13_execute(void) { test_print("--- System: "); test_printn(sizeof(ReadyList) + sizeof(VTList) + PORT_IDLE_THREAD_STACK_SIZE + (sizeof(Thread) + sizeof(struct intctx) + sizeof(struct extctx) + PORT_INT_REQUIRED_STACK) * 2); test_println(" bytes"); test_print("--- Thread: "); test_printn(sizeof(Thread)); test_println(" bytes"); test_print("--- Timer : "); test_printn(sizeof(VirtualTimer)); test_println(" bytes"); test_print("--- Semaph: "); test_printn(sizeof(Semaphore)); test_println(" bytes"); #if CH_USE_EVENTS || defined(__DOXYGEN__) test_print("--- EventS: "); test_printn(sizeof(EventSource)); test_println(" bytes"); test_print("--- EventL: "); test_printn(sizeof(EventListener)); test_println(" bytes"); #endif #if CH_USE_MUTEXES || defined(__DOXYGEN__) test_print("--- Mutex : "); test_printn(sizeof(Mutex)); test_println(" bytes"); #endif #if CH_USE_CONDVARS || defined(__DOXYGEN__) test_print("--- CondV.: "); test_printn(sizeof(CondVar)); test_println(" bytes"); #endif #if CH_USE_QUEUES || defined(__DOXYGEN__) test_print("--- Queue : "); test_printn(sizeof(GenericQueue)); test_println(" bytes"); #endif #if CH_USE_MAILBOXES || defined(__DOXYGEN__) test_print("--- MailB.: "); test_printn(sizeof(Mailbox)); test_println(" bytes"); #endif } ROMCONST struct testcase testbmk13 = { "Benchmark, RAM footprint", NULL, NULL, bmk13_execute }; /** * @brief Test sequence for benchmarks. */ ROMCONST struct testcase * ROMCONST patternbmk[] = { #if !TEST_NO_BENCHMARKS &testbmk1, &testbmk2, &testbmk3, &testbmk4, &testbmk5, &testbmk6, &testbmk7, &testbmk8, &testbmk9, &testbmk10, &testbmk11, #if CH_USE_MUTEXES || defined(__DOXYGEN__) &testbmk12, #endif &testbmk13, #endif NULL };